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Market Research and Market Design

Sandeep Baliga and Rakesh Vohra

Abstract

We study trading models when the distribution of signals such as costs or values is not
known to traders or the mechanism designer when the profit-maximizing trading procedure
is designed. We present adaptive mechanisms that simultaneously elicit this information
(market research) while maintaining incentive compatibility and maximizing profits when
the set of traders is large (market design). First, we study a monopoly pricing model
where neither the seller nor the buyers know the distribution of values. Second, we study
a model with a broker intermediating trade between a large number of buyers and sellers
with private information about their valuations and costs. We show that when the set of
traders becomes large our adaptive mechanisms achieve the same expected profits for the
monopolist and the broker as when the distribution of signals is common knowledge.
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1 Introduction

Suppose second-hand electronic equipment, say a certain brand of CD player,
is for sale. Buyers and sellers of the CD player have different values for it and
use a broker to intermediate trade. The broker makes a profit by charging
a bid-ask spread. In a profit-maximizing mechanism, the spread depends on
the distributions of buyers’ and sellers’ values as these determine the demand
and supply curves.1 Alternatively, the CD player manufacturer may sell new
equipment directly to buyers. The firm must know the buyers’ demand curve
to calculate the profit-maximizing price. The demand curve depends on the
distribution of buyers’ values.2 Therefore, in the standard paradigm, it is
assumed that traders have private information or signals about their costs or
values but the distribution of the signals is common knowledge among the
traders and also the mechanism designer. As this distribution is altered, so
is the optimal mechanism.
Wilson ([23] and [24])3 has argued that economic institutions should work

well in a wide variety of settings and should be independent of the details
of the environment since they may not be known when the mechanism is
designed. For example, the product being sold might be new and innovative
or demand and supply conditions may be changing over time. One way to
deal with this difficulty is to conduct market research and use the results in
the design of the trading mechanism. There are a number of problems with
this approach. First, it may be time-consuming to do the research. Second,
to the extent that the subjects in the research are potential participants in the
subsequent market, they may have an incentive to misrepresent information.
Third, the market research may be based on a small sample and hence may
not accurately capture market conditions.

1Profit-maximizing and/or efficient mechanisms have been studied by Myerson and
Satterthwaite [20] and Gresik and Satterthwaite [11].

2Bulow and Roberts [4] building on the work of Myerson [19] study monopoly pricing
with incomplete information.

3“Game theory has a great advantage in explicitly analyzing the consequences of trad-
ing rules that presumably are really common knowledge; it is deficient to the extent that
it assumes other features to be common knowledge, such as one agent’s probability assess-
ment about another’s preferences or information.
I foresee the progress of game theory as depending on successive reductions in the base

of common knowledge required to conduct useful analyses of practical problems. Only by
repeated weakening of the common knowledge assumptions will the theory approximate
reality,” Wilson [24]
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We display adaptive mechanisms that simultaneously conduct market re-
search while determining which trades to execute and at what prices. The
mechanisms respond to the information elicited from agents, do not depend
ex ante on the knowledge of the distribution of signals and maximize profits
when the set of traders is large. Both a broker or a firm selling directly to
consumers could use the mechanisms we study to conduct market research
and market design.
One way to relax the assumptions of the standard model is to require that

the distribution of values be common knowledge amongst the agents only. For
example, Caillaud and Robert [5] study a revenue-maximizing auction when
the seller does not know the distribution of types but the bidders do know the
details of the environment. But then, as in complete information implemen-
tation models (see Moore [18] for a survey), a mechanism can be designed
where the bidders equilibrium behavior reveals the distribution at no extra
cost to the seller. Such mechanisms rely on the distribution being common
knowledge among the agents. An alternative has been to focus on mecha-
nisms that do not require cross-reporting and are distribution free. The goal
here is to show that these “sub-optimal” mechanisms are close to optimal as
the number of agents increases. In this case one studies the asymptotic prop-
erties of a Bayesian equilibrium of the mechanism. For example, in a seminal
paper, Wilson [23] shows that a Bayesian equilibrium of a large, sealed-bid,
double auction is incentive-efficient in the sense of Holmstrom and Myerson
[13]. In later work, Rustichini, Satterthwaite and Williams investigate the
k-double auction and show that one of its Bayesian equilibria is asymptot-
ically efficient. While the rules of the double-auction are distribution-free,
Bayesian equilibrium relies on players knowing the distribution of values.4

Continuing in this vein, one could also require that the distribution is not
common knowledge among the traders and replace Bayesian incentive com-
patibility by ex post incentive compatibility. For example, Maskin [14] and

4Gul and Postlewaite [12] take a mechanism design approach and show in a more general
environment that a Bayesian equilibrium of their mechanism implements a nearly-efficient,
incentive compatible, individually rational allocation when the economy is replicated suf-
ficiently often. However, the rules of their mechanism as well as the solution concept they
utilize rely on both the mechanism designer and the players knowing the distribution of
states and types. In particular, the mechanism they study relies on determining the state
of the world that is most likely given players’ reports of their types and then calculating
and implementing a perturbed, competitive equilibrium for the artificial economy that has
the same distribution of players’ types as this state.
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Dasgupta and Maskin [7] study efficient auctions which are distribution-free
in an interdependent-value environment (the research surveyed above deals
with private values). In their paper neither the players nor the mechanism
designer know the distribution of signals (but agents do know the value func-
tions). They study implementation of ex-post efficient allocations while we
study implementation of profit-maximizing ones. This distinction is key as
ex-post efficiency is a distribution-free concept (the ex-post efficient alloca-
tion in an auction setting requires than the object be given to the player
with the highest value) while the profit-maximizing allocation rules in our
trading models necessarily depend on the distribution of types. When the
seller has beliefs about the types, he can seek to maximize expected revenue
with respect to these beliefs. For the resulting mechanism to be immune to
the unknown beliefs of the agents, the mechanism has to be ex post incentive
compatible. In particular, Myerson [19] shows that the profit-maximizing
auction in the independent private values case is, say, a second-price auction
with a reserve price, where the reserve price depends on the distribution of
valuations. If the mechanism designer also does not know the distribution of
types, it is not clear how to approach implementation of this allocation rule.
Hence, recent work on distribution-free implementation, such as Bergemann
and Morris [2], assumes that the rule being implemented is itself distribution-
free.
When the set of traders is large and types are independent draws from the

same distribution but the distribution is not known, we resolve this issue. For
this case, we show how to elicit the distribution from agents while maintaining
incentive compatibility and maximizing profits. Segal [21], in independent
and contemporaneous work, has studied a model similar to the first monopoly
pricing model we present below. He takes a Bayesian approach assuming
that the designer has a prior over the distributions from which the values are
drawn. We take a sampling approach and do not assume that the designer
has a prior.
A third relaxation is to eliminate the assumption that the traders and

the mechanism designer know that values are independent draws from an
unknown distribution. Goldberg et al. [10] investigate such a model where
a monopolist has a constant marginal cost of production (in Deshmukh et
al. [8], their results are extended to the case of a broker intermediating
trade between buyers and sellers with private information). To describe their
results, we need some notation. Let D be the set of all (monotone) dominant
strategy mechanisms and v a profile of bidder valuations. For each d ∈ D,
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let d(v) denote the revenue obtained when using mechanism d on the profile
v. Let b(v) denote the revenue achieved by some benchmark mechanism that
has full knowledge of v. Their goal is to identify mechanisms d ∈ D that
make inf

v

d(v)
b(v)

as large as possible. For some choices of b(v) they show that for

every d ∈ D there is a profile v such that d(v)
b(v)

can be made arbitrarily small.
This is the case when the benchmark mechanism uses full knowledge of v
to extract all the surplus or when it charges a uniform price to all buyers.
For other choices of b(v) they identify members of D for which inf

v

d(v)
b(v)

is

a non-zero constant. This is the case when the benchmark mechanism is
forced to sell at least two units for all profiles. As these results suggest, there
is no natural benchmark against which to compare their dominant strategy
mechanisms.
We present two models. The first is a simple monopoly pricing model in

which buyers have private information about their valuations. Our second
model is one where there are many buyers and sellers and they both have
private information about their valuations and costs. A broker acts as an
intermediary between the two sides of the market and maximizes profits.
However, he does not know the distributions of values and costs. As buy-
ers and sellers are drawn from different distributions their so-called virtual
values5 have to be compared to determine whether trade should be allowed.
Also, as neither the buyers nor the sellers know the distribution we cannot
use Bayesian equilibrium as our solution concept and instead require that
agents play dominant strategies. Finally, while the main focus of the paper
is on implementing profit-maximizing rules, we will mention how efficient
allocations can be implemented in a distribution-free manner in the settings
we study.
The main idea we use is easy to explain. As the distribution of signals is

unknown, the monopolist and the broker must elicit the distribution of values
from the traders themselves. This is what we call market research. However,
the traders have an incentive to misrepresent their information as it may
affect the final price they pay. For example, Priceline executes any trade that
has positive surplus given the announcements of a buyer and a seller, charges
them the prices they announce and pockets any difference. This gives buyers,
say, the incentive to lie about their valuations. Priceline cannot calculate
virtual values as it does not know the distribution of signals. Moreover,

5Virtual values are related to marginal revenues (see Bulow and Roberts [4]).
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as traders lie about their valuations, it is difficult to infer the distribution
of valuations from their announcements. We deal with these problems by
designing a procedure where no agent’s report about his valuation is used to
determine the price he pays should he buy or sell an object. This ensures
incentive compatibility in dominant strategies and is an extension of the
familiar idea used by Vickrey [22]. As all traders announce their information
truthfully, we can use their reports to calculate estimated distributions and
densities. When there are a large number of traders, the estimates are close
to the truth. Finally, our mechanisms always leave zero surplus to buyers
with the lowest possible valuation (and sellers with the highest possible cost)
and, as the number of traders becomes large, trades are executed if and only
if they would be implemented when the distributions are common knowledge.
Therefore, our adaptive mechanisms maximize profits as if the distributions
and densities are common knowledge when the mechanism is designed.
McLean and Postlewaite [16] 6 propose an interesting definition of infor-

mation smallness which is related to our approach: an agent is information-
ally small if his information does not change the probability assessment of
a common value state by very much, given the signals of the other agents.
In our model, traders are informationally small with respect to the estima-
tion of the distribution of signals. However, McLean and Postlewaite’s [16]
analysis concerns the relationship between informational smallness, incentive
compatibility and efficiency and is not formally related to our results.

2 Monopoly Pricing

Consider a monopolist with a constant marginal cost selling to a group of
B = {1, 2, ...,M} buyers. Each buyer i is interested in at most one unit
of the good and his value vi for the good is an independent draw from a
common distribution F with support [v, v̄] and a strictly positive density f .
The buyer alone knows his value and the seller’s marginal cost is normalized
to zero. This is the monopoly-pricing version of the canonical symmetric,
independent private values model introduced by Myerson [19].
In the standard model, it is assumed that F is common knowledge among

the buyers and the seller. In that case, a mechanism that maximizes the
seller’s expected profit per capita is to sell to any buyer who is willing to
purchase at a price p∗ chosen to maximize p[1− F (p)]. To understand why

6See also Gul and Postlewaite [12].
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this is the case, it is useful to think of bidder i’s “demand” for the good at
price p as

x(p) = 1− F (p)

as only types of bidder i with valuations above p purchase the object. There-
fore, total revenue expressed as a function of price is

R(p) = p(1− F (p))

and p∗ maximizes total revenue and hence profits as marginal costs are nor-
malized to zero.7

In this model, as there is constant marginal cost, the monopolist’s profit-
maximization problem is separable across buyers. Moreover, in the optimal
mechanism, no buyer is affected by the purchasing decisions of any other
buyer. Hence, each buyer has a dominant strategy to purchase if and only if
his valuation is above the price offered by the seller. Indeed, the buyers do
not need to know the distribution F to implement this strategy. However, it
is necessary for the seller to know F to calculate the profit-maximizing price
p∗.
We assume buyers’ values are conditionally independent draws from some

common distribution F but neither the buyers nor the seller know the distri-
bution. It may be useful to imagine an ex ante stage where Nature picks the
distribution from which the values are subsequently drawn. Therefore, we
allow buyers’ values to be correlated. However, we do not explicitly model
the ex ante stage or the seller’s beliefs over Nature’s move. It is in this sense
that our mechanism is distribution-free. Despite this, we show that, when
the number of buyers is large, the seller can make the same expected profit
per capita as when he knows the distribution. We estimate the distribution
from the sample of announced values while maintaining incentive compati-
bility so the announcements are honest. The idea is to have each potential
buyer bid to purchase one unit of the good and to set a separate price for
each buyer as a function of the bids. This function is set before the auc-
tion. To describe the adaptive monopoly pricing procedure, let bi be the bid
submitted by buyer i. For each x ∈ < and i ∈ B let:

F i
M(x) =

|{j ∈ B \ i : bj ≤ x}|
M − 1 .

7If marginal costs were constant at c, total profits are (p− c) (1− F (p)) .
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The purchase price ri for bidder i is defined as follows:

ri ∈ argmax{x(1− F i
M(x))}.

Any buyer i whose bid bi is greater than ri is sold one unit of the good.
Notice that the price a winning bidder pays is not a function of his bid.
Therefore, a buyer, in the case he wins, has no incentive to lie as it does not
change the amount he pays and can only reduce his payoff to zero if he bids so
low that he does not win. A buyer, in the case he loses, also has no incentive
to lie as he either does not affect the outcome by underbidding or potentially
makes a loss by overbidding to the extent that he wins. Therefore, each buyer
has a (weakly) dominant strategy to bid truthfully. This fact, in turn, implies
that the buyers do not have to know F for the scheme to work. Moreover,
standard arguments via the law of large numbers show that F i

M → F and
thus ri (1− F i

M(ri))→ p∗ (1− F (p∗)) for all i ∈ B as M →∞ (see Breiman
page 283 for example).

Theorem 1 As M → ∞ , adaptive monopoly pricing achieves the same
expected profits per capita as the profit-maximizing selling procedure when
the seller knows F.

Remark 1 While we have studied profit-maximization here, the efficient al-
location can easily be implemented in our context: simply set the price equal
to the seller’s cost of production.

3 Markets with a Broker

In the model above, the seller not only produced goods for sale but also
designed the mechanism to maximize profits. We now suppose that there
is a broker who acts as an intermediary between traders and maximizes his
own profits. We first consider the standard model where the distribution
over types is common knowledge.
Suppose there are N = τN0 sellers each of whom owns an indivisible

object that M = τM0 buyers want to buy (by a slight abuse of notation
we will also refer to the set of sellers and buyers by N and M respectively).
Each buyer wants at most one unit of the object and each seller can sell at
most the one unit he owns. We denote buyer i’s valuation by vi and seller j’s
valuation by cj. Buyers’ values are independently drawn from a distribution

7Baliga and Vohra: Market Research and Market Design
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F and sellers’ costs are independently drawn from the distribution H. Both
distributions have positive, bounded, differentiable densities, f and h, over
the interval [a, b], have bounded second derivatives and satisfy the monotone
hazard rate condition (we subsequently drop this assumption):

virtual values, vi − 1− F (vi)

f(vi)
, and virtual costs, cj +

H(cj)

h(cj)
, (1)

are nondecreasing over the interval (a, b).

Let v ≡ (v1, ..., vM), c ≡ (c1, .., cN), v−i ≡ (v1, ., vi−1, vi+1, .., vM) and
c−i ≡ (c1, ., ci−1, ci+1, ., cN). The density g(v, c) = ΠM

i=1f(vi).Π
N
j=1h(cj) is the

joint density of all the valuations. We assume agents are risk neutral and
have additively separable utility for money and the object. Each agent knows
his own valuation but considers the distribution of others’ valuations to be
distributed as described above. Therefore, g(v−i, c) = g(v, c)/f(vi) is the
joint density of valuations buyer i faces and g(v, c−i) = g(v, c)/h(cj) is the
joint density of valuations seller j faces.
We invoke the Revelation Principle to investigate the properties of incen-

tive compatible and individually rational allocation rules. That is, we will
study a direct mechanism where buyers and sellers simultaneously and pri-
vately report their valuations into a mechanism which then determines the
probabilities with which objects are traded and what payments are executed
as a function of the profile of reports. Therefore, let pτi (v, c) be the probabil-
ity that buyer i is allocated an object when the profile of buyers’ reports is v
and the profile of seller reports is c. Similarly, let qτj (v, c) be the probability
that seller j does not make a sale for the profiles of reports v and c. Also, let
rτi (v, c) be the payment made to buyer i when the profile of buyers’ reports
is v and the profile of seller reports is c (a negative value is a payment made
by buyer i). Similarly, let sτj (v, c) be the payment made to seller j for the
profiles of reports v and c. The collection

¡{pτi }, {qτj }, {rτi }, {sτj}¢ is a direct
mechanism.
A mechanism must satisfy market-clearing and allocate all N objects to

agents for all reports:

MX
i=1

pτi (v, c) +
NX
j=1

qτj (v, c) = N

8 Advances in Theoretical Economics Vol. 3 [2003], No. 1, Article 5
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for all (v, c).
To formalize further constraints on a direct mechanism, we define

p̄τi (vi) =

Z
..

Z
pτi (v, c)g(v−i, c)dv−idc, r̄

τ
i (vi) =

Z
..

Z
rτi (v, c)g(v−i, c)dv−idc,

q̄τj (cj) =

Z
..

Z
qτj (v, c)g(v, c−j)dvdc−j, s̄

τ
j (cj) =

Z
..

Z
sτj (v, c)g(v, c−j)dvdc−j,

Ui(vi) = r̄τi (vi) + vip̄
τ
i (vi), Vj(cj) = s̄τj (cj)− cj(1− q̄τj (cj)).

Therefore, Ui(vi) is the expected gains from trade for a buyer with valuation
vi as r̄τi (vi) is the expected payment made to him and p̄

τ
i (vi) is the probability

he acquires an object. Similarly, Vj(cj) is the expected gains from trade of a
seller with valuation cj as s̄τj (cj) is the expected payment made to him and
(1− q̄τj (cj)) is the probability he sells the object.
The mechanism

¡{pτi }, {qτj }, {rτi }, {sτj}¢ is incentive compatible if and only
if, for all buyers, and every vi and v0i in [a, b],

Ui(vi) ≥ r̄τi (v
0
i) + vip̄

τ
i (v

0
i)

and all sellers and every cj and c0j in [a, b],

Vj(cj) ≥ s̄τj (c
0
j)− cj(1− q̄τj (c

0
j)).

The mechanism
¡{pτi }, {qτj }, {rτi }, {sτj}¢ is individually rational if and only

if, for all buyers, and every vi in [a, b],

Ui(vi) ≥ 0

and for all sellers, and every cj in [a, b],

Vj(cj) ≥ 0.

Finally, as the broker obtains the difference between expected payments
to buyers and sellers, his expected profit is

U0 ≡ −
MX
i=1

Z
..

Z
rτi (v, c)dvdc−

NX
j=1

Z
..

Z
sτj (v, c)dvdc.

Our first result in this section is familiar from the work of Myerson and
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Satterthwaite [20] and Gresik and Satterthwaite [11] and we omit its proof:

Theorem 2 For any incentive compatible, individually rational mechanism¡{pτi }, {qτj }, {rτi }, {sτj}¢ with a broker,
p̄τi is weakly increasing for all buyers, (2)

q̄τj is weakly increasing for all sellers

and

U0 +
MX
i=1

Ui(a) +
NX
j=1

Vj(b)

= U0 +
MX
i=1

min
v∈[a,b]

Ui(v) +
NX
j=1

min
c∈[a,b]

Vj(c)

=
MX
i=1

Z
..

Z µ
vi − 1− F (vi)

f(vi)

¶
pτi (v, c)g(v, c)dvdc

−
NX
j=1

Z
..

Z µ
cj +

H(cj)

h(cj)

¶
(1− qτi (v, c)) g(v, c)dvdc.

From the Theorem, we see that the expected profit of the broker is given
by

U0 =
MX
i=1

Z
..

Z µ
vi − 1− F (vi)

f(vi)

¶
pτi (v, c)g(v, c)dvdc (3)

−
NX
j=1

Z
..

Z µ
cj +

H(cj)

h(cj)

¶
(1− qτi (v, c)) g(v, c)dvdc (4)

−
MX
i=1

Ui(a)−
NX
j=1

Vj(b).

Recall that

CB(v) ≡ v − 1− F (v)

f(v)
(5)
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http://www.bepress.com/bejte/advances/vol3/iss1/art5



is the virtual value of a buyer with valuation v and

CS(c) ≡ c+
H(c)

h(c)
(6)

is the virtual cost of a seller with valuation c. Since the monotone hazard
rate condition is satisfied by F and H, virtual values and costs, (5) and (6)
are increasing in values and costs respectively.
The procedure that maximizes (3) subject to individual rationality is the

following: First, set Ui(a) = Vj(b) = 0 for all buyers and sellers. Execute
trades with positive virtual surplus (i.e. when a virtual value is higher than a
virtual cost), starting with those with the highest virtual surplus first. This
solution satisfies the monotonicity condition (2) only if the virtual value
function CB(v) and the virtual cost function CS(c) are nondecreasing in v
and c respectively. The monotone hazard rate condition implies that this is
indeed the case.
There are two difficulties posed by the broker’s problem. First, there

are externalities between traders at the optimal mechanism even when the
distributions are common knowledge. For example, suppose a buyer does
not acquire an object at the current profile of reports. If he increases his
report, he may succeed in acquiring an object while eliminating another buyer
from the set of successful bidders. These externalities are not present in the
analogous monopoly problem with constant marginal cost. The externalities
are only exasperated when the distributions of values and costs have to be
estimated from the reports (after the proof of Theorem 3, we remark in more
detail about the additional externalities that arise as a result of the estimation
problem). Second, as buyers’ and sellers’ values are drawn from different
distributions, virtual values and costs must be compared to determine who
trades. From (5) and (6), notice that the determination of virtual values and
costs requires knowledge of density and distribution functions. Therefore,
both must be estimated in the trading procedure when the distributions are
not known.
We assume buyers’ and sellers’ types are conditionally independent draws

from distributions F and H respectively. The buyers, sellers and the broker
do not know the distributions. We have the following result for this case:

Theorem 3 Suppose the monotone hazard rate condition holds. As τ →∞,
the broker’s expected profits per capita converge to his expected profits per
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capita when he knows F and H.

Proof: Again, we focus on estimating F and f from buyers reports. Split
the buyers into two setsMA andMB of equal size (if there are an odd number
of buyers, allocate an extra buyer to MA). By an abuse of notation, we will
also denote the cardinality of these two sets by MA and MB respectively.
Let vi be the report of buyer i. For each v ∈ < let:

Fk(v) =
|{j ∈Ml : vj ≤ v}|

Ml
.

where k, l ∈ {A,B} with k 6= l. Notice that the report of buyer i ∈Mk does
not affect the calculation of the estimated distribution function buyers in
Mk. Now, we turn to the estimation of the density function. LetMl = n and
suppose v1, v2, . . . . vn are n i.i.d. draws from F over the interval [a, b]. That
is, these are the reported valuations of all buyers inMl. For any [x, y) ⊂ [a, b]
let µk(x, y) =| {j : vj ∈ [x, y), j ∈Ml} |= (Fk(y)− Fk(x))n.
If y − x is sufficiently small, one can approximate f(v) for v ∈ [x, y) by

F (y)−F (x)
y−x . Since F is unknown, we can approximate F by Fk which suggests

that we estimate the value of f(v) by µk(x,y)
n(y−x) . This estimate of f(v) involves

two approximations. The, first, is to approximate f(v) by
R y
x f(t)dt

y−x and the

second to estimate
R y
x
f(t)dt by µk(x,y)

n
. The first is a good approximation

when y − x is small. The second is a good approximation only when [x, y)
contains a large number of points, i.e., y − x is large. The main difficulty is
to find a trade-off between these two errors so as to produce a good estimate
of f . This is the subject of a large literature on density estimation. We refer
the reader to Luc Devroye [9] for an introduction to the literature.
Here we use what is called the “histogram” estimate of the density func-

tion. Choose m, growing with n, points x1, x2, . . . , xm in [a, b] and a number
hm such that

• x1 = a

• xn = b

• xj < xj+1

• xj+1 − xj = hm

12 Advances in Theoretical Economics Vol. 3 [2003], No. 1, Article 5
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The sequence hm will go to zero as m grows at a rate to be chosen later.
Set

fk(v) =
µk(xj, xj+1)

nhm

if v ∈ [xj, xj+1). First, observe that
µk(xj, xj+1)

n
= Fk(v + xj+1 − v)− Fk(v − (v − xj)).

For any t we have that |Fk(t) − F (t)| ≤ rn almost surely where rn → 0 as

n → ∞ and rn is independent of t. In fact rn = O(
q

lg lgn
n
).8 Thus we can

bound µk(xj ,xj+1)

n
above by

F (v + xj+1 − v)− F (v − (v − xj)) + 2rn (7)

and below by

F (v + xj+1 − v)− F (v − (v − xj))− 2rn.

Approximating (7) by F ’s Taylor expansion yields:

[F (v)+(xj+1−v)f(v)+O(|v−xj+1|2)]−[F (v)−(v−xj)f(v)+O(|v−xj|2)]+2rn
≤ (xj+1 − xj)f(v) +O(|v − xj+1|2) + 2rn

and a similar argument applies to the lower bound. Since f 0 is bounded, the
constant factors in the remainder term are independent of v. Hence,

(xj+1 − xj)f(v)−O(|v − xj|2)− 2rn
hm

≤ fk(v) ≤ (xj+1 − xj)f(v) +O(|v − xj+1|2) + 2rn
hm

Simplifying:

f(v)−O(hm)− 2rn/hm ≤ fk(v) ≤ f(v) +O(hm) + 2rn/hm.

Choose hm → 0 so that rn/hm → 0. Since rn is O(
q

lg lgn
n
) this can always

be done. Since hm → 0 as n andm go to infinity it follows that fk(v)→ f(v)
almost surely. In fact supx∈[0,1] |fk(x)− f(x)|→ 0. Furthermore for n and m

8See Chung [6].
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sufficiently large, fk(v) > 0 almost surely as f(v) > 0 for all v.
We note that neither the distribution function Fk nor the density function

fk estimated for buyers in Mk depend on their own reports. We estimate
distribution functions Hk and density functions hk, k ∈ {A,B}, for sellers in
a similar fashion.
Let

Ck
B(v) ≡ v − 1− Fk(v)

fk(v)
(8)

be the estimated virtual value of buyer i ∈ Mk (k ∈ {A,B}) with valuation
v and

Ck
S(c) ≡ c+

Hk(c)

hk(c)
(9)

be the estimated virtual cost of seller j ∈ Nk (k ∈ {A,B}) with cost c. Both
are well-defined since, for large M and N, fk and hk are strictly positive.
As the estimated virtual functions are not necessarily monotonic, we “flat-

ten” them. Let the estimated flattened virtual value be

C̄k
B(v) = max

v0∈[a,v]
{Ck

B(v
0)} k ∈ {A,B}.

The function C̄k
B(.) is non—decreasing by construction.

A similar procedure for the seller defines a nondecreasing estimated flat-
tened virtual cost of sellers in set Nk:

C̄k
S(c).

In the trading procedure, two markets, market A and market B, are set
up, with buyers in Mk allowed to trade with sellers in Nk (k ∈ {A,B}).
We utilize reported values and costs to rank the buyers and sellers and the
estimated flattened virtual functions to determine which trades to execute.
First, in market k, label the buyers and sellers so buyer i has a higher reported
value than buyer i+1 and seller j has a lower reported cost than seller j+1 (we
ignore ties as they are a measure zero event). Second, the trading decisions
are as follows:

pτ1((v1, .), (c1, .) = 1− qτ1((v1, .), (c1, .)) = 1 if C̄
k
B(v1) ≥ C̄k

S(c1)

= 0 otherwise.
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Continue in this fashion till either all the Nk units are traded or till we reach
q ∈Mk such that

C̄k
B(vq) ≥ C̄k

S(cq) and C̄k
B(vq+1) < C̄k

S(cq+1).

Finally, it remains to construct the payment functions so the individual
rationality constraints of the lowest type of buyers and the highest types of
sellers bind and incentive compatibility holds. Suppose buyer q ∈ Mk and
seller q ∈ Nk are the lowest buyer and highest seller to trade (recall the
procedure by which we have re-labelled the traders). Choose v∗ so that

v∗ = min{v | C̄k
B(v) = C̄k

S(cq)}. (10)

Notice that v∗ does not depend on buyer i’s report as C̄k
B is estimated using

the reports of buyers in market l. Moreover, as v∗ ≥ C̄k
B(v

∗) = C̄k
S(cq) ≥ cq ≥

a, we must have v∗ ≥ a.
If buyer i wins an object and C̄k

B(vq+1) < C̄k
S(cq), he pays

v∗;

if buyer i wins an object and C̄k
B(vq+1) ≥ C̄k

S(cq), he pays vq+1. A buyer who
does not trade does not make any payment.
We show that buyers have a (weakly) dominant strategy to report their

valuation truthfully.
First, the price at which winning buyers execute their trade is independent

of their own reports. Also, as the estimated flattened virtual value function
is determined by buyers’ reports from market l, a buyer in market k cannot
affect the estimated flattened virtual values of other buyers in market k.
Hence, it is a dominant strategy to tell the truth as by lying either a buyer
does not change the outcome or loses an object he prefers to win.
Second, consider a buyer i in market k who does not win an object with

positive probability as he truthfully reports a valuation vi < vq. Recall
that estimated flattened virtual valuation function in market k is increasing
and does not depend on the reports of buyers in market k . Therefore, by
underbidding, buyer i does not win an object. If he overbids to the extent
that he wins an object with positive probability, he makes a loss as vi < vq
and C̄q

B(vi) < C̄k
S(cq+1). Therefore, buyer i has a (weakly) dominant strategy

to report his valuation truthfully.
Also, Ui(a) = 0 as the lowest price a buyer ever pays is a because v∗ is
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always greater than a and as vq+1 must be greater than a.
A similar procedure is used to construct the payment function to sellers

and similar arguments shows that all sellers have a dominant strategy to
report their costs truthfully and that Uj(b) = 0.
Finally, as τ goes to infinity, the estimated flattened virtual functions

converge to the true ones. Therefore, expected profits per capita converge to
those when the distributions are known.

Remark 2 Our analysis of monopoly pricing suggests an estimation proce-
dure where each agent’s virtual valuation function is estimated by dropping
only his own report. But then, for example, winning bidders may be able to
deviate from truthtelling, alter which buyers get to trade and thereby lower
the price at which they purchase a good. Suppose buyers q and q−1’s reports
lie in the same histogram. If buyer q − 1 increases his report, he lowers the
estimated density used to calculate the buyer q’s virtual valuation and this
may in turn lower the latter’s virtual valuation to the extent that the mecha-
nism does not allow him to trade. This can in turn imply that the price buyer
q − 1 pays is determined by seller q − 1 and this is lower than the price he
pays if he tells the truth and buyer and seller q trade. Hence, this estimation
procedure is not ex post incentive compatible.

Remark 3 An alternative procedure we could have used is to prevent a pro-
portion εM of the buyers and εN of the sellers from trading at all and used
their reports to estimate the distribution and density for the remaining buyers.
As the number of buyers goes to infinity, these estimates converge to the truth.
However, the rate of convergence is slower than in our procedure which uses
half the agents to estimate the distribution and density for the other half.
Moreover, this procedure does not make as much revenue/capita as the one
we utilize.

Remark 4 As pointed out in the Introduction, there are many mechanisms
that guarantee efficiency when the number of buyers and sellers is large when
the agents know the distribution of signals. To our knowledge, only McAfee
[17] studies an environment where neither the mechanism designer nor the
agents know the distribution. In his mechanism, the sellers are ranked c1 ≤
c2 ≤ c3.. given their announcements and the buyers are ranked v1 ≥ v2 ≥ v3...
The efficient trade q is such that vq ≥ cq and vq+1 < cq+1. Roughly speaking,
the mechanism allows the q − 1 highest value buyers trade with the q − 1
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lowest value sellers with buyers paying vq and sellers receiving cq and an
intermediate broker retaining the difference. This mechanism converges to
efficiency as the number of traders becomes large.

We now turn to the general case where the virtual functions are not
monotonically increasing. For the moment, suppose that the distributions
are common knowledge. Now, in the trading procedure, if trades with posi-
tive virtual surplus are executed, starting with those with the highest virtual
surplus first, the monotonicity condition (2) is violated. Myerson [19] and
Baron and Myerson [1] deal with this difficulty by “ironing” the virtual func-
tions so they are monotonic. Virtual surplus is determined using the ironed
virtual functions and trades with positive ironed virtual surplus are executed
starting with the highest ironed virtual surplus. As the ironed virtual func-
tions are flat over certain portions, traders may be tied and hence the trading
procedure must randomize the allocation of objects over them.
We briefly describe the ironing procedure for buyers. Given CB(.) as in

(5), let
κ(φ) ≡ CB((F )

−1(φ))

for any φ between 0 and 1. Let

K(φ) ≡
Z φ

0

κ(eφ)deφ.
Let

K̄(φ) ≡ convK(φ)
be the convex hull of K. In other words, K̄(φ) is the highest convex function
on the interval [0, 1], satisfying K̄(φ) ≤ K(φ) for all φ in [0, 1]. Since, K̄ is
convex, it is differentiable almost everywhere so let

κ̄(φ) ≡ (K̄)0(φ)

whenever this is defined and extend κ̄(φ) by right-continuity to all 0 ≤ φ ≤ 1.
Finally, we define the ironed virtual valuation function for buyers as

C̄B(v) ≡ κ̄(F (v)).

Notice that C̄B is non-decreasing as κ̄ is the derivative of a convex function
K̄. An ironed virtual cost function can be constructed similarly. The ironed
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virtual functions are used to determine the rankings of buyers and sellers and
which of them trade. We refer the reader to Myerson [19] and Baron and
Myerson [1] for the details.
When the distributions are not common knowledge, the trading mech-

anism must be used to estimate the densities and distributions to iron the
virtual functions while ensuring incentive compatibility and approximating
maximum profit for the broker.
Again, two markets, market A and market B, are set up, with buyers in

Mk allowed to trade with sellers in Nk (k ∈ {A,B}). For buyers in market
Mk, define the estimated distribution Fk and density fk as in the proof of
Theorem 3. As Fk is not strictly increasing, let

(Fk)
−1(φ) ≡ min{v : Fk(v) = φ}

for any φ between 0 and 1. Given Ck
B(.) as in (8), let

κk(φ) ≡ Ck
B((Fk)

−1(φ))

for any φ between 0 and 1. Let

Kk(φ) ≡
Z φ

0

κk(eφ)deφ.
Let

K̄k(φ) ≡ convKk(φ)

be the convex hull of Kk. Since, K̄k is convex, it is differentiable almost
everywhere so let

κ̄k(φ) ≡ (K̄k)
0(φ)

whenever this is defined and extend κ̄k(φ) by right-continuity to all 0 ≤ φ ≤
1. Finally, we define the estimated ironed virtual valuation function for buyers
Mk as

C̄k
B(v) ≡ κ̄k(Fk(v)).

Notice that C̄k
B is non-decreasing as κ̄k is the derivative of a convex function

K̄k.
A similar procedure for the seller defines the estimated ironed virtual cost

function for sellers Nk

C̄j
S(c)
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which is non-decreasing.
When the monotone hazard rate condition holds, buyers and sellers can

be ranked according to their values and costs in the optimal mechanism and
ties are a zero probability event. When the condition does not hold, agents
have to be ranked according to the estimated virtual functions and ties have
to be broken with positive probability. To ensure incentive compatibility,
values that correspond to the same estimated ironed virtual value must face
the same price should they transact. Also, a number of buyers, say, might
be tied for the position of losing bidder. The price that is charged in this
situation to a buyer who wins with probability one must ensure both that he
has no incentive to understate his value and tie with these bidders and that
the losing bidders have no incentive to exaggerate and win with probability
one. These are the new features of the mechanism used to prove the following
theorem:

Theorem 4 As τ →∞, the broker’s expected profits per capita converge to
his expected profits when he knows F and H.

Proof: We utilize the estimated ironed virtual functions both to rank
the buyers and sellers and to determine which trades to execute. First,
in market k, label the buyers and sellers so buyer i has a higher reported
estimated ironed virtual value than buyer i + 1 and seller j has a lower
reported estimated ironed virtual cost than seller j+1. If there are k buyers,
say, with the same estimated ironed virtual valuation, label them randomly
so each buyer has the same probability of being allocated a particular label.
Second, the trading decisions are as follows:

pτ1((v1, .), (c1, .) = 1− qτ1((v1, .), (c1, .)) = 1 if C̄
k
B(v1) ≥ C̄k

S(c1)

= 0 otherwise.

Continue in this fashion till either all the Nk units are traded or till we reach
q ∈Mk such that

C̄k
B(vq) ≥ C̄k

S(cq) and C̄k
B(vq+1) < C̄k

S(cq+1).

This trading procedure uses the estimated virtual functions to mimic the
profit-maximizing allocation when the distributions are known. When the
set of agents is large, the estimates are close to the truth and our procedure
achieves the same expected profit per capita as when the distributions are
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known.
It remains to construct the payment functions so the individual rationality

constraints of the lowest type of buyers and the highest types of sellers bind
and incentive compatibility holds. Suppose buyer q ∈ Mk and q ∈ Nk are
the lowest buyer and highest seller to trade (recall the procedure by which
we have re-labelled the traders). Given vq+1, suppose there are S = {1, .., s}
buyers such that C̄k

B(vi) > C̄k
B(vq+1) for i ∈ S and R = {1, .., r} buyers such

that C̄k
B(vi) = C̄k

B(vq+1) for i ∈ R. Notice that, by definition, we must have
q ≥ s and s + r ≥ q. Also, given vq+1, let L(vq+1) be the highest valuation
such that C̄k

B(L(vq+1)) = C̄k
B(vq+1) and let l(vq+1) be the lowest valuation

such that C̄k
B(l(vq+1)) = C̄k

B(vq+1). Choose v
∗ so that

v∗ = min{v | C̄k
B(v) = C̄k

S(cq)}.

Notice that the variables L(vq+1), l(vq+1), and v∗ all do not depend on buyer
i’s report for i < q + 1. Moreover, as v∗ ≥ C̄k

B(v
∗) = C̄k

S(cq) ≥ cq ≥ a, we
must have v∗ ≥ a.
If buyer i wins an object by reporting a valuation above L(vq+1) and

C̄k
B(vq+1) < C̄k

S(cq), he pays
v∗;

if buyer iwins an object by reporting a valuation above L(vq+1) and C̄k
B(vq+1) ≥

C̄k
S(cq), he pays

r + s− q

r + 1
L(vq+1) +

q − (s− 1)
r + 1

l(vq+1);

if he wins by reporting a valuation vi ∈ [l(vq+1), Li(vq+1)], he pays

l(vq+1).

A buyer who does not trade does not make any payment.
We show that buyers have a (weakly) dominant strategy to report their

valuation truthfully.
First, consider the case where C̄k

B(vq+1) < C̄k
S(cq). In this case, all winning

buyers pay v∗. As the price at which winning buyers execute their trade is
independent of their own reports, it is a dominant strategy to tell the truth
by the standard argument.
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Second, consider the case where C̄k
B(vq+1) ≥ C̄k

S(cq). Buyer i’s payoff is

r + s− q

r + 1
(vi − L(vq+1)) +

q − (s− 1)
r + 1

(vi − l(vq+1)) (11)

if he is bidding more than L(vq+1);

q − s

r
(vi − l(vq+1)) (12)

if he is bidding between L(vq+1) and l(vq+1) and 0 otherwise.
Consider a buyer i who wins by truthfully bidding a valuation vi greater

than L(vq+1) so vi > L(vq+1) ≥ l(vq+1). Therefore, vi − l(vq+1) ≥ vi −
L(vq+1) > 0 and buyer i’s expected payoff is positive. By bidding more
than vi, buyer i does not change the probability of trade or the expected
price he pays so he has no incentive to overbid. If he underbids to the
extent that he does not win an object with positive probability, his expected
payoff goes down to zero. If he underbids so that he ties with the r bidders
whose estimated ironed virtual valuations are exactly equal to C̄k

B(vq+1), his
probability of winning an object is q−(s−1)

r+1
as there are now s−1 bidders who

have higher estimated ironed virtual valuations and r + 1 bidders who have
estimated ironed virtual valuations exactly equal to C̄k

B(vq+1). His expected
payoff is then q−(s−1)

r+1
(vi − l(vq+1)) which, as vi − L(vq+1) > 0, is lower than

his expected payoff (11) from bidding truthfully. Therefore, buyer i has no
incentive to underbid in this case.
Next, consider a buyer i who wins with positive probability by truthfully

reporting a valuation vi such that C̄k
B(vi) = C̄k

B(vq+1). By definition of L(vq+1)
and l(vq+1), we must have vi ∈ [l(vq+1), L(vq+1)] and vi − l(vq+1) ≥ 0 ≥
vi − L(vq+1) so his expected payoff is non-negative. By underbidding, buyer
i either does not change the outcome or does not win an object. Therefore,
he has no incentive to underbid as vi − l(vq+1) ≥ 0. By overbidding, either
buyer i does not change the outcome or he wins for certain if he bids more
than L(vq+1). In the latter case, there are now s+ 1 bidders whose reported
estimated ironed virtual valuations are strictly greater than C̄k

B(vq+1) and
r− 1 bidders whose reported estimated ironed virtual valuations are exactly
equal to C̄k

B(vq+1). Therefore, buyer i’s expected payoff is

r + s− q

r
(vi − L(vq+1)) +

q − s

r
(vi − l(vq+1))
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if he bids more than L(vq+1). But, as vi − L(vk+1) ≤ 0 this is less than
the expected payoff (12) from telling the truth. Therefore, buyer i has no
incentive to overbid in this case.
Finally, consider a buyer i who does not win an object with positive

probability as he truth fully reports a valuation vi < l(vq+1). By lying, either
buyer i does not change the outcome or he makes a loss, as vi < l(vq+1), if
he overbids to the extent that he wins an object with positive probability.
Therefore, buyer i has a (weakly) dominant strategy to report his valua-

tion truthfully.
Also, Ui(a) = 0 as the lowest price a buyer ever pays is a.
A similar procedure is used to construct the payment function to sellers

and similar arguments shows that all sellers have a dominant strategy to
report their costs truthfully and that Uj(b) = 0.
Finally, as τ goes to infinity, the estimated ironed virtual functions con-

verge to the true ones. Therefore, the expected profits per capita converge
to those when the distributions are known.

4 Conclusion

We now turn to a number of issues not covered by the analysis above.
First, we note that our analysis can (trivially) be extended to auctions

with a fixed number of objects for sale: Suppose there are K goods for sale
and each buyer wishes to purchase at most one unit. All buyers’ valuations
are drawn from the same distribution so the distribution is used only in
determining the reserve price in the optimal auction. In this case, as the set
of buyers becomes large, the probability thatK buyers do not have valuations
above the reserve price goes to zero. Hence, the seller can run a K + 1th

price auction without a reserve and get close to the optimum as the set of
buyers gets large. If buyers are drawn from different distributions, then their
virtual valuations have to be compared when allocating objects. Suppose that
buyer 1’s valuation is drawn from a distribution with a support that contains
higher valuations than those of any other buyer. As the set of bidders drawn
from each distribution becomes large, all the objects are allocated to buyers
drawn from the same distribution as buyer 1. Hence, only valuations not
virtual valuations must be compared when allocating objects and, again, the
probability that winning buyers do not have valuations above the reserve
price that is optimal for buyer 1’s distribution goes to zero as the set of
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buyers become large. Therefore, a K + 1th price auction maximizes revenue
as the set of bidders becomes large.
Second, the analysis above assumes that the number of objects sold is

fixed. If the set of objects grows faster than the number of bidders (or the
support of the distribution of valuations expands sufficiently rapidly with the
number of buyers), the issues we have studied above again arise and can be
similarly resolved.
Finally, future work might therefore focus on the extension to interdepen-

dent values and the more difficult issue of how to design profit-maximizing
mechanisms when the distribution is unknown and there are a small number
of traders.
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