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For many normal form games, the limiting behavior of fictitious play and the
time-averaged replicator dynamics coincide. In particular, we show this for three
examples, where this limit is not a Nash equilibrium, but a Shapley polygon. Journal
of Economic Literature Classification Numbers: C72, C73. © 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper we study the two most important dynamic approaches to
noncooperative game theory and point out some striking similarities, even
coincidences, of their asymptotic behavior. The first is the classical Brown—
Robinson procedure, or fictitious piay (FP), the oldest and still most funda-
mental (deterministic) learning process. For simplicity we restrict our atten-
tion to the continuous time version (see Brown, 1951; Rosenmiiller, 1971,
which is given by
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O _ L (BrOx@) - x(0), (CFP)

where BR(x) is a (or the set of all pure and mixed) best response(s) to the
strategy profile x and a > 0.

Without changing the paths we can omit the factor 1/(« + ) (which only
means a slowing down of time scale). The resulting autonomous differential
equation' reads

x = BR(x) — x. (BR)

This is the best response dynamics (see Matsui, 1992). The usual interpreta-
tion of this dynamic is that—in an infinite population of players—in each
small time interval, a small fraction of players revises their strategies and
changes to the present best choice. It is the prototype of modeling ratio-
nal behavior.

The second dynamics we consider is the prototype of evolutionary dynam-
ics, the replicator equation (RE); see, e.g., Hofbauer and Sigmund (1988)
for 2-person games and Ritzberger and Vogelsberger (1990) for general
n-person games. The interpretation is that—in an infinite population of
replicating players—the growth rate of the frequencies of pure strategies
is linearly related to their payoffs. This dynamics is smooth, in contrast to
BR, and hence amenable to classical and modern tools of smooth dynami-
cal systems.

In the following we compare these two dynamics for three particular
examples: the rock-scissors—paper game (a symmetric 3 X 3 game, played
within one population), whose state space is the two dimensional simplex;
then a 3-person (2 X 2 X 2) matching pennies type game due to Jordan
(1993), where the dynamics takes place on the three-dimensional cube; and
finally the 3 X 3 bimatrix game of Shapley (1964), a four-dimensional
example. To make life easy (for the reader and for us), we discuss the first
example, where the dynamics is easy to visualize, in great detail, while the
last example is only sketched.

! Since the right-hand side is discontinuous, this cannot really be viewed as a differential
equation. A rigorous mathematical treatment is most naturally provided by the framework
of differential inclusions. Since the best response correspondence x — BR(x) is upper-semicon-
tinuous, closed, and convex, the existence of at least one solution through each initial value,
defined for all positive times, is guaranteed. These more basic questions are addressed in
detail in Hofbauer (1994). In the three examples which we treat below, due to their cyclic
character, solutions (which are continuous and piecewise linear) are easily seen to be unique,
and we have in fact a continuous semiflow.
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2. THE Rock-ScissorRs—PAPER GAME

The payoff matrix of the rock—scissors—paper game is given by

0 —um XA
A=| X 0 - (A, i > 0). 2.1)
TH1 Az 0

Hence strategy 2 (rock) beats strategy 1 (scissors), 3 (paper) beats 2, and
1 beats 3. We assume neither cyclic symmetry for the payoffs nor that the
game is zero sum. Let x; denote the relative frequency of strategy / in a
large population of players and S5 = {x € R*:x; = 0, 2 x; = 1} be the two-
dimensional simplex, which is the set of all possible states of the population.
The replicator dynamics (RE)

x; = x[(Ax); — x - Ax] on S, 2.2)

for this game was completely analyzed by Zeeman (1980). The pure strate-
gies form a cycle of best responses. For (2.2) this implies that the boundary
88s forms a heteroclinic cycle (see Fig. 1a). This cycle may be either attracting
or repelling, depending on the payoffs. The local dynamics near this cycle
complements the local dynamics near the unique, interior Nash equilibrium
(NE) E, which is given by

1

Fi1G. 1. Dynamics for the rock-scissors—paper game in case (c) of Theorem 1. (a) Diver-
gence to the boundary in the replicator dynamics and (b) the Shapley triangle as attractor
for BR.
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1
E= s (243 + Az + popes, AsAr + Az + papy,

2.3)
Ay + Ao + ppn)

with 3 the appropriate normalizing constant. The mean payoff, m(x) =
x - Ax takes the equilibrium value

AAoAs — pipaps

m(E) = 3

(2.4)

Zeeman (1980, Theorem 6) proved the following result on the dynamics
of (2.2):

THEOREM 1. (@) If AjAzA3 > mymoms, or T(E) > 0, then the heteroclinic
cycle is repelling and the equilibrium E is globally attracting for (2.2).

(b) If M AAs = pmapopa, or m(E) = 0, then all interior orbits are closed.
The time average over one full period equals E.

(©) If MAsAs < pypaps, or w(E) < 0, then E is repelling and the hetero-
clinic cycle is the global attractor for (2.2).

The situation is particularly simple when there is cyclic symmetry: then
the condition simplifies to A £ w. In case (a), the NE is then even an ESS.?

We now compare this with the limiting behavior of fictitious play and
best response paths.

TueOREM 2. Fictitious play and best response dynamics converge in cases
(a) and (b) to the equilibrium E. In case (c) the limit of BR paths is a
triangle A,A,As given by (3.6) below; moreover, the time averages*

«(T) = lT [Ixwyar (AR)

of the solutions x(t) of the replicator equation (2.2) “‘converge” to the
same triangle.

We suggest calling such polygons, which are attractive or at least invariant

Z1n general, the NE is an ESS iff A; > u;,, and the three numbers VA; — p;,, form the
sides of a triangle; see Hofbauer and Sigmund (1988, p. 131).

3 Case (b) behaves like a zero-sum game: FP converges like 1/t and BR like e™". In case
(a), both processes reach the equilibrium in finite time! AR goes like 1! in both (a) and (b).

4 We suggest calling this the AR (averaged replicator) process. Its paths satisfy the differen-
tial equation Z(r) = (1/£)(x(t) — z(t)), which is similar to CFP.
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under the BR dynamics, Shapley polygons, as the first such example was
given by Shapley (1964).

The creation of this Shapley triangle during transition from case (a) to
(c) is reminiscent of a (supercritical) Hopf bifurcation: In the critical case
(b), E is still attractive; increasing the w, in case (c), a small triangle (a
stable limit cycle for the BR dynamics) grows out of E. The only difference
is that the size of the triangle grows linearly with the bifurcation parameter
(see subsection 3.5), whereas in the typical Hopf bifurcation of smooth
dynamics the radius of the periodic orbits grows like the square root of
the parameter, which is much faster. The replicator equation also undergoes
a Hopf bifurcation during the transition from case (a) to (c), but it is
degenerate (like for linear differential equations): All periodic orbits occur
simultaneously in the critical case (b).

For the replicator equation (and more general ODEs), this peculiar
divergent behavior of the time averages in case (c) was shown to (one of)
us by Christopher Zeeman, when we raised this question during the Animal
Conflicts Meeting in Sheffield in 1980. According to Takens (1994, and
personal communication), Rufus Bowen (who died in 1978) was also aware
of this nonconvergence of time averages near an attracting heteroclinic
cycle. A detailed proof of this phenomenon was first published by Gauners-
dorfer (1992) for general heteroclinic cycles in the plane and even for
some three-dimensional examples. For Lotka—Volterra equations and the
replicator equation, the special structure allows simpler proofs; see Hof-
bauer and Sigmund (1988, pp. 69, 70), Akin (1993), and Section 3 below.

That this limiting triangle for AR coincides with the Shapley triangle
(i.e., the attractor for the BR process) has also been known to us for some
time. We discovered this soon after Eric van Damme made us aware of
Shapley’s (1964) famous example, after a game theory meeting in 1984 in
Bielefeld. We are indebted to 1. Bomze for the initial collaboration on this
problem back in 1985.

An example of a rock-scissors—paper game with a Shapley triangle as
attractor for BR was recently given by Gilboa and Matsui (1991), as a simple
and instructive example for their notion of a “cyclically stable set” (CSS).?

Remark. We agree with Gilboa and Matsui (1991) and Matsui (1992)
that in case (c) the Shapley polygon is a much better candidate for a

% In dynamical systems jargon, a CSS is essentially an attractor. More precisely, it is a basic
set (a component of the chain recurrent set) that is Lyapunov stable or, equivalently, an
invariant set where one (or each) complete Lyapunov function attains a (local) minimum.
See Akin (1993) for an excellent modern survey of topological dynamics. The definitions of
CSS used in the subsequent paper by Matsui (1992) are different and much weaker: they lack
Lyapunov stability. The equilibrium £ would be “cyclically stable” in the latter sense even
in case (c)! For a more detailed discussion see Hofbauer (1994).
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‘“*solution” of the game than the unstable Nash equilibrium. The condition
for case (c) is equivalent to

m(E)<0 or m(E) < Z xm(e;) 2.5)

if the payoff matrix (2.1) is not normalized to have zeroes in the diagonal.
Here £ = (%1,X%;,X;) is the equilibrium (2.3), e; is the ith unit vector
(corresponding to pure strategy i), and w(e;) = a;. So (2.5) means that the
population at equilibrium E would gain from separating itself into three
pure subpopulations. Hence in case (c) the Shapley polygon results in a
higher payoff or “‘value” compared to the Nash equilibrium. As we will
show below (see subsections 3.3 and in particular 3.6), each of the three
strategies enjoys the payoff 0 (which is larger than 7(£)) along one of the
sides of the Shapley triangle. The Shapley polygon is in this sense more
Pareto efficient than the Nash equilibrium.

3. ProoFrs oF THEOREM 2

In the following, we present several proofs of this result. We indicate at
the beginning of each subsection which of the dynamics (RE or BR) is
treated. Some of these proofs can be used also in higher dimensions. Some of
them are simple adaptations of standard techniques from smooth dynamical
systems to the piecewise linear best response dynamics, like Lyapunov
functions, Poincaré sections, and the Bendixson test for the uniqueness of
a limit cycle. Although this may be tiresome for the reader, we think that
some of these techniques may be useful for related problems. The most
appealing proof for a game theorist is probably the (very) last proof in
subsection 3.6.

3.1 (RE). The first proof consists in computing the sojourn times near
pure strategies and determining their rate of exponential increase. For RE
this requires a computation of Poincaré maps. (CFP will be considered in
subsection 3.2.) The merits of this method lie in its generality: It applies
to more complicated dynamics (see Section 4) and would apply also to
nonlinear payoff functions.

Now to the details. Let x = f(x) be an ODE defined in a subset of R?
and let £, ..., F, be saddle points, which together with n connecting orbits
from F; to F;., (i counted cyclically modulo ) form a heteroclinic cycle I'.
Each saddie point F; of I" has a positive eigenvalue A; > 0 and a negative
eigenvalue —u; < 0. Then T is attracting if
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n
M
— 31
p=11%> @31)

(i.e., the product of the “‘outgoing velocities” is smaller than the product
of the “‘incoming velocities™), and it is repelling if p < 1; see Hofbauer and
Sigmund (1988, p. 305). In the former case, consider a solution x(r) that
tends to I as t — oo, Denote by ¢, the time it spends near the fixed point
F,. Then these sojourn times increase geometrically. More precisely, see
Gaunersdorfer (1992, Lemma 1),°

ti+1 M
it 32
I > Pis1: )\.+1 (32)

as the orbit approaches I'. As a consequence, for consecutive sojourn times
near F;, we have

Livn M
“—p:=[lp=11%. (3.3)

The proof of this requires the approximate computation of the Poincaré
map near I', assuming that the vector field is linear near the saddle points.
This can be achieved due to a theorem of Hartman on smooth linearization
in two dimensions.

Knowing the rate of increase of the sojourn times, one can compute the
accumulation points of the time averages using the following result in
Gaunersdorfer (1992).

LemMa 1. Let x(r) be a curve in R" that cycles between n points F,,

, I, such that the sojourn times t; near F; increase geometrically as in

(3.2), ie, tiy/t: = piy with p = 11, p; > 1, and the intermediate times

are bounded Then the accumulation points, as T — =, of the time average
uT f x(t) dt form the boundary of the polygon A, ... A,, where

Fiii + piaFia + 0+ pa e - pinF

A,‘z
L+ piat -+ piz e Pisn

(3.4)

The points A;, A;.,, and F,, are collinear.

Thus, asymptotically, the time averages move on a line from A; to A,
in the direction to F;.,. In higher dimensions, the computation of p,,

% Here the index { of ¢ is a natural number, while for p, A, u it is reduced modulo n.
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the asymptotic ratio of the sojourn times near F; and F;_, is more in-
volved than the simple formula (3.2) valid in R? see Sections 5 and 6 below.
Now, the rock-scissors—paper game has the heteroclinic cycle

F:Flz(1’0’0)—_)F2=(031>0)—')F3:(O’O,I)QFl'

It is attracting (compare (3.1)) if and only if

Mipops = ATAzAs (3.5)

(note that A; and —u,; are the eigenvalues at F;). By Lemma 1 and Eq.
(3.2), the time averages approach the triangle A,A,A; (see Fig. 1), with

1
A= LAzAL A
1 Ahs + Aty + pages (M3, Azdy, Ajun)
1
A, = Aojis, , ALA 3.6
2 MAs + Aoty + mm( 243, M3pe1s A1Az) (3.6)
1
A (A2A3, Ay, i)

C A A gy

It is easy to check that in the limiting case (b) A;A;A3 = pipous, the three
points A; coincide with the equilibrium E. On the other hand, if A; — 0,
then A, converges to the corner F;.

3.2 (CFP). To obtain the corresponding result for the FP process, we
follow Shapley (1964) to compute the time periods. The following geometric
picture is helpful (see Fig. 1b).

We consider the three lines through the equilibrium E, where two of the
pure strategies have the same payoff {x € S;:(Ax); = (Ax);} and the rays
where the third strategy has a smaller payoff [, = {x € S;:(Ax), =
(Ax); > (Ax)} (with {i, j, k} = {1, 2, 3}.) This ray [, is the borderline
between the two regions where i and j, respectively, are the best replies.

If the process starts with x, say on [, then the solution of CFP is given by

ax + te;
o+t

x(1) = (3.7)
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for 0 =t < 1, as long as 1 is the best reply to x(t). Hence we have the
two equations (w.l.o.g. we can scale o = 1)

—M2X2 + )13X3 = T X + A;_)Xz (x =] 12) (388)
—pax2 t A3x3 = Ml 1) —paxs (x(0) € L) (3.8b)

After another period of time ¢,, during which 2 is the best reply for x(z),
the CFP path reaches /;:

AMlxy + 1) = paxs = —p(xg + 4) + (o + 1) (x(t, + 1) € Iy).
(3.8¢)

Comparing the right-hand sides of (3.8a) and (3.8c), we obtain #,/t, =
pi/Ay = p; for the times ¢; during which strategy i is played. Repeating this
argument, comparing with (3.2), and applying Lemma 1, the “‘convergence”
of any CFP path (different from FE) to the Shapley triangle (3.6) follows
in case (c). In cases (a) and (b), the times ¢; between changes of direction
along the CFP path go to zero or remain constant. Since the speed of a
CFP path goes to zero, this implies convergence to the equilibrium, reaching
it already after a finite amount of time in case (a).

3.3 (AR) Another proof of Theorem 2. (The AR result in case (c¢)) uses
the following method, also employed by Hofbauer and Sigmund (1988, pp.
69-70) and by Akin (1993, p. 183). .

Let z be an accumulation point of the time averages z(T) = 1/T [ o X(2) dt,
i.e., z = limy.... z(T) for some sequence T, — . By refining this sequence,
we can assume that also the limit X := lim;_.. x(7}) exists.

Dividing (2.2) by x; and integrating from 0 to T, we obtain

. logx{(T,) —logx,(0) . 1 T 1T
}(1_12 T —}cl_r.g-i,—k;a,-,-fo x;(t) dt }}_I,Eﬁfox Axdt.

The second limit on the right-hand side is zero: The orbit spends most of
the time near the corners of S;, where the mean payoff x - Ax = 0, by our
assumption a; = 0. Thus,

1 {Ty) — log x;(0
lim OB ( k) ogt ( ) = Z a;z;. (39)
k-sx Tk j
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For X there are two possibilities:

(i) X lies on one of the saddle connections F; — Fj,,, w.l.o.g. we assume
X, = 0,X,,%; # 0. Then (3.9) yields

Z a;z; =0 and Z a;z; = 0 fori = 2, 3. (310)
J ]

From the two equations, together with z; + z; + z3 = 1, one can compute
z = A, which gives (3.6).

(ii) X is one of the corners, say F;. Then the equality and inequality
signs in (3.10) are interchanged and (3.10) determines the line segment

AA. =

Note that along these line segments, the largest payoff, max,(Ax),, is 0.
Note further that the interior of the triangle A|A,A; is the region where all
payoffs (Ax); are negative. Compare this with the concluding remark in
Section 2.

3.4 (AR, BR) Next proof. This proof has a more geometric flavor. We
first show that, in case (¢), AR behaves asymptotically like BR paths. Then
we discuss the asymptotic behavior of the BR dynamics.

As we have seen in subsection 3.2, the rays /; are the turning points for
the CFP and BR paths: Before the path reaches /3, it points toward Fj,
afterwards toward F,. In contrast, the vector field of the replicator equation
(and any monotone selection dynamics in the sense of Nachbar, 1990)
points straight away from Fj, as a kind of compromise, on the ray /5. Since
it changes smoothly, it does not adapt to the new orderings as abruptly as
BR. RE points exactly toward F; only at the instant when strategies 2 and
3 are equally worse than 1. As soon as 2 fares slightly better than 3 (while
both are worse than 1), the RE anticipates the next leader and lets 2
grow relative to 3. In contrast, after the RE path crosses /3, RE is more
conservative than BR in reducing the proportion of 1: In fact, x; continues
to increase for some time. However, on the average, the effect is the same.

Consider now, for RE in case (c), the change of the ratios

(x—) = (fz) [(Ax); — (Ax);]. (3.11)

X;
Integration from 0 to 7 gives

%(log;i;m - log;i;m)) = (AxT), - (Ax(T)),.  (312)
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Suppose the sequence Ty — o is such that (x;/x;)(T;) — ¢ > 0, a finite
constant, and z(Tx) — z. Then (A7), = (AZ);. So while orbit x(7) moves
from F; to F;, the time average sits somewhere on (or rather close to) the
ray /5. During the long period of time when the orbit stays near F,, the
time average z(7) will move (nearly) along a line toward F,. When the
orbit x(T) starts moving away from F,, toward F;, the time average z(7)
has just reached /;. This shows that, in the long run, the time averages z(T)
behave like a BR path. So they will finally cycle along a Shapley triangle.
The argument will be complete if we can show that there is a unique
Shapley triangle.

LeEMMA 2. For the rock—scissors—paper game (2.1), there is at most one
Shapley triangle.

First proof” Suppose there are two Shapley triangles A;A4,A; and
ByB,B;, such that A;, B; € /,_,. Then these two triangles are perspective
from the equilibrium E. Since their (extended) sides A, A, and B, B; intersect
in the corner F,, etc., Desargues’ theorem implies that the three intersection
points Fy, F;, F; are collinear. Obviously, this is not the case. ®

Unfortunately, this geometric argument does not seem helpful for the
question of existence of a Shapley triangle, nor does it give its position. Its
main drawback is that it does not extend to higher dimensions. The follow-
ing modification of this argument from projective geometry does.

Second proof. We introduce a distance on each of the rays /,, which
strictly decreases from one turn to the next. So the result follows from a
contraction argument. The usual Euclidean distance would not do that job,
but a projective version does. For A, B on [, define d,(A, B) = |log (AE/
BE:AG,/BG,)|, with G being the intersection point of /;, with the bound-
ary of the simplex Ss; see Fig. 1b. It is easy to see (and well known) that
this defines a metric. Now the double ratio of four collinear points is
invariant under projective maps. But since G, is mapped to an interior
point of /;,, we get dy.1(A’, B') < dy(A, B) for the images A’, B' on /.,
of A, B. Hence there can be at most one Shapley triangle. ®

Third proof. In the interior of each of the three regions which are
bounded by the rays [, I;, [; and where the best response is a unique pure
strategy, the flow of (BR) moves straight toward a corner of the triangle.
Hence this (linear) flow contracts area (at the exponential rate —2). At
the equilibrium this need not be the case, because of the discontinuity of
the vector field. Also on the border lines /, the same reservation holds, but
there it does not matter, since BR paths spend only one time instant on

7 We owe this beautiful proof to our colleague, G. Kowol.
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some [/, (while these time instants can accumulate near E). Hence, after
excision of an (arbitrarily small) neighborhood of E, we obtain an area
contracting flow on the remaining annular region. By a variant of Bendix-
son’s test® this flow has at most one periodic orbit. =

The last two proofs actually show that if there is a Shapley triangle, then
it attracts all BR paths that start off the equilibrium E. On the other hand,
if there is no Shapley triangle, then all BR paths converge to the equilibrium
(because they move in from the boundary).

Hence, we have obtained another proof of Theorem 2, with the exception
that this geometric approach gives neither the explicit condition (3.5) for
the existence of the Shapley triangle nor its precise position (3.6).

We conclude our lengthy discussion of the rock-scissors—paper game
with the following, probably most straightforward and obvious proof of
Theorem 2 (the BR part).

3.5 (BR) Last proof.® Let s, denote the (usual) distance of a certain
point X; on /; from E. If X, X;.,, and F..; are collinear, then an easy
calculation (or a geometric argument) shows that s,y = a;5/(1 + b;s,).
Hence the full return map =: /; — [;: X, = X, is of the same form. More
precisely, a computation shows that 7(s) = ps/(1 + bs) with p from (3.1)
and some positive constant b. Obviously iteration of this map leads to
(s) — 0 if p = 1 (cases (a) and (b)) and, in case (c), to convergence to
a positive fixed point, 7%(s) — (p — 1)/b. This fixed point of the return
map determines the Shapley triangle. Note the linear dependence on the
parameter p which explains a comment in Section 2. ®

The rate of convergence (see footnote 3} of CFP and BR in case (b) and
the fact that paths reach the equilibrium E even in finite time (after infinitely
many revolutions around it) in case (a) are easily established from either
this or the following proof. Similarly, in case (c), BR and CFP orbits inside
the Shapley polygon have left F a finite amount of time ago. This behavior
of BR is in contrast to that of smooth dynamical systems.

3.6 (BR) Very last proof. This proof uses a Lyapunov function for the
BR dynamics:'® Consider V(x) = max;(Ax);. In the region where this
maximum is attained by strategy k, we have V = (Ax);, = au — (Ax) =

8 The better known version says that an area contracting flow in a simply connected region
in the plane has no closed orbit. The proof is a simple application of the Gauss—Green formula;
see, e.g., Hofbauer and Sigmund (1988, p. 149). The same argument shows that in an annular
region such a flow can have at most one periodic orbit.

¥ In dynamical systems jargon this runs under computation of the Poincaré map. For smooth
dynamical systems this can rarely be done explicitly. For the piecewise linear BR dynamics
it is easy.

U See also Hofbauer (1994).
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—V(x). Hence V(x(r)) decreases as long as it is positive and increases when
it is negative. The minimum value of V(x) is attained at the equilibrium E
(due to our normalization (2.1) with zeroes in the diagonal), where it
coincides with the mean payoff #(E). Hence in cases (a) and (b), V decreases
monotonically to m(E) (the value of the game). In case (c), the absolute
value, |V/|, decreases monotonically. Its minimum O is attained at the
Shapley triangle. =

This argument probably justifies our concluding remark in Section 2.

4. OTHER DYNAMICS

One might think that—since both processes CFP and AR are obtained
by taking time averages—this result should extend to (averages of) more
general dynamics, e.g., the monotone selection dynamics of Nachbar (1990).
However, this is not the case. Take for example a dynamics of the form

%= x, [f((Ax)i) -3 x,-f«Ax),-)], @1)

J

with f a strictly increasing function R — R with f{0) = 0. If f'(0) > 0 then
condition (3.5) still decides the local (in)stability of E, as can be easily seen
from linearization around E. However, the behavior near the boundary
may be different. Indeed, the eigenvalues at the pure strategy e; are given
by (x,-/x,-)Iej = fla;) — fla;). For the payoff matrix (2.1) we obtain the
eigenvalues f(A;) and f(—u;) at e,. From (3.1), the condition for stability
of the boundary cycle becomes II f(A;) < Il |f{—pu,)|. Hence (even in the
case of cyclic symmetry or when E is an ESS), the local dynamics of (4.1)
near the heteroclinic cycle may be different from that of the RE, and the
triangle of time averages (which is determined by the expressions in (3.6),
but with A;, —u; replaced by the new eigenvalues)—if it is a triangle at all
and not a single point—is in general different from the Shapley triangle
(3.6).

An interesting phenomenon happens if we add small mutation terms to
the replicator equation,'! as in Hofbauer and Sigmund (1988, Chap. 25):
In case (c), this results in a globally stable limit cycle inside (but close to
the boundary of) the simplex S;. The time average of this periodic orbit
(taken over one period) is a certain point in S;, which may depend on the

" This idea can be used to give a simple proof for the existence of Nash equilibria and the
odd number theorem (see Hofbauer and Sigmund, 1988, pp. 166-168, 274; Ritzberger, 1995).
It also leads to new, evolutionary equilibrium refinements; see Boylan (1994).
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details of the mutation rates. The question arises, which points can be
obtained that way, using arbitrarily small mutations? The answer is: Any
point inside or on the Shapley triangle, but no point outside it! (The proof
of this is a bit technical and will not be given here.) Maybe this is another
“evolutionary” justification for the Shapley polygon as the *‘solution” of
the game.

Another point of departure might be to try discrete time dynamics. The
standard discrete time version of the replicator equation, used already by
Maynard Smith, is given by

C+ (Ax),-
C+x-Ax’

’

X; =X; 4.2)

with C, the “background fitness,” a sufficiently large positive constant to
compensate for negative entries in the payoff matrix. The rock-scissors—
paper game was analyzed for (4.2) by Hofbauer (1984, Theorem 4) (see
also Hofbauer and Sigmund, 1988, p. 134) and by Weissing (1991). In the
case of cyclic symmetry, the dynamical behavior is completely analogous
to Theorem 1 above, but in the general case the situation can be more
complicated, e.g., with multiple “limit cycles”; see Section 7 in Weissing
(1991). Anyway, the local behavior near the boundary can be analyzed
with the same method as above. The result resembles the situation for (4.1):
It follows from Gaunersdorfer (1992, p. 1488) that the stability condition of
the boundary cycle is again different from (3.5), and hence also the limiting
triangle differs in general from the Shapley triangle. Only in the limit
C — o do the results become the same.

However, there is a different, exponential, version of discrete time dy-
namics, which has been studied in collaboration with 1. Bomze and K.
Sigmund (1985, unpublished) and by Cabrales and Sobel (1992):

RV

x,-’ =xim. (43)

This dynamics shows more complicated behavior than (RE) or even (4.2),
but it has similar averaging properties like (RE). In particular, for the
rock-scissors—paper game (2.1), the stability conditions for the boundary
cycle are again exactly determined by the inequality (3.5), and the time
averages of nearby orbits behave as in Theorem 2: Orbits approaching the
boundary cycle have time averages ‘‘converging” to the Shapley triangle
(3.6), while orbits staying away from the boundary have time averages
converging to E. This follows again from Gaunersdorfer (1988, p. 1488)
and Cabrales and Sobel (1992, Prop. 2), respectively. The only difference
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is that in case (c), the heteroclinic cycle is not necessarily globally attractive,
and hence both types of orbits may coexist.

We conclude this section with a remark on 2 X 2 bimatrix games: Here
even for the considerably more restricted class of aggregate monotone dy-
namics of Samuelson and Zhang (1992) the asymptotic behavior of time
averages may be completely different. Take the “‘matching pennies” game,
with the following payoff matrix and dynamics:

|
—
—
=

It

x(1 = x)(2y — Da(x, y) (4.4)
y(1 = y)(1 = 2x)b(x, y)

|
—_
—
St
Il

For @ = b = 1 we have the replicator equation. It is well known that its
solutions are periodic and the time averages over one period coincide with
the unique equilibrium E. Also fictitious play and best response dynamics
converge for this (zero-sum) game to the Nash equilibrium. However, for
(4.4), with suitable positive functions a, b, a calculation of the eigenvalues
at the four pure strategy profiles, inserted into the stability criterion (3.1),
shows that the boundary may be an attractive heteroclinic cycle, and the
time averages of nearby orbits ‘‘converge’” to a quadrangle. For other
choices of the functions a, b the boundary is repelling, and there may be
limit cycles. But again, there is no reason for the time average over such
a periodic solution to coincide with the equilibrium E. Similar remarks
apply to the examples in the following two sections: changing from RE to
an aggregate monotone dynamics will move the limiting polygon of the
time averages away from the Shapley polygon.

So these examples show a remarkable coincidence of the asymptotic
behavior of BR (CFP) and AR which is not shared by (the time averages
of) other evolutionary dynamics.'?

5. JorDAN's EXAMPLE: A 2 X 2 X 2 GAME

The original example of Jordan (1993) is the following version of a
matching pennies game. Three persons throw a coin. Person 1 wins if he
matches person 2, 2 wins if he matches 3, 3 wins if he does not match 1. We

12 We like to interpret this as a mutual support of the two classical dynamics BR (FP) and RE,
against the present overwhelming invasion of more general adjustment and learning processes.
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consider the following modification (which is actually only a renumbering of
the strategies).

““Wer imitiert, verliert.” Three persons on a round table (cyclic symmetry)
each throw a coin. Anybody who matches his right neighbor loses. In
particular, everybody loses if all three coins match. Hence everybody tries
to behave differently from his right neighbor. This leads to a (best reply)
cycle of six pure strategies (see Fig. 2)

100 — 110 — 010 — 011 — 001 — 101 — 100. (5.1)

If gain has value +1, loss has value —1, and 0 =< x; = 1 denotes the frequency
of strategy 1 (heads), used by person i, the replicator dynamics on the cube
[0, 1]? reads

= x(1 — x)(1 - 2x)

X2 = x2(1 — x2)(1 — 2x3) (5.2)

*; = x3(1 — x3)(1 — 2xy).

This system is volume preserving and competitive. This is best seen after
a change of variables u; = log(x;/(1 — x;)), which transforms (5.2) into

s = 1 —e"m
L1+ et

(5.3)

which is a divergence-free and competitive vector field (2 (du;/du;) = 0

FiG. 2. Jordan's game. (a) The attracting invariant manifold for RE and (b) the Shapley
hexagon, the attractor for AR and FP.
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and du;/du; < 0 for i # j). There is a unique interior equilibrium E = (3,
%, 1), corresponding to u = 0, which is attracting on the invariant line of
symmetry x, = x, = x3. By a theorem of Hirsch (1988) there is a unique
smooth manifold (which extends the local unstable manifold of E up to
the boundary of the cube), which attracts all orbits in the interior of the
cube; see Fig. 2a. Since the 3d flow is volume preserving, its restriction to
this 2d attracting manifold must be area expanding. By the Bendixson—
Dulac test (see Hofbauer and Sigmund, 1988, p. 149), there is no periodic
orbit on this manifold. Hence all interior orbits (except those on the invari-
ant line of symmetry) converge to the boundary of the cube. Since the two
corners 000 and 111 are sources, the only possible w-limit set on the bound-
ary is the heteroclinic cycle which is formed by the above six points in the
best reply cycle (5.1) and their connecting orbits (edges of the cube).

We will now show that the time averages of all these interior orbits
“converge” to a hexagon in the interior of the cube. Again, this coincides
with the Shapley hexagon found by Jordan (1993) as the limit set for
fictitious play and more general learning processes.

Following Lemma 1, we determine the sojourn times of a solution of
(5.2) in the vicinity of the six corners F; of the heteroclinic cycle. The
linearization at each of these saddle points has two negative eigenvalues
—u (along the heteroclinic cycle) and —o (“transverse” to it, coming from
one of the sources) and one positive eigenvalue A. For (5.2) one has A =
u = o = L. As in subsection 3.1 one can then compute the Poincaré maps
and the sojourn times. The technical details have been carried out for a
similar case on the 3d simplex S, instead of the cube in Hofbauer and
Sigmund (1988, 29.3) and Gaunersdorfer (1992). Because of the cyclic
symmetry, the rate of increase of the sojourn times, p;, is independent of
i and turns out to be the leading eigenvalue of the matrix

arx 1 11
P~ o) o)
w/A 0 10
which is the golden mean g := (1 + \/5)/2 = p; =~ 1.618 > 1. Thus, by
Lemma 1, the vertices A; of the limit hexagon for AR paths are given by

-1
A= é’;‘,”ﬁ—_T(F,«+1 + gFy+ g2 F s+ EFu+ g'Fus + g°F).  (54)

(the indices are counted modulo 6). This is precisely the Shapley hexagon
found by Jordan (1993); see Fig. 2b. Without cyclic symmetry, the resulting
formulae would be rather awful (see Gaunersdorfer, 1992), so we do not
treat this case here. Instead, we give an alternative geometric argument,
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which shows that the hexagons for AR and BR must coincide for payoffs
more general than those considered above.

First we show that AR paths z(r) = 1/t |, (') x(s)ds ultimately behave like
BR paths. We proceed as in 3.4. (5.2) can be rewritten as

xi . = xi = — .
<10gl — xi) =2 —x) 1—2x4 (5.5)
and integrated to
1 x(T) _ xi(0) ) PR
T(logl “ (D) log1 ~2(0) 1 — 2z, (T). (5.6)

We know already that almost all solutions x(r) “converge” to the hetero-
clinic cycle given by (5.1). When x;(T) is close to 1, (5.6) is positive; when
x;(T) is close to 0, (5.6) is negative. And for any sequence T, — o, for
which x;(7,) converges to some constant ¢ € (0, 1), the time averages
2i+1(T,) ~— 3. Since x(¢) spends most of the time near one of the corners
(5.1), z(¢) will uitimately move almost straight toward one of the corners
and make turns exactly when hitting the planes of equal payoff x; = 4.

Next, we show that there is only one Shapley polygon, using the idea in
3.4 (second proof of Lemma 2). The three planes of equal payoff {x : x; =
3} divide the cube into eight octants, which we can number by their adjacent
corner. These octants are separated by squares of the form Ly = {x €
R*:x; = 4, x; < 3%, x3 > 3}, etc.; see Fig. 3. The two octants 000 and 111
are negatively invariant for both RE and BR: Every orbit starting there
will leave it and enter one of the remaining six octants and cycle between
them according to (5.1). For BR, every path in, say octant 001, is attracted
toward corner 101, until it reaches the square L ;; through which it enters
octant 101 and where it turns toward corner 100. We will show that the
transition map 7: Ly — Ly, is a contraction for a suitable projective metric
and so will be the complete return map. The distance between two points
X, Y in one of the squares is given by

ou (XG.YG
E\xH YH/|

with G, H being the intersection points of the line through X, Y with the

d(X,Y) =

13 In this argument the linear dependence of the right-hand side of (5.5) on the frequencies
x; is essential. This is true for 2-person games, but not for general n = 3-person games. The
argument works for games with linear incentives in the terminology of Selten (1995).
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FiG. 3. The transition map 7: Lo — Lo mapping the square onto a trapezoid.

boundary of the square. It is well known that this defines a metric, even
for any convex subset C of R” instead of a square, and enlarging C makes
this projective distance between two points smaller. Furthermore, along a
central projection, the double ratio of four collinear points remains constant.
Since L, is mapped by 7into Lo (the image is a trapezoid; see Fig. 3),
the projective distance (with respect to the squares) decreases: d(7(X),
(Y)) < d(X, 7).

Repeating this argument along the cycle (5.1), we obtain a contraction
map, which can have at most one fixed point (corresponding to the Shapley
polygon). However, we cannot use the Banach fixed point theorem to
conclude its existence since 7is not a uniform contraction. Near the equilib-
rium E, which sits on the boundary of these squares, at infinite projective
distance from interior points, the rate of contraction goes to 1. Hence we
still have to show the instability of E under BR.

We now compute the transition maps 7 explicitly, as in 3.5. A simple
computation shows that 71 Lo — L o is given by

1 1 xnl
(2,XZ,X3> > (1 4x39 2x3a 2)‘ (5'7)

It is convenient to make the following change of variables, which puts E
into the origin, and parametrizes all six squares by 0 < u, v < §:
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U=z==X;0=X 1 onL
2 2 3 2 01 (58)
1 1
u=x1~§,v=§—x2 on L.

Then 7: (u, v) — (u', v') is given by

or in vector notation

(ﬁ’:1:n<ié)C»' (5.9)

In these coordinates, because of cyclic symmetry, the other five transition
maps take exactly the same form. So we need only consider (5.9). We see
immediately that the equilibrium E (# = v = 0) is unstable under this map.
There is a unique fixed point, which is the eigenvector (%) of the matrix
(1}). with 1 + 2v being the positive eigenvalue of this matrix, which is the
golden mean g as above. So the fixed point, which corresponds to the
corners of the Shapley polygon via (5.8), is given by

g—1_V5-1
2 4

v= ~ 0.309, u=1—§~aw1

This confirms (5.4) above and Jordan’s result. The global stability of this
fixed point under the transition map (resp. the Shapley polygon under BR)
follows either from direct calculation, using the simple form (5.9), or from
the contraction property of the projective distance shown above. The simple
form (5.9) of the return map allows a complete understanding of the BR
dynamics in this example. One could even write down the solutions ex-
plicitly.

6. SHAPLEY’S EXAMPLE
Shapley (1964) considered 3 X 3 bimatrix games with a certain circular

structure. In particular, he explicitly computed the limiting behavior of FP
for the following payoff matrices, in the case ¢ = O:
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A= 0 1 -e¢ and B=|1 0 -¢]. (61)

The replicator dynamics for such bimatrix games is given by

= x[(Ay)i—x-Ayl,  i=123,

. . (6.2)
y; = yl(B'x); — x - By], j=1,2,3,

on S3 X §; (see Hofbauer and Sigmund, 1988, Chap. 27, where a different
notation is used: B is replaced by B").
The system exhibits a cycle of best replies

11-13-533-532-22-21-11 (6.3)
(see Fig. 4). The eigenvalues at these six fixed points of (6.2) are 1 and —1

(along the cycle) and —1 — £ and —¢ in the “transverse” directions. In the
case ¢ = 0 studied by Shapley, one of the transverse eigenvalues is 0, so

22

21
12

\

11 31

FiG. 4. The heteroclinic cycle for RE in Shapley’s example.



300 GAUNERSDORFER AND HOFBAUER

there are fixed point edges for (6.2) which make the analysis more difficult
for the RE. Hence we prefer to analyze (6.2) for ¢ > 0 and then take the
limit ¢ — 0.

For & > 0, the heteroclinic cycle defined by (6.3) is asymptotically stable
for RE. Hence interior orbits close to the heteroclinic cycle converge to it
and spend longer and longer times near the six corners (6.3) of the 4d
polytope S; X §5. A similar calculation as in Section 5 shows that consecutive
sojourn times increase exponentially at rate p; (independent of i, because
of cyclic symmetry), which is determined by the leading eigenvalue of the
nonnegative matrix

1+ 1 0
p=f & 0 1] (6.4)
1 00

This eigenvalue is the largest root 6 of the equation 6 ~ (1 + £)6* —
€0 — 1 = 0. Obviously 8 > 1, so that Lemma 1 applies. Hence the time
averages of (6.2) converge to a hexagon A, ... A¢, where the A, are given
as in (5.4), but with g replaced by # and F; running through the cycle (6.3).
In the limit case ¢ = 0, this polygon is obviously identical to the hexagon
found by Shapley (1964) to be the attractor for FP.

7. CONCLUSION

The results of this paper suggest the following principle: The time averages
of the solutions of the replicator equation seem to have the same asymptotic
behavior as the best response paths. There are many more instances for this
“AR-BR principle.” Most of them concern the case when both processes
converge to Nash equilibrium.

Two-person zero-sum games. The convergence of FP, CFP, and BR to
the set of equilibria follows from the classical work of Brown (1951) and
Robinson (1951); see also Hofbauer (1994) for a simple proof. RE has a
constant of motion; it is even a Hamiltonian system. Its orbits are periodic,
quasiperiodic, or more complicated, but their time averages converge to
the set of equilibria; see Hofbauer and Sigmund (1988, pp. 277, 278).

Partnership games, games with strongly identical interests, and weighted
potential games. FP, BR, RE converge to the set of Nash equilibrium; see
Monderer and Shapley (1993a, 1993b); Hofbauer and Sigmund (1988, Chap.
27.2). The maxima of the potential function (which are strict NE in general)
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are the stable equilibria. However, their basins of attraction will depend
on the dynamics.

Evolutionarily stable strategies. Evolutionarily stable strategies (if com-
pletely mixed) are (globally) asymptomatically stable for both RE (see
Hofbauer and Sigmund, 1988), and BR (see Hofbauer, 1994).

Supermodular games. Almost all orbits (for a large class of dynamics,
including FP, BR, RE) converge to Nash equilibrium, due to the theory
of Hirsch on monotone dynamical systems; see Milgrom and Roberts (1990);
Krishna (1992); Brock and Samuelson (1992).

Dominance solvable games. Convergence to Nash equilibrium was estab-
lished for BR and RE by Milgrom and Roberts (1991) and Samuelson and
Zhang (1992), respectively.

On the other hand, as our three examples show, cycles of pure best
(or better) responses, which result in heteroclinic cycles for the replicator
equation, are often attractors for the dynamics. In such situations, Shap-
ley polygons arise as limiting behaviors for FP, BR, as well as the time
averages of the replicator dynamics, and those might be considered the more
reasonable solution of the game, instead of the (unstable) Nash equilibrium.

We conclude with two problems:

(1) For which games does this AR-BR principle hold?

It is definitely not true for all games, as simple examples of 2 X 2 games
show. However, these counter examples are “degenerate” in the sense that
there are continua of NE: In these examples the rationally minded BR
dynamics selects the perfect NE, whereas the evolutionary dynamics like
RE do not have such preferences.

Serious counterexamples can be constructed for » = 3-person games
(with nonlinear incentives), as already indicated in Section 5. There are
regular 2 X 2 X 2 games with no interior equilibrium, but with an interior
periodic orbit for RE (this is not possible for 2-person games or n = 3-
person games with linear incentives). Hence the time-averaged replicator
dynamics AR converges for some initial values, whereas BR does not.
These examples form an open set in parameter space; see Hofbauer and
Plank (1995).

It is an instructive exercise to analyze the BR dynamics for symmetric
3 X 3 games and compare this with Zeeman'’s (1980) classification of the
RE. Doing this, one finds that for one (and only one!) class of Zeeman
there is a certain discrepancy between AR and BR. See Hofbauer (1994)
for this example. But for the majority (more than 99%) of randomly chosen
3 X 3 payoff matrices the AR-BR principle is definitely true.
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(2) Are there more difficult possibilities for CSS (attractors for BR) other
than NE and Shapley polygons? Are there examples of quasiperiodic or
chaotic attractors for BR?

Note added in proof. An example of a 3 X 3 bimatrix game with chaotic BR dynamics has
been constructed by Stuart Cowan in his Ph.D. thesis, “Dynamical Systems Arising From
Game Theory,” at the University of California, Berkeley, under the supervision of M. Hirsch.
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