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Econometrica, Vol. 61, No. 5 (September, 1993), 1047-1071 

LEARNING, LOCAL INTERACTION, AND COORDINATION 

BY GLENN ELLISON 1 

This paper discusses the dynamic implications of learning in a large population 
coordination game, focusing on the structure of the matching process which describes 
how players meet. As in Kandori, Mailath, and Rob (1993) a combination of experimenta- 
tion and myopia creates "evolutionary" forces which lead players to coordinate on the 
risk dominant equilibrium. To describe play with finite time horizons it is necessary to 
consider the rates at which the dynamic systems converge. In large populations with 
uniform matching, play is determined largely by historical factors. In contrast, when 
players interact with small sets of neighbors it is more reasonable to assume that 
evolutionary forces may determine the outcome. 

KEYWORDS: Learning, neighbors, coordination, rates of convergence. 

1. INTRODUCTION 

EVEN THE SIMPLEST GAME THEORETIC MODELS all too often have multiple 
equilibria. A typical example is the coordination game which arises when two 
players must work together in order to achieve a commonly desired outcome, 
but in which neither player will benefit from his efforts if his partner does not 
do his part. We regard the players working together as the "good" equilibrium 
and speak of coordination failure if it does not occur. In trying to understand 
play in such games we are led to ask why we should expect players to coordinate 
on an equilibrium and whether there is any reason to believe that one equilib- 
rium is more likely than the other. 

Recent models of Foster and Young (1990), Kandori, Mailath, and Rob 
(1993), and Young (1993) have derived surprisingly strong predictions by explor- 
ing the disequilibrium process by which players learn their opponents' play and 
adjust their strategies over time. For the case of 2 x 2 coordination games, 
Kandori, Mailath, and Rob (KMR) (1993) show that the simple combination of 
random experimentation or mutations and the myopic attempts of players to 
coordinate with those around them creates powerful dynamic forces which 
influence the evolution of play over time. In analyzing the long run limit of this 
dynamic process, they show not only that players will achieve coordination on an 
equilibrium, but that one particular equilibrium, the "risk dominant equilib- 
rium" will be selected.2 

While providing an elegant characterization of the long run influence 
of evolutionary forces, the KMR analysis is incomplete as a description of 

1I would like to thank Drew Fudenberg, Sara Fisher Ellison, Michi Kandori, Jeff Zwiebel, an 
editor, and two anonymous referees for their comments. Financial support from the Sloan Founda- 
tion is acknowledged. 

2 See Young (1993) and Kandori and Rob (1992) for a discussion of play in broader classes of 
games under similar behavioral rules. 

1047 



1048 GLENN ELLISON 

economic systems in that it does not consider whether the evolutionary forces 
would be felt within a reasonable time horizon. In fact, the dynamics justifying 
their solution are implausible for the large populations we would want to 
consider to discuss the origins of conventions or focal point in society. In this 
paper, I show that to assess the relevance of evolutionary forces it is necessary 
to consider the rate at which play converges to its long run limit. Such an 
analysis yields two main conclusions. First, the nature (local or global) of the 
interactions within a population are a crucial determinant of play. Second, when 
interactions are local, the evolutionary arguments of KMR may be reasonably 
applied to large populations. 

To examine the play of coordination games in large populations I adopt a 
framework similar to that of KMR. In each period of a dynamic model the 
players are randomly matched and each pair plays a 2 x 2 coordination game. 
The behavioral assumptions incorporate noise and myopic responses by bound- 
edly rational players. The model departs from that of KMR in that it allows for 
different matching processes within the population.3 I focus on two extremes 
among the possible matching rules which I will describe as uniform and local. 
The uniform matching rule is that used in KMR. In contrast, I will describe as 
local a matching rule in which players interact with a small group of close 
friends, neighbors, or colleagues. 

This paper also departs from KMR in that I consider the rate at which each 
dynamic process converges. If, as will be the case for one model, a dynamic 
system takes 10100 periods to approach its limit, the limit is not a good 
prediction for what we will see when the game is repeated a few hundred times. 
While it is very hard to draw a dividing line and say exactly how fast a system 
must converge for the limit to be relevant, the models of this paper will exhibit 
such extreme contrasts that meaningful conclusions are possible. When a system 
adjusts very slowly, I will conclude that whatever historical factors determine 
the initial play will continue to determine play long into the future. The model 
of KMR with a large population is one such example. On the other hand, when 
a system approaches its limit quickly, I will conclude that we should expect to 
see the limiting behavior. 

The paper is structured as follows. The model is described in Section 2. 
Section 3 contains some simple examples of the dynamics of the learning model. 
Section 4 contains the main theoretical results on both limiting distributions of 
play and rates of convergence. Section 5 discusses numerical simulations of a 
broader range of specifications. 

3 In independent work, Blume (1992) develops a related continuous time model in which players 
are spatially distributed and interact with a finite set of neighbors. This model is discussed further in 
Section 4. The importance of particular population structures has long been discussed in evolution- 
ary biology. S. Wright (1931) first argued that small isolated subpopulations allowed more genetic 
drift and were hence particularly amenable to evolution. See Ewens (1979), especially Sections 1.6, 
3.9, and 10.3 for a discussion of more recent work. 
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2. THE MODEL 

2.1. Coordination Games with Bounded Rationality 

The model described here has two classes of assumptions: those concerning 
the nature of the game being played and those describing the particular 
behavioral rules which players follow. 

The basic model is of a repeated game played in periods t = 1, 2,3,.... There 
is a large population of N players (perhaps a few hundred for typical applica- 
tions). In each period, player i chooses one of two possible actions a j E {A, B}. 
The payoff to player i is given by 

ui(ait, a -it) = E 7rijg(ait, ajt) 
joi 

where the payoffs g are those of the 2 x 2 coordination game in illustration A. 
Formally, it is required that a > d and b > c so that (A, A) and (B, B) are both 
Nash equilibria. In addition, I assume that (a - d) > (b - c) so that (A, A) is 
the "risk dominant" equilibrium as defined in Harsanyi and Selten (1988). Note 
that when the strategies have equal security levels (c = d), (A, A) is also the 
Pareto optimum. 

In many applications, we will envision the players to be playing a random 
matching game in which case the weights rrij will represent the probability that 
players i and j are matched in a given period, and g(ait, ajt) gives the payoff to 
player i when he is matched with player j. 

Rather than assuming complete rationality, I simply specify behavioral rules 
which are a special case of those described in KMR. The rules are intended to 
capture the intuitive notion that players usually react myopically to their 
environment. In particular, I assume that in period t player i chooses 

aite argmaxui(aia-it- ) 
a 

with probability 1 - 2e. It is important that player i is reacting to the distribu- 
tion of play in period t - 1, not to the action of one particular opponent with 

A B 

A a,a c,d 

B d,c b,b 

ILLUSTRATION A 
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whom he was matched. Hence, player i must observe his potential opponents' 
actions, but be fairly naive in predicting how they will play in period t. With 
probability 2E player i chooses an action at random with 50-50 probability. This 
randomization is meant to capture the cumulative effect of noise in the form of 
deliberate experimentation, trembles in strategy choices and the play of new 
players unfamiliar with the history of the game. 

2.2. Local and Uniform Matching Rules 

Within the basic framework described above, I will contrast two extreme 
specifications of the matching process. I term the two types of matching rules 
uniform and local. The uniform matching rule is given by 

1 
=ij N-i V] oi. 

The assumption of uniform matching expresses the idea that each player has no 
information about with whom he would like to coordinate until after he has 
chosen his action. This assumption might be appropriate, for example, in 
modeling the interaction of merchants at a large trade fair where each partici- 
pant would know little about the others. With this rule, a myopic player will 
choose his period t strategy considering only the fraction of the population 
playing each strategy at time t - 1, not the identities of the players using each 
strategy. 

In contrast, I will use the term local matching as an informal description of 
several matching rules in which each player is likely to be matched only with a 
small fixed subset of the population. For simplicity, I will usually envision the 
players as being spatially distributed around a circle. In the most extreme local 
matching rule, each player is only ever matched with one of his two immediate 
neighbors, i.e., 

IT.i =2 if i-e1-(modN), 
tJ 0 otherwise. 

Similarly, for any k ? 1 we can define a rule where each player has 2k 
neighbors by 

1 
-rj 2 if i - j -+1, ? 2,. . ., ? k (mod N), 

0 otherwise. 
We could also assign positive probability to any match with the probabilities 
declining with distance so a player is usually matched with someone nearby, e.g. 
for N even 

{ 3 1 N 
I rr2 d2 for d = min{li -jl, N- li-il 2) 

(1) {j.~2d 
2 21 

(1) 7rij= 3 1 
11 - 2 , d 2 otherwise. 

li-ilN/2 
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Local matching rules are appropriate to describe situations where players 
interact not with the population as a whole, but rather with a few close friends 
or colleagues. For example, such a rule might describe the interactions at a 
college reunion where each participant knows in advance who he or she wishes 
to see. The contacts among a group of firms or economists might also be of this 
type. 

Before moving on, I would like to emphasize two essential features of the 
local matching rules described above. First, each player assigns a large weight to 
a small subset of the population. Second, there is considerable overlap in the 
groups of neighbors so that a player's neighbors' neighbors are likely to be his 
neighbors as well. The combination of these features allows for the existence of 
small clusters within the population, each member of which is matched with 
another member with probability at least 2. The possibility of a new strategy 
gaining a foothold within one of these clusters allows for a relatively rapid 
transition to the risk dominant equilibrium. 

3. MODEL DYNAMICS 

For the remainder of this paper, I discuss the dynamic pattern of play in the 
model described above. The approach of the paper is as follows. I assume that 
at some point in the past, arbitrary historical factors determined the initial 
strategies of the players. The behavioral rules then generate a dynamic system 
which describes the evolution of players' strategy choices over time. I will 
formally discuss both the limit of this system and the rates at which the limit is 
approached. First though, I describe the dynamic evolution of play in a few 
simple cases in order to motivate subsequent results. 

The dynamics of the model with uniform matching are virtually identical to 
those described in KMR. Let qi be the fraction of player i's opponents who 
played A in period t - 1. Note that 

(2) uj(A, a-i,-1) > ui(B, a-i,-1) <* qia + (1 - qj)c > qid + (1 - qj)b 

b - c 

(a - d) + (b - c) 

Hence, player i will play A in period t if and only if qi > q* (assuming player i 
chooses A when he is indifferent). The assumption that (A, A) is the risk 
dominant equilibrium implies that q* <2. I will frequently discuss the behavior 
of the model with payoffs a = 2, b'= 1, and c = d = O so that q* -3and player 

will play A if at least 3 of his opponents did so. 
At time t, we describe the state st of the system by an N-tuple 

(a1, a2, . .., aN) E S = {A, B}N indicating the strategy used by each player. I will 
write A as shorthand for the state (A, A,..., A) and B for (B, B,...,B). 
Because all players have nearly identical sets of possible opponents, the dynam- 
ics are largely determined by the total number of players playing A, which will 
be denoted by A(st). 
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If A(st) < [q*(N - 1)], then q, < q* for all i so all players play B in period t + 1 and 
St I =B. ([xl indicates the smallest integer greater than or equal to x.) 

If A(st) > [q*(N - 1)], then q, > q* for all i so all players play A in period t + 1 and 
s,+ =A. 

If A(st) = [q*(N - 1)], we have a knife edge case where q, < q* if player i played A 
in period t, and qi > q* if player i played B in period t. The result is that A(s,+ I) = N - 
[q*(N - 1)] as only those players who played B in period t play A in period t + 1. 

While unsightly, this transition does not play a significant role in the subsequent 
analysis so the reader should not be too troubled by it. 

What is important is that the model with uniform matching and no noise has 
two steady states A and B corresponding to the Nash equilibria where all 
players coordinate on one of the strategies. Further, if play starts close to either 
steady state it immediately jumps to that equilibrium. When noise is introduced 
the transitions are governed by a Markov process, but once play approaches 
either equilibrium it will likely remain nearby for a long period of time. To see 
this, suppose that most players played B in period t so that A(st) < [q*(N - 1)]. 
Each player then plays A in period t + 1 with probability e. These randomiza- 
tions are independent and unless [q*(N - 1)1 8-probability events occur every- 
one will again have B as a best response in period t + 2. There is no gradual 
evolution from one equilibrium to the other, only the possibility of a jump 
caused by coincident randomizations. When E is much smaller than q* we will 
have to wait a long time for this to occur. 

In models of local interaction, the dynamics are dependent on the locations of 
the players using each strategy in addition to the aggregate frequencies. To 
illustrate the dynamics of such models, I discuss a typical case where N players 
are arranged around a circle and each places equal weight on being matched 
with his eight closest neighbors. Let the payoffs be such that q* = so that each 
player has A as his best response whenever at least three of his eight neighbors 
play A. 

Consider first the model with no noise. Clearly there are at least two steady 
states, A and B. Each of these steady states has a nontrivial basin of attraction. 
If all but one or two of the players are playing B at time t, then each player has 
at least six neighbors playing B and hence will play B in period t + 1. We may 
write two such transitions as 

(A,B,B,...,B) -B (A,A,B,...,B) -B. 

Similarly, for period t states sufficiently close to A we have st+1 =A. 
An important feature of the dynamics is that the basin of attraction of B is 

relatively small. In particular, the existence of a small cluster of players playing 
A is sufficient to ensure that the dynamic process will eventually lead all players 
to play A. Suppose the period t state is (A, A, A, A, B,..., B) so that players 1 
through 4 played A. Players 1 through 6 and players N and N - 1 all have at 
least three neighbors playing A. Those eight players will play A in period t + 1. 
In period t + 2, players N - 2, N - 3,7, and 8 will switch to playing A. The 
cluster of players playing A will grow until eventually the state A is reached. 
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In contrast, any relatively small cluster of players playing B will disappear 
over time. It is easy to verify that 

(B, B, B, B, A, A, A . .. , A) ->A, 

(B, B, B, B, B,B,B,A,...,~A) -> (A,A,B, B,B, A,..A) --A. 

The basin of attraction of A is much larger than that of B. 
It is the differing sizes of these basins of attraction which causes the relatively 

rapid convergence of play to a limit concentrated around A once noise is 
introduced. From the dynamics above, it should be clear that we usually only 
need to wait for four well placed randomizations to create a cluster of players 
playing A and lead us away from an initial condition where everyone is playing 
B. When the number of players is large, seeing four adjacent randomizations is 
far more likely than seeing the (N - 1)/31 simultaneous randomizations re- 
quired to shift play in the model with uniform matching. 

The extreme local matching rule in which each player has only two neighbors 
is neither an apt description of any economic systems, nor does it have 
particularly compelling dynamic behavior. Nonetheless, it is the easiest model of 
local interaction to analyze, and hence reappears throughout this paper. I 
briefly discuss its dynamics here. 

First, note that regardless of the payoffs, the assumptions that (A, A) is the 
risk dominant equilibrium entails that each player will have A as his best 
response whenever at least one of his two neighbors plays A. In a model with 
no noise, we have two steady states, A and B. There is also one stable cycle 
when N is even, 

(A, B, A, B,...,IA, B) (B, A,B, A,-, B, A) 

(A, B, A, B,-, A,B), 

because players in period t myopically respond to their opponents play in 
period t - 1, not to a forecast of their period t play. I will write A for the 
state (A, B, A, B,..., A, B) and 2I for the state (B, A, B, A,., B, A). The 
most important aspect of the dynamics is that the steady state B now has no 
other states in its basin of attraction. If at least one player plays A in period t, 
then at least two players (his neighbors) will play A in period t + 1. Any state 
which contains a cluster of two adjacent players playing A lies in the basin of 
attraction of A. Once noise is introduced, this leads to rapid convergence to a 
steady state concentrated around A. 

4. LIMITS AND RATES OF CONVERGES 

In this section, I discuss the principal theoretical results of the paper. As 
mentioned above, the motivation for the analysis here is the assumption that at 
some point the initial actions of the players were determined by historical 
factors and that for some subsequent period of time play has evolved according 
to the behavioral rules specified above. The fundamental problem is then to 
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determine how historical and evolutionary forces combine to determine the play 
we observe. To this end, I first discuss the limiting behavior of these systems as 
the number of periods of evolution grows to infinity. Subsequently, I discuss the 
rates at which the limits are approached in order to assess whether the limits 
are meaningful given that the economic systems modeled involve only some 
reasonable finite repetition of play. 

As noted above, we may view the time t strategy profiles as the states st of a 
Markov process. We may represent the time t probability distribution over the 
states by an 1 x 2N vector vt. The evolution of the process is governed by 

Vt+1 = vtP(c) 

where P(e) is the transition matrix whose elements are given by 

Pij(e) = Prob{st+1 = jlist = i}. 

Write Pu(e) for the transition matrix with uniform matching and p2k(e) for that 
of the model with 2k neighbor matching. For example, we have 

p!U(E) 8A(j)( - ) N-A(j) 

whenever i < [q*(N - 1)1 as each player's best response is B so state j arises 
when a particular A(]) e-probability randomizations occur. Note that each 
transition matrix P(e) is strictly positive for E > 0 so by standard results on 
Markov processes there is an unique steady-state distribution /i(e) such that 

(4E) = (E)P(_E).4 

The steady-state distribution reflects the long-run behavior of the process. I 
write Wu(e) and p2k(e) for the steady states with uniform and 2k neighbor 
matching, and ,tL(e) or ,u(e)(s) for the probability assigned to state s by the 
distribution /L(e). 

Because we are interested in small e, we shall consider the asymptotic 
behavior of ,u(e) as E -* 0. We write f(x) = 0(g(x)) (x -> 0) if there exists a 
constant C such that If(x) I < C Ig(x) I for sufficiently small x. The formula 
f(x) = 0(g(x)) is said to be best possible if in addition there exists a constant 
c > 0 such that c lg(x)I < If(x)I < Clg(x)I . In each of the theorems of this 
section the 0-approximations are meant in this sense. 

The first result compares the steady state distributions of the uniform and 2k 
neighbor models. KMR show that the evolutionary forces in a model virtually 
identical to the uniform model yield a steady state limit in which the risk 
dominant equilibrium (A, A) is played with very high probability. The statement 
that 1LL (e) -* 1 and bt2k(e) -> 1 verifies this both for the uniform model I have 
defined and for the model with 2k neighbor matching. The second part of the 
theorem discusses the asymptotics of pL(e) in order to give a more precise 
comparison of the relative probabilities with which the entire population coordi- 
nates on the equilibrium (B, B). For sufficiently small e, this equilibrium is even 

4See Karlin and Taylor (1975, p. 85). 
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less common in the model with two neighbor matching than it is under uniform 
matching (although it is extremely rare in both models). 

THEOREM 1: Let ,lU(e) and 2k(8) be the steady state distributions of the 
general model of Section 2 under the uniform and 2k neighbor matching rules, 
respectively. Then, for N sufficiently large 

(a) lim IuA(E) =1, 

lim ,uf2(?) = 1; 
-? 0 

1 

(b) tuy(e?) =O( ? N-2 [q*(N-1)1 +1 

2 o)= Q(8N-2) for Neven, 
(B e o(8N-1) for N odd. 

PROOF: Both the statement and the proofs of the results for the uniform 
model are virtually identical to those given in KMR, and hence I will omit the 
proofs. N must be sufficiently large that [ q*(N - 1)] < N/2. 

The proof for the 2k neighbor model relies on a characterization of the 
steady state used by Foster and Young (1990) and KMR. The reader may refer 
to those papers or to Freidlin and Wentzell (1984) for an exposition of the 
background material. An x-tree t on S is a function t : S -* S such that t(x) = x 
and such that for all s s x there exists m with ttm(s) = x. We may think of an 
x-tree as a set of arrows connecting elements of S in which every element has an 
unique successor and all paths eventually lead to x. The steady state distribu- 
tion ,t2k(e) is characterized by 

2(?) = C(?) E HP2)(e) 

teHx i#X 

where Hx is the set of x-trees on S. Note that p2k(e) is a polynomial in e 
whose constant term is nonzero if and only if the transition i ->j occurs in the 
model with no noise (e = 0). For any state x, the expression above allows us to 
express the quantity 2k(c)/,.ik(e) as a ratio of polynomials in E. 

To get the result in (a), it suffices to show that AX k()/,tk(c) 0 as ? 0 for 
all x 1. This will follow if we demonstrate that for N> (k + 1)(k + 2) and 
any x-tree t (x =A) we have Hi Pp2)(k) -*0 This 
in turn follows if we show that there exists an A-tree t' such that 

n p2(k)(_)/nI +i p 2ttk(- 0. Write s(z) for the successor of state z in the 
model with no noise and D(A) = {z lsm(z) = A for some ml for the basin of 
attraction of A. I show that the latter ratio converges to zero by considering two 
cases: 

Case 1: x E D(A). Define t' by 

t'(z) = / s(z) if z E D(Af), 
t ( z) otherwise. 
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t' is an A-tree because for any state z the path z -> t'(z) -* t'2(z) ... 

initially coincides with t and hence eventually enters D(A). From the first point 
at which t`m(z) e D(i), the tree maps every point to its successor in the no 
noise model and hence reaches A. The ratio is 

HI Pit(i)(?) PIt()(8) H Pit(i%(?) 
___ __ __ __i e-D U) -{4, x} 

HI Pit'(C) Pxs(x)(6) HFI P7s )(?) 
i+2 0ieD(U)-{2 ,x} 

The right side converges to 0 as e -? 0 because p(2k)/p2k)(8) is bounded, 
Pik( )(?- 0, and PXS(X)(e) -> 1. 
Case 2: x 0 D(A). Define t' by 

(s(z) if z ED(i ), 
t (z) t(z) if z OD(i), z ox, 

ty if z =x, 

where y is an element of D(i) such that px2k(E) is of minimum order. t' is 
again an A-tree. The ratio is 

n 2k (? 2k ? HIP7i?(c)-) H P7t()(E) 
___ ___ __iE=D (2 ) 

HPit'(?() Pxy () H Pis(i)( ) 

i 0, iE-D(4) - {i 

The denominator is of ?-order at most k + 1 because p72k) > 1 and the 
transition x -* y requires at most k + 1 randomizations. (Any state with k + 1 
adjacent players playing i is in D(i).) To see that the numerator is of higher 
order consider the product Hl%'p2k AtJ+1(A)(c) where m is the smallest integer 
such that tm(i) 0 D(i). For i = 0, 1,..., k + 1, let r(i) be the first time period 
such that tr(i)(i) does not have all players in the set {i(k + 1) + 1, ..., i(k + 1) 
+ k + 1) playing A. The transition tr(i) -1(if) tr(i)(if) involves a mutation 
among the players in that set because each of them had k neighbors playing A 
in period r(i) - 1. Hence, there are at least k + 2 distinct e-probability events 
in this path and the numerator is of order at least k + 2. 

For part (b), we find the minimum order i- and B-trees explicitly. For 
example, for two neighbor matching and N > 4 even, one can show that the 
minimum order A-tree has t(B) = (A, B, B, . .. , B), t(AB) = 

(B, A, A, A, B, A, ..., B, A), and all other states mapped to their successors in 
the no noise model. The minimum order B-tree has t(i) = AB and t( AB) = B. 
These trees are of order 2 and N respectively. Q.E.D. 

REMARKS: 1. The fact that models with local and uniform matching both have 
steady state distribution concentrated on A is more general than the hypotheses 
of the theorem. The proof does not rely on the fact that the matching 
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distribution has finite support. -It would suffice for the set of neighbors with 
whom a player is matched with probability 2q* to be finite or grow slowly as 
N -> oo. More precisely, it suffices that there exist k'(N) such that (k'(N) + 
l)k'(N) + 2) < N and Ei[+ik'(N).rij > q* for all i' E {i - k'(N), . . ., i + k'(N)}. 
The matching rule given in (1) is one example. Further extensions are no doubt 
possible. 

2. The steady-state distribution is not concentrated on A if the matching rule 
is too concentrated. If 7rij > 1 - q* the steady-state probability of the cycle in 
which players i and j alternately play (A, B) and (B, A) while all other players 
play A cannot vanish relative to the probability of A, because a single e-prob- 
ability event leads from A to the cycle and vice-versa. 

3. The long-run outcome of models with uniform and 2k neighbor matching 
may differ once we move beyond 2 x 2 games. For example, Young (1993) notes 
that in a similar model the long-run outcome in a 3 x 3 game is a complicated 
function of the payoffs. Modifying his example, it can be shown that with 
uniform matching the steady-state distribution of the game on the left in 
illustration B is concentrated on B while that of the game on the right is 
concentrated on C. Intuitively, the minimum order B- and C-trees are of nearly 
equal order in the two games, because while C is pairwise risk dominant B has 
a greater advantage against A. Because the orders are nearly equal, it is 
possible to reverse their ranking with only a small change in the payoffs. In 
contrast, with two neighbor matching the dynamics (and hence the steady state) 
are completely determined by the best responses to the six possible configura- 
tions of a player's neighbors: {A, A}, {A, B}, {A, C}, {B, B}, {B, C}, {C, C}. Each 
of these best responses are identical across the two games, so the outcome with 
two neighbor matching cannot resemble that with uniform matching in both 
games. 

Theorem 1 implies that if the coordination games we have described are 
repeated enough times, we expect eventually to see the risk dominant equilib- 
rium played almost all the time. It remains to be seen, however, whether this 
'eventually' is relevant. If, for example, we are modeling weekly interactions, 
evolutionary forces will only be felt within a few decades if they affect play in 

A B C A B C 

A 6,6 0,5 0,0 A 6,6 0,5 0,1 

B 5, 0 7, 7 5, 5 B 5, 0 7, 7 5, 5 

C 0,0 5,5 8,8 C 1,0 5,5 8,8 

ILLUSTRATION B 
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the first few thousand periods. In applying evolutionary arguments to games 
which are not repeated infinitely often, we must ask whether the number of 
repetitions is sufficiently large for play in the game to resemble the steady-state 
limit we have identified. I begin with some theoretical results on the rates of 
convergence of models with uniform and local matching rules.5 

Let p be a probability distribution describing play in the initial period of the 
game. For the Markov process with transition matrix P(8), the distribution of 
period t play is given by pP(e)Y. The steady-state distribution reflects long run 
behavior in the sense that 

pP(8) t ,-* / 

for any p as t -* oo. For any two distributions ,u and i- define 

II/L - Z11 maxlp., - Zjl 
sES 

The quantity 11pP()Y - p.(8)JI then measures the difference between the distri- 
bution of play in period t and the steady state. In discussing the rate of 
convergence we are trying to say when this difference is small. 

To do so, I characterize the asymptotic behavior of IIpP(8)Y - I(tW11 as t -> oo. 
For finite state Markov processes, convergence is always at an exponential rate. 
(See Seneta (1973, p. 8).) Loosely speaking, we have JjpP(8)Y - p(8)II = O(rt) for 
some r < 1. The distinction I draw between fast and slow convergence is simply 
a quantitative one comparing different values of r. Meaningful comparisons are 
nonetheless possible, because the values of r turn out to be very different.6 

The principal implication of Theorem 2 is that when 8 is small, r will be 
much closer to one in the model with uniform matching than it is in the model 
with two neighbor matching. To see what kind of effect this has on convergence, 
consider the following numerical example. Suppose there are 100 players with 
payoffs such that rq*(N - 1)] = 33. Suppose also that the randomization proba- 
bility 8 is small and consider the effect of reducing 8 to 8/2. In the two 
neighbor model, the model will take about twice as long to converge. In the 
model with uniform matching, Theorem 2 tells us that 1 - ru(e/2) 2-(1 - 

ru(e)). If 1 - ru(e) is small we have the first order approximation 

r 2 ) 1 -3 ru( r(? ru( )23 (- 333 3 ru(8). 

Hence, convergence in the uniform model will take not twice as many periods 
but rather 233 or over 8 billion times as many. 

5See Karlin and Taylor (1975, Ch. 3 and Appendix 2), or Seneta (1973, Sections 1.1 and 4.2) for 
formal statements of the theorems mentioned below. 

6 The idea of such a distinction may be puzzling, especially to econometricians who are used to 
seeing distributions converge at rate 1/ Vt and think of exponential convergence as rapid. What is 
important to note is that exponential convergence can be quite slow in a practical sense if r is 
extremely close to one. For example, if r = 0.9999999, then r1'000'000 0.9, so with every million 
periods play gets only 10% closer to the steady state. 
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THEOREM 2: Let Pu(e) and P2(E) be the transition matrices for the uniform 
and two neighbor models and let U.(0) and p72(E) be the associated steady state 
distributions. Assume [q*(N - 1)] < N/2. For A the set of probability distribu- 
tions on S define 

ru(e) = sup limsup |ppU()t _ U(e) 1/t 
pEA t->oo 

r ( ?)-SUp lim sup pp2(e)t _ 2(e) 7 
peA t->co0 

Then, 

1 - ru(E) = O( [q*(N-1)) 

1- r2(?) =(e), 

as E -? 0. 

PROOF: To begin we simplify the right hand side of the expressions defining 
ru(E) and r2(c) using standard matrix theorems. Let P be any strictly positive 
transition matrix and let ,u be its unique steady state. The first result is that if 
we order the eigenvalues of P so that IA1 > IA21 > .-. > IAkNI, then A1= 1 
and IA21 < 1. From this follows a result directly applicable to our problem, 
namely that 

sup lim sup IIppt _ /,11l/t = 1A21 
pEA t --c 

The proof of this second result for a diagonalizable P is quite simple and is 
sketched below.7 Suppose 

P =PAP-Y1' 
A1 0 ... O 

O A 2 
... ? 

A=[. 0 

0 O ... A 

For any fixed p, 
pPt = plAt?lY1 

Hence, 

r1 O ... - ** O 

ppt p,| ? ?P 
? 41 

Po 
At 

O?-1. 

7 For a nondiagonalizable P a similar argument can be constructed using the Jordan canonical 
form. See Karlin and Taylor (1975, pp. 542-551) or Seneta (1973, pp. 1-8) for more thorough 
discussions and alternate proofs. 
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The right-hand side of this expression converges to zero. Writing Eij for the 
matrix whose ijth element is 1 and with all other elements equal to zero, we 
have from the uniqueness of the steady state that 

pOEll o1= A 

for all distributions p. Hence, 

sup lim supJJpPt- pJJl/t = sup limsuplIpPt-ppPE11 P1111t 
peA t --ct p JA t --c 

= sup limsup )AtPo At-El )P 

= IA2 1 SUP lim sup lIpPE22 P'I 1/t 
pEA t -4ct 

= IA21. 

We also see from this calculation that the supremum is in fact achieved for any 
p such that pPE22j-1 # 0. 

Given this result, the problem of finding ru(e) and r2(8) is reduced to the 
problem of finding the second largest eigenvalues of the matrices Pu(8) and 
P2(8). The remainder of the proof is the rather lengthy solution to this problem 
and can be found in the Appendix. Q.E.D. 

To better illustrate the behavior of models with local and uniform matching I 
define an alternate measure of the extent to which play resembles its long run 
limit by 

W(N, e, a) = E(min{tIA(st) > (1-a)N}lso=B) 

i.e. W(N, 8, a) is the expected waiting time until at least 1 - a of the players 
simultaneously play A given that everyone starts off playing B. Table I lists the 
value Wu(N, e,0.25) for the uniform model for two sets of payoffs: the first 
a = 2, b = 1, c = d = 0 as before, and the second a more extreme example where 
the payoff to (A, A) has been increased to 5. (See the proof of Theorem 3 for 
the computation of Wu(N, 8, a). It is approximately 1/(1 - ru(8)) for 8 small or 
N large.) Table II presents Monte Carlo estimates of the corresponding waiting 
times W2(N, 8, 0.25) for the model with two neighbor matching. Comparing the 
tables, it is clear that the nature of the matching rule has a tremendous effect on 
the pattern of play. Moreover, this basic insight is quite robust with extreme 
contrasts for values of 8 which are far from infinitesimal. In the uniform model, 
it takes an extremely long time for play to shift from one equilibrium to the 
other, so for economically reasonable horizons the evolutionarily determined 
limits do not apply. This is not just a negative result. We can predict that play 
should exhibit great inertia with a historically determined equilibrium repeated 
over and over again. In the two neighbor model play shifts to the risk dominant 
equilibrium within six to fourteen periods, suggesting that evolutionary forces 
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TABLE I 

EXPECTED WAITING TIMES WITH UNIFORM MATCHING5 

Expected Wait (a = 2) 

0=O.025 E = 0.05 0.1 

N= 10 611 89 16 
N= 50 3.83 x 1014 6.54 X 109 2.63 x 105 
N= 100 1.30 x 1027 8.13 X 1017 3.09 X 109 
N= 1000 1.09 X 10266 1.96 X 10173 4.46 X 1088 

Expected Wait (a = 5) 

0=0.025 ? = 0.05 ? = 0. 

N= 10 42 13 5 
N=50 2.65 x 105 1324 19 
N= 100 1.86 x 109 1.06 X 105 49 
N= 1000 1.61 x 1082 1.82 x 1041 2.16 X 1010 

aN = population size, E = randomization probability, a = payoff to (A, A). 
Other payoffs are u(B, B) = 1, u(A, B) = u(B, A) = 0. Waiting times 
(Wu(N, e, 0.25)) are until 3/4 of the players play A simultaneously. 

TABLE II 

EXPECTED WAITING TIMES WITH TWO NEIGHBOR MATCHINGa 

W2(N, ?, 0.25) 

?=0.025 =0.05 0.1 

N= 10 14.5 9.0 6.2 
N=50 11.0 8.1 6.3 
N= 100 11.1 8.2 6.4 
N= 1000 11.0 8.1 6.2 

'Waiting times are independent of payoffs for q* E (0, 1/2). Estimated 
standard errors are 0.1 or less for all estimates. 

will be a powerful determinant of play. I comment later on the robustness of 
this result. 

I noted in the introduction that models with local interaction are of particular 
interest if they allow evolutionary arguments to be used in discussing the 
development of conventions in large societies. I therefore ask now how the rate 
at which play converges depends on the size of the population. Theorem 3 
characterizes play in terms of the expected waiting time until a transition to the 
risk dominant equilibrium occurs. In the uniform model, WU(N, E, a) increases 
dramatically in N reflecting our ear'lier intuition that the simultaneous random- 
izations which produce a transition become extremely unlikely in large popula- 
tions. In contrast, with a local matching rule play approaches the risk dominant 
equilibrium within a period of time bounded above by a constant independent 
of N. Intuitively, the proof formalizes the idea that players who are sufficiently 
far from player 1 cannot significantly slow his adoption of strategy A by 
considering the wait until player 1 plays A in a constrained model where all 
players m or more units away play B in every period. Convergence times in the 



1062 GLENN ELLISON 

constrained model are independent of N and are shown to provide an upper 
bound on convergence times in the standard local matching model. 

THEOREM 3: For e sufficiently small we have 

Wu(N, e, a) = 0(r N e 

W2k (N,e,a) = 0(1), 

as N -* oo. 

PROOF: In the model with 2k neighbor matching it suffices to show that for 
e < ? there exist constants N, 'q, and T, such that for all N > N 

min prob (A(St+T) > (1 -a)NIst = s) > -q. 
s 

From this it immediately follows that W2k(N, E, a) < T/'q which provides the 
desired bound. 

To begin, consider a constrained model with 2m + 1 players on a line of 
whom players -m, -m +1, ...,-m + k - 1 and m - k + 1,...,m play B in 
every period while the rest of the players play a best response to their 2k closest 
neighbors with probability 1 - e. Write p2kF for the transition matrix, ,u' for the 
steady-state distribution, and A' for the state where all unconstrained players 
play A in this model. For 2m + 1 > (k + 1Xk + 2) + 2k a proof identical to that 
of Theorem l(a) shows ,(e) - 1 as e -> 0. Pick ?- such that e <?- implies 
ii,(?) > 1 - a/2. Now fix e < E. Because p2k' is ergodic we can choose T such 
that eg,P2k'(r)T(A') > 1 - 3a/4 for e, an initial distribution putting mass 1 
on B'. 

Let Q2 be the underlying probability space for the circle model with co E fi 
consisting of a uniform [0, 1] random variable wit for each player at each point 
in time such that player i mutates to A in period t if wi, > 1 - e and to B if 
wit < e. n also acts as a probability space for the constrained model with the 
randomizations of player j in that model corresponding to the randomizations 
of player 1 + j in the standard model on the circle. The constrained player 0 
plays A in a given period only if player 1 on the circle does so for the same 
realization of w) with corresponding initial conditions. Hence, 

E(A(st+T)Ist = s) > N prob(Player 0 plays A in period t + Tls' = B' 

" N k'p2k'(,F)T (A') > (1 -3al/4)N. 

Using A(st+T) < N we have the desired inequality 

1 
prob (A(St+T) > (1 - a)Nlst = s) > - 

In the uniform model, let N be sufficiently large so that [q*(N - 1)] < N/2. 
The probability that A(st+ 1) > (1 - a)N depends only on whether A(st) is in 
{0, . . ., [q*(N - 1)1 - 11, {[q*(N - 1)]), or {[q*(N - 1)1 + 1,. ..,N}. Write 0, 
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7',1, and 'r 2 for these three probabilities. Note that qo -? 0, ql -* 0, and '_2-+ 1, 
as N -* oo for 8 <a <q*. Write Wo, Wl, and W2 for the expected wait until 

A(s,+7)> (1 - a)N conditional on s, lying in each of these three sets. (W= 
Wu(N, 8, a).) We have 

WO = (1 - (P1 +P2))(WO + 1) +p1(W1 + 1) 

+(P2- %)(W2+ 1) + %, 

WJ1,=ql(Wo + 1) + (1- (q + q2))(W1 + 1) 

+ (q2 -7 l(W2 + 1) + 7/l, 

W2 =rl(Wo + 1) + r2(W1 + 1) + (1 -(r, + r2 + %))(W2 + 1) + q2l 

with pi, qi, and ri as in (Al). Solving these three equations gives a closed form 
expression for Wu(N, 8, a) from which it follows that 

1 1 
WO ~+ 
?Pi +P2 Pi +P2 

From the central limit theorem 

Pi +P2 1 
q( -? 

1)]( 
_-N 

(N m>o). 

The desired result now follows by replacing the right-hand side of the expres- 
sion above by the approximation (see Ross (1984, p. 162)): 

O-((x) Xe-x2/2 X x).0 Q.E.D. 

REMARKS: 1. As with Theorem 1, the proof that W2k(N, 8, a) = 0(1) applies 
to more general matching rules. (See Remark 1 after Theorem 1.) However, 
because the value of ?- used in the construction must be independent of N, the 
proof extends only to matching rules such as (1) where jN =f N(d(i, j)), 
fN(i) >f(i) for N large, and f is monotone decreasing with ELI1f(i) = 1/2. 

2. Blume (1992) specifies a similar model of interactions among spatially 
distributed players in a way which allows tools from statistical mechanics to be 
applied. Principally, his model differs in that the population is countable, 
strategies are updated asynchronously in continuous time, and randomization 
probabilities are related to payoff, differences. While Blume does not directly 
address the rate at which play converges in his model he is able to draw on an 
extensive literature to determine whether behavior is ergodic. The obvious 
conjecture is that play in an infinite population model is ergodic whenever 
convergence times in suitably defined finite population approximations remain 
finite as N -> oo. 

Figure 1 illustrates the dependence of waiting times on the population size 
for three local matching rules. Monte Carlo estimates of W2k(N,,8,0.25) are 
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FIGURE 1.-Estimated waiting times for various population sizes. 

graphed for e = 0.05 and q* = 1/3. The waiting times are sharply decreasing for 
small population sizes and appear remarkably constant for populations of more 
than about 100 players. It appears that with local matching rules evolutionary 
forces are not at all diminished in large populations and that any predictions we 
make will be extremely robust to the size of the population. 

5. SIMULATION RESULTS 

The contrasting behavior of models with local and uniform matching is not 
empirically meaningful when convergence is very slow even with local matching. 
For this reason, I now present two sets of numerical simulations which investi- 
gate further the conditions under which local matching rules allow evolutionary 
forces to determine play. The first set of simulations explores a variety of 
specifications of the model of Section 2. Although rapid convergence is hard to 
define, it is possible that evolutionary forces will determine play in a variety of 
models with local matching. The second set of simulations discusses an exten- 
sion of the basic model and argues that rapid evolution may also be seen in a 
much broader range of models. 

5.1. Matching Rules 

We have already seen that the risk dominant equilibrium arises very quickly 
with two neighbor matching. I investigate here the extent to which this remains 
true as the assumptions of the two neighbor rule are gradually relaxed. Typically 
we have only a rough idea of the matching process which best describes a given 
population. We therefore hope that the predictions of the model are fairly 
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TABLE III 

EXPECTED WAITING TIMES WITH VARIOUS MATCHING RULESa 

W2k(100, r, 0.25) 

?=0.025 ?=0.05 0.1 

2 Neighbors 11 8 6 
4 Neighbors 44 23 12 
8 Neighbors 93 25 11 

12 Neighbors 522 45 11 

a Payoffs have q* = 1/3. Estimated standard errors are less than 2% of the 
value shown. 

robust to the particular specification chosen. Recall that a transition to the risk 
dominant equilibrium is possible with very few 8-probability events if strategy A 
is simultaneously adopted by a small cluster of adjacent players. It therefore 
seems reasonable that the likelihood of a speedy transition will be greatly 
affected by the factors which allow for the existence of such stable clusters. In 
particular, I examine here the degree to which the matching rule is concen- 
trated on a few neighbors and to which the groups of neighbors overlap. 

Table III describes the behavior of models with less concentrated matching 
rules. For k = 1, 2, 4, and 6, Monte Carlo estimates of the expected waiting time 
W2k(100, rE,0.25) are given. Payoffs with q* = 1/3 (e.g. a = 2, b = 1, c = 0, 
d = 0) are assumed. Note that the effect of the matching rule varies with the 
frequency of the randomizations. For the smallest value of E shown, waiting 
times increase significantly when players have more neighbors. In this case, 
evolution is only likely to be seen when the matching rule is concentrated on a 
very few neighbors. For the larger values of 8, the waiting times are shorter and 
less dependent on the particular matching rule. Evolution may even be faster 
for less concentrated matching rules as stable clusters are almost sure to form 
immediately and the speed at which they spread becomes more important. 

The k neighbor matching rules discussed so far are far from general. The 
assumption that the players are arranged around a circle has been maintained.8 
Inherent in this assumption is a great overlap of the groups of neighbors in that 
a player's neighbors' neighbors are likely to be his neighbors as well. More 
realistic models would usually involve less overlap. For example, if an economist's 
"neighbors" include colleagues in her own department, others with similar 
research interests and older friends, then many of the neighbors might not know 
each other. With less overlap, evolution may be slower because stable clusters 
must be larger. 

As a proxy for the degree of overlap of groups of neighbors, I explore the 
dimension of the lattice on which the players are arranged. Besides arranging 
400 players around a circle, we can arrange them at the vertices of a 20 x 20 
lattice on the surface of a torus, or on a 4 X 4 x 5 x 5 lattice in four dimensions. 

8 Blume (1992) discusses the effects of the lattice used to represent the matching process in a 
similar model and notes that higher dimensional systems may behave very differently. 
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FIGURE 2.-Eight neighbor matching in one and two dimensions. 

Figure 2 pictures the sets of neighbors which give eight neighbor matching in 
one and two dimensions. Moving from one to two to four dimensions reduces 
the maximum number of neighbors which any two players have in common from 
six to four to two. 

For each of the lattices mentioned above, Table IV gives estimates of the 
expected waiting time W(N, e, 0.25) again for payoffs with q* = 1/3. For most 
of the parameter values shown, the expected waiting times are not greatly 
affected as we reduce the overlap of the neighbor groups by moving to higher 
dimensional lattices. However, the increased waiting times in the eight neighbor 
model for e = 0.025 are a reminder that the structure of the matching rule has 
the potential to greatly affect the behavior of the model. 

The general conclusion that local matching leads to relatively fast conver- 
gence appears to be fairly robust to the choice of matching rule. However, when 
randomizations are infrequent, there are reasonable models in which play 
converges fairly slowly. In addition, whether convergence in say 50 periods is 
fast enough to be relevant depends on the application. As a result, while local 
matching allows evolutionary forces to be felt in large populations, we cannot 
predict that the risk dominant equilibrium will arise as confidently as we are 

TABLE IV 

EXPECTED WAITING TIMES FOR DIFFERENT GEOMETRIESa 

Four Neighbor Matching 
Expected Wait 

Lattice = 0.025 E = 0.05 E = 0.1 

400x1 46 23 12 
20x20 43 21 12 

Eight Neighbor Matching 
Expected Wait 

Lattice = 0.025 E = 0.05 E = 0.1 

400 X 1 70 28 11 
20 X 20 122 21 9 
4X4X5X5 1740 32 8 

a Payoffs have q* = 1/3. Waiting times are until 3/4 of the players play 
A. Estimated standard errors are less than 3% of the values shown for all 
estimates except the E = 0.025 8 neighbor cases. 
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TABLE V 

WAITING TIMES FOR HETEROGENEOUS POPULATIONSa 

Expected Wait 

Variance of u,(B, B) E = 0.025 E = 0.05 E = 0.1 

0 522 45 11 
0.1 75 19 9 
0.2 28 14 7 

a Expected waiting times are for populations of 100 players with 12 neighbor 
matching, a = 0.25, and with the distribution of payoffs matching that gener- 
ated by independent draws from lognormal distributions with E(u,(B, B)) = 1 
and u(A, A) D (17/7)u,(B, B). Estimated standard errors are less than 3% of 
the values shown. 

able to predict that historical factors determine play in the model with uniform 
matching. 

5.2. Heterogeneity 

In a large population it is reasonable to assume that players have different 
tastes. I suggest here that this heterogeneity may allow rapid convergence for a 
much broader range of specifications than was previously indicated. Intuitively, 
in a diverse population there will be a few players who derive great utility from 
the equilibrium (A, A) and will therefore play A if only a few of their neighbors 
have done so. In the vicinity of these players, smaller stable clusters of players 
playing A are possible. Such clusters will therefore arise more quickly. Once 
they do the fact that a few players prefer (B, B) will do little to slow their 
spread. 

Table V examines the effect of such heterogeneity on the expected waiting 
time. The players are assumed to have heterogeneous tastes ui(A, A) and 
uj(B, B) with the empirical distribution of the utilities matching that of inde- 
pendent draws from lognormal distributions with ui(A, A) D (17/7)ui(B, B).9 A 
population of 100 players with 12 neighbor matching is assumed. The first line 
of the table gives the familiar waiting times for a homogeneous population and 
subsequent lines record the effect of increasing dispersion in the payoff distribu- 
tions. (E(ui(B, B)) is fixed at one.) To facilitate interpretation of the scale, note 
that when var(ui(B, B)) = 0.2, there is one player who plays A if only one 
neighbor did so, and 2 players who will not play A unless 8 or more neighbors 
did so. When evolution is already rapid for a homogeneous population, hetero- 
geneity has only a limited effect. More importantly though, when E is small 
heterogeneity dramatically increases the rate at which play converges. 

9 The constant 17/7 is used for comparison with the results of Section 5.1. When var(ui(B, B)) = 0, 
q* = 7/24 is in the center of the interval (3/12,4/12) and the dynamics are identical to those of the 
last model in Table III. 
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6. CONCLUSION 

In this paper I have discussed a class of coordination game in order to 
examine the implications of a learning process among a large population of 
boundedly rational players. Kandori, Mailath, and Rob (1993) introduced such a 
model and showed how the players' myopic adjustments create evolutionary 
forces which may select among the equilibria. 

The analysis yields several conclusions which appear to be fairly robust. Most 
generally, the rate at which a dynamic model converges can be an important 
consideration for economic applications. In the coordination problems discussed 
here, the nature of the matching rule which describes the interactions in a 
population helps determine the behavior we will observe. When each individual 
cares equally about coordinating with a great many opponents, play will exhibit 
great inertia and reflect arbitrary historical factors for a long period of time. On 
the other hand, in communities in which players are only likely to be matched 
with a few close friends or colleagues evolutionary forces may be felt early in 
the game. I would therefore hope that models with local interactions will allow 
the further application of evolutionary models to social behavior. 

Department of Economics, Harvard University, Cambridge, MA 02138, U.S.A. 
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APPENDIX 

PROOF OF THEOREM 2: We begin with a general discussion of second largest eigenvalues 
applicable to both transition matrices. For v a probability distribution on S, vs will denote the 
probability assigned to state s. It will often be convenient to write v as a 2N-tuple ordered as 

(Vi V, * *..* ) 

so that, for example, (0, 1, 0, . . .0, ) represents a distribution which assigns probability 1 to all players 
playing B. (In writing this vector, some ordering is understood for the 2N - 2 states I have not 
specially named. Each of these states will be assigned probability zero in the 2N-tuples which appear 
below.) 

Let CPp(_)(x) be the characteristic polynomial of P(E). CPp(_) and CPp(o) are polynomials of the 
same degree whose coefficients converge as E -+ 0 so the set of roots of CPp(,) converges to the set 
of roots of CPp(0 (with multiplicity). If we write the eigenvalues of P(E) with multiplicity as 
1=A1(E)>IA2()[ |A3(?)I N 2 IA2v(E)I this implies 

I| AI(? 
| 

I AimO | .1 

Note that the matrices P(O) have a two dimensional space of eigenvectors of eigenvalue 1 spanned 
by (1, 0, O, . . .0, ) and (0, 1, 0, . . .0, ). These eigenvectors correspond to the steady states where all 
players coordinate on A and B respectively. Assuming for now that P(O) has no other steady states 
or cycles, all other eigenvalues are of magnitude less than one. Therefore, A2(E) -4 1 and all other 
eigenvalues are bounded away from 1 for E near zero. 

Let v(E) be an eigenvector with eigenvalue A2(E) normalized so that IIv(E)II = 1 and vB(E) > 0. I 
first show that v(E) (-11,0,...,00) v. If not, for some 7 > 0 we can find a sequence {?1 

converging to zero for which II v(E,) - v II> 71. Choosing an appropriate subsequence we may assume 

10 See Franklin (1968, p. 191). 
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that v(Ed) converges to a nonzero limit v*. Note that 

v*P(0) = irm V(Ei)P(Ei) = lrm A2(E,)v(E,) = v* 
j-*0 i->oo 

so that v* is an eigenvector of P(0) with eigenvalue 1. This gives v* = (x, y, 0,..., 0) with y > 0 and 
max(lxl, Iy I) = 1. Further, as P(E) is a probability transition matrix, the sum of the elements of 
v(Ci) is equal to the sum of the elements of A2(ai)v(Ei). This is only possible with A2(Ci) < 1 if the 
sum is zero. This gives the contradiction v* = v. 

First, consider the model with two neighbor matching. Throughout the proof I assume that N is 
odd. The proof for N even is similar although more complicated because of the cycle 
AB BA AB . A complete proof is available from the author on request. 

When N is odd, P2(0) has only A- and B as steady states and has no cycles so by the reasoning 
above we know A2(E) -+ 1 and v(?) -+ (-1, 1, 0,..., 0). Hence, for E sufficiently small, vf(E) > 0 SO 
we can write the second largest eigenvalue as 

E, PsB(--)v,(--) 
seS 

A2(? ) =_ VB() 

El PS'B (--)vs(?) 

=p24 (F) + soB s# 

We have 

2,,(E) = (1 -N? + O(E2)). 

For s * B, the successor of s in the model with no noise has at least two players playing A, so a 
transition from s to B requires at least two --probability events. We then have that ps(B)= 0(s2) 
and vs(?) is bounded. Hence, p 2B4(E)Vs(s) = o(?) and 

AAE) = 1 -NE + o(E) 

as desired. 
For the uniform model, we simplify the problem by looking instead at a Markov process on the 

N + 1 element state space A(S). Formally, we define a transition matrix P' on A(S) by 

Pt; ( ? )- Pr,(i) s(?) 
A(s)=j 

where r(i) is any state with A(r(i)) = i. Note that we can write P' as a product P' = DPUE where D 
is an N + 1 x 2N matrix which maps e1 to er() and E is a 2N x N + 1 matrix which classifies states 
by mapping e5 to eA(S) The matrix F' will be useful because its second largest eigenvalue is 
identical to that of PU for E small. To see this, note that the eigenvector of PU(E) associated with A2 
satisfies v(e) -+ v = (- 1,10,...,0). Hence v(E)E * 0 for E small, and v(E)EP'= v(E)EDPUE = 
v(E)PUE = A2v(E)E, so that v(E)E is an eigenvector of P' with eigenvalue A2. Because P' has an 
unique non-unit eigenvalue with magnitude converging to one, the second largest eigenvalues of Pu 
and P' must coincide. 

We can further reduce the dimensionality of the problem by noting that p1j(E) = pZTJ() if states i 
and i' have the same successor in the model with no noise. Hence, we may write 

P (?-)-=QR(--) 

where 

1 0 0 

1 O O 
Q= 0 1 0 

O 0 1 

O 0 1 
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groups the states into three classes, the precursors of 0, [q*(N - 1)], and the precursors of N, and 
R(s) is an 3 x N + 1 matrix which gives the probability of each state arising given the class of the 
previous state. For example, 

RI,(s-) =p1j(s) Vi e (0, 1,. [q*(N- 1)] - 1}. 

From this decomposition, it is clear that P'(O has exactly three nonzero eigenvalues. 
Let C(s) = R(s)Q. C(s) is a 3 x 3 matrix which can be regarded as giving the transitions between 

the three classes of states. Note that P'(E)fl = QC(E)' - 'R(E). Let v be an eigenvector of P'(s with 
eigenvalue A > 0. We have vQ =* 0 and vQC(s-) = vQR(E)Q = AvQ so vQ is an eigenvector of C(s) 
with eigenvalue A. As C(s-) has rank 3, this gives a one-to-one correspondence between the nonzero 
eigenvalues of P'(s) and the nonzero eigenvalues of C(s). 

We can write 

l(PI +P2) PI P 

(Al) C(-)= 
q 

1-(q, +q2) q2 

where, for example, p1 gives the probability of a transition from any precursor of 0 to the state 
[q*(N-. 1)], 

N 
[q*(N... 1)])f*N1( )N-fq*(N1I)1 

Look at the characteristic polynomial of C(s) as a polynomial in z 1 - A. We find that 

(A2) Det (C(s) - kl) = Z( Z2 - alz + ao) 

with 

a, =P1 +P2 +q1 + q2 +r1 + r2 

ao = (Pl + P2)(q1 + q2) + (q1 + q2)(r1 + r2) + (r, + r2)(PI ? P2) 

- q2 r2 - plql - P2r1- 

The root z = 0 corresponds to the eigenvalue A = 1. Let Z1(E) >1 Z2(E) be the other two roots of 
this equation. As s --*0, 

Z1(s + Z2(s) - 

because q2(s-) --) 1 when N - [ q *(N - 1)] > [ q *(N - 1)] and all other terms in the expression for a 1 
converge to zero. We also have 

z1(s-)Z2(s-) = Q([- q*(N-1)1) 

as q2(s)P1(s-) = Q(E [q*(N- 1) and all other terms in the expression for ao are of strictly higher order. 
Hence, we must have zl(E) --* 1 and Z2(g) = Q(_,fq*(N-I)j). Clearly, 1 - Z2(E) is the second largest 
eigenvalue in absolute value for sufficiently small s so the desired result for the uniform model 
follows from our characterization ru(s-) = 1-_ Z2(E). 
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