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Suppose that two persons are engaged in playing a possibly different game at
a sequence of dates and that at each date they decide how to play only on the
basis of their experience in past games similar to the current one. We model this
situation as a fictitious play algorithm for games with random payoffs, and we
provide sufficient conditions for its almost sure convergence in the class of 2 x
2 games. © 1995 Academic Press, Inc.

1. INTRODUCTION

People often deal with new situations by relying on similar experiences.
Law is administered by recourse to precedents, management is taught by
case studies, behavior changes by limitation, philosophers and mathemati-
cians reason by analogy, and almost everybody has used examples to
explain a concept. In most of these cases, people are relying on a similar
situation to shed light on a problem.

Game theory should be no exception. When confronted with a game
which does not have ‘‘an obvious way to play,” people look at previous
experiences in similar games to learn or deduce a way to play. In most
cases, actually, the ‘‘obvious way to play’’ arises from the consideration
of similar situations. Thus, even when an established solution seems to
be in place, the usage of similarities might help to explain how this has
emerged.

* 1 am grateful to Pierpaolo Battigalli, Cristina Molinari, Roy Radner, Lin Zhou, and
especially to David Kreps and an anonymous referee for helpful comments. I thank the
Department of Economics, Tel Aviv University, for its hospitality while part of this research
was being conducted. The financial assistance of Bocconi University and Stanford University
is gratefully acknowledged.
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Despite their potential importance, however, similarities have not at-
tracted much attention in economics or game theory. To the best of our
knowledge, only four lines of research have so far made explicit use of
some notion of similarity. Rubinstein (1988) and Aizpurua et al. (1990,
1993) are concerned with the study of preferences consistent with similar-
ity judgements. Gilboa and Schmeidler (1992, 1993), instead, present a
more explicit model of decision making based on similarities. Neither of
these models has been applied to game theory yet. Cotter (1991) studies
some sufficient conditions under which the information structures of eco-
nomic agents engaged in playing games induce similar behaviors. Only
Kreps (1990) and Fudenberg and Kreps (1992), however, have so far raised
explicit questions on how to incorporate the usage of similarities into
game theory.

This work is inspired by one of these questions: How does fictitious
play extend to situations where players try to extrapolate from past experi-
ences in similar games? (Fudenberg and Kreps, 1992, p. 25). More pre-
cisely, we have in mind the following situation. Two persons are engaged
in playing a game at a sequence of dates. The game may change from
date to date, but all games which can come up for play belong to a
commonly known class G. Each player considers the games in G suffi-
ciently similar to each other that his or her experience over each game
from G played in the past is an (equally valuable) guide to how any game
in this class should be played. In this sense, all games in G are equivalent
“‘cases’’ of the same class. Therefore, to decide what to play, each player
tries to assess what the opponent will do in the current game by using
this experience to form a prediction. In this framework, we assume that
both assessments and behavior rules conform with the spirit (and almost
the letter) of fictitious play.

After briefly recalling the standard algorithm of fictitious play, Section
2 describes our model of fictitious play by ‘‘cases.’’ Its most important
property is that the games to be played are drawn randomly from G. This
has two relevant consequences. First, since the laws of motion for the
algorithm are stochastic, there are some substantial differences between
fictitious play by cases and standard fictitious play: for instance, strict
Nash equilibria are not necessarily absorbing. Second, our algorithm in-
cludes as a special case the model of a learning process proposed by
Fudenberg and Kreps (1993) for an equilibrium in mixed strategies as the
purification 4 la Harsanyi (1973) of a game of incomplete information.

It is well known that standard fictitious play converges for any 2 x 2
game (Miyasawa, 1961). Section 3 analyzes fictious play by cases in the
class of 2 x 2 games and provides a set of sufficient conditions for its
almost sure convergence. If we interpret fictitious play by cases as a
learning process based on the use of similarities, this is a case where some
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sort of learning takes place. However, although fictitious play by cases
may appear more realistic, it is not likely to solve the difficulties associated
with the interpretation of fictitious play as a learning process. For instance,
it is not difficult to devise a variation of Shapley’s counterexample which
shows that convergence in the class of 3 X 3 games is not guaranteed.
Finally, we mention some extensions of the algorithm which appear more
promising (but technically very challenging) in Section 4, which closes
the paper.

2. FicTiTious PLAY By CASES

Standard Fictitious Play

The algorithm of fictitious play was originally introduced by Brown
(1951) as a method for computing equilibria in noncooperative finite two-
player games, but has gained popularity as a model of adaptive learning
in games. We begin with a description of the algorithm and then recall the
essentials of its interpretation as a learning process. For a more extensive
discussion, see Fudenberg and Kreps (1992, 1993) which we follow in
their notation.

Let G be a finite game in strategic form with two players, indexed by
i =1, 2. Call player 1 Row and player 2 Column; Row will be male and
Column will be female. Given a player i, denote by —i = 3 — { his or her
opponent. Let S, i = 1, 2, be the finite set of pure strategies (or actions)
for player i, let § = §' x §? be the set of pure strategy profiles, and let
u’: § — R give player’s i payoffs. Furthermore, fori = 1, 2, let 3" be the
set of mixed strategies for player i, let & = ' x 22 be the set of mixed
strategy profiles and extend the domain of # from § to X by linearity in
the probabilities.

Sacrificing efficiency for clarity, the algorithm of fictitious play can be
described as follows:

1. Initialization. Set the time clock to ¢+ = 1 and let {, be the null
history. For each player i and strategy s™/ in S/, define an initial weight
ni(s™, {;) = 0 such that % - ¢-imi(s™, {) > 0.

2. Main Loop.

2.1. Make strategy choices. For each player i, let his or her current
strategy choice s’ be the action selected according to some
(possibly mixed) strategy ¢ which maximizes the weighted
utility

> ‘u"(-, sTOmis™ L),

s les!
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(In case of multiple maximizers, there is a fixed tie-breaking
rule to select o.) Let s = (s', 5%) be the (pure) strategy profile
obtained. Set ¢t = ¢ + 1.

2.2. Update history. Given ¢, let {, be the history of play up to time
t obtained by concatenation of {,_; with the pure strategy profile
s just played.

2.3. Update weights. For each player i and each strategy s 'in S,
let the current weight be

if —i has played s ‘at time ¢ — 1,

(5, L) = (s, L) + :
(T L) =M Gy 0  otherwise.

2.4. Restart loop. Go back to step 2.1.

The interpretation of fictitious play as a learning process leaves the
algorithm unaffected but attaches a meaning to the objects defined in this
description.

Suppose that Row and Column play G repeatedly attimest = 1,2,....
At each round of play, they observe only the action actually played by
their opponent (and not the chosen mixed strategy). This generates a
history of past play up to time ¢, denoted by {,, which is the string {, =
(sy,...,%,.), wheres, € Sfork =1,...,t — 1. Let Z, be the set of all
histories of play up to time ¢, let Z, be the (singleton) set consisting of
the null history, and let Z be the set of all possibile infinite histories.

At time ¢, player i looks at the past history of the opponent’s play to
form an opinion pi: Z, — X' about what the opponent is going to play in
the current game. This opinion depends on the initial conditions of the
algorithm (i.e., initial weights and tie-breaking rule). It is obtained by the
normalization of the current weights to a sum of 1, and therefore tends
to converge to the empirical frequencies of play.

Finally, each player i follows a behavior rule ¢ to play the infinitely
repeated game. Thus, ¢' = (¢}, @5, . . .) with ¢i: Z, — /. In the model of
fictitious play, players are presumed to follow the myopic behavior rule
¢! which prescribes to play the current game by choosing a strategy which
maximizes the immediate payoffs with respect to the current opinion on
how the opponent will act.

This interpretation enriches the fictitious play algorithm with the notions
of history, opinions and (myopic) behavior rules. Starting from given initial
opinions, players use the history of play to form (or revise) their opinions.
These determine their choice of strategies, which in turn becomes a piece
of the observed history. Learning takes place if the opinions generated
by this process converge to a limit point, which represents what the players
learn.
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When learning occurs in the fictitious play model, players’ opinions
converge to the marginal distributions of a (possibly mixed) Nash equilib-
rium of G. However, although convergence is known to occur in special
classes of games, it cannot be guaranteed in general (Shapley, 1964). Note
also the apparent naiveté of fictitious play: players try to learn using a
misspecified model where the opponents’ play is stationary. However,
under appropriate assumptions, the algorithm can be justified under the
heading of either bounded rationality (Fudenberg and Kreps, 1992) or
pseudo-Bayesian rationality (Eichberger, 1992).

The Revised Algorithm

There are certainly many ways in which the fictitious play algorithm
can be extended to let players use their experiences in similar games. The
extension that we consider here tries to be minimal, in the sense that we
leave unchanged as much as possible of the original algorithm.

It is a simple observation that, if players are to use similarities, they
must take into consideration several (distinct) games. Thus, we assume
that there is a (nonempty) set G of m X n games in strategic form and that
games are randomly drawn for play from G according to some probability
distribution. Without loss of generality, we assume also that each m X n
game is represented by some m X n bimatrix where the Row and Column
players and their strategy sets are unmistakenly identified by their position.
This assumption is called common positioning, and its main advantage is
that we can use the same symbol to identify players or strategies of
different games in G. Therefore, for instance, we denote by s] the first
strategy of the Row player regardless of the game under consideration;
analogously, S’ denotes the strategy set of player i for any game in G.

In the absence of similarities, the natural extension of fictitious play
from a single game G to a set G of games is to initialize and independently
run the standard fictitious play algorithm for each game in G. Thus, while
every game should be played according to the myopic behavior rule, there
would be distinct opinions, histories, and initial conditions for each game.

If players use similarities, however, it seems natural that initial condi-
tions, histories, and opinions should interact to some extent. For tractabil-
ity, we make substantially simplifying assumptions on the extent of these
interactions. All games in G are judged equally similar by both players
and the same initial conditions apply to each game in G. Since consistency
with the myopic behavior rule suggests that the interaction should depend
only on how players relate the current game under play with other games
observed in the past, this implies that evidence from the past bears equally
on the evolution of the opinions associated with each game in G. There-
fore, a player holds identical opinions about each game in G, even though
these might differ from the opponent’s.
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This leads to the following algorithm, which we call fictitious play by
cases.

1. Initialization. Set the time clock to t = 1 and let {, be the nuli
history. For each game G in G, each player i and strategy s' in $, define
an initial weight ni{(s™, {,, G) = 0 (independent of G) such that
EJ_'vES"nil(S_” glw G) > 0.

2. Main Loop.

2.1. Select game. Randomly select from G the current game H to
be played according to some given probability measure.

2.2. Make strategy choices. Given the current game H, for each
player i let his or her current strategy choice s’ be the action
selected according to some (possibly mixed) strategy o which
maximizes the weighted utility

> WG, s Ly HD.

sTes™

(In case of multiple maximizers, there is a fixed tie-breaking
rule to select 0.) Let s = (s!, s?) be the (pure) strategy profile
obtained. Set ¢t =1t + 1.

2.3. Update history. Given t, let {, be the history of play up to time
t obtained by concatenation of {,_, with the game-strategy pair
(H, s) formed by the game H just selected for play and by the
{pure) strategy profile s just played in it.

2.4. Update weights. For each game G, each player i and each
strategy s~‘in S/, let the current weight be

. S 1 if —i has played s~ attime r — 1,
T);(S lv Ct’ G) = 77?—1(5 l’ Cr—l’ G) + .
0 otherwise.

2.5. Restart loop. Go back to step 2.1.

Informally, the algorithm can be described as follows. At each round,
some game H is randomly selected for play. As in standard fictitious play,
players follow a myopic behavior rule and make their strategy choices
to maximize the immediate payoffs given their opinions (or normalized
weights). After this stage, however, something different takes place in
fictitious play by cases. The piece of history relevant to form an opinion
about a game G is the string of game-strategy pairs (H, s) such that H is
judged similar to G.' Thus, after H has been played, players update their

"In fact, a bit less: each player needs only to consider the opponent’s choice and thus
(H, s7') suffices for the task.
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opinions for each game by incrementing the weight for the strategy just
played by the opponent (and leaving the other weights unchanged).

An Example

Before discussing it, we illustrate the algorithm with a simple example.
Let G be'the class of all 2 X 2 games G(z,, z,) which can be obtained by
substituting a pair of positive real numbers to (z,, z;) in the bimatrix on
the left of Fig. 1. For instance, letting z;, = 1 and z, = 7, we obtain the
game G(1, 7) given on the right of the same figure.

In each game, the pure strategies available to Row are North (N) and
South (S), while Column can choose either West (W) or East (E). Corre-
spondingly, the pure strategy profiles are NW, NE, SW, and SE. The
game G(z,, z») is a variation of the Stag Hunt (see Aumann, 1990) and
has three equilibria: NW, SE (both strict) and an equilibrium in mixed
strategies which depends on the pair z = (z;, 2,). Using a simplified nota-
tion where p stands for the mixed strategy which gives probability p to
N and (1 — p) to S and g has the analogous meaning for W and E, the
equilibrium in mixed strategies is given by (p*(z,), q*(z))) = (7/(8 + z,),
7/(8 + z)).

Ateach date t = 1, 2,... an independent draw from the two (indepen-
dent) random variables Z,, Z, determines which game G(z,, z,) is to be
played. Suppose that the first four realizations of Z, and Z, are respectively
{1, 4, 2, 16} and {7, 2, 1, 19}. Thus, at date ¢t = 1, game G(1, 7) is drawn
for play. Suppose that Row’s initial weights for Column’s strategies are
1 for W and 2 for E, while Column’s initial weights for Row’s strategies
are 2 for N and 1 for S. By an easy computation, Row maximizes his
payoff in game G(1, 7) by choosing S while Column does so by choosing
W. See Fig. 2, where the expected payoffs are computed after normalizing
the weights to sum to 1, which is of no consequence.

At date t = 2, the current weights (for any game to come) are updated
to 2 for both players and both strategies and game G(4, 2) is drawn for
play. Now, myopic behavior leads to the strict equilibrium SE which is
also played at date t = 3, when game G(2, 1) is drawn for play. At date
t = 4, however, game G(16, 19) is drawn for play and both players switch

w E |[@=1 w | E
N[E+nstm 00| — N[E1)][07
S (77 0) (71 7) (22 = 7) S (71 0) (7, 7)

FiG. 1. A class of similar games and one of its representatives.
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Opinion on | Expected | Choice of
opponent payoffs action
Round 1 Row 1 2 3 7 S
(n1=Lz2=17) Column | 2 1 10 7 w
Round 2 Row 2 2 7 S
(21 =4,29 = 2) Column | 2 2 7 E
Round 3 Row 2 3 7 S
(z1i=2,;3=1) Column | 2 3 36 7 E
Round 4 Row 2 4 8 7 N
(21 = 16,22 =19) Column | 2 4 9 7 W

F1G. 2. An example of fictitious play by cases.

independently from the strict equilibrium SE to the other strict equilibrium
NW.

This example shows that the characteristic property that strict equilibria
are absorbing for standard fictitious play is no longer true for fictitious
play by cases. In fact, since the selection of the game to be played is
stochastic, it is possible that some (similar) game drawn for play has
sufficiently different payoffs to override for at least one player the ten-
dency of his or her current opinions to favor the equilibrium strategy
profile just played.

More precisely, let the current players’ opinions be described by the
pair (p, §), where p is the probability according to Column that Row will
play N and similarly ¢ is the probability according to Row that Column
will play W. As it is easy to show, given (z,, z,) and disregarding ties,
Row plays S if and only if § ~ g*(z,) < 0 while Column plays E if and
only if p — p*(z,) < 0. Moreover, p decreases if Row plays S and so does
g if Column plays E. In standard fictitious play, p* and ¢* are constant:
thus, once the two inequalities are simultaneously satisfied and SE is
played, p and ¢ change in the right direction to make the inequalities even
stronger. Hence, these hold a fortiori forever after. On the contrary, in
fictitious play by cases p*(z,) and g*(z,) are (in this example, decreasing)
functions. Thus, there might be (in this example, sufficiently high) realiza-
tions of z; or z; which make p*(z,) or ¢*(z;) so low to reverse the sign of
at least one of these inequalities, moving the process away from the SE
equilibrium.

Comparison of the Algorithms

Mathematically, the major difference between standard fictitious play
and fictitious play by cases is that the latter is a stochastic algorithm while
the former is deterministic. In other words, both the outcome and the
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evolution of opinions generated by standard fictitious play are determined
only by the initial conditions, whereas for fictitious play by cases they
depend also (and often, mainly) on the particular realization of the stream
of games to be played. The example above, for instance, shows how this
can make strict Nash equilibria fail to be absorbing for fictitious play by
cases.

In general, the interactions between similar games may carry the evolu-
tion of opinions about a game away from any strategy profile, upsetting
the dynamics that would emerge if the game were analyzed alone as in
standard fictitious play. When the algorithm is interpreted as a learning
process, this has two implications: enough contrary evidence from similar
games may upset even strict equilibria, and (when learning takes place)
what is learned in the end may be path-dependent. Both implications seem
particularly appropriate for the learning interpretation.

A related problem is that the question of existence (and possibly unique-
ness) of limit points for the opinions generated by this process is much
more complicated for fictitious play by cases. In fact, even mild generaliza-
tions of the algorithm could make its asymptotic behavior too difficult to
study. For instance, if we allow different opinions for any game G in G,
there would be several learning processes running simultaneously while
influencing each other. We conjecture that techniques from statistical
mechanics or the theory of differential inclusions could be of help, but so
far we have made little progress on this issue.

In any case, it should be apparent that the convergence results known
for standard fictitious play are of no help here, where convergence must
be attained in a probabilistic sense. However, they suggest where it might
be easier to establish some kind of convergence. Positive results in this
direction are given in the next section, where sufficient conditions are
given for almost sure convergence of opinions in the class of 2 X 2 games.

Finally, we note that fictitious play by cases may be interpreted as a
process by which people try to learn not how to play a specific game,
but how to play classes of games. In the example above, for instance,
the current values of p and ¢ and the assumption of myopic behavior
suffice to determine how to play any game in the class. Thus, if the
sequence {(7,, ¢,)} converges to a limit point, one might say that some
way to play all the games in the class has been learned. Moreover, if the
support of Z, or Z, is uncountable, most of these games will never be
drawn for play although the opinion which is learned in the limit applies
to them as well. Hence, in some sense, it is possible to learn how to play
even a game that has never been played before.

3. CONVERGENCE IN 2 X 2 GAMES

In this section, we study the asymptotic behavior of the algorithm of
fictitious play by cases when G is an arbitrary set of 2 X 2 games. We
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provide a set of sufficient conditions on the sampling distribution over G
such that, for almost every history, the sequence of opinion pairs {(p,,
g,)} converges to a limit point as t — +%. Moreover, we characterize the
set of possible limit points.

The strategy of proof for this result exploits the property that fictitious
play by cases falls in a class of algorithms widely studied in the theory of
stochastic approximation and generalized urn processes. See for instance
Arthur et al. 1983, 1986; Benveniste et al., 1990; Nevel’son and Has'min-
skii, 1973. Several variants of convergence results are known for these
algorithms. Under appropriate assumptions, we prove one of these results
(which we call the Convergence Lemma) for an algorithm which includes
fictitious play by cases as a special case. The lemma is already known in
this literature, but we offer our proof in the appendix because we have
not been able to find a satisfactory one.

The algorithm that we consider is of the form

Xn+| = Xn + (‘nA(Xn* Zn+l)’ n= 0’ 1’ 2"" M (1)

where X, is an d-vector of estimates, Z, is a k-vector of random variables,
¢, is a positive real number, and A is a vector-valued function. Let D
denote an open subset of RY where the algorithm is defined and let X,
denote the initial condition. Assume that the random d-vector X, and the

sequence of random k-vectors Z,, Z,, . . . are defined on some probability
space ({1, A, P) and denote by 4, the o-algebra of events generated by
X0 2y L Z,.

We make the following assumptions on the form of the algorithm:

(A1) There exists a compact set C C D such that X; € Cimplies X, €

C for all n and all realizations of the sequence Z,, Z,, ... Moreover, X, €
C and sup, |Z,| = K, < +x with probability one.

(A2) {c,} is a nonincreasing sequence such that X, ¢, = +% and
S, 0 < 4,

(A3) Given any x € C, there exists a probability distribution w(-; x)
on R* such that P(Z,,, € B| d,) = [, u(dz: X,) for any Borel subset B
of Rfandanyn =0, 1,....

(A4) There exists a constant K, such that |A(x, z)| = K, for all x €
C and all |z] = K.

(AS) The function a(x) = | A(x, 2)u(dz; x) is locally Lipschitz on
C; i.e., there exists a constant K such that |a(x) — a(x')] < K;|x — x|
for all x, x’ € C. For any initial condition x, € C, the solution of the
vector field x = a(x) remains in C.

Given a nonrandom d-vector x, let P, denote the probability measure
P conditional on the initial condition being X, = x. Unless specified, the
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usage of the “‘almost surely’’ (a.s.) qualifier in the following is to be
understood with respect to the P, distribution induced by an arbitrary
initial condition x € C. Similarly, all expected values are taken with re-
spect to P, unless explicitly noted otherwise. Given an algorithm of the
form (1) which satisfies (A1)—-(AS), we call the vector field x = a(x) its
associated deterministic system.

The Convergence Lemma associated with this algorithm is a stochastic
analog of Liapunov’s stability theorem.

THEOREM | (Convergence Lemma). Consider an algorithm of the form
(1) and suppose that it satisfies (A1)—(AS). Let U be an open subregion
of D such that U N C # & and suppose that on U N C there exists
a nonnegative C* Liapunov function V for x = a(x) such that V(x) =
VV(x)-a(x) = 0 forall x € U N C. Given any ky = 0 such that the set
{xe Un C: V(x) = ky} contains the set {x€ U N C: V(x) = 0}. let

F={xeUuncC: Vix) =k}

If X, visits infinitely often a compact neighborhood L of U such that L C
U O C, then X, converges a.s. to a random variable with support con-
tained in T,

Fictitious play by cases is a special case of the algorithm just described.
The following assumption simplifies its (stochastic) laws of motion and
makes it more amenable to analysis.

AssuMPTION 1 (Independence). The sampling distribution on G in-
duces two distribution functions over Row’s and Column’s 4-tuples of
payoffs which are (stochastically) mutually and serially independent.

We state this assumption in a form which is convenient but somewhat
implicit, because it involves two distributions induced by the sampling
distribution on G. A sufficient condition for this assumption to hold is
that each payoff in the bimatrix describing a game is an independent draw
from some random variable. Thus, for instance, the example discussed
above in connection with Fig. 2 satisfies Assumption 1 if Z, and Z, are
(stochastically) independent.

Consider the laws of motion for players’ opinions in fictitious play by
cases. Let p, and g, be the players’ opinions at date . Since the change
in opinions at date ¢t + 1 is determined by the players’ choices at date ¢,
we compute the probability with which players choose their actions at
this date.

Consider Row’s strategy choice under the myopic behavior rule for a
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2 x 2 game with arbitrary payoffs like in Fig. 3. Of course, analogous
conclusions hold about Column’s choice. Assume that Row’s opinion is
that Column will play W with probability ¢ and E with probability 1 —
q. Depending on the sign (positive, negative, or zero) of the two quantities
a, — a; and a, — a,, there are nine possible events. We combine them in
four cases by assuming (without loss of generality) that the tie-breaking
rule prescribes playing N for Row and W for Column.

If a, — ay = 0 and a, — a, = 0 (event E¥), Row’s behavior rule (and
the tie-breaking rule) prescribe him to play N, regardless of his opinion.
Symmetrically, if 2, — a; < 0and g, — a, = 0 with at least one inequality
holding strictly (event EF), Row should play S, regardless of his opinion.
On the contrary, Row’s opinion determines his choice in the other two
events, which are characterized by the inequality (a, — a;)(a; — a,) < 0.
When this holds, we can define the real-valued quantities

b7—b4 a'y_ﬂ,‘
* 2 * — 2
p by — b+ by~ by’ q a—as+ a; — q 2

and check that, when (a, — a;) > 0 (event E¥), Row should play N if
(and, disregarding ties, only if) § > ¢* while, when (g, — a;) < 0 (event
EX), he should play N if (and, disregarding ties, only if) ¢ < g*. If § =
g* and a tie occurs {which is a null event in fictitious play by cases), the
tie-breaking rule dictates that Row plays N and, for convenience, we
ascribe this possibility to EX.

When a game G is drawn according to the sampling distribution on G,
one (and only one) of these four exhaustive and mutually exclusive events
occurs, respectively with probability m(EF) = o, fori = 1, ..., 4. Simulta-
neously and independently, one (and only one) of the corresponding
events EY occurs for Column’s choice, respectively with probability
B(EY) = B;, fori = 1,..., 4. Note that 7 and 8 do not depend on p and
q. Finally, let FR(g) be the distribution function for g* conditional on
ER fori = 3, 4; when ER is a null event, we set it to be the zero function
for convenience. The distribution function F¢(p) for p* conditional on
Ef is analogously defined.

w E
G = N i (a,b) | (az2,bs)
S | (a3, b2) | (@4, bs)

FiG. 3. An arbitrary 2 x 2 game.
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At date 7, then, Row plays N with probability

FR(G) = m + mF(g) + ma (1 = F§(g))

(3)

and S with probability 1 — F®(g,). At date r + 1, Column accordingly
adjusts her opinion §,, . Similarly, at date 1 Column plays W with proba-

bility

Fp) = By + BFS(P) + By 11 = F§(p))]

and E with probability I — F(p,), and at date + + 1 Row accordingly

adjusts §,,,.

If we denote by n' and »? the sum of the initial weights respectively of
Row and Column, the stochastic laws of motion for ¢, and p, are then

A

P

ol —
P11 =
A

1

and

4+ =

4q

1”_131
t+n2
_ P

t+ 7

+

1 ¢,
t+7
4

INEE}

with probability FX(g,)

(5)
with probability 1 — F’(g,)

with probability FC(p,)

with probability 1 — F€(p,)

which determine an algorithm of the form (1) satisfying (A1)—(A5). The
associated deterministic system is obtained by taking expected values in
(5) and (6), which gives the system

A

Pivi=p+

A

aa=q+

FYg) - p,
t+n?
F(p) ~ 4,
t+ 7

’
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where we use the superscript e to denote expectation, and then by moving
from the discrete to the continuous-time formulation to obtain

p=F{q)-p

. EC 7
g=F(p)—gq

where we have dropped any additional notation from p and g for simplicity.

To impose more structure on this system, we introduce a smoothness
assumption,

ASSUMPTION 2 (Smoothness). The functions FR(q*) and F¢(p*) are
C? functions on the closed unit interval, with first-order derivatives f¥
and f€.

A necessary and sufficient condition for Assumption 2 to hold is that
the conditional distribution functions F% in (3) and F¢ in (4) are twice
continuously differentiable on [0, 1], for i = 3, 4.

Note that F® and F€ are arbitrary C? functions taking values in [0, 1].
In particular, they do not need to be distribution functions, which makes
the analysis of the asymptotic behavior of (7) more complicated. General
statements, however, are still possible. First, we note that, by Bendixson’s
criterion, there are no periodic orbits. Second, the system is dissipative
in(i.e., never leaves) C = {0, 1}*. Third, by Brouwer’s fixed point theorem,
the set @ of fixed points is not empty. Moreover, since F® and F€ have
continuous derivatives, @ is a finite set of connected components. We
will assume that f2(q)f<(p) # 1 for all points ¢ = (g, p) in ®. In this
case, every fixed point is hyperbolic and the connected components of ¢
reduce to singletons so that @ is a finite set of points.’

Partition the set @ into the set @, of unstable points with generic element
v and the set ¢, of asymptotically stable points with generic element a.
Denote by W(¢) the global stable manifold of a point ¢ in ®: obviously,
¢ € W(e). It is apparent that the global stable manifolds for the fixed
points in ¢ partition the unit square. The partition is such that the stable
manifolds of unstable points are the one-dimensional separatrices of the
open and connected stable manifolds of the asymptotically stable points.

THEOREM 2. Under Assumptions I and 2, if f'(p)f*(q) # 1 for all (p,
q) in ®, then the opinions generated under fictitious play by cases converge
a.s. to a point in O for any assignment of initial weights.

? See Hale and Kogak (1991) for the statement of Bendixson's criterion (p. 373) and the
definitions of hyperbolic equilibrium (p. 19), dissipative system (p. 394). and separatrix (p.
398).
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Proof. Let{(p,, q)} be the sequence of opinions generated by (5) and
(6). Since the systems is dissipative in C = [0, 1], the set of its cluster
points is not empty. For any ¢ > 0 it is possible to partition C into a
compact subset A, and its complement AS such that®, C A, ®, C A¢, and
A, has Lebesgue measure A(A,) > 1 — ¢. Each cluster point, then, belongs
to one and only one of A, A\\D,, or ®,.

The rest of the proof is in three steps. First, we show that if {(p,, g,)}
has a cluster point in A, then {(p,, g,)} a.s. has a limit point in ®,. Second,
we prove that {(p,, g,)} cannot have a cluster point in A\\®, with positive
probability. Hence, with probability one only the points in ® can be cluster
points. Third, we show that if a point in @ is a cluster point, it must also
be a limit point. Since cluster points exist for all w, the result follows.

For each asymptotically stable point « in @, let K(«) denote an arbitrary
compact neighborhood of a contained in its domain of attraction. By the
converse to Liapunov’s stability theorem (see Corollary 5.1 in Krasovskil,
1963, p. 28), there is an open neighborhood U(a) of K(a), where it is
possible to construct a Liapunov function which satisfies the assumptions
of the Convergence Lemma for I' = {a}. Since &, is finite, if {(p,, q,)}
visits infinitely often the set A = U{K(a)|a € @}, it must also visit
infinitely often some K(a), say K(a'). Applying the Convergence Lemma
to U(a’) with T = {«'}, it follows that the algorithm converges a.s. to the
limit point o’ € ®. Given any ¢ > 0, for an appropriate choice of suffi-
ciently large K(a)’s, A = A,.

By contradiction, suppose now that {x} = {(p,, g,)} has a cluster point
X in AN\®, with positive probability. There are two possible cases: either
X is in the global stable manifold W(v) of some unstable fixed point v in
®, or it is not. If it is not, it must be in the global stable manifold of some
asymptotically stable fixed point «; therefore, for K(«) sufficiently large,
X € K(a). Hence, x, visits infinitely often K(«) so that convergence to a
occurs almost surely and x cannot be a cluster point with positive probabil-
ity. Suppose then that % is in the global stable manifold W(v) of v. Again,
there are two possible cases: either % is a limit point or it is not (and then
there must be another cluster point). We show that neither case is possible.

Since ¥ € ANNQP,, a(x) # 0. Therefore, by the Rectifiability Theorem
(see Theorem 2.1 in Arnold and II'yashenko, 1988, p. 14), in a sufficiently
small neighborhood U of %, there exists a C* diffeomorphism y = y(x)
such that in the new coordinates the associated deterministic system x =
a(x)becomes y, = 1, y, = 0. Informally, in the new coordinates, y(U) is a
box-like neighborhood such that the orbits of the system (and in particular
those in W(v)) enter at one end of the box and flow through the other
end. As the motion on W(v) is towards v, the exiting end is the one closer
to v.

Define the C? Liapunov function V(x) = y,(x) on U and suppose that
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V(%) = k. For sufficiently small k, < k& < k,, then, Lemma 6 (see the
Appendix) shows that x, must a.s. leave U towards v conditionally on not
exiting from the other side of the box. Since % is a cluster point for {x,},
however, x, must visit U/ 1.0. and therefore, by Lemma 8 (see the Appendix
and the discussion following it) must leave U towards v with probability
one. It follows that i cannot be a limit point. Suppose then that there is
another cluster point x # . Since x, must travel from % to x i.0., if x &
W(v) then x, must visit A i.0.; thus, by the above, a.s. convergence to a
limit point in ®, takes place and % cannot be a cluster point. On the other
hand, if x € W(v), this same reasoning applies to show that x, must go
from one cluster point to another along paths which cannot stay bounded
away from W(v). Hence, all the points between % and x on W(v) must be
cluster points. Repeating the rectifying construction for an appropriate
neighborhood of each of them (except the fixed point v), we obtain that
eventually x, must leave a.s. each neighborhood towards v and therefore
it cannot come back to a cluster point that was left before. It follows that
& and, in general, any point on W(uv)\v cannot be a cluster point.

The last step is easily obtained. If a cluster point x € &, x, visits i.0.
a compact neighborhood of x in its domain of attraction and therefore
converges a.s. to x by the Convergence Lemma. If a cluster point x is in
d,, then there cannot be another cluster point in W(v) because of the
argument above, and there cannot be another cluster point in C\W(v)
because otherwise x, should visit A i.0. and thus would converge to a
limit point in &, contradicting the assumption that x is a cluster point. =

a’

Note the different status of the asymptotically stable points in ¢, and
the unstable points in &, in the proof: we show that there exist sufficient
conditions under which the former can be limit points of the algorithm,
while for the latter we simply cannot exclude that they might be so. In
fact, since the union of the global stable manifolds for asymptotically
stable points has Lebesgue measure [, under the stochastic perturbations
of the algorithm defined by (5) and (6), the associated deterministic system
spends most of its time in this union. Thus, we conjecture (but are unable
to prove) that Theorem 2 can be strengthened as follows.

CONJECTURE. Under the assumptions of Theorem 2, the opinions gen-
erated under fictitious play by cases converge a.s. to a point in &, C ¢
Sfor any assignment of initial weights.

Note also that, although standard fictitious play is a limit case of fictitious
play by cases, it does not satisfy Assumption 2 because F® and F¢ are
degenerate distributions. Therefore, Miyasawa’s (1961) result about con-
vergence of standard fictitious play in any 2 X 2 game cannot be obtained
as a special case of this theorem.
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Special Cases

We introduce an additional assumption which appears to be of interest.
See LiCalzi (1992) for a more detailed analysis. Recall the events Ef and
EY defined above for i = 1,..., 4. Each pair of events EF and Ef corre-
sponds to a different partial order for the payoffs of Row and Column,
which we call of type T;;.

In particular, for i, j = 3, 4, games of the same type T are similar in
that players have the same best replies to the opponent’s pure strategies.
(The same statement holds if we adequately refine ER and EY for i = 1,
2: we omit the obvious details.) Thus, it seems an appropriate assumption
to require that all games in G are of the same type.

ASSUMPTION 3 (Best response similarity). All the games in G are of
the same type; i.e., players’ best replies to pure strategies for each game
in G are the same.

We can use this assumption to illustrate the intuition behind the dynam-
ics that drives convergence of opinions in fictitious play by cases. Let (p,
@) denote the current opinion and assume that all games in G are of type
T,;. Then each game in G has three equilibria, two of which are in pure
strategies (NW and SE) and one is in mixed strategies. Moreover, this
gives 7, =7, = 0and w3 = 1 in (3), and B, = B, = 0 and B, = 1 in (4),
so that both F® and F€ are increasing (distribution) functions with density
functions f® and f¢. It is easy to check that (at least) both NW and SE
are fixed points for (7), so by Theorem 2 both can be “‘learned’’ by fictitious
play by cases.

As described above, the sampling distribution over G determines what
is going to be played via the induced distribution on the pair (p*, ¢*). We
call basin of attraction of a pure strategy profile s the set of all points
(p*, g*) which, given the current opinions, lead players to play s. The
attraction map of a game is the map which partitions the unit square into
basins of attraction for all the strategy profiles.

In Fig. 4, we have drawn one such attraction map. The unit square is
partitioned by the perpendiculars in p and ¢ into four square regions; each
one of them is a basin of attraction for the pure strategy profile that we
have marked. Note that the basins of attraction lie opposite their natural
position, because we are taking a different viewpoint; instead of looking
at which beliefs (p, g*) lead to the strategy profile s, given the equilibrium
in mixed strategies (p*, g*), we consider which pairs (p*, g*) lead to s
given beliefs (p, §).

Using the attraction map, consider for instance what happens when the
density functions f® and £ are decreasing, in which case the only fixed
points for (7) are NW (asymptotically stable) and SE (unstable). Then low
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FiG. 4. The attraction map for a 2 x 2 game.

values for p* and g* are more likely, which makes (p*, ¢*) likely to lie
in the basin of attraction for NW. Whenever this occurs, players choose
to play respectively N and W. In turn, this increases the values of p and
g, making it even more likely to play NW in the next round. As this
process feeds (on average) on itself, we might expect NW to eventually
emerge as the only possible equilibrium. This is the content of our conjec-
ture, although Theorem 2 proves only that convergence takes place to
either NW or SE.

For a different example, look at the case where fX and f€ are such that
the most likely values for p* and g* lie somewhere in the interior of the
square. If by random fluctuations one of the two attraction basins for NW
or SE happens to include most of this area, then a dynamics similar to
the above will start again, leading the system to one of the two equilibria
in pure strategies which are also the only asyptotically stable fixed points.
However, if influences from these two areas stay balanced, the process
might end up somewhere in between as in a tug-of-war between equally
strong opponents. Note that this kind of heuristic reasoning holds only
on average, so that the process might wander endlessly if likely outcomes
are sufficiently distributed. This explains the difficulty of proving conver-
gence results with probability one.

Of course, there are also situations in which fictitious play by cases
behaves very much like standard fictitious play. Consider, for instance,
the class of games associated with Fig. 1, but assume that the support of
both Z, and Z, is the bounded interval (0, 4) rather than the positive reals.
For the same initial weights of Fig. 2, the evolution of fictitious play
by cases is entirely deterministic and the process converges to the SE
equilibrium for any realization. It is easy to see that this happens because,
regardless of the realizations of Z, and Z,, after the second period (p*(z,),
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g*(z,)) always falls in the basin of attraction of SE. Here, the random
microfluctuations of (p*(z,), g*(z,)) cannot affect the deterministic macro-
tendency towards SE, as they are never sufficiently large to make the
process leave the basin of attraction of SE.

Under Assumption 3, we can improve Theorem 2 when G is a class of
games of type T, (or T,;). Any game in this class has a unique equilibrium
in (proper) mixed strategies, so that we can think of G as a set of games
with similar strategic characteristics. Alternatively, we can view G as a
set of augmented games associated with the purification d la Harsanyi
(1973) of a game with a unique equilibrium in mixed strategies, along the
lines given in Fudenberg and Kreps (1993).

Since all games in G are of type Ty, let 7, = 7, = 0 and 7, = 1 in (3);
similarly, let 8, = B; = 0 and B, = | in (4). As it is easy to check, this
makes FR an increasing function and F¢ a decreasing function. (In fact,
a bit more: FX is a distribution function and F¢ is the complement to one
of a distribution function.) Hence, the fixed point is unique and ® = {¢}
is a singleton. Applying Theorem 2, this gives the following corollary.

COROLLARY 3. Under Assumptions 1-3, if all the games in G are of
type Ty (or Ty) the opinions generated under fictitious play by cases
converge d.s. to the unique fixed point of (7) for any assignment of initial
weights.

Compare this with Proposition 8.1 in Fudenberg and Kreps (1993),
which makes a weaker smoothness assumption on F® and F¢ but requires
the positivity of their density functions in a neighborhood of the fixed
point.

Unfortunately, an analogous improvement is not possible when G is a
set of games of type Ty; (or T,,), which have three equilibria. In this case,
the discussion above shows that the only additional conclusion we can
draw is that (at least) both equilibria in pure strategies are fixed points.
Thus, convergence to either one is possible, although not necessarily
equally likely.

4. CONCLUDING REMARKS

The major message of this paper is that players can learn from broader
classes of games. However, there are many issues and some modelling
possibilities which we have left unexplored. Our favorites include the
following.

First, it not necessary that the class of ‘‘cases’ be commonly known.
A more realistic assumption would be to have players look at similar
classes of similar games, allowing play over past games to bear perhaps
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on Row’s opinions but not on Column’s. In turn, this suggests that players
may refine their similarity classes over time to make them more effective
in predicting the opponent’s behavior. In this case, we might expect that
the supports of FR and F¢ would become smaller over time, making the
limit points (if they exist) closer to the Nash equilibria of the games still
in the same class. Both of these possibilities can be modeled, but appear
difficult to analyze.

A condition which may be easier to analyze is that players usually allow
for degrees in the strength of their judgments of similarity. Borrowing
from Gilboa and Schmeidler’s (1992} case-based decision theory, we could
posit a similarity function ¢: G X G — [0, 1] such that £(G, H) measures
the “‘strength’” of the similarity judgment between two games G and H.
Assuming for simplicity that both players have the same similarity func-
tion, if we change step 2.4 in the algorithm of fictitious play by cases to

2.4. Update weights. For each game G, each player i and each
strategy s~ in S/, let the current weight be

ni(sii! Cls G) = ni—l(s_iv gt‘l’ G) .
N {f(H, G) if —i has played s "attime ¢ — 1,

0 otherwise,

the revised algorithm would take into account the different weight that

evidence from more or less similar games bears to a particular game.
Much more difficult, instead, is the issue of how similarity with games that
have different strategic (or worse, extensive) forms might be modelled.

APPENDIX

Proof of the Convergence Lemma

In this section, we prove the Convergence Lemma stated in Section 3.
We start by studying the cumulative random fluctuation for the more
general case, where

gd) = ¢(X,.) — d(X,) — ¢, V(X)) - a(X,) 8
and ¢: C — R is a C? function. Let

M, =sup{lé¢/(x):xE€C, 1 <i=d}

M, =sup{l¢pj(x):x€C,1=i,j=d}.
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By Taylor’s formula, for any x, y € C there exists a d-vector Oy(|x — k)
such that

10u(lx — yP)| = Malx — yf 9)
and
d(x) — d(y) = Vo(x) (x — y) + Oylx — yP).
Substituting in (8), this gives

8,;(¢) = V¢(X'1) . [(Xn+l - Xn) - Cna(Xn)] + |0¢(|Xn+l - anz)l

(0
= Cnvd)(Xn) ' [A(XIH ZrHl) - (I(X")] + |0<b(|Xn+l - Xn'h)b
Our first lemma establishes the convergence of the cumulative random
fluctuation 2 &,(¢) and the existence of an L? upper bound for the maximal
fluctuation. For lack of space, we omit its proof which can be found in
LiCalzi (1992).

LEMMA 4. For all m, let

i

R, = &d)

n=0

Then R,, converges almost surely and in L? as m — +x. Moreover, there
exists a constant K, such that

+x
E{sup|R,|f* =K, 2, ci.
nt n=0

We next state the lemma which guarantees that the asymptotic behavior
of (1) is almost surely the same of the associated deterministic vector field
i = a(x). This justifies the use of continuous-time Liapunov techniques
on the associated deterministic system for the asymptotic analysis of the
discrete-time algorithm (1). Let 7, = O and ¢, = 2, ¢; for all n = 1. The
trick used to compare the sequence {X,} generated by the algorithm (1)
with the trajectory of the vector field x = a(x) is to let X(¢) = P ({7
t < t,.)X,. For m(n, T) = inf{k = n: ¢,,, + =+ + ¢y = T}, then, the
study of the behavior of X, between integers n and m(n, T) is equivalent
to the study of the behavior of X(r) between times ¢, and ¢, + T. The
following lemma (see Theorem 9, in Benveniste et al., 1990, p. 232) states
this precisely.
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LEMMA 5. Let X(1; t,, x,) denote the solution of
X = a(x) (11)

such that x(t,) = x,.. Given arbitrary positive T, 8, and €, there exists v =
v(T, 8, &), such that

P{ sup |Xk—X(tk;t,,,x,,|28}Se foralln=v.

n<k=m(nT)

We are now ready to study the asymptotic behavior of the algorithm
using the Liapunov function V. Let us introduce some notation. Denote
by K = sup,epync V(x) the supremum of V on the set U N C; by L(k) =
{x e UN C:V(x) = k} its k-level set; by 8(k) = inf{n: X, € L(k)} the first
time at which the algorithm enters the level set L(k) and by (k) = inf{n:
X, & L(k)} the first time of exit from L(k).

We prove first that, for k&, > k; > k,, if the value of the Liapunov
function V on U N C does not get higher than £, , then it must eventually
hit &, .

LEMMA 6. Suppose that ky < ky < ky, < K. Then, for all x € L(k,),
Mk < += P-a.s. on {r(ky) = +x}.

Proof. It suffices to show that P {r(k,) = d(k,) = +=} = 0. By contra-
diction, suppose that this probability is positive. Let L = {x € U N C:
k, = V(x) = k,}. By (A6), V(x) is bounded away from 0 on L so that there
exists some a > 0 such that V(x) < won L. Let ¢ be a C? function on U
which coincides with V on L(k,) and such that inf ¢, ., ¢(x) = k,. Then
Vé(x) - a(x) = « on L. For arbitrary positive n and sufficiently large T on
the set {r(k,) = 9(k,) = +=}, we have

d)(Xn) - d)(Xm(n,T)) = k2 - kl

whence, by (8),

m(n,T)—1 mn,T)—1

> edd) = pX ) — X, — D VX)) - a(X)

i=n i=n
mnT)—1
=@ Z C,‘ - (kz - kl)

i=n

=aT—1)—(ky— k)= 1

which contradicts Lemma 4 and establishes the result. m
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The next result establishes a.s. convergence conditionally on the event
that X, never exits L(k,) for some &, < K.

LEMMA 7. Suppose that ky < k < k, < K. Then, for all x € L(k), X,
converges P-a.s. to T on {7(k,) = +x},

Proof. It suffices to show that lim sup V(X,) = & for any k € (k,, k).
Thus, given k, choose &, such that &, < k; < k. Consider the set B =
{r(ky) = += and lim sup V(X,) > c}; by contradiction, suppose that
P.(B) > 0. Define recursively the entering and exit times on L

8, =inf{n: X, € L(k)}, 7 =inf{n>9:X, & L(k)}
and

3, =inf{n >7,_,: X, € L(k))}, r=infln>9,_: X, & LK)}

for i = 2. By Lemma 6, we know that on B the sequence of random
variables {X,} must enter L(k,) and exit L(k) infinitely often. Therefore,
all these entering and exit times are finite. Define the function ¢ as in
Lemma 6. Then

T,~1 7,1 1l

T ad) =Y (VoX) - alX) + > edd)

=, =8, =8,

= $(X,) — $(X,)

which contradicts Lemma 4 and establishes the result, m

Given Lemma 7, it is clear that a sufficient condition for the a.s. conver-
gence of the algorithm (1) may be obtained by estimating P{r(k,) = +=}.
This is the object of the next lemma.

LEMMA 8 Suppose that ky < k, < k, < K. Then, for all x € L(k)),
there exists a constant K5 such that

+x
Pirky) = +o} = 1 = K5 3, 2.
n=0
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Proof. Define the function ¢ as in Lemma 6. As in the proof of Lemma
7, on the set {r(k,) < +x} we have

T(hy)—1

D El(d) = (X ) — dXg) =k — k.

n=0

Multiplying both sides of the inequality by the indicator of the event
{r(ky) = +=}, we have

iky) -1
(ky = k({r(ky) = +=}) = I({7(k;) = +}) ;} Sn(tb)’
i-1
= sup I{i = 7(ky)}) Zo 8,.(4))'
i-1
= sup Zo*s,,(d))l .

Taking the expected value of the square of the two sides of the inequality
and applying Lemma 4, we obtain

Prthy) < +x} = (k, — k) 2K, D, 3

n=0¢

whence the result follows. m

Note that the proof of this lemma applies also to the **shifted’’ algorithm

X,

n

s+l Xn+s + Cn+sA(Xn+s’ Zn+x+l)

with initial condition X, = x, yielding

Plr(ky) = +|X, € Lk} = 1 — K, Z cl.

n=s

Thus, if X, visits L(k,) infinitely often, the probability of never exiting
L(k,) is zero. With this in hand, we can finally prove the Convergence
Lemma.

Proof of the Convergence Lemma. By (A6), for some k; < k,, L C
L(k,) C L(k,). Hence, by Lemma 7, X, converges a.s. on {r(k,) = +}.
By the observation following Lemma 8, since X, visits L infinitely often,
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the probability that eventually X, never exits the set L(k,) is | and the
result follows. m
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