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ABSTRACT

       In many cases, aggregate data is used to make inferences about individual level behavior.  If

there are social interactions in which one person’s actions influence his neighbor’s incentives or

information, then these inferences are inappropriate.  The presence of positive social interactions,

or strategic complementarities, implies the existence of a social multiplier where aggregate

relationships will overstate individual elasticities.  We present a brief model and then estimate the

size of the social multiplier in three areas: the impact of education on wages, the impact of

demographics on crime and group membership among Dartmouth roommates.  In all three areas

there appears to be a significant social multiplier.
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I. Introduction

Empirical work in the social sciences frequently attempts to infer individual behavior

from statistical work on aggregates.  Individual labor supply is inferred from changes in

the tax schedule.  Crime deterrence elasticities are inferred from changes in policing or

punishment.  Changes in policies are often seen as our best means of inferring underlying

economic behavior because variation in these policies is, in some cases, orthogonal to

individual-specific error terms.  

However, using aggregate variation to infer individual-level parameters is problematic

when there are positive (or negative) social interactions.  If one person’s proclivity

towards crime influences his neighbor’s criminal behavior, then a change in policing will

have both a direct effect on crime and an indirect effect through social influence.  The

presence of positive spillovers or strategic complementarities creates a “social multiplier”

where aggregate coefficients will be greater than individual coefficients (as described by

Becker and Murphy, 2000). A large body of recent work (including Katz, Kling and

Liebman, 2001, and Ludwig, Hirschfeld and Duncan, 2001) seems to confirm the

existence of these spillovers in a number of areas.  As such, an estimated aggregate

elasticity incorporates both the true individual level response and effects stemming from

social interactions.1   

For many purposes, particularly policy-related ones, researchers actually want the

aggregate coefficient that includes both the individual level response and the social

multiplier.  In that case, aggregate empirical work is appropriate.  Still, it is crucial that

the empirical work is done at the same level of aggregation as the ultimate policy.  For

example, if we want to know the effect of a national change in crime policy, but we work

with city-level data, then we will miss the impact of all cross-city interactions.  To

adequately infer state-level effects from city-level coefficients, we need to know both the

                                                
1 There is a long literature that discusses the so-called general equilibrium effects which may be missing
from some econometric estimates.  In a sense, positive externalities are just one type of general equilibrium
effect.  
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power of social interactions and the degree to which those interactions decay across

jurisdictions.

We refer to the estimated ratio of aggregate coefficients to individual coefficients as “the

social multiplier.”2  So, if wages are regressed on years of schooling at the individual and

at the state level, the ratio of these two coefficients is the social multiplier.  It is also true

that the same social multiplier can be estimated by regressing aggregate outcomes on

aggregate predicted outcomes, where the predictions are based on individual level

regressions.  In this paper, we present a theoretical framework which maps this estimated

social multiplier with underlying social influence variables.   

Our theoretical framework tells us that if an individual’s outcome rises “x” percent as his

neighbor’s average outcome, then the social multiplier roughly equals 1/(1-x) for large

enough groups.  As such, big social multipliers do not tend to occur unless the value of

“x” is .33 or higher.  If the spillover works through the neighbors’ exogenous

characteristics, not through their outcomes (i.e. your propensity for crime is influenced by

your neighbors’ parents’ characteristics, not by their crime level), then typically the social

multiplier is smaller.  

The presence of sorting will also impact the measured social multiplier.    If there is

sorting on observables and positive social interactions, then the individual level

coefficient will overstate the true individual level relationship.  The intuition of this claim

is that with sorting, one person’s education will be correlated with his neighbor’s

education and the effect of my education (in an individual-level regression) will overstate

the true impact of education because it includes spillovers.  The presence of this bias will

mean that the measured social multiplier will tend to underestimate the true level of

social interactions.  On the other hand, correlation between aggregate observables and

aggregate unobservables will cause the measured social multiplier to overstate the true

level of social interactions. 
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We also introduce a model where social influence exponentially decays with social

influence.  This introduces a two-parameter model which can capture both the level of

social interactions and the degree to which social interactions become less important with

social distance.  The downside of this exponential social influence model is that it is not

good for dealing with very large social groupings, such as counties and states:

exponential decay generally will mean that people do not significantly interact with

people who are outside of their county.

 

We then apply our framework to three different contexts.  First, we follow Sacerdote

(2001) and examine the magnitude of these interactions among Dartmouth college

roommates.  The Dartmouth roommates data have the advantage of little unobserved

heterogeneity and randomized social groups.  In this case, we find weak social

interactions in academic achievement, but strong interactions in social group

membership.  We estimate a social multiplier of 1.4 in groups of eight (floors) and 2.2 in

groups of 28 (dorms).  These estimates are compatible with a weak degree of social

influence that then decays very slowly.   

Second, we follow Levitt (1999) and look at the influence of demographics on the crime

rate.  Levitt (1999) argues that the coefficients on age from individual level regressions

are far too small to suggest large swings in crime that are related to aggregate changes in

the demographic structure.   For example, these coefficients tell us that the baby boom

can at best explain one-fifth of the rise in crime between 1960 and 1975.  While this

argument is correct, social interactions may help us to understand why demographics

appear to be related to crime in time series regressions.  Using crime data we find

significant evidence of a social multiplier of 1.7 at the county level, 2.8 at the state level

and 8.2 at the nation level.  These are extremely high estimates and we don’t necessarily

believe in the level of social interactions that they imply.  Still, they certainly suggest that

the aggregation level is crucial.

                                                                                                                                                
2 In fact, there is a slight difference between the Becker and Murphy definition of social multiplier and our
own, although our definition represents a monotonic transformation of the social multiplier as they define



5

Finally, we follow Rauch (1993) and Acemoglu and Angrist (1999) and turn to the issue

of human capital spillovers.  In this case, we use individual coefficients to create a

predicted wage for an aggregate (such as a state or Public Use Microsample Area, or

PUMA) and then regress actual wage on predicted wage.  Using this approach, we

estimate a social multiplier of 1.67 at the PUMA level and 2.17 at the state level.  

We agree with Manski’s (1993) generally pessimistic view of the ability to identify social

interaction parameters, at least in the absence of true randomization.  However, our

results suggest that social interactions may be large, and that coefficients at different

levels of aggregation differ significantly, either because of social interactions or because

of non-random sorting across different areas.   While we remain cautious in interpreting

our parameter estimates, we do believe that our evidence casts doubt on the use of

aggregate changes to make inferences about individual level parameters.  

 

II. A Framework

 

We follow Glaeser and Scheinkman (2002), and present a simple framework which will

connect coefficients from regressions run at different levels of aggregation with

underlying social interaction parameters.  The simplest algebraic representation of the

social multiplier can be shown with a global interaction model, where one person’s action

depends on the average action in a group.   

One particularly simple model of this type is that ∑
≠∈−

+=
ijiGj
jii A

N
A

),(1
γθ , where iA  is

the action of person i, G(i) refers to person i’s group which is of size N, γ   is the social

interaction parameter and iθ  reflects the exogenous forces increases the level of the

                                                                                                                                                
it.   Goldin and Katz (2002) use the term in a way that could encompass either definition.  
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action.3   We assume that groups represent a non-overlapping partition of the entire

economy, so that if )( jGi∈  then )(iGj∈ .  In general, we will assume that

ik
i
kki X εβθ += ∑ , where i

kX  is the value of attribute k for person i and kβ  is the direct

impact of attribute k and iε  is a person-specific random effect.

This model implies that ∑∑
∈∈ −

=
)()(

1
1

11
iGj

j
iGj

j N
A

N
θ

γ
 and

∑
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γθ .   The term 

)1)(1(

2

γγ
γ

+−− N
 captures

the fact that if person A has an intrinsically higher propensity to do an activity this will

both have a direct impact on his activity level, but will also indirectly impact his activity

through its influence on the other individuals in the group.  When N is large, this term

will be negligible (as long as γ  is bounded away from one).  When N=2, this term

becomes 
γ

γ
−1

, which is greater than one whenever 5.>γ . 

The simplest case occurs when the values of iθ  are independent within a group, and

where the included i
kX  regressors are independent of the error term.  In that case, an

individual-level regression where iA  is regressed on an exogenous variable i
kX  yields a

coefficient estimate of 







+−−

+
)1)(1(

1
2

γγ
γβ
Nk .  An aggregate regression where group

level average outcomes are regressed on group level average i
kX  characteristics yields a

coefficient estimate of 
γ

β
−1

k .    

We define the social multiplier as the ratio of the group level coefficient to the individual

level coefficient, or the amount that the coefficient rises as we move from individual to

                                                

3 This equation can be justified by assuming that people maximize 
21

2

),(

i

ijiGj
jii

A
A

N
A −








−

+ ∑
≠∈

γθ .  
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group level regressions.  In this case, the social multiplier will equal 

)1(
1

1
2

γ
γγ
+−

+−
N

or 
γγ

γ
+−−

+−
)1)(1(

1
N

N .  As N grows large, this value approaches 
γ−1

1 .   When γ  is small,

this coefficient will be close to one and as γ  approaches one, the social multiplier

approaches infinity.  

The social multiplier can also be estimated by regressing group level outcomes on the

group level outcome that would be predicted using individual coefficients.  If this

procedure is followed, the coefficient estimated by regressing average community

outcome on ∑ ∑
∈









+−−

+
k iGj

k
jk NX

N
/

)1)(1(
1

)(

2

γγ
γβ , the outcome predicted by

coefficients estimated using individual level regressions, again equals 

)1(
1

1
2

γ
γγ
+−

+−
N

.

One generalization of our assumption is to assume that there is sorting across groups, at

least on the basis of observables.   To include sorting within the framework, we
i
kk

i
k XX µ+= , where kX  represents a group level average and i

kµ  represents an

individual specific component which is independent across people. We maintain the

assumption that the values of i
kX  are independent across characteristics (although not

across people) and independent of the error term.  We use the notation 
)(
)(

i
k

k

XVar
XVar

=σ ,

where σ  represents the share of the variation in observable characteristics which is due

to the group level component.  

This new assumption does not change the group level regression coefficient, which

remains 
γ

β
−1

k .  However, allowing a group-specific correlation of characteristics does
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influence the individual level coefficients because now the individual-level coefficient

includes the impact of a correlation between the individual’s i
kX  value and the j

kX

values of his neighbors.  If we see a correlation between the school outcomes of children

and the schooling of their parents, this may all occur because parental schooling

influences children’s outcomes directly.  Alternatively, it may in part reflect the fact that

well-schooled parents live together and as a result, the children of the more educated

have more successful peers.  

The estimated coefficient from an individual level regression now equals









+−−
−−+

+
)1)(1(

)1)(1(1
2

γγ
γσγγβ

N
N

k .  The bias due to the cross-person correlation roughly

equals σγ --the product of the degree of sorting and the amount of social influence.  If

either sorting or social influence is unimportant, then this term is small and can be

ignored, but we think in many cases, both of these terms will be big.  

The social multiplier now equals 
γσγγ

γ
++−−

+−
)1)(1)(1(

1
N
N  , which will approach

)1)(1(
1

σγγ +−
 as N gets large.  If we know the value of σ , then we can infer the size of

the social influence parameter γ .  This formula implies that for high levels of N, the

presence of sorting on observables will always cause the social multiplier to decline.  As

such, the measured social multiplier will tend to understate the true level of social

interactions, primarily because the individual level coefficient is biased upwards.4  

We now consider the case where there is sorting across neighborhoods on the basis of

unobservable characteristics.  To formalize this, we assume that ii νεε += , where ε

                                                
4 If the social multiplier is estimated by regressing an aggregate outcome on a predicted aggregate outcome,
where the predicted value is formed using individual level coefficients then the estimated multiplier will

again equal 
γσγγ

γ
++−−

+−
)1)(1)(1(

1
N
N

, but in this case it is necessary that 
)(
)(

i
k

k

XVar
XVar

=σ  for each of

the observable variables.  
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represents a community specific average level of the unobserved shock.  Furthermore, we

assume that ε  and the kX  in question covary.  In particular, we assume that

)(
),(

k

k

XVar
XCov ελ = .  The person-specific shocks are still assumed to be independent of each

other. 

In this case, the person specific coefficient will equal

γ
λσγ

γγ
γσγγβ

+−
−

+







+−−
−−+

+
1

1
)1)(1(

)1)(1(1
2

N
N

N
N

k .  The bias created by sorting on

observables will approximately equal λσγ  as N grows large.  The aggregate coefficient

now becomes  







−+
+

− σσ
σλβ

γ 11
1

N
N

k .  The social multiplier, in this case, equals:

γ
β
λγσγγ

σσ
σ

β
λ

+

















+−+−−









−+

+−

k

k

N

N
NN

11)1(

1
1)1(

, or 

k

k

β
σγλσγγ

β
λ

++−

+

)1)(1(

1
 as N gets large.    

The social multiplier will rise with λ  if and only if )1(1 σγγ +> .  The reason that the

social multiplier can either rise or fall with this form of sorting is that sorting impacts

both the micro and macro coefficients.  If )1(1 σγγ +>  then the macro-coefficient will

increase with sorting more than the micro-coefficient and an increase in sorting causes

the social multiplier to rise.  If this condition does not hold, which really only occurs

when the form of social interactions are very intense (and the degree of sorting on

observables is quite high), then increases in sorting mean the micro-coefficient increases

significantly through the sorting related bias and this causes the coefficient to increase.

In general, we will rarely know the value of λ .  In some cases, such as the Dartmouth

College Roommates data set described below, we know that roommates are randomly

assigned and in that case λ  equal zero. However, in other cases, it might be quite high
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and we can only guess about the extent that this influences the measured social

multiplier.

We now turn to three variations on this model.  First, we consider the case of a

continuous outcome where the externality depends on the innate characteristics of the

individuals and not their actions (or outcomes).  This is particularly useful in the case of

human capital spillovers where we think that wages (and productivity) may well be a

function of human capital in the area.  In this case the model becomes

∑
≠∈−

+=
ijiGj
jii N

A
),(1
θγθ .  The expected value of the individual level coefficient on kX

will equal kβ  if there is no correlation across people in the value of  kX .  When there is

correlation, the individual level coefficient equals kβσγ )1( + .  When there is correlation

both across people in the value of kX  and sorting on the basis of unobservables, the

micro-level coefficient equals σγλβσγ ++ k)1( .  

When there is no sorting on unobservables (i.e. whether there is correlation in

observables or not), the expected value of the group-level coefficient equals kβγ )1( + .

Thus, without sorting the social multiplier equals γ+1  and with sorting the social

multiplier equals 
σγ
γ

+
+

1
1 .  Notice that pure input externalities significantly decrease the

possibility of very large multipliers.  This occurs because the feedback effects, which are

the key to large multipliers in output-based externality models, are absent in this case.

When there is sorting on unobservables, the expectation of the aggregate coefficient

equals 







+−

−
++

σσ
σλβγ
)1(

)1()1(
N

N
k , and thus the social multiplier equals









−+

+
+
+

σσ
σ

β
λ

σγ
γ

1
1

1
1

N
N

k

 which approaches 







+

+
+

kβ
λ

σγ
γ 1

1
1  as N gets large.  Just as

before, the measured social multiplier has the potential to look very large if there is

significant sorting on the basis of unobservable characteristics.  
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In the case of the Dartmouth roommates, the key dependent variables are discrete and this

requires further assumptions.  Following Glaeser and Scheinkman (2002) (but not Brock

and Durlauf, 2001), we will assume that observed outcomes are discrete, but that

individual actions are still continuous.  As such, each individual still chooses a level of

“A”, but then this “A” is translated into a zero-one outcome.  As such, each individual

still chooses a level of “A”, and this continuous “A” is what influences neighbors, but the

observable outcome takes on a value of one, if and only if A>k for some fixed cutoff k. 

The correct approach to this problem would be to postulate a normal or logistic

distribution for ε  and then to estimate the parameters using maximum likelihood.

However, the purpose of this short paper is to give an easily usable method for

calculating the relative size of social multipliers with simple calculation.  As such, we

proceed with the approximation that the probability of taking the action equals

)( AAp −+ , where A  is the nationwide average level of A.  Essentially, we are

assuming that the distribution of the error term is approximately uniform, with density

one, in the relevant region of estimation.5  In that case, the algebra describing the

estimated coefficients is the same as in the continuous case, and we can use the previous

discussion without alteration.

The Depreciation of Social Influence over Social Distance

This global interactions approach helps to make the point that a macro-coefficient does

not necessarily imply much about a micro-relationship.  Unfortunately, this simple

approach does not help us to understand the degree to which interactions depreciate over

space.  As such, it gives us no guidance about what the impact of a policy evaluated on

city-level data will have on the country as a whole.  In order to have a framework which

helps us understand the relationship between effects at different levels of aggregation, we

                                                
5 Assuming uniformity is, of course, a very strong assumption, but assuming that the density equals one
conditional upon normality is innocuous, since A can always be rescaled so that this is true.  
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will need a model where the level of social influence changes with the degree of social

proximity.    

In order to present a simple model which captures the depreciation of social influence, we

assume that ∑∞

=
−+=

1
1

d
i
d

d
ii AA δγθ , where i

dA  is the action taken by the person who is

exactly “d” units of social distance from the actor.  We will think of people as being

organized on a line, and a group of size N as including N people who are closest to one

another on the line.  Individuals could be located on a multidimensional lattice and could

interact with any number of neighbors.6  We consider the simplest case of a line with

unidirectional social influences.7   In other words, we assume that people are only

influenced by people who are behind them in this line, i.e. person 2 follows person 1 and

person 0, but person 1 only follows person zero. 

This one-sided feedback ensures that the individual level regression yields an unbiased

estimate of kβ  (as long as there is no sorting).  Aggregating yields the formula:

( ) ∑∑
=

−
=









−−

+−
++

−−
+−−+

=
N

i i

iNNN

i i

NN
A

N
A

1
001

1
)(111

1
)(1)(

θ
δγ

δγγ
δγ
δγδθδγ

.  We assume

that δγ +>1 .8   The coefficient from an aggregate regression equals

















−−
+−

−
−−

+ 2)1(
)(1
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11

δγ
δγ

δγ
γβ

N

N

k  and thus the social multiplier is









−−
+−

−
−−

+ 2)1(
)(1

1
11

δγ
δγ

δγ
γ

N

N

, which converges to 
δγ

δ
−−

−
1

1   as N gets large and

equals 2/1 γ+  when N equals 2.   

III. Example # 1:  Dartmouth Roommates

                                                
6 We have discussed social structure of this kind in our previous work, e.g. Glaeser and Scheinkman
(2002).  
7 If the structure is a bi-directional circle, then even determining i

ji XA ∂∂  is not straightforward—higher
values of any individual “X” variable will have both a direct effect and an indirect effect through the
influence of this X on the peers who then in turn influence the individual in question.  
8 This assumption is necessary to guarantee that actions have finite variance.  
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In this section, we follow Sacerdote (2001) and look for the presence of social

interactions among Dartmouth College roommates.  The advantage of Dartmouth

roommates is that they are essentially randomly assigned.9  As such, it provides one

example of a situation where social connection is random and not the result of sorting.

Thus, the social multiplier methodology seems most likely to be cleanly applicable in this

case.

There are three natural units of aggregation within Dartmouth College: the room, the

floor and the dormitory.  The average room contains 2.3 students.  The average floor

contains eight students and the average dormitory contains twenty-seven students. Our

“exogenous” variables are gender, verbal Scholastic Aptitude Test (SAT) score, math

SAT score, high school grade point average (GPA), family income and a dummy variable

that takes on a value of one if the individual drank beer in high school.  The data on GPA,

SAT scores and family income comes from the Dartmouth admissions department.  The

data on beer consumption comes from the Survey of Incoming Freshmen (sponsored by

UCLA) which is filled out by thousands of entering college students.

We first examined the determinants of college GPA.  We found no evidence of a social

multiplier in this case (results not shown).  The coefficients on individual level

regressions were the same as the coefficients on aggregate regressions.  For example, a

100 point increase in math SAT score raised freshman year GPA by .13 points in an

individual level regression, .12 points in a room level regression and .10 points in a floor

level regression.  These results are not a surprise—Sacerdote (2001) also found that no

influence of roommate background characteristics on freshman year grades.10  In this

case, there is little evidence for social interactions or a social multiplier.

                                                
9 In fact, the assignment is only conditional within blocking group, where blocking groups are defined by
answers to a pre-college survey.  Sacerdote (2001) controls for this non-random element of assignment, but
finds no effect of this control.  For simplicity, therefore, we will ignore this minor element of selection.  
10 Sacerdote (2001) does, however, find a correlation between the grade of two roommates which is some
evidence for spillovers.  As such, the actual magnitude of intra-room spillovers remains something of a
puzzle.  
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We then turn to the area of fraternity or sorority membership. Fifty-one percent of

Dartmouth undergraduates join a fraternity or sorority.   Table 1 shows the results from

estimating linear probability models in the case of fraternity membership.  At the

individual level, individuals who drank beer in high school are 10.4 percent more likely

to join a fraternity or sorority.  There are also more surprising individual level

coefficients.  Higher math scores increase fraternity membership—a 100 point increase in

math SAT score leads to a 5 percent greater likelihood of joining a fraternity.  Higher

high school GPAs also increases the likelihood of joining a fraternity.  People from richer

families are also more likely to join a fraternity.11  Men are more likely to join fraternities

than women are to join sororities.  

When we aggregate to the room level, the impact of drinking beer, gender and family

income both increase slightly.  The impact of GPA and math SAT score decline.  None of

these changes are statistically significant.  Aggregating to the floor and then dormitory

level causes beer drinking to become even more important (to a statistically and

economically significant degree), but the other variables become insignificant.  These

regressions illustrate both the potential and the problems with social multiplier analysis.

The coefficient on beer rises with the level of aggregation, just as the model predicts. The

other coefficients just bounce around.  As such, we will focus our analysis on the changes

in the coefficient on past beer drinking. 

If we use the global interaction model, we estimate different values of γ  for each of the

different levels of aggregation.   The formula for the social multiplier is

γγ
γ
+−−

+−
)1)(1(

1
N

N .  At the room level, the estimated social multiplier is less than one

(although we can’t reject small positive multipliers).  At the floor level, the social

multiplier 1.4 and the group size is eight.  Together these imply that γ  equals .38, which

strikes us as a reasonable number.  At the dormitory level, the estimated social multiplier

is 2.23 and the group size is 57.  These imply that the social multiplier equals .56.  In fact,

                                                
11 The magnitude of these effects are almost the same if we use a probit rather than a linear probability
model. 
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our estimates are sufficiently imprecise that we cannot reject the null hypothesis that

these two values are the same.  Still, we find the general pattern of coefficients increasing

with the level of aggregation.

Of course, logically, we expect the social multiplier to increase with the size of the group.

Presumably, the bigger the group, the greater the share of social influences being

included.  Still, the global interactions model gives us little ability to actually interpret the

extent to which the social multiplier changes with the level of aggregation.  The local

interactions model is meant to remedy this lack. 

Using the local interactions formula for the social multiplier, and given an average floor

size of eight, this implies that 44.
)1(8
)(1

1
1

2

8

=







−−
+−

−
−− δγ

δγ
δγ

γ  and the dormitory level

regressions tell us that 27.1
)1(28

)(1
1

1
2

28

=







−−

+−
−

−− δγ
δγ

δγ
γ .    Together these equations

imply that: 88.1
)()(87

))(28/8()(28/20
8

288

=
+++−

+++−
γδγδ

γδγδ , which implies that 95.=+ γδ ,

and using and hence 14.=γ  and 81.=δ .

These numbers imply that each individual has only a small influence on his neighbor, but

this influence depreciates quite slowly over time.  The overall social multiplier is quite

high, and as N gets large, it approaches 2.8.  While the standard error bands surrounding

our estimates are sufficiently large to make us quite cautious about accepting these

numbers, they still suggest that the methodology does provide estimates that are at least

plausible.  

IV. Example # 2:  Crime

In our previous work (Glaeser, Sacerdote and Scheinkman, 1996), we have focused on

social interactions in criminal behavior.  There is a large amount of anecdotal behavior

supporting the existence of these interactions, and it seems reasonable to expect to find a
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social multiplier in the level of crime.  As we have no data set featuring randomized

interactions in this context, we will have to use existing data on the level of crime to

produce preliminary estimates of the social multiplier in criminal behavior. 

Individual level crime rates do not exactly exist.  There are data on people who are

arrested and people who go to prison.  And there is self-reported data on criminal

behavior.  Self-reported data is problematic for two reasons.  First, people do not always

report their illegal activities honestly.  Second, standard self-reported information on

criminal behavioral (e.g. the National Longitudinal Survey of Youth) does not contain

crime data that is closely comparable to information about crime rates.  

Because of these problems, we used nationwide arrest rates by age to form our basic

individual level estimates.  These data correspond to arrests, not crimes.  In order to make

these two sets of numbers comparable, we multiply the age-specific arrest rate by the

national ratio of reported crimes to arrests.  In other words, we ensure that at the national

level, our predicted crime measure is the same as the actual crime level.  Nonetheless, our

use of arrest rates will be problematic if the ratio of crimes to arrests differs across age

categories.  Still, because this work is meant to be exploratory, we will go ahead with this

information.   A further issue is that since our only independent variable is age, we may

miss many possible sources of strategic complementarities in the level of crime.  

These individual crime rates provide us with a predicted level of crime in each

neighborhood.  As described above, we use the individual level coefficients to predict an

aggregate crime measure, i.e. ∑a
apa )()(π , where )(aπ  represents the arrest rate in

each age category “a” and p(a) represents the share of the population in that age category.

We ignore any issues that might come from aggregating a discrete variable.  

In Table II regression (1), we report the results from regressing actual crime rates on

predicted crime rates at the county level.  The coefficient is 1.72.  In regression (2), we

show that the state level social multiplier is 2.8.  In principle, both of these numbers

might be biased because of sorting on observables or unobservables.  In fact, the sorting
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by age across counties and states is quite low.  Sorting on unobservables (or observable

variables that are not included in the regression) is likely to be higher, and as a result it

makes sense to take these results warily, as they may well overstate the true social

multiplier.

Finally, in regressions (3) and (4), we look at the social multiplier that is estimated using

time series data at the nation level.  In these regressions, we follow Levitt (1999) closely

and in a sense merely duplicate his evidence showing that, if micro-level coefficients are

used, then aggregate changes in demographics can explain little of the changes in

aggregate crime.  In our framework, this observation shows itself in an estimated social

multiplier of 8.16 for crime as a whole and 4.47 for homicides.  These high social

mulipliers tell us that crime rates are moving around very quickly, given the fairly modest

changes in aggregate demographic compositions.  We have our doubts about the

interpretation of these estimates.  It is at least as likely that these high estimates are due to

a correlation between demographics and unobservable elements.  Still, their high values

continue to provide some evidence that social interactions are important in the level of

crime and more generally that social multipliers are worth worrying about.  

We have estimated three different social multipliers at different levels of aggregation.

The estimated social multiplier rises substantially with the level of aggregation, so one

might think that the exponential model could be useful in interpreting this data.

However, the exponential model is actually pretty hard to use when addressing such large

aggregations.  To make the point, the difference between state and county level

coefficients implies that 622.
)()1(699,86

)(0166.)(9834.
700,86

000,207,5700,86

=
++−−

+++−
γδγδ

γδγδ , which implies

that 999.>+ γδ .  However, if 999.>+ γδ , then the estimated social multiplier at the

county level requires that 001.<γ .  The basic problem is that with an exponential model,

there should be little social interactions beyond close neighbors and as such, differences

between county, state and nation-wide social multipliers are difficult to work with.

Future work will hopefully come up with a better model for addressing the depreciation

of social influence in large groups. 
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V. Example # 3:  Schooling and Earnings

In the case of schooling and earnings, we turn to the variant of the model where

spillovers occur across θ s (i.e. inputs) not As (i.e. outputs).  This framework corresponds

more closely to the idea that individual earnings are a function both of their own

schooling and of the schooling of their neighbors.  In this case, the social multiplier

should equal 







+

+
+

kβ
λ

σγ
γ 1

1
1 .  We will use the approach of regressing aggregate

outcomes on predicted aggregate outcomes.  We will use the Individual Public Use

Micro-Sample from 1990, and include all adults between 18 and 60 years of age.   

Our individual coefficients are found by regressing individual wages (in levels) on gender

and race dummies, marital status, a third order polynomial in education, and a fourth

order polynomial in age.  All of our coefficients in this first stage regression looked quite

standard and we don’t report them to save space.  

In Table III, we report our results from aggregating wages and predicted wages up to the

Public Use Microsample Area (PUMA) and State level.  These are the two levels of

geography that are available in the 1990 census.  PUMAs on average have 82,800

members.  The average state has 2.8 million members.

   

In regression (1), we find a PUMA level social multiplier of 1.675.  In regression (2), we

find a State level social multiplier of 2.172.   As we would expect, the social multiplier

rises with the level of aggregation.  However, just as in the case of crime, the exponential

model is hard to use with aggregations of this size.  These social multipliers may be

biased upwards because of sorting on unobservables; however, sorting on observables at

least is stronger at the PUMA than at the state level.   Still, these different coefficients

should stand as a warning against using coefficients from one level of aggregation to

inform us of effects at a different level of aggregation.
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Furthermore, these results continue to suggest that there are human capital spillovers, as

suggested by a wide body of other research (e.g. Rauch, 1993, Lucas, 1988, Acemoglu

and Angrist, 1999).  However, the results from these regressions imply a much larger

human capital spillover than the previous research.  To us, this discrepancy serves to

emphasize the fact that unobserved heterogeneity may be driving our results.  

VI. Conclusion

Often empirical work treats the level of aggregation as irrelevant.  Routinely, state or

national policy interventions are used to infer underlying individual-level parameters in

contexts as diverse as labor supply or the returns to schooling.  If positive spillovers or

strategic complementarities exist, then these forms of inference are improper.  State-level

regressions yield appropriate answers to questions about state-level policies, but not

necessarily anything else.  The existence of a social multiplier means that in many

contexts, aggregate level coefficients will tend to radically overstate the true individual

level response.  

This paper has presented a brief analysis of the social multiplier.  We presented a series

of simple models, all of which tell us how to infer social interactions variables from the

level of the estimated social multiplier.  In principle, these models can be computed

efficiently by using maximum likelihood, but in many contexts, an unbiased measure of

the social multiplier can be estimated by comparing ordinary least squares coefficients

found at different levels of aggregation.  

In the empirical sections of the paper, we found evidence for a social multiplier at three

different levels of aggregation.  Using Dartmouth roommates data, where roommates are

randomized, we found that the impact of at least one predetermined variable had a bigger

impact on joining a fraternity or sorority at higher levels of aggregation.  In this case, our

results were compatible with our model of exponentially declining social influence.

Using crime data, we found evidence for a very large social multiplier in the level of

crime.  We do not necessarily take the estimates as being precise, but they are large
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enough to support the idea that a social multiplier exists.  Finally, using data on wages

and human capital variables, we found further evidence for large social multipliers in the

case of wages and human capital.  The pattern supports the idea that researchers need to

be careful about how social interactions can potentially make inference very difficult,

especially when state level variation is used as the source of identification. 
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Table I
Social Multipliers in Fraternity Participation 

Dartmouth Roommate Data:  Effect of Background Characteristics on Participation
in Fraternities at the Individual Level and Three Levels of Aggregation

Column (1) shows the OLS regression of individual fraternity participation on own use of beer in high
school, own SAT scores, own high school GPA and own family income (self reported).  Column (2)
regresses the average participation at the dorm room level on dorm room averages of high school beer use,
SAT scores, HS GPAs, and family income.  Columns (3) and (4) increase the level of aggregation to the
dorm floor and dorm building respectively.

(1) (2) (3) (4)
Member of

fraternity or
sorority

Room average
level membership

Floor average
membership

Dorm average
membership

Drank beer in high school 0.1040 0.0984 0.1454 0.2320
(0.0258) (0.0399) (0.0812) (0.1930)

Male 0.0510 0.0701 0.0253 -0.2066
(0.0256) (0.0286) (0.0540) (0.2038)

SAT verbal score -0.0001 -0.0000 -0.0000 -0.0002
(0.0002) (0.0003) (0.0006) (0.0011)

SAT math score 0.0005 0.0002 -0.0006 -0.0022
(0.0002) (0.0003) (0.0006) (0.0014)

High school GPA 0.0004 0.0003 0.0003 0.0004
(0.0001) (0.0002) (0.0003) (0.0005)

Family Income '000 0.0006 0.0008 0.0000 -0.0004
(0.0002) (0.0003) (0.0006) (0.0013)

Constant 0.0482 0.1980 0.7993 2.2277
(0.1455) (0.2266) (0.4594) (1.1421)

R-squared 0.04 0.05 0.03 0.08
Observations 1579 700 197 57
Average group size 1 2.3 8.0 28

Notes:  Data are for Dartmouth Freshmen.  Roommates and dormmates are randomly assigned as described in Sacerdote [2001].
SAT scores are from Dartmouth Admissions data.  Family income, use of beer, and high school GPA are self reported on the UCLA
Higher Education Research Institute's Survey of Incoming Freshmen.  Standard errors in parentheses. 
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Table II

Regression of Crimes Rates on Predicted Crime Rates

Predicted crime rates for counties (or states or US) are formed by multiplying percentage of persons in each
of eight age categories by the crime rate for persons in that age category.  Data are from Census Bureau and
Uniform Crime Reports.  Expected crime rate conditional on age is based on age distribution of arrestees
for the U.S.  

Columns (1)-(4) are cross sectional and srime data are for 1994 and demographic (age) data are for 1990.
Columns (5) and (6) are the time series data for the US as a whole.

(1) (2) (3) (4)
County
 Crime

Rate

State
Crime

Rate

US Crime
Rate

1960-1999

US
Homicide

Rate
1960-1999

Predicted crime rate 1.732 2.811 8.163 4.467
(or homicides) (0.088) (1.070) (0.998) (0.637)

Constant -0.039 -0.078 -0.304 -0.000
(0.004) (0.045) (0.043) (0.000)

R-squared .12 .13 0.64 0.56
Observations 2756 50 40 40
Average Group Size 86,700 5,207,000 226,275,000 226,275,000
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Table III

Regression of Wages on Predicted Wages

Predicted wages are formed by regressing individual level wages on gender, race dummies, marital status,
education, education squared and education cubed, age, age squared, age cubed and age to the fourth
power.  We then aggregate to the PUMA (state) level and regress mean wages on the mean of predicted
wages.

(1) (2)
PUMA

Mean Wages
State

Mean Wages

Predicted wages 1.675 2.172
(.0270) (.246)

Constant -2227.140 -8250.57
(301.170) (2675.232)

R-squared .69 .61
Observations 1726 51
Average group size 82,800 2,802,000




