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Econometrica, Vol. 49, No. 5 (September, 1981) 

MONITORING COOPERATIVE AGREEMENTS IN A REPEATED 
PRINCIPAL-AGENT RELATIONSHIP1 

BY RoY RADNER 

The situation in which a principal-agent relationship is repeated finitely many times (T) 
is formulated as a sequential game. For any Pareto-optimal cooperative arrangement in the 
one-period game that dominates a one-period Nash equilibrium, and any positive number 
epsilon, there exists for every sufficiently large T a (noncooperative) epsilon equilibrium of 
the T-period game that yields each player an average expected utility that is at least his 
expected utility in the one-period cooperative arrangement, less epsilon. 

1. INTRODUCTION 

THEORIES OF AGENCY and of the design of incentives in organizations typically 
portray the members of the organization as players in a noncooperative game. 
The predictive theory that naturally accompanies this point of view is that of 
Nash equilibria, including Harsanyi's elaboration of that theory to accommodate 
situations in which the players have incomplete information about the parame- 
ters of the game. 

On the other hand, much normative theory of organizations uses the frame- 
work of cooperative game theory, with its array of alternative "solution" 
concepts (value, core, von Neumann-Morgenstern solution, Nash bargaining 
solution, etc.). Furthermore, empirical observations of organizations reveal wide- 
spread cooperative behavior, as well as noncooperative behavior, so that cooper- 
ative game theory may have descriptive as well as normative value. 

What determines whether members of an organization cooperate or not? 
Conventional wisdom suggests that cooperation is less likely-or less stable-the 
more players there are, or the greater the difficulty of communication among the 
players; cooperation is more likely (stable?) if there are mechanisms whereby the 
players make binding commitments. Thus theories of industrial organization 
typically assume that when the number of firms in an industry is "large" the 
resulting equilibrium will be of the noncooperative type, whereas when the 
number of firms is "small" the outcome may be cooperative (collusive). 

The theory of repeated games explores in a formal way another piece of 
conventional wisdom, namely that when members of an organization have 
long-lasting relationships they can encourage and maintain cooperative behavior 
(without the device of binding commitments) by signalling intensions to punish 
defectors from informal agreements. Indeed, the theory of repeated games 

'This is a revision and extension of "Monitoring Cooperative Agreements between Principals and 
Agents," Tech. Report No. 3, Center on Decision and Conflict in Complex Organizations, Harvard 
University, February, 1979. The research on the previous paper was supported by the Office of Naval 
Research, Contract No. N00014-77-C-0533 and by the National Science Foundation (Grant SOC76- 
14768 to the University of California, Berkeley). A preliminary version was presented at the 
CEME-NBER Conference on Decentralization, University of California, San Diego, Feb. 23-25, 
1979. 
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1128 ROY RADNER 

provides conditions under which noncooperative equilibria of the entire sequential 
game can produce cooperative outcomes of the component subgames. 

Unfortunately, such results typically require an infinite number of repetitions 
of the subgame; they are not generally valid for a finite number of repetitions, no 
matter how large that finite number.2 However, similar results can be obtained 
for approximate noncooperative equilibria in the finite-repetitions case, at least in 
situations not involving uncertainty. Such an approximate equilibrium is called 
an epsilon equilibrium if each player's sequential strategy is within epsilon (in 
utility) of being the best response to the other players' strategies. Thus, one gets 
the result that, for any fixed positive epsilon, if the number of repetitions is large 
enough then there are noncooperative epsilon equilibria that have cooperative 
outcomes in each subgame. In a sense, in finite repetitions of a game, the best is 
the enemy of the good! 

In the principal-agent model, the agent observes a (random) environmental 
variable and then chooses an action; this leads to an outcome that depends on 
both the action and the environment. The principal observes this outcome (but 
neither the agent's action nor the environment), and pays the agent according to 
a previously announced reward function, which depends on the outcome only. 

In equilibria of repeated games that sustain cooperative behavior, each player 
is "punished" by the others for departures from the informal agreement to 
cooperate.3 However, in the principal-agent situation, the principal cannot ob- 
serve the agent's behavior directly, but only the consequences of his behavior, 
and those consequences are also influenced by the environment. Therefore, if 
cooperative agreements are to be sustained as equilibria of the repeated game, 
the principal must have some statistical method of detecting "cheating" by the 
agent rapidly enough to deter him from doing so; on the other hand, this method 
should have a very low probability of triggering false alarms. The main theorems 
of this paper (Sections 5 and 6) show that this is possible.4 

In Sections 2 and 3, I present the principal-agent model in the form of a 
one-period game, and state a few of its properties. In Section 4, I introduce the 
essential concepts in the theory of epsilon equilibria of finitely repeated games. 
Section 5 contains the first main result on the existence of epsilon equilibria with 
cooperative outcomes in T-period repetitions of the principal-agent game, when 
T is large (but finite). The proof is constructive, and exhibits a family of epsilon 
equilibrium strategy pairs. Using this family of strategy pairs one can approach 

2This remark is valid for perfect Nash equilibria; see Section 4. 
3An early important paper on repeated games (supergames) is by Aumann [1]. Characterizations 

of perfect Nash equilibria in infinite supergames have been provided by Aumann and Shapley 
(unpublished) and by Rubinstein [12]. For an analysis of altruism in the context of infinite 
supergames, see Kurz [6]. Examples of epsilon equilibria of finite supergames have been studied by 
Radner [7,8]. 

4The main theorems are related to sequential tests of hypotheses that have power one (see Robbins 
and Siegmund [11], and the references given there). Since the research for the present paper was 
completed, I had the opportunity to see a paper by A. Rubinstein [13], in which he uses the law of the 
iterated logarithm to demonstrate the existence of Nash equilibria with close to Pareto optimal 
average expected utility in an example of an infinite supergame. 
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arbitrarily close, in terms of average expected utility per period, to any one- 
period Pareto-optimal cooperative arrangement that dominates a one-period 
Nash equilibrium, provided that T is large enough. 

Unfortunately, the epsilon equilibria described in Section 5 have the property 
that, with "small" probability, at some period t > 1, the expected utility to the 
agent (conditional on his information up to that date) of defecting from the 
equilibrium strategy may exceed epsilon. To exclude such equilibria, I propose in 
Section 6 a condition of "robustness," and demonstrate the existence of robust 
epsilon equilibria. Section 7 indicates some possible extensions of the theory. 

2. A MODEL OF A SEQUENTIAL PRINCIPAL-AGENT RELATIONSHIP 

Consider a principal-agent relationship that lasts T periods. In period t, the 
agent's action is At, a number between 0 and Ma (a positive parameter). The 
outcome of the agent's action is 

C = y (A, Zt ) 

where Zt is an exogenous random variable (the "state of nature" in period t). We 
may interpret the variable A, as a measure of the agent's effort. The principal 
observes the outcome of the agent's action, and pays the agent Wt. The resulting 
one-period utility to the agent is V( W, A t) = P( Wt) - Q(At), where the func- 
tions P and Q are strictly concave and convex, respectively, and increasing. The 
one-period utility to the principal is assumed to be a linear function of the 
outcome and the payment to the agent, increasing in the former and decreasing 
in the latter. By a suitable choice of units one can express the principal's utility as 
C,- Wt. The agent can observe the state of nature, Zt, before taking action, but 
the principal can observe only the resulting outcome, C, 

Assume that the functions P, Q, and y are continuously differentiable, that for 
every Z the function y (., Z) is concave and increasing in its first argument (the 
agent's action), and that the partial derivative of y with respect to the agent's 
action is bounded away from 0, uniformly in Z, say ' M' > 0. 

Notice that I have assumed that the agent is risk-averse, whereas the principal 
is risk-neutral. The main results can be extended to cases in which the principal 
is risk-averse; see Section 7. 

Finally, assume that the states of nature, Zt, are independently and identically 
distributed, and bounded. 

3. THE ONE-PERIOD GAME 

In this section I formulate the principal-agent relationship as a one-period 
noncooperative game.5 I therefore omit the subscript t on all the variables. The 

5For material on the principal-agent problem, see Hurwicz and Shapiro [5], Shavell [15], and 
Holmstrom [4], and the references cited there. For a more general organizational setting of the 
problem, see Groves [3]. An early forerunner of the principal-agent literature was Simon [16]. 
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principal's (pure) strategy is a reward function w that determines the payment to 
the agent as a function of the outcome of the agent's action: 

W = w(C). 

Given the reward function w, the agent chooses a decision function a that 
determines his action as a function of the state of nature: 

A = a(Z). 

The expected utility to the agent is 

EV(W,A) = EP {w(y[a(Z),Z])} - EQ[a(Z)], 

and the expected utility to the principal is 

EC- EW= Ey[a(Z),Z] - Ew(y[a(Z),Z]). 

This is in fact a two-move game, in which the principal moves first, choosing 
the reward function, and the agent moves second, choosing the decision function. 
The principal's strategy is the same as his move, but the agent's strategy is a 
mapping from reward functions w to decision functions a, since the agent learns 
the reward function before choosing the decision function. The noncooperative 
solution to the game is taken to be a Nash equilibrium. 

A pair (w, a) of functions is Pareto optimal if there is no other pair that yields 
each player at least as high an expected utility, and yields at least one of the 
players strictly more. In this paper, I shall be concerned with situations in which 
a Nash equilibrium leads to a pair (w, a) that is not Pareto optimal. Without 
providing a precise analysis of the circumstances under which this situation 
would occur, I shall sketch why it would not be atypical. 

If the agent is averse to risk, and the principal is neutral towards risk, then in a 
Pareto optimum the reward function must be constant on the set of realizable 
outcomes. Thus, if the pair (w, a) generates the random reward W, the variance 
of W is strictly positive, and w _ EW, then the pair (w, a) is strictly better for the 
agent than (w, a), and equally good for the principal. Hence, for some w' slightly 
less than w, both the agent and the principal would prefer (w', a) to (w, a). 

On the other hand, one can exhibit cases consistent with the above assump- 
tions in which, in a Nash equilibrium, the reward function must be strictly 
increasing. In such cases, a Nash equilibrium cannot be Pareto optimal. 

In the typical formulation of the principal-agent relationship, one assumes that 
the agent has the option of leaving the relationship and achieving some 
"reservation utility." This would imply a constraint on the set of reward func- 
tions that the principal could use and still retain the services of the agent. The 
addition of such a constraint to the present model would not change the main 
result of the paper. 
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4. EPSILON EQUILIBRIA OF REPEATED GAMES 

Suppose now that the one-period game is repeated T times (T finite); the 
resulting sequential game will be called the T-period game. Assume that the utility 
to a player is the average of the T one-period expected utilities. A pure sequential 
strategy for a player is a sequence of functions, one for each period; the function 
for period t determines the player's one-period strategy in period t as a function 
of all of the information available to the player up to that period. A Nash 
equilibrium of the sequential (T-period) game is a pair of sequential strategies 
such that each player's sequential strategy is a best response to the other player's 
sequential strategy. 

In the present paper, I shall employ the concept of epsilon equilibrium, a 
weaker condition than that of Nash equilibrium. For any positive number 
epsilon, an epsilon equilibrium is a pair of strategies such that each player's 
strategy is within epsilon in average expected utility of being a best response to 
the other player's strategy. To motivate the use of this equilibrium concept in 
sequential games, I must digress for the moment to discuss (informally) the 
problem of "noncredible" Nash equilibria. Nash equilibrium pairs of strategies in 
the sequential game may involve threats of "punishment" by one player if the 
other player departs from some prescribed sequential strategy. Unfortunately, a 
literal application of the definition of Nash equilibrium may result in equilibria 
in which the players use threats that, in a certain sense, are not credible. To rule 
out such equilibria, Selten [14] has introduced the idea of a "perfect" Nash 
equilibrium6 (we shall not need a precise definition here). One can show that in 
every perfect Nash equilibrium of the (finite) T-period game, the outcome in 
every period is a Nash equilibrium of the one-period game. On the other hand, in 
repeated games in which each player can observe the other player's one-period 
strategies, if T is infinite then there are perfect equilibria of the sequential game 
that result in the use of "cooperative" pairs of strategies in each one-period game, 
and in particular in the use of Pareto-optimal pairs of strategies.7 It is this 
discontinuity at infinity that motivates the definition of epsilon equilibria. In the 
same situation, one can show that, for any positive epsilon, if T is sufficiently 
large then there are perfect epsilon equilibria of the T-period game that result in 
cooperative behavior in all or most of the component one-period games. In other 
words, for perfect epsilon equilibria, infinite-horizon repeated games may be 
approximated well by long finite-horizon games.8 

Cooperative one-period strategies can be sustained in perfect epsilon equilibria 
of the T-period game by "trigger strategies." Let (s , s2*) be a Nash equilibrium of 
the one-period game, and let (s1,S2) be a Pareto-superior pair of one-period 
strategies. A trigger strategy for player 1 is defined as follows: player 1 plays 

6To be precise, I refer here to the concept of subgame-perfect equilibrium. 
7A. Rubinstein [12]; R. Aumann and L. Shapley (unpublished). 
'These results are illustrated in Radner [7,81. A more general treatment of epsilon equilibria will 

be presented in a forthcoming paper. 
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strategy s1 as long as player 2 plays strategy s2; thereafter player 1 plays s*. The 
best response by player 2 to this trigger strategy is to play s2 until the last period, 
and then play a best response to s1. However, the gain in average per-period 
utility of doing this, over using the corresponding trigger strategy, will be small if 
T is large. 

The efficacy of such simple trigger strategies in sustaining perfect epsilon 
equilibria of the T-period game depends on each player being able to rapidly 
detect departures from the cooperative strategies. In the principal-agent situation 
considered in this paper, the principal cannot observe the agent's actions directly, 
but only the consequences of his actions, and these consequences also depend on 
a random state of nature. Therefore, if cooperative arrangements are to be 
sustained as epsilon equilibria of the T-period game, the principal must have 
available some method of detecting any "cheating" by the agent, and doing so 
rapidly enough to reduce the agent's incentive to cheat to negligible levels. That 
such a method exists is shown in the next two sections. 

5. EPSILON EQUILIBRIA OF THE T-PERIOD PRINCIPAL-AGENT GAME 

Let w* and a* be the reward and decision functions, respectively, for a Nash 
equilibrium of the one-period principal-agent game (Section 3), and let (wi, a) be 
a Pareto-optimal and superior pair, where w is constant. Thus, if u* and v* are 
the expected one-period utilities of the principal and agent, respectively, corre- 
sponding to the use of (w*, a), and if (u,v) is the pair of expected one-period 
utilities corresponding to (w,), then suppose that d' ' u*, and vi '-v*. In this 
section I shall exhibit a class of epsilon equilibria of "long" T-period games that 
use trigger-type strategies and that achieve average expected utilities that are at 
least close to (ui, v. In the next section I shall show how the same method can be 
refined to construct corresponding epsilon equilibria that satisfy a condition 
similar to "perfectness." 

The definition of an effective trigger strategy for the agent presents no 
problem; the agent simply uses the decision function & until the first period that 
the principal does not use the (constant) reward w; at that period and in each 
period thereafter the agent optimizes against the reward function announced for 
the period. Call this sequential strategy (AI. 

It is important to emphasize at this point that in each period the principal's 
action is an announcement of a reward function, and he is required to use that 
reward function for that period. The agent then observes the current state, Zt, 
and takes an action, At. 

Defining a suitable trigger strategy for the principal is more difficult. In each 
period t, based on the history of outcomes through period (t - 1), the principal 
must decide whether to make the payment w or to switch to the one-period 
Nash-equilibrium reward function w*. If his switching rule is too lax, then the 
agent may be able to accumulate a large enough extra expected utility by 
cheating before getting caught so as to make cheating attractive. On the other 
hand, if the switching rule is too strict (too "trigger happy"!), then there will be a 
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substantial probability that the principal will switch to w* before the agent ever 
starts cheating. 

Define 

ct -- I at (Zt )' zt ]; 

thus Ct is the realized consequence in period t if the agent uses decision function 
a, in that period. The consequences C, are bounded, say by B. Define S" to be 
the sum of the realized consequences in periods 1 through n, that is, 

Sn = cI + + Cn. 

In particular, let C6 denote the realized consequence in period t if the agent 
uses the decision function &, and let S,, be the corresponding cumulative sum of 
consequences by the end of period n. The random variables C, are independent 
and identically distributed, with expected value, say, c. 

Let (ba) be a strictly increasing sequence of positive numbers (n ? 1), and 
define the random variables N and N by: 

N= mint n P I Sn-nc= -b}, 

N = min{N, T}. 

Consider the following trigger strategy for the principal: pay the agent w in each 
period 1 through N, and thereafter use the reward function w*. I shall denote this 
strategy by ap((bn))A 

Recall that S, = Cl +** + C6. If the agent uses some sequential strategy 
other than aA, then the principal's loss (positive or negative) during periods 1 
through n is 

Ln -Sn -Sn- 

LEMMA 5.1: If the principal uses the trigger strategy ap((bj)), then a bound on 
his expected loss9 during periods 1 through N is given by 

ELN ' EbN + B`- bT + B 

PROOF: Recall that the C, are bounded by B. By the definition of N, 
SN - Nc-bN- B, so that 

(5.2) LN-SN-NC +bN+ B. 

Note that (Sn - n) is a martingale, and N is a bounded stopping time. Hence, 
by the "systems theorem" for martingales (see e.g., Chung [2, equation (3) on 

9Although it is convenient to interpret LN as the principal's loss, this is not essential to the 
argument that folloWs. What is essential is that this is the cumulated difference in outcome in the 
direction of the agent's gain. This will become clear in Lemma 5.2. 
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p. 319, and the Corollary on p. 325]), 

(5.3) E(SN-NC) = O. 

If one takes the expected value of both sides of (5.2), and uses (5.3) and the fact 
that the sequence (b,) is increasing, one immediately obtains the conclusion of 
the lemma. 

Lemma 5.1 establishes a limit to the cumulated expected loss that the principal 
can suffer up through period N. The next lemma establishes a corresponding 
limit on the agent's gain. Let At be the agent's actual action in period t, and let At 
denote what his action would be if he used the decision function a, i.e., 
A t= (Zt). The corresponding difference in the agent's utility is 

Dt= V(W,At) - w,At) 

if the agent receives the payment w. The agent's total gain in utility during 
periods 1 through n is 

Gn = Di + + Dn- 

LEMMA 5.2: If the principal uses the trigger strategy ap((bn)), then a bound on 
the agent's possible expected gain in utility up through period N is given by 

EGN- K(EbN + B ) _ K(bT + B), 

where K is some suitably chosen positive number. 

PROOF: The regularity properties of 'y and V, and the fact that (w, a) is Pareto 
optimal, imply that there is a (finite) positive number K such that, for any period 
t and any decision function at, 

(5.4) EV(W,At) - - K(ECt - 

where At and Ct are determined by at. Since the random variables (Zt) are 
independent, it follows that for any sequential strategy of the agent, and any 
partial history Ht1 = (Z1, . . . , Zt- 1), 

(5.5) E(Dt I Ht_ < '-E(Ct _Ct I Ht- 1). 

For the purposes of this proof, write XO = 0, and 

(5.6) Xt=Dt+K(Ct-C ) (t_ 1); 

then (X1 + * + Xt) is a supermartingale, and hence, again by the systems 
theorem, E(X1 + * * * + XN) -. The conclusion of the lemma now follows 
from this last inequality and Lemma 5.1. 

Lemma 5.2 shows how to make the principal's trigger strategy strict enough to 
keep the agent's incentive to cheat small when T is large. It suffices to use a 
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sequence (ba) such that (ba/n) approaches zero as n increases without limit. But 
how can the principal, with the same trigger strategy, keep small the probability 
that the agent would be "unjustly" punished if he never cheats? The law of the 
iterated logarithm provides an answer.1" 

Recall that, by the law of the iterated logarithm (see, e.g., Chung [2]), 
A 

A 

(5.7) lim inf ?n = -2 var C -A, 

where var Ct denotes the variance of Ct. Define 

A - AlL 
X _ inf Sn nc 

n>2 vnlnlnn 

Then X > - oo almost surely. Hence 

lim prob{X > -A} = 1. 
X-Aoo 

Hence the following has been proved: 

LEMMA 5.3: For every 8 > 0 there exists a X > 0 such that 

prob {Sn> nc^-A/n lnlnn ,foralln> 2} _1-S. 

Define the sequence (be) by 

bo -ess inf( C1-c 

(5.8) b -ess inf( C1 + C2-2c), 

bo _o;n ln lnWn, n ' 3. 

Note that (bno/n) approaches zero as n increases without limit. 
Define B to be the class of positive sequences (bn) that satisfy: 

bn (5.9) bn are strictly increasing, and lim n = 0; 
n -oo n 

(5.10) there exists X > 1 such that b -' ;Ab0 n ' 1. 

In particular, B contains all the sequences (Abo) with X > 1. 
Recall that u and v denote the expected one-period utilities of the principal 

and agent, respectively, under the pair (w, a). 

0l1n order to demonstrate the existence of a sequence (b,) with the desired properties it is sufficient 
to use an argument based on the strong law of large numbers. The argument used here, which is 
based on the more powerful law of the iterated logarithm, has the advantage of being constructive. It 
also provides a family of sequences that, in a sense, grow as slowly as possible. 



1136 ROY RADNER 

THEOREM: For any e > 0 there exists a sequence (ba) in B and a T, such that for 
all T _ T, the pair [up((b)), cTA] is an e equilibrium, and yields the principal and 
agent average expected utilities at least (u - e) and (vi - e), respectively. 

PROOF: Recall that u* and v* denote the expected one-period utilities of the 
principal and agent, respectively, under the (Nash equilibrium) pair (Q*, a*). 
Consider a pair [up((bn)), CA ] of sequential trigger strategies, with (bn) in B. The 
corresponding average expected utility to the principal is 

(5.11) T )(Nu+ (T -EN) u*] 

(Use the martingale systems theorem again.) Recall that u '-u*. Define 

8&=prob(N< T). 

Then (5.11) is at least as large as 

(5.12) (1- )u+bu*. 

This is as large as u - e if 

(5.13) a < * 
u-u 

(with the obvious interpretation if u= u*). 
If the principal were to switch in any period n to a reward function other than 

the constant w, then in that period and thereafter the agent would optimize 
against the announced reward functions; hence in periods n through T it would 
be optimal for the principal to use the reward function w*. Hence the principal's 
optimal response to the agent's strategy aA is to use the constant reward w in all 
periods. The resulting average expected utility to the principal is u. Therefore, if 
(5.13) is satisfied, the strategy ap((bn)) is within e of being optimal against CJA. 

If the agent follows strategy aA against ap((bn)), then his average expected 
utility is 

(5.14) T v (T- EN)v*]. 

Since v -v* it follows that (5.14) is not less than 

(5.15) (1 - v)v +&v*, 

which is at least (v-e) if 

(5.16) a A * 

If the agent uses some sequential strategy a instead of aA against the principal's 
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strategy ap((bj)), then his average expected utility is 

1-N (5-17) () E V(w,At) + (T- EN)v*J, 

where N is the stopping time under the agent's strategy a. If the agent uses cA, his 
average expected utility is, by (5.15), at least 

(5 . 18) v + vv). 

The increment in average expected utility to the agent from using a instead of GA 

is therefore not more than the difference between (5.17) and (5.18), which can be 
written as 

(5.19) (-f)[EGN + (T- EN)(v*-v)] + S(-v*) 

Using Lemma 5.2, and recalling that v _ v*, we see that (5.19) is not greater than 
e if, for example, 

- 2A3_v*) 2 (v v) 
(5.22) K bT+ M ce 

K 
T J 2 

Therefore, the proof of the theorem is completed by taking (i) 8 to satisfy both 
(5.13) and (5.21), (ii) X corresponding to 8 as in Lemma 5.3, (iii) a sequence (be) 
in B corresponding to A, and (iv) T7 to satisfy (5.22); the last is of course possible 
because (bT/ T) approaches zero as T increases without limit. 

6. ROBUST EPSILON EQUILIBRIA 

The epsilon equilibria described in Section 5 have the property that, with 
"small" probability, at some period t > 1 the agent may be able to gain more 
than e in average expected utility (conditional on his information up to that date) 
by departing from the equilibrium strategy. I therefore propose a more stringent 
equilibrium condition, which I shall now describe. 

For every t, at the end of period t the agent knows the history Ht, whereas the 
principal knows only the random variables Cl, . .., Ct. Call this latter history 
Hpt. Suppose that some strategy pair (ap, GA) has been used in periods 1 through 
t, with a history Ht. To the remaining (T - t) periods corresponds a game in 
which the principal and agent have the initial information Hpt and Ht, respec- 
tively, and in which the payoff to a player is (1/ T) times the total expected 
utility in all T periods. Call this the continuation game, given t and Ht. Among the 
strategies available to the principal in the continuation game is the continuation of 
up, defined in the obvious way; a corresponding remark applies to the agent. A 
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player's strategy is a robust epsilon-optimal response to the other player's strategy 
if, for every t and almost every Ht, the continuation of the player's strategy is 
within epsilon (in payoff) of being an optimal response to the continuation of the 
other player's strategy, in the continuation game given t and Ht. A pair of 
strategies is a robust epsilon equilibrium if each player's strategy is a robust 
epsilon-optimal response to the other player's strategy. A robust epsilon equilib- 
rium is, of course, an epsilon equilibrium. 

Notice that, for every t, I have required the continuation of the principal's 
strategy to be epsilon-optimal for almost every history Ht, not just for every Hpt, 
even though the principal will not know Ht completely."1 Nevertheless, as I shall 
show in this section, there exist robust epsilon equilibria that are approximately 
as efficient as the (nonrobust) epsilon equilibria described in Section 5. 

I should emphasize, too, that in each continuation game each player calculates 
his average expected utility per period over all periods (1 through T). Equiva- 
lently, his payoff in the continuation game may be taken to be (1/ T) times the 
total expected utility in the remaining (T - t) periods, since the past history is 
given. From the behavioral point of view, it might be more attractive to take this 
payoff to be the average expected utility in the remaining periods, i.e., to divide 
the total expected utility by (T - t). In fact, the results of the present section can 
be extended to cover the corresponding alternative definition, but at the cost of 
more complex calculations. Therefore, to simplify the exposition (which is in any 
case somewhat complex), I shall use the first definition in the present section, 
and briefly discuss the implications of the second definition in the next section. 

One reason that the epsilon equilibria may not be robust is that when the 
cumulative sum of consequences, St, is sufficiently far above the "boundary" 

c- bt, the agent has an opportunity to "loaf" and still keep the probability of 
reaching the boundary acceptably low. Therefore, in a robust equilibrium, the 
principal must modify his strategy so as to discourage the agent from taking 
advantage of this situation. One simple way to do this is for the principal to 
impose an upper boundary, as well as a lower one, to the region in which he 
maintains the constant reward w. Thus I shall demonstrate the existence of 
robust epsilon equilibria in which the principal switches to the reward function 
W* after the first t such that St crosses either the lower or the upper boundary. 

A second cause of nonrobustness is that, the closer St is to the boundary of the 
region in which the reward w is maintained, the greater is the agent's incentive to 
take some action to avoid the boundary. For a lower boundary, this means 
increasing his effort; for an (additional) upper boundary, this means decreasing 
(!) his effort. In the robust epsilon equilibria described in this section, the agent 
will use the decision rule a until he reaches the boundary of a region that is 
smaller than the principal's region for w, and thereafter he will optimize sequen- 
tially against the principal's strategy. In particular, the agent will switch to the 

" The definition of robust epsilon equilibrium bears a superficial resemblance to that of subgame- 
perfect equilibrium (see Selten [14]), but the concepts are significantly different. In fact, the repeated 
principal-agent game discussed here has no subgames other than the entire game (as the term 
"subgame" is used). Hence every Nash equilibrium is subgame-perfect. 
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one-period Nash equilibrium decision rule a* as soon as the principal switches to 
the reward function w*. 

It may appear inefficient for the principal to switch to w* when St reaches his 
upper boundary, since this "punishes" both players for the agent's good luck or 
increased effort. Indeed, Pareto-superior strategy-pairs can be derived; this will 
be discussed in Section 7. 

Before giving a precise statement of the main result of this section, I must 
introduce some new notation. With the sequence (bo?) defined by (5.8), let B 
denote the set of sequences of the form (Xt4?) such that X > 1. (Warning: this set 
B is smaller than the corresponding set denoted by if in Section 5.) By an 
"extended integer" I shall mean a positive integer or + oo. For any extended 
integers r and s, and any set R of extended integers, define 

AR min{x :x inR}, 

r A s-A (r,s}, 

r A R _ r A (AR). 

Let (bt) = (Xbto) be a sequence in B, and, for this sequence and a given T, 
define 

(6. la) N_ TA { t:ISt-tI bt), 

(6.1b) M-TA {tjSt-tc?b/2}, 

(6. 1c) DP- Aft :7 w} 

(6. ld) DA -(N + 1) A DP. 

I shall say that the agent optimizes myopically in period t if he uses a one-period 
optimal decision rule in response to the reward function wt. 

Given the sequence (be) = (Abt) in B, the strategy ap(X) for the principal is 
defined by 

(6.2) (={ t 1,X...N 

The strategy AA(X) for the agent is defined by: 

(6.3a) a t =o t = 19., *M A(DA-) 

(6.3b) The agent optimizes myopically in all periods t _ DA. 

(6.3c) If M < DA - 2, then the agent uses a sequential strategy in periods 
(M + 1) through (DA - 1) that is (sequentially) optimal against ap (A), 

given (6.3b). 

Notice that cA (X) is sequentially optimal from period (M + 1) on, given ap(X). 
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The main result of this section is the following theorem. The situation and 
notation are as described in Section 5, except as noted above. 

THEOREM: For any e > 0 there is a sequence (/Xb?) in B and a TE such that for all 
T ? T, the pair [up(X), aA (X)] is a robust e equilibrium, and yields the principal and 
the agent expected average utilities per period at least (u- e) and (vt - e), respec- 
tively. 

The proof of the theorem uses arguments similar to those used in Section 5, so 
I shall omit some of the details. Let Ht denote history of the random variables 
Z1 ... , Zt, and for any random variable X let EtX denote the conditional 
expectation E { X Ht }. A random time is a random variable X such that, for 
every extended integer t the event {X = t} is measurable12 with respect to Ht. 
The proof of the theorem makes use of a "comparison path," in which (w, a) is 
used until some random time, D, and then (w*, a*) is used thereafter. (This is, in 
fact, the kind of path generated by the equilibria of Section 5.) The first lemma 
characterizes the difference in total expected utility to the principal, after a given 
period t, in two situations: (i) the principal pays the reward w, and the agent uses 
some arbitrary strategy, through some random time D, and they then use the pair 
(w*, a*) thereafter; (ii) the comparison path. 

Define: 

A* = a*(Zt), At= (Z4 
A A 

(6.4) Ct* =y (At*, Zt )C=-Y(At,Zt) 

W*=E(Ct* Wt) A 

u* = E( Ct* -t u^ = Ef w) = c^w. 

LEMMA 6.1: If D and D are random times bounded above by T, then for every 
pair of strategies, and almost every history Ht such that D > t and D > t, 

D T 

(C (Cn*- W*) 
n=t+l n=D+l 

{ D T 

-Et q E (C AW) + E C* n) - Et{__ C* 
W 

n=t+l n - + I n 

- D \ 

-Et JI (n-n + (- u*)(D -D); 
n=t+l 

12Strictly speaking, measurable with respect to the sigma-field of the underlying probability space 
that is induced by H,. 
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PROOF: By the systems theorem for martingales, 

D 

(6.5) Et E ( n-W = uEt (D - t), 
n=t+ 1 

15 D~~~~~~~~ 
(6.6) EtE (C An-) = AEt (D- t); (6.6)~~ =Et 

n 

1 n=+l 

and by the strong Markov property, 

T 

(6.7) Et E ( Cn*- Wn* ) = U*Et(T- D), 
n=D+1 

T 

(6.8) Et Cn* - Wn* ) = U*Et(T _D) 
n=D+ 1 

The conclusion of the lemma now follows with a straightforward calculation. 

The next lemma puts an upper bound on the principal's expected loss after any 
period t, if the principal uses the strategy ap(X), and the agent uses-instead of 
the strategy aA (X)-any sequential strategy such that he optimizes myopically 
after some random time D-' N. 

LEMMA 6.2: Suppose that the principal uses the strategy ap(X). For any sequential 
strategy of the agent define N by (6. la), let D be any random time N, and define 

D 

(6.9) L(t,D) = (AnCn 

n=t+ 1 

provided t < D; then for almost every history Ht such that D > t, 

(6.10) IEt {L(t,D) - (St - tc)-< EtbN + B. 

The proof of this lemma is similar to that of Lemma 5.1, and is omitted. 

LEMMA 6.3: For any X > A0 and any e > 0 there is a Tp(e,A) such that, for all 
T _ Tp(e, A), ap(X) is a robust e-optimal response to aA (X). 

PROOF: First note that if the principal uses a reward function different from w 
at t, then the agent will optimize myopically from period t on, so it will be 
optimal for the principal to use w* from t on. Let ap be a sequential strategy with 
this property, i.e. the principal uses w through some random time D, and then 
uses w*. Since the agent will optimize myopically after N, an optimal strategy for 
the principal must have D - N, so assume this property for ap. 

For t-' D, the total conditional expected utility to the principal in periods 
(t + 1), . . ., T, if he uses ap from period (t + 1) on, conditional on Ht (not Hpt), 
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is 

(D T 

(6.1 1) Et ( -w) C* Wn* )t 
n=t+l n=D+l 1 

On the other hand, if he uses the strategy ap(X) from (t + 1) on, the correspond- 
ing expected utility is 

N T 

(6.12) Ett _ (C w-w)+ n) 

Finally, the corresponding expected utility for the "comparison path," with 
D = N, is 

fN T 

(6.13) Et _ (C w-w)+ ? (Cn* - Wn)} 
n=t+l1 n=N+l1 

By Lemma 6.1, (6.11)-(6.13) equals 

(C 
D 

- u* -N (6.14) Et n + (CAcn)+(uu*)(DN)}. 

Also, (6.12)-(6.13) equals 

N 

(6.15) Et (Cn- ) 

Applying Lemma 6.2 twice, one immediately concludes that (6.11)-(6.12) is not 
greater than 

(6.16) 2[EtbN + B] + (u- u*)Et(D - N). 

Recall that N-' T, (bn) is increasing in n, u u*, and D N. Hence (6.16) is not 
greater than 

(6.17) 2(bT+ B). 

To complete the proof of the lemma it suffices to take T large enough so that 

2(bT+ B) 
(6.18) T 

(Note that, in (6.18), bT = Xb, so that the critical value of T depends both on X 
and on E.) 

LEMMA 6.4: For any c > 0 there exists X, > 0 and TA (E) such that, for all 
T >TA(E), aA(k,) is a robust E-optimal response to ap(XQ,). 
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PROOF: For all t > M, the continuation of strategy aA (X) is (strictly) optimal 
against the continuation of ap(X), conditional on Ht. Therefore it remains to 
consider the case in which t-' M. Let X > A0 be given, and (bt) = (Abo); suppose 
that the principal uses ap(X) in all periods, and that the agent has used CA (X) 

through period t. 
Recall the definition of the "comparison path" (Ct) as in (6.4), and define 

A A A 

St=C++ C +ct, 

(6.19a) AA 

N_ T A { t: St- te) _ bt)}. 

Consider the policy dA (X) for the agent defined by 

a, for t N, (6.19b) > A 

a* for t >N. 

The strategy 'gA(X) generates the comparison path (given ap(x)), whereas the 
strategy aA(X) generates the comparison path for t M, and then optimizes 
sequentially thereafter. Hence, for all t, (A(X) is at least as good as A 

(X), 

conditional on Ht, and so it suffices to show that, for t-' M, the strategy JA (X) iS 

within e of being an optimal response to up(X), conditional on Ht (for suitably 
chosen X and T). 

Let JA be any continuation strategy for the agent, and for n > t define the 
corresponding random variables An, C, and W, as in (6.4). Define 

A A 

sn = St + Ct+ I + Cn, 

N= TA {n :S, - nc bn. 

Suppose that AA has the property that the agent optimizes myopically (and hence 
sequentially) against ap(X) for t > N, so that at = a* for t > N. For t M and 
any history Ht, the conditional expected total utility to the agent in periods 
(t + 1) through T, given Ht, from the strategy -A is 

(N T 

(62) Et l V(w,n + V(Wn*,An*) 
n= t+1 n=N+1 

The corresponding conditional expected utility from the strategy JA (X) iS 

(N T 

(6.22) Et V( I V( n) + E V( n*A* 
t n=t+1 n=N+ 1 

By an argument similar to that of Lemma 6.1, the difference between (6.21) and 
(6.22) is 

,623 EtX rb rT0_ An 
- 

W/_, An v - 
v*( 

- 
N) IE/ rw 
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Consider first the first part of (6.23), namely, 

(6.24) G ( t ,N) = Et [V( wI An) - V( w, An)] n=t+ 1 

By the argument used in Lemma 5.2, there is a number K > 0 such that 

(6.25) G(t,N)-' KEt (Cn-Cn). 
n=t+ 1 

By an argument like that used in Lemma 5.1, 

(6.26) |E Cn Cn)(St _tA^)_ t + 
n=t+ 1 

?bT+ B. 

Remember that St = St, since t ' M and aA (X) and JA (X) agree through period 
M. By the definition of M (see (6. ib)), 

ISt- tc^ < bt/2, 

so that, from (6.25) and (6.26), 

~" 3bT 
(6.27) EtG(t, N) Kt 2 +B 

Consider now the second part of (6.23), namely 

(6.28) (v -v*)Et(N- N). 

Observe that 
A A A 

Et(N -N) _< Et(T -N) = T -EtN, 
and 

EtN O+ Tprob[N= TIHt} 

so that 

(6.29) Et(N-N) _ Tprob{N < TI Ht}. 

One can verify that for every m and every t_ m, 

bm-t + bt 2bm/2. 

Hence 

( m-tbm/2 )bt 

m ( 2 )bt 
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A A 

But, given N > t, N < T if and only if there is an m, with t < m < T, such that 

I Sm - mCI -bm 

which, since t-' M, implies that 

(6.30) (S -t( )cl _> b m- 2 )bt- 2 )bm-t 

By an argument like that leading up to Lemma 5.3, one can show that, for 
every 8 > 0 there is a X(8) > Xo such that 

(6.31) prob{I(Sm-St)-(m-t)c <( 2 )bm-t, allm>tlHt >1-8, 

uniformly in all t for which M t, and where bm-t = X(S)b0-t. Hence 

prob{N< TIHt} -' 

so that 
A 

(6.32) Et (N-N ) T8. 

In summary, (6.24), (6.27), and (6.32) imply that, for any 8 > 0, X > X(8), and 
t-' M, and almost every Ht, the expression (6.23) is not greater than 

(6.33) K )bT + B] + -v *)T8. 

Hence, to complete the proof of the lemma, it suffices to take 

(6.34) a<2(vev*) < > X(8); 

(6.35) TA(E) large enough so that K [(K3-)X()bo + BI < 2 for T > TA(c) 

To complete the proof of the theorem, it remains to establish lower bounds 
on the expected average utilities of the two players, with the strategy pair 
[IP(X, CA (A)] 

The expected average utility to the principal is 

(6.36) T i[E {M} + E { (Cn W) + u*E(T-N)] 

Recall that the variables ICtl are bounded by B, and define 

(6.37) B' = max{B + c,u-u*}. 

From (6.36) and (6.37), 

(6.38) u-T 

_ -B'prob{M<T}. 
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By taking t = 0 in (6.31), one sees that 

(6.39a) prob { M < 0) < B' 

if 

(6.39b) X > X(E/B'). 

Hence, if (6.39b) is satisfied, then i a - c, for all T. 
The expected average utility, v, to the agent is at least as large as the expected 

average utility for the comparison path, so that 

(6.40) T= ( )E(N) + v*E(T- N)] 

A 
A-(v*)E( N 

_ v(v-v*)prob{N< T}. 

By a variation on (6.39ab), one sees that 

(6.4 1a) prob{N< oo} < A 
CE 

V - v* 

if 

(6.41b) X > X(E/(v -v*)). 

Hence, if (6.41b) is satisfied, then v_ v for all T. 
I am now in a position to complete the proof of the theorem by summarizing 

all of the sufficient conditions on X and T. For any positive number 8 let X(8) be 
a number X > 1 such that 

(6.42) prob{ IS -tCI < Ab?, for all t} > 1 - 8; 

further choose the function X to be decreasing. 
From (6.34), (6.37), (6.39b), and (6.41b) one sees that it is sufficient to take 

k > X 'E where 
(6.43) B) 

B" _max{B + c, u*,2(v v*)}; 

and from (6.18) and (6.35) one sees that it is sufficient to take TE to be the 
smallest T such that 

,bo+B c B 
T 2' 

(K)[()3XEbo+ B] . 

This completes the proof of the theorem. 
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7. EXTENSIONS 

Recall that in the definition of the continuation of the game after a date t 
(Section 6), the payoff to a player was taken to be (1/ T) times the total expected 
utility in the remaining (T - t) periods. This is equivalent to taking his payoff to 
be the average expected utility per period over all T periods, since in the 
continuation of the game after date t, the actions and consequences through date 
t have already been determined. As was pointed out in Section 6, from a 
behavioral point of view it might be more attractive to take the payoff in the 
continuation game to be the average expected utility per period in the remaining 
(T - t) periods, i.e., to divide the total remaining utility by (T - t). Using such a 
definition, one can show that the robust equilibria described in Section 6 need to 
be modified so that cooperation breaks down near the end of the game. For 
example, for each epsilon one can find a number k such that each player will 
switch to the one-period Nash equilibrium strategy after date (T - k); the 
number k may be taken to be independent of T. For many, such behavior would 
be intuitively more plausible than the equilibria of Sections 5 and 6. (For similar 
results in the case of certainty, see Radner [8].) 

In Section 6 attention was called to the apparent "inefficiency" of the 
equilibrium strategies described there. The source of the inefficiency was the 
property of the principal's strategy in which he switched to the one-period Nash 
reward function as soon as the agent's cumulated performance reached an upper 
boundary. To improve the efficiency of the equilibrium, one can use a number of 
devices. For example, the principal can translate the two boundaries upward by 
some prescribed amount whenever the upper boundary is reached. In addition, 
the switch by the two players to the one-period Nash equilibrium after the lower 
boundary is reached need not last until the end of the game, but only long 
enough to deter the agent from cheating. I should emphasize, however, that 
strategies modified in these two ways, as well as the strategies described in the 
theorem of Section 6, differ from the equilibrium strategies of Section 5 only on 
histories of "small probability." 

I note here that the results of Sections 5 and 6 can be extended, in an 
appropriate form, to cases with more general classes of utility functions for the 
principal and agent than the classes considered here. In particular, the principal 
need not be neutral towards risk; however in this latter case one would not 
expect a Pareto-optimal arrangement to be characterized by a constant reward. 

One can use similar techniques to demonstrate the existence of exact Nash 
equilibria in the infinite supergame that exactly achieve Pareto-optimal long-run 
average expected utility pairs. Also, one can extend these methods to situations 
with more than two players (see [9]). 

Finally, I note that, if the principal and agent discount future utilities, an 
equilibrium of the infinite supergame typically cannot be efficient; however, such 
equilibria can be close to efficient if the discount rates are small (see [10]). 

Bell Laboratories, Murray Hill, N.J. 

Manuscript received September, 1979; revision received May, 1980. 
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