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This paper models trade as a non-coopertative, strategic game played at an 
inlinite sequence of dates. A single, indivisible commodity is traded. Buyers and 
sellers have transferable utility and are characterized by their reservation utilities. 
They meet at random and “bargain” over the price at which a single unit of the 
good will be exchanged. Under a variety of circumstances it is shown that as the 
costs of search and bargaining become negligible, the outcome of the game 
converges to the competitve (flow) equilibrium, even when there is complete 
information. Journal of Economic Literature Classification Numbers: 022. ’ 19x7 
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1. INTRODUCTION 

Stock markets, commodity futures markets, and a few other well-known 
types of markets are characterized by centralized trading. In these markets, 
traders gather in a single location and all have access to the same trading 
opportunities. But there are really very few markets in which trading can 
be described as completely centralized. In many more, trading is decen- 
tralized. Yet economists tend to ignore these institutional differences and 
apply the Walrasian model of competitive equilibrium, even in decen- 
tralized markets, if certain general conditions are met. The conditions 
themselves are familiar enough. There must be a large number of 
individually insignificant agents. Agents must have symmetric information 
about the commodities being traded. There must be no transaction costs. 
And so on. As a convenient shorthand, markets satisfying these conditions 
are referred to as frictionless. The conventional wisdom, then, is that fric- 
tionless markets are competitive and the conventional practice is to use 
Walrasian models to analyse them. It is an interesting question whether the 
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Walrasian equilibrium is a good approximation to what goes on in all 
frictionless markets. 

This question has been given a sharper point by recent work which 
suggests that, in models of decentralized trade, the outcome is not 
Walrasian even when all frictions are removed. The literature on decen- 
tralized trade includes work by Diamond [3,4], Mortensen [9, lo], 
Rubinstein-Wolinsky (RW) [13], Binmore-Herrero [ 1, 21, Shaked Sutton 
[14], and Mandel [S]. What all these contributions have in common is 
the assumption that trade is conducted between pairs of agents. These 
agents are assumed to meet at random and bargain over the terms on 
which they will trade. Diamond and Mortensen preceded the others but 
their analysis was, in one important respect, ad hoc. They assumed that 
when a pair of agents met, the division of the gains from trade was gover- 
ned by the Nash Bargaining Solution. The justification for this assumption 
is not obvious and one might reasonably suspect that it alone accounted 
for the non-Walrasian outcome. A more convincing argument was put 
forward by RW, who were the first to highlight this paradoxical result. 
They adopted a strategic approach. They modeled decentralized trade as a 
non-cooperative game and analysed the perfect equilibria of the game. 
Since their analysis is crucial to an understanding of everything that 
follows, it is worth sketching the outlines of it here. 

One interpretation of the RW model, though not the only one, is that it 
represents the market for an indivisible commodity. Trade takes place at an 
infinite sequence of dates. At each date there is a large number of identical 
buyers and identical sellers in the market. Each seller has one unit to dis- 
pose oc each buyer wants to buy at most one unit. Buyers and sellers are 
randomly matched in pairs at each date. In any given period an agent 
either will meet no one or will meet exactly one agent of the opposite type. 
RW take these matching probabilities to be primitives of the model. In 
most economic applications, however, these probabilities will be 
endogenous. And in the application of their model to the analysis of a 
market RW make the probabilities a function of the numbers of agents of 
each type. If there are more buyers than sellers, for example, a buyer’s 
probability of being matched is less than a seller’s 

Buyers and sellers remain in the market until they have traded. Then 
they leave the market. At any date the number of successful buyers leaving 
the market is necessarily equal to the number of sellers. In order to main- 
tain a stationary state, in which matching probabilities are constant over 
time, equal numbers of buyers and sellers must enter the market at each 
date. The numbers of buyers and sellers in the market, by contrast, are 
constant but unequal in a stationary state. 

All agents are assumed to have transferable utilities. Since all buyers and 
all sellers are identical there is no loss of generality in normalizing the gains 
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from trade between buyer and seller to equal unity. When a buyer and 
seller meet they face the classical bargaining problem: how to divide this 
unit-sized cake. This problem has been solved in a two-person framework 
by Rubenstein [ 111. His theory is easily extended to the present case where 
agents meet at random. Consider a buyer and seller who have just met. 

One of them is chosen at random to be the proposer; the other 
automatically becomes the responder. The proposer makes a proposal as to 
how the cake should be divided. The responder responds by accepting or 
rejecting the proposal. If he accepts, the proposal is implemented 
immediately. The agents exchange a single unit of the commodity, divide 
the surplus in the agreed manner and leave the market. If he rejects the 
proposal both agents are required to remain passive until the next date. At 
the next date, before bargaining can resume, one or both of the agents may 
meet a new partner. If this happens, the newly matched agent will abandon 
his old partner in favor of the new one. If neither agent has been matched 
with a new partner they are free to resume bargaining. In this way, agents 
bargain and search until at last they reach agreement with an agent of the 
opposite type and leave the market. 

There is one crucial assumption which has not yet been mentioned. 
Search and bargaining are costly. More precisely, agents are assumed to 
discount future utilities. The longer it takes them to reach agreement the 
smaller, other things being equal, their final payoffs will be. This cost 
represents an important source of friction in the market and one should 
not expect a Walrasian outcome as long as there is positive discounting. 
The relevant question is what happens as the rate of time preference 
approaches zero. 

The exogenous matching process and the rules governing pair-wise 
bargaining together define a non-cooperative game in extensive form. ’ The 
appropriate solution concept is the (subgame) perfect equilibrium. RW 
make one further restriction: they require the perfect equilibrium to be 
quasi-stationary. That is, the population of agents in the market is constant 
over time, their strategies do not depend on time in an essential way and 
they are independent of history in the sense that an agent’s action at a 
given date depends only on his current state and not on what happened in 
previous periods. RW show that when there is positive discounting there is 

r Strictly speaking, the Rubinstein-Wolinsky framework does not constitute an “extensive 
form.” For example, their game has no initial nodes. There seems to be no danger in using the 
term “extensive form” to describe their setup, however, since these details hardly obtrude into 
the analysis. Similarly, it is slightly inaccurate to use the term “subgame perfect equilibrium” 
to describe the solution concept. The reason is that strategies are not defined for certain 
possible but economically irrelevant nodes of the game. Again, there seems to be no real harm 
in using the term “subgame perfect equilibrium” in this context and 1 think most readers will 
find it more descriptive of what is going on than the available alternatives. 
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a unique, quasi-stationary, perfect equilibrium. The agents’ payoffs are 
determined by their relative impatience and the matching probabilities. 
More precisely, it is the ratio of their respective rates of time preference 
which determines the payoff, not the absolute levels. Allowing their respec- 
tive rates of time preference to converge to zero and holding the ratio 
constant does not change their relative shares. 

This result is the basis of RW’s critique of the competitive paradigm. 
Here is a model which satisfies all the requirements of a frictionless market. 
According to the conventional wisdom, the outcome of any reasonable 
theory of price formation should, under these conditions, be the Walrasian 
equilibrium. And yet, they observe, this is patently not the case. A 
Walrasian equilibrium requires that if there are more sellers than buyers 
the price should fall to zero. Conversely if there are more buyers than 
sellers the price should equal unity. In short, the agents on the long side of 
the market should receive a zero payoff. But the outcome of the bargaining 
game will always assign a positive payoff to buyers and sellers as long as 
the ratio of their rates of time preference is positive and finite. 

Other examples of non-Walrasian equilibria in frictionless markets have 
been given by Shaked-Sutton [15] and Mandel [S]. In the present paper, 
however, I am only concerned with the result of RW. 

The RW paradox does not arise in all models of exchange. In [6] I 
studied a general, exchange economy and showed that a perfect 
equilibrium of the corresponding bargaining game always implements a 
Walrasian equilibrium of the underlying economy. (An earlier version [.5] 
introduced the analytical methods on which [7] and the present paper are 
based. The conclusion of that paper was more or less the same as [6] but 
applied to steady-state equilibria only). There are three major differences 
between the model I studied in [6] and the one used by RW.” First, there 
is no discounting. Rather than assuming some positive degree of dis- 
counting and then taking limits, I chose to work directly with the limiting 
economy. Second, commodities are assumed to be divisible. As a result 
there is no reason why an agent should not trade with many other agents. 
In the RW model sketched above the existence of a single indivisible com- 
modity means that each agent can trade only once. Third, instead of con- 
sidering a stationary state I took the flow of agents into the economy to be 
fixed but arbitrary, subject to the important qualification that the total 
measure of agents entering the market be finite. This last condition has the 
important implication that the set of all agents entering the market con- 

* In addition to the differences arising from the detinition of the model I should mention 
two assumptions required for the proof of the theorem. The first imposed certain regularity 
conditions on utility functions (smoothness, concavity, etc.). The second required that at each 
date the distribution of agents’ types should have a diffuse support, It now appears that this 
last assumption, though needed for the proof given in [7], is not necessary for the result, 
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stitutes a well-defined exchange economy. We can therefore talk about the 
Walrasian equilibria of that economy. In a stationary state, with a con- 
stant, positive measure of agents entering at each date, the set of all agents 
necessarily has infinite measure. One cannot speak of a Walrasian 
equilibrium for the economy consisting of all these agents. Instead, RW 
and others consider the Walrasian equilibria of the hypothetical economy 
comprising just the agents in the economy at a single date. This, as we shall 
see, is not at all the same thing. 

Apart from these differences, the spirit of the model presented in [6] was 
the same as the one presented by RW. In particular, the rules of the 
bargaining game were the same3 once allowance was made for the fact that 
[6] treats a general, exchange economy. So now we have two, apparently 
contradictory, results. On the one hand, we have a rather general model of 
decentralized exchange whose perfect equilibria are all Walrasian. On the 
other hand, we have several small models whose perfect equilibria are non- 
Walrasian even in the limit as the frictions generated by discounting 
become small. The central, unresolved issue is what accounts for the dif- 
ference between these cases and, following on that, how robust is each of 
them? 

There are three possible answers to this question, corresponding to the 
three principal differences between the models used in [6] and in [7]. 
First, it is possible that a limit theorem gives a different answer from a 
theorem “in the limit.” In other words, there is a discontinuity at the point 
where the rate of time preference equals zero. Second, it may be that the 
indivisibilities in the non-Walrasian models are at the root of the paradox. 
Third, it could be the difference between stationary state models with an 
infinite measure of agents and non-stationary models with a finite measure 
of agents which accounts for the non-Walrasian outcome. In order to 
resolve the central issue we need to analyze all three possibilities. That 
analysis is the substance of this paper. 

The model I use is a generalization of the RW model. It represents a 
market for a single commodity. Once again agents are of two types, buyers 
or sellers, but agents may be distinguished by their reservation or limit 
prices. If all sellers (resp. buyers) are assumed to have the same reservation 
price (resp. limit price) then the model collapses to the RW model. At the 
other extreme, by having a large number of finely graduated reservation or 
limit prices one can approximate arbitrarily closely a market with con- 
tinuous demand and supply curves. Thus, even though each agent wishes 

3 Rubinstein [13] has suggested that the bargaining in [7] has a “take it or leave it” 
character which is different from the sequential bargaining in RW. In [7] it is assumed that 
agents are rematched each period, so that at most a single offer passes between two agents 
before they separate. A careful examination of the proofs, however, reveals that this 
assumption is not necessary for the results; it mainly serves to simplify the notation. 
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to trade a single unit of the indivisible commodity, in the aggregate the 
market looks like one in which a perfectly divisible commodity is traded. In 
between these extremes one has a situation like that pictured in Fig. 1 
below. The step functions are demand and supply curves. Vertical distances 
represent the limit price or reservation price of the marginal agent at that 
point. Horizontal distances represent the measure of agents with that limit 
price or reservation price. 

The first result I establish for this model is a limit theorem for an 
economy with a finite measure of agents. These agents are assumed to enter 
the economy according to some fixed but arbitrary pattern. Since their 
measure is finite the set of all such agents constitutes a well-defined 
exchange economy. This economy generically has a unique Walrasian 
equilibrium price and a unique Walras allocation. All agents are assumed 
to discount future utilities at the same rate. (This is a simplifying 
assumption which is not essential for the central conclusions of the paper.) 
Allowing the common discount rate to converge to zero, we generate a 
sequence of perfect equilibria and their corresponding allocations. A limit 
point of this sequence of perfect equilibrium allocations is shown to be a 
Walras allocation of the underlying exchange economy. Binmore and 
Herrero [2] have also studied non-steady state equilibrium, using the basic 
RW model. They assume that two types of agents bargain over a unit sur- 
plus. All agents are in the market at the first date. They show that in the 
limit, as the discount rate converges to zero, all the surplus goes to the type 
of agent that is present in smaller numbers. Interpreting the model as a 
market for an indivisible commodity, this is the competitive outcome. The 
price is zero (resp. one) if there are more sellers than buyers (resp. buyers 

P I 

FIGURE 1 
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than sellers). Their analysis admits the case where two agents may bargain 
over several periods. (In my model, agents are re-matched every period, 
though this does not appear to be crucial to the central conclusions). They 
introduce the concept of security equilibrium, which proves to be a power- 
ful analytical tool, to deal with these more difficult cases. 

The competitive result (Theorem 1, Sect. 5) has two important 
implications. First, it shows that the theorem “in the limit” obtained in [6] 
cannot be explained as the result of a discontinuity. The limit of a sequence 
of perfect equilibria as frictions converge to zero is Walrasian. Second, 
indivisibilities are no obstacle to a Walrasian outcome. The model contains 
the RW model as a special case. Once these two possible explanations are 
ruled out, we are left with stationarity to account for the RW paradox. In 
the economy with a finite measure of agents, stationarity is never assumed. 
In fact, stationarity is generally impossible, since the flow of potential 
entrants is quite arbitrary but ultimately declines to zero. In the stationary 
economy, on the other hand, there is assumed to be a constant flow of 
potential entrants. Since a positive, constant measure of agents enters the 
market at each date, the set of all agents has infinite measure. The 
corresponding exchange economy is not well defined. With the infinite 
measure of buyers and sellers, demand and supply are also infinite. The 
usual market-clearing condition is meaningless in this context. Instead, one 
has to use some notion of market-clearing on uverage and this, it turns out, 
is the key to the RW paradox. 

The next step then is to analyse the stationary economy in which the 
flow of potential entrants is constant. I focus on the stationary perfect 
equilibria of these models, that is, equilibria in which the distribution of 
agents by type at each date is constant. This is the exact analogue of the 
case considered by RW. As before I assume that all agents have the same 
discount factor and consider the sequence of perfect equilibria 
corresponding to a sequence of discount factors converging to unity. We 
are interested in characterizing the limit points. This characterization 
proceeds in two steps. The first step is to show that in the limit there is a 
uniform price. That is, every agent exchanges the commodity at the same 
price, regardless of his type and the date and whether he is proposer or 
responder. This very strong result by itself shows that the limit point is very 
close to being a Walrasian equilibrium. What remains to be shown is 
whether this price is market-clearing. It is worth noting that the uniform 
price result holds in the original RW model. Because there is only one type 
of buyer and one type of seller, it is trivially true in a stationary 
equilibrium that all agents trade at one price. 

In stationary states, where the measure of agents passing through the 
economy is infinite, we are forced to define market-clearing in some 
average sense. There are two obvious candidates. The first corresponds to a 



LIMIT THEOREMS 27 

concept of stock equilibrium. At each date there is a constant distribution of 
types of agents in the market. If we abstract this “stock” of agents, we can 
define a corresponding market-clearing condition in terms of their demands 
and supplies. According to this condition, a price is market-clearing if it 
equates the demands and supplies of the buyers and sellers who are in the 
market at a given date. In Fig. 1, D and S are the demand and supply cur- 
ves constructed using the data of the agents in the market at a single date. 
The market-clearing price is p*. This is the concept of market-clearing price 
adopted by RW and others. The alternative notion of market-clearing price 
corresponds to a concept of flow equilibrium.” Instead of focusing on the 
stock of agents in the market at a given date we look at the flow of agents 
into (or out of) the market at that date. A new set of demand and supply 
curves can be constructed using the data of this set of agents and a new 
market-clearing price defined by the intersection of the curves. In Fig. 1, 
these are given by D’ and S’ and p**, respectively. 

In the market interpretation of the RW model, the market-clearing con- 
dition for flow equilibrium is automatically satisfied. By assumption the 
numbers of buyers and sellers flowing into the market at each date are 
equal. Since they want to trade one unit each, market-clearing in this sense 
is satisfied at any price. For this reason flow equilibrium may not seem a 
very satisfactory concept in the simple case examined by RW. In the more 
general case represented by Fig. 1, however, flow equilibrium makes a lot 
of sense. With an arbitrary, constant Row of potential entrants into the 
market, a stationary equilibrium is possible only if potential entrants can 
choose whether to enter the market. The price which obtains in the market 
must be such that the numbers of buyers and sellers choosing to enter are 
equal. But this condition is met only if the observed price is the flow 
market-clearing price. As Fig. 1 illustrates, the flow market-clearing con- 
dition is both non-trivial and necessary for a stationary equilibrium. It 
therefore seems the natural concept of market-clearing to use. 

There are other considerations which argue for the flow concept as well. 
Although at any date there is an unsatisfied queue on the long side of the 
market, every agent does eventually trade. Furthermore, the excess demand 
or supply, which appears significant at a single date, is constant and 
therefore negligible relative to the trade carried out over the entire history 
of the economy. 

The most convincing argument against the stock equilibrium concept 
comes from the formal characterization of the limit point, however. If we 
take the stock approach first it can be shown that a generalized version of 
RW’s result will hold. For the special case where agents have the same dis- 
count factor, the average surplus of agents on either side of the market 

4 This concept was introduced in [S]. 
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must be the same in the limit. In terms of Fig. 1, the area below the 
demand curve D and above the price line p** is equal to the area above 
the supply curve S and below the price line p **. If discount factors differed 
between buyers and sellers, the proportions between these areas would dif- 
fer accordingly. Note that this result applies to the set of agents actually in 
the economy at a given date. In general, there is no reason to think that the 
price p** which satisfies this relationship will coincide with the stock 
equilibrium market-clearing price p*. So even in this general model there is 
a variant of the RW paradox. 

At the same time, however, p ** is the market-clearing price in the flow 
sense. Furthermore it is the flow market-clearing condition which deter- 

mines p**. Given an arbitrary, constant flow of potential entrants there will 
generically be a unique price which is consistent with a stationary 
equilibrium. Thus, in the limit, in the stationary case, the flow of potential 
entrants uniquely determines the price p** and hence the payoffs of all the 
agents. Nothing of consequence is determined by the stock of agents in the 
market. On the contrary, the stock is determined by the generalized RW 
condition. In equilibrium, the size of the queue of unsatisfied agents adjusts 
so that the sum of expected payoffs on both sides of the market is equal. 
The payoff of each individual agent is unaffected by this condition. This 
seems to me the strongest possible argument against the use of the stock 
equilibrium concept. The stock demand and supply curves determine 
nothing of interest in the generic case and are themselves determined by the 
flow of potential entrants. This is not to say that the relationship between 
the stock demand and supply curves and the price is of no interest. In 
applications, we may be able to observe the stocks but not the potential 
flows. In that case the Rubinstein-Wolinsky theory comes into its own. 

2. THE BARGAINING GAME 

As I indicated in the Introduction, the economic structure underlying the 
bargaining game can be taken to represent a market in which an indivisible 
commodity is traded. On one side of the market we have sellers, each of 
whom has a single unit of the commodity; on the other side we have 
buyers, each of whom wants to purchase a single unit of the commodity. 
Other interpretations are, of course, possible and none of the present inter- 
pretation is necessary for the formal analysis or its economic applications. 

There is assumed to be a large number (strictly a continuum) of agents. 
Agents are divided into two classes, buyers and sellers. These classes are 
then subdivided into a linite number of types of buyers indexed i = l,..., I 
and a finite number of types of sellers indexed j = l,..., J. Where there is no 
risk of ambiguity, 1 and J also stand for the sets of types of buyers and 
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sellers respectively. Then H = ZuJ denotes the set of all types of agents, 
both buyers and sellers. 

Each buyer is characterized by a limit price. The limit price of the i-th 
type of buyer is denoted by si 3 0 (i = l,..., I). We can think of si as the 
utility derived from one unit of the commodity by the ith type. The buyers’ 
types are labelled so that 

s, >s,> ... >S[. (1) 

Each seller is characterized by a reservation price. The reservation price of 
the jth type of seller is denoted by ti 3 0 (j = l,..., J). Think of j as the dis- 
utility of parting with one unit of the commodity for the,jth type of seller. 
The sellers’ types are labelled so that 

t, <t, < ... < 1J. (2) 

Each seller has a single unit of the good which he wants to sell; each buyer 
wants to buy precisely one unit. If a seller of thejth type and a buyer of the 
ith type exchange a single unit of the commodity they create a surplus of 
si - tj (which could be negative). All agents are assumed to have trans- 
ferable utilities so the surplus or gains from trade can be divided in any 
manner they wish. 

An example may help to make the interpretation of these terms 
absolutely clear. Suppose the market is a labor market. The buyers are 
employers; the sellers are workers. Each employer wants to hire at most 
one worker; each worker wants at most one job. Then s, is the productivity 
of any worker for the ith type of employer and ti is the disutility of labor 
(measured in the same units) of the jth type of worker. Other things being 
equal, employers are indifferent about which type of worker they hire and 
workers are indifferent about which type of employer hires them. 

The play of the game takes place at an infinite sequence of dates. For the 
moment I shall assume there is an initial date 0 and the set of dates is 
denoted by N = (0, 1, 2,...}. Later, when it is necessary to consider 
stationary states, it is convenient to assume there is no first date. I leave the 
reader to make the appropriate notational adjustments for the second case. 
Each agent is assigned a single date at which he can enter the market. At 
that date he can decide either to enter the market or stay out. Because the 
entry decision is endogenous there exists the possibility of trivial equilibria 
in which no trade takes place. If every agent decides not to enter the 
market, no trade is possible. Then it is optimal for every agent to remain 
outside the market. A similar problem arises if exit is endogenous. If every 
agent decides to leave the market, then it is optimal for every agent to do 
so. The exit problem can be resolved, in this model, simply by assuming 
that, once in the market, agents have to remain in the market until they 
trade. The entry problem is more intractable. We do not want agents who 
cannot trade in equilibrium (e.g., because their reservation price is too 
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high) to enter the market. The reason is that these agents will accumulate 
and eventually clog the matching process. Since we cannot prejudge the 
market’s decision about who can and who cannot trade, the entry decision 
must remain endogenous. So we are stuck with the possibility of trivial 
equilibria. However, these equilibria are not “stable.” If a small measure of 
agents were accidentally forced into the market, the rest would want to 
follow, attracted by the gains from trade. 

If an agent enters, he must pay a fixed, non-recoverable entry fee e 2 0. 
The entry fee, which is always assumed to be “small,” is used to ensure that 
agents who cannot trade do not enter the market. (cf. Proposition 6 in 
Sect. 5.) The entry fee is used to avoid the problem of non-trading entrants. 
(See above.) The fee should be thought of as “small.” To obtain the correct 
equilibrium without a fee we first set e > 0 and then take limits as e + 0. 
Once in the market an agent can remain, searching and bargaining, as long 
as he likes. Once he has completed a transaction he has to leave and can- 
not reenter. Before entry and after exit an agent takes no part in the game. 

All agents discount future utilities at the same constant rate. Discounting 
begins at the date when the agent enters the market. For example, an agent 
who enters the market at date n and completes a transaction at date N 2 n, 
receiving a share z of the surplus, has a utility CX?~. z - e, where GI is the 
discount factor. It is naturally assumed that 

O<a<l. (3) 

The potential entrants at any date are described by the distribution of their 
types. Formally, let P(H) denote the power set of H and let v be a function 
defined on P(H) x N to [w + . For any set H’ c H and any date n E N, 
v( H’, n) is the measure of potential entrants at n whose types belong to H’. 
The function v is part of the structure of the model. It is important to 
remember, however, that v only describes potential entrants at each date. It 
is up to those agents themselves to decide whether it is worth paying the 
entry fee e to enter the market. 

The structure of the model is defined by the lists of types I and J and the 
numbers {.s~}~~, and { tj},EJ, by the set of dates N, the discount factor a, 
and by the distribution of potential entrants v. The structure 
(z3 J3 Isi}, {lj}, N, a, v) satisfying (1) to (3) is denoted by 9. The bargain- 
ing game is defined by Y together with the specification of the matching 
process and the bargaining rules. The matching process adopted in this 
paper is a simple one. It should be clear from the proofs that it is not 
necessary to restrict the analysis to this particular process.* But there is a 

5 Although the analysis has not been carried out for more general cases it seems likely that 
what is required is some kind of connectedness property. That is, each type of buyer must 
have a positive probability of meeting every type of seller that is in the market in significant 
numbers and vice versa. Of course, for the analysis of steady-states one will have to assume 
that the matching process is stationary. 
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considerable gain in the exposition from choosing such a simple and trans- 
parent rule and this, I think, outweighs the apparent lack of generality. The 
active agents at any date n are those who have already entered the market 
and have not yet left it, together with the current entrants. For any set 
H’ c H and any date n E N, p(H’, n) is the measure of active agents with 
types in H’ at date n. The function ,U defined on P(H) x N to R + is 
endogenously determined as part of the perfect equilibrium of the bargain- 
ing game. It describes completely the population of agents in the market at 
each date. The matching process is a function of p. Agents are assumed to 
be randomly matched in the sense that the probability of meeting an agent 
of a given type is equal to the proportion of that type in the population. 
The matching probabilities are given by a function p defined on P(H) x N 
to [0, 11, where for every H’ c H and n E N, 

p(H’, n) = AH’, ~~)l/dH, n). (4) 

The matching process is serially independent in the sense that an agent’s 
probability of meeting an agent of a given type is independent of what has 
happened at previous dates. When two agents meet, each has an equal 
probability of being chosen as a proposer, independently of the matching 
process. 

At any date n an active agent acquires the following information: 

(i) he observes whether he has been matched with another agent. If 
he has been matched, he observes his own type, his partner’s type and 
which of them has been chosen as proposer; 

(ii) next he observes the proposer’s move, which is a demand for a 
share z of the surplus generated by trade; 

(iii) finally the responder’s move is observed (the responder accepts 
or rejects the proposal). 

The assumption that an agent knows his opponent’s reservation price or 
limit price is restrictive. Without this assumption we would have to analyze 
a bargaining game with incomplete information. The reason for making the 
assumption of complete information is the following. In the limit, when 
there is no discounting, there is no scope for inferring an agent’s type from 
his willingness to delay. The only effect of assuming incomplete information 
is to force an agent to treat all other agents symmetrically. For example, in 
[7] it is strictly easier to show the bargaining equilibrium is Walrasian 
under incomplete information than under complete information. So 
although here we are dealing with a limit theorem rather than a theorem in 
the limit, it seems that complete information is the more interesting case to 
study. 

An agent’s information at a node which he controls consists of 
everything observed at previous dates since entry, together with what he 

64?;42, I-? 
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has observed at previous nodes at the current date. In other words, this is a 
game of perfect recall. A strategy for an agent is a function which prescribes 
a feasible action at each node he controls. The game is analysed as a sub- 
game perfect Nash equilibrium. Each agent’s strategy is a best response to 
the strategy of other agents at every possible node of the game and not just 
the nodes observed during the play of the game. 

3. RECURSIVE EQUATIONS OF THE BARGAINING GAME 

A precise definition of the bargaining game requires a rather weighty for- 
malism which I have here sought to avoid. The analysis of the game, on the 
other hand, can often be restricted to “soft” or informal arguments. The 
most important tool in achieving this simplification is the value function 
which expresses the expected utility of the game to an agent as a function 
of his type and the current date. The value function satisfies certain recur- 
sive equations which bear a strong family resemblance to the functional 
equations of dynamic programing. These equations can be used to charac- 
terize the perfect equilibrium without any direct reference to the potentially 
complex strategies themselves. 

The generic symbol for a value function is u. The value function is 
defined on HxN to [w,. In this section, I consider a fixed perfect 
equilibrium of a game with discount factor a < 1. To emphasize the depen- 
dence on CI, the value function is denoted by u, and the distribution of 
active agents by 11%. For any (h, n) E Hx N, u,(h, n) is the expected utility 
of an agent of type h at the beginning of date n (i.e., before meeting his 
bargaining partner for that date). Implicit in the definition of the value 
function is the fact that an agent’s expected utility is independent of his per- 
sonal history. This fact follows from the assumption that his history is not 
known to his opponent and that the matching process treats all agents 
symmetrically. An agent’s expected utility is exclusive of the entry fee e and 
is discounted to the initial date 0. To obtain the expected utility of an agent 
who enters the market at some later date N > 0, simply multiply u,(h, n) by 
cN. 

The functions u, and pL, contain all the information we need about the 
perfect equilibrium. It should be clear that if a perfect equilibrium exists, 
the corresponding functions u, and ccl are unique and well defined. Recall 
that u, and pL, are non-stochastic because there is no aggregate uncertainty. 
Corresponding to (u,, pL,) we have the matching probabilities pa defined by 
equation (2.4).6 The following proposition establishes the basic recursive 
equation relating v, and p,. 

6 In each section equations are numbered 1, 2,.... References to equations in another section 
are preceded by a section number and a decimal point. Thus equation (4) in Section 2 is 
referred to as (2.4). 



PROPOSITION 1. For any (i, n) E I x N, 

u,(i,n)= u,(i,n+l)+tCp,(j,n) 
iEJ 

11, u,(i n+ 1)) 

\ jEJ / 

x max{ S(.9, - tl) - u,(j, n + 

and similarly, for any (j, n) E J x N, 

u,(j,n)= 1-t 
( 

C p,(i, ~1) u,(i, n + 1 
iCl 

)+tC~,(i,n) 
i6l 
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(1) 

x max(cc”(.s- ti)-u,(i, n+ l), u,(j, n+ l)}. (2) 

Proof Omitted. 

The intuition behind the proposition is the following. At any date n, one 
of several things may happen to an agent of the ith type. He may not trade, 
in which case he has to wait until the next date and his expected utility is 
u,(i, n + 1). Or he may receive an offer which he accepts. In that case also 
his expected utility is u,(i, n + 1). In a perfect equilibrium he must accept 
any offer which is better than uJi, n + 1) (his effective security level) so the 
proposer can reduce his payoff to precisely u,(i, n + 1). Finally, the agent 
may make a proposal which is accepted by an agent of some typej. In that 
case, by the preceding argument, he receives the total surplus CC”(S~- t,) 
minus what is required to gain the responder’s acceptance, namely 
u,(j, n + 1). His expected utility at the beginning of date n is simply the 
average of his expected utilities in each of these events, weighted by the 
probabilities of each event. This is precisely what Proposition 1 says. 

For the next proposition some additional notation is required. For any 
function .f from I to R let 

Aif =f(i) -f(i+ 1). (3) 

Thus, for example, 

Ais;=si-si+l (4) 

for i = l,..., I- 1. The same convention applies to functions defined on J, of 
course. 

PROPOSITION 2. For any (i, n) EZX N if i< I- 1 then A,o,(i, n) < c? Ais, 
andfor any (j,n)~JxN ifj<J-1 then A,u,(j,n)< --a”A,ti. 

Proof: From Eq. (1 ), 

J’J > jsJ 

xAimax{cr”(si-t,)-u,(j,n+l),u,(i,n+l)). (5) 
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For any numbers a, 6, c, d, 

max{a,b)-maxjc,d}<max{a-c,b-d). 

Then, for any j E J, 

A, max { a%, - t,) - u,(j, n + 1 ), u,( i, n + 1)) 

~maxjAi(~n(~,-rti)-u,(j,n+I)),Ai~,(i,n+l)f 

=max{& Ap,, A,u,(i, n+ 1)). 

Substitution in Eq. (5) gives 

Ai~,(i n) d 
( 

1 - 4 C p,(j, n) 
> 

AiU,(i, n + 1) + $ C p,..j, B) 
jEJ jE.l 

xmax(cr” Api, A,u,(i, n+ 1)). (6) 

NOW suppose, contrary to what we want to prove, that A,o,(i, n) > a” A,s,. 
Inequality (6) implies that A,v,(i, n + 1) > A,u,(i, n). Otherwise the 
inequality could only be satisfied if A,o,(i, n + 1) < anA,si, in which case, 
since 0 < i ~,,,p&, n) f 1, the inequality would imply A,u,(i, n) < a” Ap,, 
a contradiction. Because (6) holds for all n, it follows by induction on n 
that v9(i, n + k) >, u,(i, n + k - 1) for all k > 1. Then 

lim A,v,(i,n+k)3a”A,s,>O. 
k - r‘z 

However, the fact that u,(h, n) >, 0 for all (h, tr) E H x N and the surplus to 
be divided converges to zero as n -+ cc when a < 1 implies that 
lim k-a u*(i, n + k) = 0, a contradiction. Thus, A,u,(i, n) d an A+,. The 
proof that Aju,(j, n) < -a” A,t, is similar. 1 

Proposition 2 shows that an agent cannot obtain more from the bargain- 
ing game than he contributes. In a competitive equilibrium he gets exactly 
what he contributes. When a < 1, on the other hand, he may get less 
because he happens to be the responder and can do no better than if 
agreement had not been reached. 

4. LIMIT POINTS OF PERFECT EQUILIBRIA 

All the information we need about a perfect equilibrium is contained in 
the value function u and the distribution p. Let A = (a,, a,,...} be a 
sequence of numbers in (0, 1) converging to 1. For any a E A, let (u,, ccl) 
denote the values of z~ and p corresponding to some perfect equilibrium of 
the game (assuming one exists) with discount factor a. The sequence 
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WY PAL.4 has a pointwise convergent subsequence which can be taken 
to be the original sequence. Let 

Note that (u, p) is not necessarily an equilibrium of the game with CI = 1; 
(u, p) simply represents the limiting behavior of a sequence of equilibria as 
frictions vanish. For any H’ c H and n E N define 

p(H’, n) = AH’, n)/AK n). (2) 

From (2.4) and the convergence of {fix} it follows that p,(H’, n) -tp(H’, )I) 
asa+l foranyH’cHandnEFV. 

With these definitions one can immediately state analogues “in the limit” 
of the results derived in Section 3. In each case the result follows from the 
continuity of the relationship and the convergence of {(Us, p,)},,,,,. From 
Proposition 1 we have, for any (i, n) E 1x N, 

u(i,n)= 
( 

l-+&r(j,n) u(i,n+l)++Cp(j,n) 
1e.J 1 it.l 

x max{si-- tj- u(j, n + l), u(i r2 + 1)) (3) 

and for any (j, n) E J x fV, 

u(j,n)= 
( 

l-;Cp(i,n) r~(j,n+l)+)Cp(i,n) 
iE/ > iEl 

xmax(s;-t,-r(i,n+l),u(j,n+l)]. (4) 

It is immediate from (3) and (4) that u(h, n) 3 u(h + 1, n) 20 for any 
(h, n)~ Hx N. Let u(h, co) denote the limit as n -+ CC of u(h, n) for any 
hEH. 

PROPOSITION 3. Fur any (i j) E Ix J if either lim,, supp(i, n) > 0 or 
lim, supp(j, n) >O then (s;- tj) d o(i, co) + u(j, a). 

Proof: Suppose that lim, supp(i,, n) > 0 and let p( ., co) denote a limit 
point of {pt., n)jntN such that p(i,, co) > 0. From (4) and continuity, 

4.L a)= 1 -t C p(j, co) 
( 

4.L a)+$ 2 p(j, 00) 
iE, > icl 

xmax{si- tl-u(j, a), u(i, co)}, 

which implies that 

O= CP(i, a3)max{s,-r,-u(i, co)-u(j, c0),0}. 
iGl 
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Since p(i,, co) > 0, si,, - tj - u(i,, 00) - u(j, co) < 0 as required. The other 
case is handled similarly. 1 

COROLLARY. For any h E H if lim, supp(h, n) > 0 then u(h, n) = 
u(h,n+l)for any nEN. 

ProoJ: Suppose that lim, sup p(i, n) > 0 for some i E I. Then from 
Proposition 3, si - fj 6 v(i co) + u(j, co) for any j E J. Since u(h, n) is 
monotonically non-increasing in n for any h E H, s, - fj < u( i, n) + u(j, n) for 
any n E N and for any j E .Z. From inspection of (3) it appears that 
v(i, n) = u(i, n + 1) for all n E N. The other case is similar. 1 

From Proposition 2 we have, for any (i, n) E Z x N, 

A;u(i, n) < ArSi (5) 

and for any (j, n)~Jx N, 

A,u(j, n) < -Ajfj. (6) 

In competitive equilibrium these inequalities hold as strict equalities for 
agents who trade. As a first step toward establishing this result, I derive a 
lower bound for A,u(h, n) in the next two propositions. First, some more 
notation is needed. For any (i, j, n) E Ix .Z x N define 

if si-ti~u(i,n+l)+~(j,n+l) 
otherwise 

and 

if si-ti>u(i,n+l)+u(j,n+l) 
otherwise. 

For any (i,n)EZxN define 

1-t 1 ti(j,.Lk) 
jcJ > 

and for any (j, n) E J x N define 

For any (i, j, n) E Z x J x N, $(i, j, n) is the probability that an agent of type 
i, who is in the market at date n, meets an agent of type j and can trade 
with him. The interpretation of $(j, i, n) is similar. For any (i, n) E Ix N, 
&i, n) is the probability that an agent of type i, who is in the market at 
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date 0, will not propose to anyone with whom he can trade before date n. 
The interpretation of 4(j, n) is similar. 

PROPOSITION 4. For any (i, n ) E Ix N, 

u(i, n) = $(i, n)-’ f i(i, k) i C $(i, j, k)(s, - t, - u(j, k + 1)) 
k=n jeJ 

+qS(i,n)p’q4(i,N+1)o(i,N+1) 

and, similarly, for any (j, n) E J x N, 

u(j,n)=4(j,n)-’ f &j,k)tC ~(j,i,k)(si-rj-U(i,k+l)) 

k=n it1 

+~(j,n)-‘d(j,N+l)u(j,N+l). 

Proof The proof is by induction on N. For any (i, n) E 1 x N, the 
expansion for o(i, n) is identical with Eq. (3) when N = n. Now suppose it is 
valid for some N 3 n. Then 

o(i,n)=q5(i,n)-’ f #(i,k)$ 1 $(i,j,k)(.s-t,-u(i,k+l)) 
k=n jeJ 

+d(i, n)-’ q&i, N+ 1) u(i, N+ 1) 

=4(i,n)d’kz d(i,k)$ c ~(i,j,k)(si-tj-o(i,k+l)) 
n JEJ 

+#(i,n)-‘@(i,N+l) + 1 +(i,j,N+l)(s;--t,-u(j,N+2)) 
i JEJ 

+(1-f~J~(ii,N+l))a(r,N+2)i 

N+l 

=O(i, n)-’ ,C, 4th k)t C @(hi k)(si-tj-u(i, k+ 1)) 

jsJ 

+4(&n)-‘$(i,N+2)u(i,N+2). 

The expansion for u(i, n) is thus valid for all N 3 n. The proof for u(j, n) is 
similar. 1 

PROPOSITION 5. For any i = l,..., I - 1 and n E N, 

d+(i, n)34(i+ 1, n))’ f +(i+ 1, k) $ c t,b(i, j, k) dp, 
k=n jsJ 

+qb(i+l,n)-‘q4(i+l,N+l)d,u(i,N+l). 
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Similarly, for any j = I ,..., J- 1 and n E k4, 

AjUG, n)>,b(j+ 1, n)-’ f 4(j+ 1, k)i 1 $(i, j, k)( -A,t,) 
k=n /EJ 

+d(j+l,n)-‘&j+l,N+l)A,u(j,N+l). 

Proof: Once again the proof is by induction and I only prove the first 
inequality. The inequality is an identity for any i = l,..., I- 1, n E N and 
N = n - 1. Suppose it is true for some N > n - 1. Then 

AiU(i, n)Z&i+ 1, n))’ $J &i+ 1, k) 4 C $(i, j, k) A,s, 
k=n jEJ 

+$(i+l,n))‘d(i+l, N+ l)A,u(i, N+ 1) 

=4(&n)-’ i &i+ l,k)$C i&i, j,k)A,s, 
k = H lEf 

+~$(i+l,n)-‘&i+l,N+l) 

xAi 
K 

1 -f 1 $(i,j, N+ 1) u(i, N+2) 
JEJ 1 

+j c $(i, j, N+ l)(.r-t,-u(j, N+2)) (7) 
jkJ 

Ai l-4 c $(i, j, N+ 1) o(i, N+2) 
jEJ 

+$ 1 $(i,j, N+ l)(Si-tj-U(j, N+ 1)) 
jeJ 

1 --t 1 Ic/(i+ l,j, N+ 1) 
jcJ 

-&,~JAi$(i,j,N+l)u(i,N+2)+f~ +(i+l,j,N+l)A,s, 
jsJ 

+$ 1 A,$(& j, N+ l)(s;-lj-V(j, N-l- 1)). (8) 

From (5) and the definition of rl/ it follows that A,$(& j, N+ 1) 2 0 and 
thatdj~(i,j,N+1)>Oimpliessi-ti-o(i,N+l)-~(j,N+l)~O.Thus, 

fjgJAiljl(i, j, N+ l)(si-t;-v(i, N+ 1)-~(j, N+ l))>O 
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and (8) reduces to 

39 

A; 
K 

1-1 c $(i,j,N+l) u(i,N+2) 
jtJ 

+&C ~(i,j,N+l)(s,-t,-v(j,N+l)) 
jcJ 

++ 1 $(i+l,j,N+l)d;s,. 

Substituting this inequality into (7) produces the desired result for N+ 1 
and, by induction, for all N+ 1. 1 

5. ECONOMIES WITH FINITE MEASURE 

In this section the results obtained in Sections 3 and 4 are applied to the 
case of an economy in which the total measure of all potential entrants is 
finite. This case is important for several reasons. First, with a finite measure 
of agents the economy has a well-defined set of competitive equilibria. In 
the limit, as a -+ 1, the perfect equilibria of the bargaining game implement 
one of these equilibria. When the measure of agents is infinite there is some 
ambiguity about the definition of competitive equilibrium and the available 
limit theorems are therefore harder to interpret. Second, the finite measure 
case is a particularly tractable example in which the proportions of agents 
of different types change over time as a result of trade. These endogenous 
changes in the distribution of agents are an important factor in ensuring 
the competitive outcome. Third, the assumption of a finite measure of 
agents was used in [7] to obtain a theorem “in the limit” for a bargaining 
game based on a very general exchange economy. The “limit theorem” 
obtained in this section can be seen as complementary to the result 
obtained in [7], at least for this very special class of games. It shows that 
the limit economy studied in [7] is a good approximation to economies 
with small but positive discount rates and a finite measure of agents. Of 
course, one could also prove a theorem “in the limit” for the economy 
described in Section 4, i.e., prove that Theorem 1 is true for a = 1. 

The crucial assumption used in this section is that 

v(H, n) = 0 for n = 1, 2,.... (1) 

(The main theorem of this section is also true under the assumption that 
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c n c N v(H, n) < co. That case corresponds more exactly to the entry 
assumptions made in [6] but otherwise does not add extra insight. The 
more limited assumption (1) is made to simplify the analysis.) From the 
definition of pI it is clear that for any H’ c H and no N, pZ(H’, n)> 
pX( H’, IZ + 1). Taking limits as IX -+ 1 gives 

p(H’, n) > p(H’, n + 1) (2) 

for any H’ c H and n E N. It follows immediately that, for any H’ t H, 

lim p(HI, n) = p(HI, co) (3) neN 

exists. Equation (3) immediately implies via (4.4) that for any H’ c H, 

lim p(H’, n) =p(H’, co) 
ncrm 

exists. 
The value of p( ., co ) has important implications for the value function u, 

as we saw in Section 4. The sequence of propositions below considers dif- 
ferent possibilities concerning p( ., cc ) and p( . , co) in order to characterize 
0 completely. 

PROPOSITION 6. Suppose that e > 0 and the economy has finite measure. 
For any h E H such that p(h, co) > 0, &h, n) + 0 as n + co. 

Proof The sum of the expected utilities of the active agents in the 
market at any date cannot exceed the total surplus that could be produced 
if those agents were immediately matched in an optimal way. Thus, for any 
tx and n E N there must exist numbers x,(i, j, n) 2 0 for every (i, j) E Ix J 
such that 

,& dh, n) u,(h, n) < C c x,(6 j, n)(si- tj) 
iefjtJ 

and such that 

and 

z, x,(6 j, n) d p&j, n) for each Jo J. 
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Taking limits, first as CI -+ 1 and then as n + co, we see that there must exist 
a number x(i, j) > 0 for every (i, j) E Ix .Z such that 

where 

1 X(i,j)GP(i, a) for each i E I 
jsJ 

and 

iF,x(i..i)G&, co) foreach ZEJ. 

From (3) it follows that p(Z, co) >O if and only if ~(5, ‘;o) >O. To see 
this suppose that p(Z, co) > 0 and p(J, co) = 0. (The case where p(.Z, co) > 0 
and p(i, co) = 0 is exactly similar.) Then (3) implies that u(i, co) = 0 for any 
in I such that ~(i, co) > 0 and, by the corollary to Proposition 3, o(i, n) = 0 
for all n E N. But this means that for all CI sufficiently large u,(i, 0) < e. No 
agent of type i will enter the market, ,u,(i, n) = 0 for all n E N and tx suf- 
ficiently large and so ~(i, n) = 0 for all n E fV, a contradiction. 

From Proposition 3, if ~(i, GO) > 0 or ,~(j, co) > 0 then S, - t, - z~(i, co) - 
u(j, co ) 6 0. But this together with (3) implies that for any (i, j) E Ix J, if 
~(i, co)>0 and ~(j, co)>0 then si- tj-u(i, KI)-u(j, co)=O. By the 
corollary to Proposition 3, for any n E N, s, - t, - U( i, n) - v(j, H) = 0. Then, 
for any i E I such that p(i, co) > 0, 

limsup C +(i,j,n)>O, 
n jsJ 

which implies that lim,!, oc #(i, n) = 0. The analogous result obviously 
holds for any j E .Z such that ,~(j, co) > 0. 1 

PROPOSITION 7. For any h E H, p(h, n) > 0 and p(h, ccl) = 0 implies that 
c$(h, 00 ) = 0. 

Proof For any a E A and HE N, the probability that an agent of type 
iE Z, who is active at date n, leaves the market at date n is less than or 
equal to cjE J $,(i, j, n), the probability of meeting an agent with whom 
trade is possible. Then 

k(i, n + 1) 2 1 - 1 +,(i, j, n) pJi n) 
jeJ > 
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since the right-hand side is a lower bound for the measure of agents of type 
i remaining in the market from date n to date n + 1. 

Taking limits as LX + 1, 

/4i,n+1)3 1-c @(i,j,n) ( p(i,n), 
IEJ ) 

and, immediately, 

n-l 
A&n)2 n 1-C $(i,j,k) ( AhO). (4) 

k=O jcJ 

Suppose that for some i E Z, p(i, 0) > 0 and p(i, co ) = 0. (The general case 
~(i, n) > 0 is treated in the same way.) Then from (4) it follows that 

fio(l - 1 a(m)=o. 
jfJ 

(5) 

For every value of k, cjEJ i&i, j, k)) < 1. This is certainly true for k = 0 
since p(i, 0) > 0 by hypothesis. If we assume that CjtJ +(i, j, k) < 1 for k = 
O,..., n - 1 then (4) implies ~(i, n) > 0 so CjE J $(i, j, n) < 1. Thus, the claim 
follows by induction. Given that the terms in the product in (5) are all 
positive, a necessary and sufficient condition for (5) is that 

f c $(i, j,k)=oo 
k=OJEJ 

in which case it follows by the same criterion that 

as required. The proof for j E J is exactly similar. 1 

Propositions 6 and 7 show that for any agent who is active in the market 
at some date, &h, n) -+ 0 as n + co. From Proposition 5 it follows that for 
any i E I such that i + 1 enters the market, 

A,zI(~, n) B d(i+ 1, n))’ 2 qS(i+ 1, k) 4 C Il/(i, j, k) AiSi (6) 
k=n jeJ 

and similarly, for any j E J such that j + 1 enters the market, 

djfJ(.i, n) 3&j+ 1, n)-’ f d(j+ 1, k) t 1 $(j, i, k)( -djtj). 
k=n is, 

(7) 
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From the definition of 4 however it follows by direct calculation that for 
any in I such that i + 1 enters the market, 

B(i,n)F1k~nd(i,k)+~ $(i,j,k)=l-d(i,oo)=l, 
itzf 

and similarly for Jo J, if j + 1 enters the market. Hence, for any i E I such 
that i+ 1 enters 

A,u(i, n) 2 Ap, (8) 

and for any j E J such that j + 1 enters 

A,u(j, n)> - A,t,. (9) 

The inequalities (8) and (9) taken in conjunction with (4.5) and (4.6) imply 
that for any i E I (resp. Jo J) such that i + 1 (resp. j + 1) is in the market, 
A,u(i, n) = Aisi (resp. Aiu(j, n)= -A,tj). 

PROPOSITION 8. If e > 0 and the economy has finite measure there exists 
UI 2 0 such that, for anJ> i E I sat$ving p(i, n) > 0 for some n E N, 

u(i,n)=si-o for all nEN, 

and, for any j E J satisxving p(j, n) > 0 ,for some n E N, 

u(j, n) = 0 - ti for all n E N. 

ProojI Let i, be the largest index iE I satisfying p(i, n) > 0 for some 
n E N. Define j, similarly. I claim that, for any n E N, 

u(k, n) + u(h n) = 3,” - t,,. 

To see this, suppose first that, for some nE N, 

u(k, n) + u(h n) > s,o- t,,. 

Then for any i < i, and j d j,,, 

u(i,rz)+u(j,n)>s;-tj (10) 

since A,u(i, n) = Aisi for i< i, and Aju(j, n)= -Ajtj for j< j,. But since 
A,u(i, n)< A,si and Aiu(j, n) < -Aitj for all iel and jE J it follows that 
(10) holds for all iE I and je J. Consequently, no trade is possible. From 
the fundamental recursive equations (4.3) and (4.4) it is clear that (10) 
holds for all n’ B n. But this implies that u(i,, n) = 0 and u(jO, n) = 0, con- 
tradicting e > 0. 
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Now consider the other case, where 

u(i,, n) + u(j,, n) < sio- tjo. 

Then, for any i < i,, and j < j,, 

u(i, n) + u(j, n) < si - t,. (11) 

Then for any triple (i, j, k) E Ix J x RJ we know that si - tj - u(i, k + 1) is 
independent ofj, for any (i, j, k) such that II/( i, j, k) > 0, and non-increasing 
in k. Then Proposition 4 indicates that u(i, n) is non-decreasing over time, 
contradicting ( 11) and (4.3 ). 

The proposition follows directly from u(i,, n) + u(jO, n) = si, - tj,, and 
d,u(i, n)=d,s, for i<i, and dju(j, n)= -Ajtj forj<j,. 1 

To complete the characterization of perfect equilibrium it remains to 
show that o is a market-clearing price. A potential entrant of type h at date 
n will enter if u(h, n) > e and stay out if u(h, n) < e. He is indifferent if 
u(h, n) = e. Demand and supply are equal at the distribution v if and only if 
the following conditions are satisfied. Let 

i,=max(iEI(u(i,n)>e} and io=max{jEJIu(j,n)~e}. 

Then either 
io- I 

.FN i;, v(i, n) GnFN j ! ,  VU n) Q 1 f v(i, n) (12) 
ncN i=l 

with 

u(i,, n) = e if the last inequality is strict, 

or else 

.FN Tz: VU, n) 6 .FN ;;I v(i, n) G C f v(L 4 (13) 
nsNj=l 

with 

u(&, n) = e if the last inequality is strict. 

To see that either (12) or (13) must be satisfied suppose the contrary. 
There are several possible cases to be considered. It may be that one of the 
inequalities in both (12) and (13) is violated. In that case either 

(14) 
nsN j=l 

or 

ntN,=l 
(15) 
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Suppose (14) holds. For some small E > 0 and some large NE N, 

and 

For n 6 N and all c1 sufficiently large, u,(i, n) < e for i > i, and v,(j, n) > e 
for j < j,,. Consequently, for all a sufficiently large there must be a surplus 
of sellers of measure 2~ or more at date N. Since the measure of buyers 
entering after N is bounded by E we have #,(j, N) 2 4 for some j < j, and CI 
sufficiently large. In the limit as CY + 1, b(j, N) 2 $ for somej < j,. Since N is 
arbitrary, this contradicts Proposition 7. By an exactly similar argument 
(15) leads to contradiction. This shows that the inequalities in either (12) 
or (13) must be satisfied. If neither (12) nor (13) holds it must be because 
the complementary slackness conditions are not satitied. Suppose then that 
the inequalities in (12) hold, the second one strictly, but v(io, n) > e. By the 
preceding argument one again shows there is a permanent surplus of 
buyers of types i< i. which contradicts Proposition 7. (13) is established 
the same way. 

The following theorem has been proved. 

THEOREM 1. Let UL Pd b e a sequence of perfect equilibria for an 
economy with a finite measure of agents and a positive entry fee. If (v, p) is a 
limit point of the sequence then (v, ,u) is Walrasian in the sense that, for some 
price w, 

u(i, n)>e*v(i, n)=si-c0 

u(j, n) > e * u(j, n) = 0 - tj 

and the market-clearing conditions (12) and (13) are satisfied. 

6. ECONOMIES WITH INFINITE MEASURE: STEADY STATES 

The analysis of economies with finite measure can be treated as a non- 
tatonnement theory of how an economy reaches the Walrasian equilibrium. 
This kind of theory is useful for some purposes but it is not well suited to 
describing a market which operates in real time. An obvious feature of the 
economy with a finite measure of agents is that the population is eventually 
depleted. In actual markets the number of active participants may fluctuate 
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but there is no long-run tendency for the population to disappear. On 
average, departing agents are balanced by newcomers. Incorporating this 
fact into the present framework means that the measure of all the agents 
who are active in the economy at some date is infinite. To analyse this case 
in the most general terms is difficult. Because the measure of buyers and 
sellers, summed over all dates, is infinite, attainability conditions are 
meaningless. It is the absence of these conditions, which were used exten- 
sively in the finite case, that explains the greater difficulty of analysing the 
economy with infinite measure. In special cases, however, the analysis is 
quite tractable. If we restrict the analysis to steady states it is easy to 
characterize the limit points of sequences of perfect equilibria. 

Two kinds of steady state analysis are possible, differing only in the 
assumptions made about entry. The first kind makes use of an assumption 
introduced by Rubinstein-Wolinsky [ 131. At the first date (n = 0) there is 
an exogenously determined distribution of types denoted by p,,. These 
agents are all active (there is no cost to entering the market). At each sub- 
sequent date agents leave the market in pairs, one buyer for every seller. 
The crucial assumption is that every agent who leaves the market is 
immediately replaced by an agent of the same type. Thus, at each date 
n E N the distribution of active agents is 

In this case it is convenient to assume there is no entry fee: e = 0. 
Let (u, p) be a limit point of a sequence {u,, cl,} aE A of perfect equilibria 

as described in Section 4. If (1) is satilied for every a E A it will obviously 
be satisfied in the limit. The results obtained in Section 4 clearly apply to 
this case too. From the Corollary to Proposition 3 and the definition of the 
matching probabilities, it is immediate that the value function is time- 
invariant. To be more precise, for any h E H such that pO(h) > 0, 

o(h,n)=u(h,n+l) for all nE N. (2) 

We might as well drop the time subscripts and write u(h) for u(h, n), etc., 
where there is no risk of confusion. From Proposition 3 itself we know that 
for any i E I and j E J such that pO(i) > 0 and &j) > 0, 

44 + u(j) 2 si - t,. (3) 

In order to prove the converse of (3) it is necessary to prove a stronger 
result, namely, that for each a E A, the value functions u, are unique and, in 
an appropriate sense, stationary. 

If the relation described by Eq. (1) is assumed to hold for every a E A 
then for any n E N the probability of meeting an agent of type h E H at date 
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n is independent of c1 and n. We can write, without loss of generality, 
P,(h, n) =P(h), f or any h E H, n E N and CI EA. The recursive equations in 
Proposition 1 can be restated as 

1-t 1 p(j) u,(i, n+ 1) 
isJ > 

+ 4 C p(j) IllaX{ d(Si- tj) - U,(j, n + 11, U9(t fi + 1)) 
jeJ 

(4) 

for neN and iEIand 

u,(j,n)= ( 1-1CP(i) v,(j,n+l) 
iel ) 

+$ Cp(i)max(cr”(s,-t,)-v,(i,n+ l), v,(j,n+ 1)) (5) 
itl 

for no N and jeJ 

PROPOSITION 9. For any a E A there exists a unique value function v, 
which is stationary in the sense that v,(h, n + 1) = av,(h, n) for every h E H 
andnEN. 

ProoJ For any h E H and n E N, let M,(h, n) denote the supremum of 
u,(h, n) taken over all functions u, satisfying equations (4) and (5) and the 
feasibility condition 0 < v,(h, n) < a”(s, - t,) for the given matching 
probabilities p. Similarly for any h E H and nE N let m,(h, n) denote the 
inlimum of v,(h, n) taken over all functions v, satisfying (4) and (5) and the 
feasibility condition. It is clear from inspection of (4) and (5) that 
M,(h, n + 1) = aM,(h, n) and m,(h, n + 1) = am,(h, n). Thus, (4) implies 
that for any i E I and n E N, 

mdi, n) 2 1 - 4 1 p(j) m,(i, n + 1) 
JEJ > 

++ 1 p(j) max(a”(sj- t,)-M,(j, n+ 11, m,(i, n+ I)} 
jcJ 

+ 5 1 max{ an(si - tj) - aM,(j, n), am,(i, n)} (6) 
jcJ 

hJ? 43 ‘l-4 
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and 

M,(i,n)< 1-i Cp(j) 
( 

M,(i,n+l) 
jcJ > 

+ + 1 p(j) max(a”(s, - Ii) - m,(j, n + l), M,(i, n + 1)) 
/eJ 

= 1 - + C p(j) 
( 

aM,(i, n) 
jsJ > 

+ f  C p(j) max(a”(si- tj) - am,&, n), aM,(i, n)}. (7) 
jsJ 

Subtracting (6) from (7) and rearranging yields 

[ ( 
1 -a 1 - t 1 Ai) (M,(i, n) - m,(i, n)) 

jeJ )I 
< f 1 p(j) max{a”(s;- fj) - am,(j, n), aM,(i, n)) 

jeJ 

-+,;Jp(j) maX(a”(s,- fj) -aM,(j, HI, am,(i, n)f 

Gi 2 p(j)max(crlIM,(hn)-m,(j,n)l, aCM,(Ln)-m,(kn)l}. (8) 
jtJ 

By analogous reasoning a similar inequality is derived for j E J and any 
n E N. Suppose that for some i E I 

M,(i, n) - m,(i, n) = yea; (M,(h, n) -m,(h, II)>. 

Then the preceding inequality (8) implies that 

MAi, n) - m,(i, n) 

>I 
-1 

a f C AACM,(h n) - m,(i, n)], 
jeJ 

which implies that M,(i, n) =m,(i, n) since, by definition, M,(i, n) > 
mcr(i, n), both are finite and 

(l/2) CzU a 
l-a(l-(W)X~W)<l’ 

A similar argument works for the case where some jc J maximizes 
M,(h, n) - m,(h, n). Uniqueness of u, is immediate because m,(h, n) < 
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u,(h, n) < M,(h, n) and the stationarity property follows from 
M,(h, n + 1) = aM,(h, n). 1 

PROPOSITION 10. For any i E Z and j E J such that o(i) > 0 and u(j) > 0, 
u(i) + u(j) = si - tj. 

Proof: Suppose that for some i E I and all j E J, o(i) + u(j) > si - t,. Then 
for any n E N and G( sufliciently large, 

u,(i, n + 1) + o,(j, n + 1) > cI”(sj - ti) for all jE J. 

By stationarity this means that i is unable to trade with any Jo J at any 
date n E N. But this means u,(i, n + 1) = 0, and in the limit v(i) = 0. Thus for 
any i E I such that u(i) > 0 there exists Jo J such that u(i) + u(j) d si - t,. 
Then Il/(i, j, n) =p(j) > 0 for all n E N and this implies #(i, GO) = 0. By the 
argument used in Section 5, &i - 1, co) = 0 implies that A,u(i) = Ais,. An 
exactly similar argument shows that if v(j+ I)>0 then A,u(j)= -Ait,. 

Let i, (resp. j,) be the largest value of i E I (resp. Jo J) such that u(i) > 0 
(resp. u(j) > 0). We know that u(i,) + o(j,) as, - t,,. Since A;u(i) = Ais, for 
i< i, and Aiu(j) = -Ait, for j< j,,, if the inequality were strict it would 
imply that u(i) + u(j) > si - t, for all i E 2 and j E J, a contradiction. Thus, 
u(i,) -t- u(j,) = s,” - t,, and so u(i) + u(j) = s, - t, for all (i, j) < (iO, j,) as 
claimed. 1 

It is immediate from Proposition 10 that there exists a “price” o 2 0 such 
that for any i E Z, 

u(i)=max(sj-w,O) 

and for any je J, 

u(j) = max{w - tj, O}. 

Typically the situation will be as described in Fig. 1 where the marginal 
trading types on each side of the market receive positive utility. 
Generically, this is not a Walrasian equilibrium relative to 1~~ because 
demand does not equal supply. Still the fact that there is a single uniform 
price at which all trades take place is important in its own right. It con- 
firms the claim made by RW in [13] that their model provides a theory of 
price formation. This claim could not be tested in the context of their 
original example because it was too rudimentary to discriminate between 
price and non-price outcomes. 

Proposition 10 only tells us that a price exists at which all trades take 
place. It does not tell us how the price is determined. The next proposition 
enables us to derive the price w  from knowledge of the steady-state 
distribution ,u,,. 
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PROPOSITION 11. C,,,p(i) u(i) =cjEJp(j) v(j). 

Proof: From Proposition 10 and the recursive equations (4) and (5) we 
know that for any c1 E A and i E I, 

(l-a)u,(i,O)=$ Cp(j) crmax{si-ti-u,(i,O)-~,(j,O),0}. 
isf 

Multiplying both sides by p(i) and summing over i E I gives 

1 (1 -alp(i) u,(i, 0) 
it 1 

A symmetrical argument shows that 

C (1 -a)&) u,(j, 0) 
jeJ 

= t c 1 P(i) P(j) a max(s;- tj- u,(i, 0) - u,(j, 0), O}. 
iEIj6.l 

Since a<l, 

for any a E A. Taking limits as a --+ 1 gives the required result. 1 

Roughly speaking this proposition tells us that the sums of the expected 
utilities on each side of the market at a given date are equal. This is, of 
course, a consequence of assuming that ail agents have the same rate of 
time preference. That assumption, which is innocuous in other respects, is 
crucial here. If, for example, sellers were more impatient than buyers the 
sum of their expected utilities at a given date would be smaller than the 
buyers’. And by varying their relative discount factors we could generate 
any desired distribution of surplus between the two sides of the market. 
Proposition 11 is the analogue of the result obtained by RW in [13]. Like 
their result it seems inconsistent with Walrasian equilibrium. To be precise, 
the steady state distribution p,, defines an exchange economy which has a 
unique Walrasian equilibrium price. There is no reason to think that that 
price is the same as the value of o determined by Proposition 11. And if by 
chance it were, varying the relative discount rates would vary w  without 
altering the “Walrasian” price. In short, o is not except by sheer coin- 
cidence a Walrasian price in this sense. 
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More formally, let us write u E W(p,) if there exists a price w  L 0 such 
that u(i)=max{si-o,O} for FEZ and u(j)=max{o-tj,O} forjEJ and 
the following market-clearing condition is satisfied: either C;O=~,’ p,,(i) 6 
E,‘“=, p,(j) ,< Cf= 1 &i) with u(&) = e if the last inequality is strict or 
Ix&’ p,(j) <C?= ’ pO(i) < cp= 1 p,(j) with v(j,) = e if the last inequality is 
strict, where i,=max(iEZIU(i)2e) and j,=max{jEJIu(j)>e}. If 
Z~E W(pO) we say that u is Walrasian with respect to ,uO. The formal 
conclusion of the preceding discussion is the following theorem. 

THEOREM 2. Let (u,, ,u,) be a sequence of perfect equilibria .for an.1 
economy with a steady-state distribution of agents ,uL,( ., n) = ,uO for all N and 
n. Zf (v, p) is a limit point of this sequence then for some values CI~ pO, 
U$ W(pO) because the market clearing conditions are violated. 

One can also define a flow equilibrium. In this particular case any price 
is market-clearing in the flow sense since by assumption buyers and sellers 
flow into and out of the market in equal numbers. And this is exactly what 
is required since, as we have seen, any price can be generated by altering 
the relative rates of time preference. In this example, the flow equilibrium 
concept seems somewhat unhelpful. The price w  is determined by the stock 
of agents pLo together with the condition in Proposition 11, whereas the 
flow market-clearing condition determines nothing. Indeed it cannot deter- 
mine anything since it is always trivially satisfied. However, these proper- 
ties of the model seem to arise from the fact that, by assumption, the flows 
into the market are always balanced and hence the stock of agents in the 
market is effectively exogenous. 

To test this hypothesis, consider a different set of entry assumptions. 
Suppose that at each date n E N there is a constant stream of potential 
entrants represented by the measure vO. In terms of the earlier notation. for 
each no N, 

V(.> n) = \pO. (9) 

It is clearly impossible to have a steady state unless agents who cannot 
trade are excluded from the market. Assume there is a small entry fee e > 0. 
Then agents must choose whether or not to enter the market. As before, 
consider a sequence {(v,, pJ}creA of perfect equilibria with limit (u, ,u) and 
suppose that for each CXEA, the matching probabilities p, are time- 
invariant, that is, 

PA., n) =p,(., n + 1) for all’ n E N. (10) 

Clearly (10) implies the same property holds in the limit as c( + 1. 
Propositions 9, 10, and 11 continue to hold under the revised entry 

assumption (9) since the only property of ,u, used in the proofs is 
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stationarity, which continues to hold by assumption. Now, however, an 
additional condition must be satisfied. Since buyers and sellers leave the 
market in equal numbers they must enter in equal numbers to maintain a 
stationary equilibrium. This is the flow market-clearing condition and it 
implies conditions analogous to (5.15) and (5.16). Let i,,= 
max{iEZI.ri>~+e} and j,=max{jEJItj<~-e}. Then one of the 
following must hold. 

Either 

io- I 

C vdi) d f v,(j) 6 2 vO(i), 
i=l . j= I i= I 

with si,, = cu + e if the last inequality is strict, (11) 

or 

io- 1 

j:, b(j) 6 2 v,(i) d f vdj) 
i= I j=l 

with t, = CJ.I - e if the last inequality is strict. (12) 

The proof is similar to the one given at the end of Section 5 and will not be 
repeated here. 

THEOREM 3. Let (II,, p,) be a sequence of perfect equilibria for an 
economy with a constant stream of potential entrants v( ., n) = v0 for all n 
and a small entry fee e > 0. If px( ., n) = p0 for all c1 and n and (u, p) is a limit 
point of the sequence then v is Walrasian in the sense that v E W(v,). 

Conditions (11) and (12) generically define a unique price w  which in 
turn determines everything of interest about the limit point (v, p). In other 
words the data in v0 determine the limit of the perfect equilibria. On the 
other hand, the steady state distribution ~1 determines nothing of interest. 
Proposition 11 continues to hold but it tells us nothing. The payoffs to 
individual agents are determined independently of the condition in 
Proposition 11 and it is satisfied entirely by adjustments in ~1. What then is 
the relationship between p, vO, and o? It follows directly from the steady- 
state assumption and the matching rules that the distribution of entrants at 
each date must be proportional to the distribution of agents in the market. 
More precisely, there exists scalars A, and A2 such that 

2, cl(i, n) = vo(i) (i < iO) (13) 

h4.L n) = hdj) (j <id. (14) 
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In the case of the marginal types iQ and j,, 

l,cl(io, n) =min vo(j) (15) 

b4j,, n) =min (16) 

Obviously ~(i, n) = 0 = p(j, n) for i > i, and j > j,. To ensure that ,U is time 
invariant the measure of departing agents of each type must equal the 
measure of entering agents. For example, the number of departing agents of 
type i= 1 is ~(1’= 1, n) p(J). (This requires separate proof that all pairs of 
agents (i, i) = (1, j) who meet actually trade). So assuming i0 > 1, we have 

v,(i= l)=p(i= 1, n)p(J)=p(i= 1, n)p(J, n)/p(H, n). (17) 

Substituting from (13) into (17) we see that 

4 = N, n)IAfc n). (18) 

A similar argument shows that 

4 = Pu(A n)lAfL n). (19) 

Then (18) and (19) imply 1, + 1, = 1. Thus p is determined, up to a scalar, 
by (13-16) in terms of v,, and o. The scalar which remains to be deter- 
mined (AI /&) is fixed by Proposition 11. The ratio of buyers to sellers is 
adjusted so that the sums of expected utilities on the two sides of the 
market are equal. In this precise sense Proposition 12 has content: it only 
determines the size of the queue and has no effect on individual payoffs. 

To sum up, under the entry assumption (9) the limiting price w  is deter- 
mined by vO, theflow of potential entrants, and by theflow market-clearing 
conditions (11) and (12). The stock of agents in the market p is determined 
up to a scalar by v0 and w. Nothing of interest depends on ,U in the limiting 
economy. 

These formal results, taken together with those for non-steady states, 
argue strongly that the flow concept of market-clearing is the appropriate 
one. It is the rather special properties of the RW model which make the 
stock concept seem more appropriate there and hence generate the 
paradox. 
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