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1. Introduction 

In 1973, Maynard Smith and Price introduced game theory to the study of 
intraspecific conflicts. The resulting marriage has proved very fruitful of  biological 
models (see Krebs and Davies (1978) for examples). Even simple, biologically 
intuitive games with a small number  of  strategies yield evolutionary stable 
equilibria with an unexpectedly rich mixture of  strategy types. Furthermore, in 
the dynamics of  these evolutionary games mathematicians have discovered inter- 
estingly complex behavior  (see e.g. Bishop and Cannings, 1976; Taylor and 
Jonker, 1978; Zeeman, 1979). 

Here we consider the analogous applications of  game theory to conflicts 
between species (see also Hines (1981)) and examine the dynamics of  the resulting 
coevolutionary games. Our main result, illustrated in detail for 2 x 2 games, is 
that no equilibrium of mixed strategies is locally stable. This means that a 
"coevolutionarily stable situation" is either a vertex equilibrium where each 
species relies on a single pure strategy, or else it consists of  a set of  mixed 
strategies showing no tendency to equilibrium but instead more complicated 
recurrence, i.e. some sort of  cycling of the strategic mixtures. 

We would like to express our thanks to Professors Samuel Karlin and Marcus 
Feldman for stimulating discussions. 

2. Coevolutionary processes 

We regard the members of  a populat ion P as having a choice of  strategies indexed 
by some finite set I. For each choice i ~ I there is a payoff Ai which is not constant 
but will usually depend upon the state of  the environment. The state of  the 
populat ion is described by its current distribution of strategies which is a vector 
P--{Pi :  i ~ I} with 1 ~>pi~>0 for all i and Y.i pf = I. I f  the population is in state p 
then the mean, or average, payoff Pip = ~ p~A~. 

For a distribution vector p strategy i is called active i fp i>0 .  The set of  active 
strategies is the support  of  p, i.e. supp(p)  -- {i ~ I :  p~>0}, p is called fully mixed 
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or interior if  all strategies are active. At the other  extreme,  we identify the pure  
s t r a t egy  i with the vector  8~ such that  8,  = 1 and 8~.= 0 f o r j  ~ i. So supp(S i )=  {i}. 

I f  the current  genera t ion  is in state p then  we assume that  the weight o f  
strategy i in the next  genera t ion  will be more  or less than  Pi according to 
w h e t h e r - - i n  the current  e n v i r o n m e n t - - t h e  payoff  Ai is more  or less than  the 
mean  payoff  Ap. Formal ly ,  we assume that  the t ransi t ion f rom the current  state 
to the next  state is given by a cont inuous  funct ion (a discrete t ime dynamica l  
system) satisfying: 

sgn(Ap~)=sgn(A,-Ap)  ( l > p ~ > 0 ) ,  (2.1) 

where  the sign of  a real n u m b e r  r, sgn(r),  is +, 0, or  - ,  according to whether  r 
is positive, zero or negative.  

Condi t ion  (2.1) is not  assumed for  ext reme values of  p~. I f  p ~ = 0  then zlpi 
cannot  be  negative as Pl cannot  decrease be low zero. For  behav ior  on the b o u n d a r y  
there are two al ternate assumpt ions .  We call the dynamica l  system boundary- 
preserving if, in addi t ion to (2.1), 

Ap, = 0 (when p~ = 0). (2.2B) 

This condi t ion means  that  the pure  strategies "b r eed  t rue".  I f  i is not  active in 
the current  popu la t ion  then it cannot  appea r  in subsequent  generat ions.  

Alternatively,  we call the dynamica l  system inward-pointing if, in addi t ion  to 
(2.1), 

sgn(Ap~) = max(0,  sgn(Ai - Ap)) (when p~ = 0) (2.21) 

which means  that  p~ becomes  posit ive if A i > A ,  but  remains  at zero if A~<~A~. 
The latter condi t ion should  not  be confused with the effect o f  m u t a t i o n - -  

which we are ignoring. Muta t ion  would  instead impose  a per tu rba t ion  on a 
b o u n d a r y  preserving system (and would  overr ide condi t ion (2.1) when  p~ is small  
but  positive. 

Proposition 1. In order that p* be an equilibrium relative to the current environment 
it is necessary that 

Ai = Ap. for all i ~ supp(p* )  (2.3) 

or equivalently, that the payoff for all strategies active for p* be the same. I f  the 
system is boundary-preserving this condition is also sufficient. 

I f  the system is inward pointing it is necessary and sufficient for equilibrium that 
(2.3) hold and, in addition, 

A~<~Ap. for all i ~ L  (2.4) 

Proof: I f  A~ = C for  all i ~ supp(p*)  then C = Y~ p*C = ~ p*A~ = A, .  because  the 
sums are the same whether  taken over  all i or just  over  i ~ supp(p*) .  

Not ice  that  if p* = 1 for  some i then p *  = 8~ and  A~ = Ap. trivially. Because 
of  the requi rement  that  l>p~ in (2.1), a separa te  a r g u m e n t - - w h i c h  we leave to 
the r e a d e r - - i s  needed  for  these pure  strategy cases. 

Otherwise,  p* < 1 for  all i and  (2,1) says that  Ap~ = 0 for  i c supp (p* )  if  and  
only if A~ = Ap.. (2.2B) says Api = 0 for all inactive i while (2.2I) says that  Api = 0 
for  inactive i if  and only if Ai<~Ap.. 

We need one more  game  theoret ic  concept .  For  il, i2 c I we say that  i~ dominates 
i2 if  A~>Ag 2 for all env i ronmenta l  states. 
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Lemma 2. Suppose i~ dominates i 2. I f  p* is an equilibrium, then il and i: cannot 
both be active for  p*, i.e. P~2 = 0 or p~, = O. I f  the system is inward pointing then ia 
cannot be active, i.e. P6 = O. 

Proof: If  p* >0  and Api 2 = 0 then Ai,>A~ 2 = As .  by domination and (2.3). So by 
(2.3) again il ~supp(p*). If  the system is inward pointing the inequality A~>Ap .  
violates (2.4) and so p * > 0  contradicts the assumption that p* is a current 
equilibrium. 

We now apply these preliminaries to two interacting populations P and Q. 
The strategy choices of  P and Q are indexed by finite sets I and J respectively. 
When an i strategist from P meets a j strategist from Q the payoffs are constants 
A~ and Bv to the P and Q players, respectively. So if the current state of P and 
Q are given by distributions p and q respectively then the average payoff to an 
i strategist in P is Aiq ~ ~ j  Ao.qj and the average payoff for the population as a 
whole is Apq =-~1,jp~Auqj, with similar definitions using B o for population Q. 

We define a coevolutionaryprocess for P and Q to be a discrete time dynamical 
system as above where the state of each population determines the environment 
of the others. Thus 

sgn(Ap~) = sgn(Aiq - Apq) (1 >p i>  O) 
(2.5) 

sgn(Aq:) = sgn(Bpj - Bpq) (l > c b > 0). 

The process is boundary-preserving if, in addition, 

Api = 0 (Pi "= O) 
(2.6B) 

Aqj = 0 (qj = 0). 

The process is inward pointing if instead 

sgn(ApO = max(O, sgn(A~q - Apq)) (p~ = O) 
(2.6I) 

sgn(aqj) = max(0, sgn(Bpj - Bpq)) (qj = 0). 

Domination now becomes a finite condition: for i~, iRE I, i I dominates i2 if 
A~,j>A~,j for all j e J and similarly for domination in J. Notice that these condi- 
tions are equivalent to the apparently more general: Ai, q>A~: for all q. 

From Proposition 1 the following is immediate: 

Theorem 3. In order that the pair (p*, q*) be an equilibrium for  the coevolutionary 
process it is necessary that: 

Aiq. ---- Ap.q. for  all i ~ supp(p*) 
(2.7) 

Bp.j = Be.q, for a l l j  ~ supp(q*). 

I f  the process is boundary preserving these conditions are sufficient as well. I f  
the process is inward pointing it is necessary and sufficient that (2.7) hold and, in 
addition : 

Aiq .<ap.q .  for  all i 

B:j~B:q.  for allj. 
(2.8) 
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A pair satisfying (2.7) and (2.8) is called a Nash equilibrium. We will call a 
pair satisfying (2.7) alone a weak Nash equilibrium. Notice that any vertex (6i, 6j) 
is a weak Nash equilibrium but need not be Nash. On the other hand, the two 
concepts agree if both p* and q* are fully mixed. 

Theorem 3 says that once the payoff matrices and boundary behavior are 
specified the equilibria are determined. They do not depend upon the choice of  
coevolutionary process. 

Nash equilibria always exist. In fact, in our terminology, Nash 's  proof  of  this 
result consists of  writing down a particular inward pointing process and applying 
the Brouwer fixed point theorem. 

To illustrate the behavior of  coevolutionary processes we specialize to the 
2 • 2 case, i.e. we assume that each populat ion has available two strategies labelled 
0 or 1: I = J = { 0 ,  1}. The state of  P is described by the real number  p =Pl  with 
0~<p<~l and Po = 1 - p .  Similarly, Q is described by q = ql with qo = 1 - q. Notice 

Alq - Apq = Alq - (pAlq +(1 - p)Aoq ) = (1 - p)(Alq - Aoq ) 

whose sign is that of  A l q - A o q  = ( A l l - A o O q  + ( A l o - A o o ) ( 1 -  q) when 0 < p <  1. 
Thus, (2.5) becomes: 

sgn(Ap) ---- sgn(A1 q - Aoq) = sgn(a~q + So(1 - q)) (0<p  < l) 
(2.9) 

sgn(aq) = sgn(Bpl - Bpo) = sgn(/3,p +/3o(1 - p ) )  ( 0 < q <  1) 

where 

Sl = A l l -  Aol, So= Alo-Aoo 

/31 = Bll - Blo, /30 = B o l  - Boo. 

For the moment  we restrict attention to boundary preserving processes and 
so assume 

Ap=O w h e n p = 0 o r  1, 
(2.108) 

A q = 0  w h e n q = 0 o r  1. 

Also, we assume for the moment  the following nondegeneracy condition: 

None of the numbers s0, Sl,/30,/31 vanish. (2.11) 

Proposition 4. (a) I f  So, tel<0 then strategy 0 dominates strategy 1 for P and for 
any 0 < p < l ,  Ap<0. So p decreases monotonically over subsequent generations 
approaching 0 in the limit. 

I f  So, cq > 0 then 1 dominates 0 for P and 1 is the limit for all interior initial values. 
(b) I f  so<O<cq then Ap = 0  when q = q* where q* = ISo/sll/(1 +lSo/Sll)  and 

more generally 

sgn(Ap) -- sgn(q - q*) for 0 < p <  1. 

I f  So>0>  s l  then sgn(Ap) = - sgn(q - q*). 

Proof: Consider the linear function of q: 0% = s l a  +so ( l  - q ) .  I f  So and al  have 
like signs then So shares this share for all 0~<q~<l and so Ap has this sign for all 
values of  q (0 < p  < 1). Thus the successive values of  p form a monotone sequence. 
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The limiting value must be the p coordinate of  an equilibrium and so equals 0 
or 1. 

On the other hand, if ao and al have opposite signs then aq vanishes at q = q* 
and for q>q* (q<q*)  the sign of aq is that of /9l I (resp. of ao). 

Corollary 5. Assuming (2.11), a nonvertex equilibrium exists if  and only if  both 
ao, al and fl0, fll have unlike signs. There is then a unique, nonvertex equilibrium 
(p*, q*) which is fully mixed : 

p* = 1 o//3d/(1 + I/3o/ ,1) 
q* = 

The behavior of such a 2 • 2 system falls into one of  four categories illustrated 
by the phase portraits of  Figs. 1-4. In Fig. 1 both populations show domination 
while in Fig. 2 only one does (domination for P is illustrated). In these cases the 
only equilibria are the vertices. One vertex is a sink attracting every initial position 
in the interior of the square. The remaining vertices are locally unstable (1 source 
and 2 saddle points). 

Figure 3, which we call the hyperbolic case, occurs when there is a fully mixed 
equilibrium and a l - a o , / 3 1 - B o  have like signs. Two vertices are sinks, each 
attracting initial values from roughly triangular regions separated by an excep- 
tional set of  initial points which tend to the saddle point (p*, q*). The remaining 
two vertices are sources. 

Figure 4, which we call the elliptic case, occurs when there is a fully mixed 
equilibrium and a l -  ao,/31-/30 have unlike signs. No vertex is locally stable as 
they are all saddles. The interior points orbit around (p*, q*). However, as we 
will see below this interior equilibrium is a source so that nearby orbits spiral 
outwards. Thus, there are no locally stable equilibria in this case. 

Fig. 1. Double domination 

/~0, O~1<0 

Bo, El <0 

Fig.  2. Single domination 

(1~0, O/1<0 

/~o<0<~ 

I 

Fig. 3. Hyperbolic case 

Oto<0<a 1 

/3o<0</31 

Fig. 4. Elliptic case 

C~o<0<a I 

/31<0</3o 
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These four robust types are separated by degenerate cases where hypothesis 
(2.11) does not hold. If  ao = oq =0  then the strategies 0 and 1 are behaviorally 
indistinguishable for P and Ap = 0 for all points. On the other hand if only one 
of ao, a~ vanish then P exhibits a weak form of domination. For example, if 
a~<OZo = 0 then Ap<0 when q>0 but the entire segment defined by q = 0 consists 
of equilibria. 

Finally, if we replace boundary-preserving behavior by the inward pointing 
assumption the only vertices which are equilibria are the sinks (assuming (2.11)) 
because only these satisfy the Nash condition (2.8). Thus, for an inward-pointing 
version of the elliptic case no vertex is an equilibrium and the source (p*, q*) is 
the only equilibrium of the system. 

That (p*, q*) is a source in the elliptic case is a special case of our main result: 

Theorem 6. A nondegenerate mixed equilibrium is never locally stable with respect 
to a smooth coevolutionary process. 

By a smooth coevolutionary process we intend a slight sharpening of condition 
(2.9). So in the 2 • case we assume that the dynamic is defined by a function 
(p, q)-->(f(p, q), g(p, q)) with 

f(p, q) = ~(p, Aoq, Alq) 
(2.12) 

g(p, q) = 6(q, Bpo, Bpl )  

where r and ~b are continuously ditIerentiable functions of three real variables 
satisfying 

~(p, a, b ) = p  
when a = b (2.13) 

q,(q, a, b) = q 

and 

~o2<0, ~3<0 ( 0 < p < l )  
(2.14) 

q,2<0, q,3<0 ( 0 < q < l )  

where ~o2, ~03 are the partial derivatives with respect to the second and third 
variables. 

Equation (2.13) means that f(p, q)=p when Aoq =A~q. (2.14) then implies 
that f(p, q)>p (or <p) if Aoq<Alq (resp. Aoq>Alq). This is condition (2.9) and 
so explains why we regard (2.13) and (2.14) as the smooth version of (2.9). 

Example: Assume that P and Q are randomly mating diploid populations with 
strategy choices determined by the genotype at one locus with two alleles. Suppose 
the two alleles for P are P1 and P2 and that an individual of genotype P,~Pt3 uses 
strategy 0 with probability h~t~ (a, 13 = 1, 2). Similarly, an individual of type Q,~Qt3 
uses strategy 0 with probability k~  (~, fl = 1, 2). We assume h~l>~h~2>~h22 with 
at least one inequality sharp and analogous ordering for the k~t3 probabilities in 
population Q. 

If  x is the frequency of allele P~, the gene frequency, then the strategy frequency 
p is given by 

p = h(x) ----- X2hll d-2x(1 - X)hl2 -4-(1 - x ) 2 h 2 2  . (2.15) 



Coevolutionary instability of mixed Nash solutions 129 

The strategy 0 frequency, q, in Q is the analogous function k(y) of the gene 
frequency, y, of Q1. Notice that the inequalities assumed about the h~ ' s  and 
k~ ' s  make h(x) and k(y)  increasing functions with image the interval [h22, hl~] 
and [k22, k11], respectively. 

Given frequency q in population Q the viability of P,~Pp is: 

w~t3(q) = ha#Aoq +(1 -h ,~ )Alq .  (2.16) 

Hence the frequency x' of  P~ after one round of selection is given by the 
usual formula: 

x' = X[Wll (q)x + wl2(q)(1 - x)] (2.17) 
XZWll(q) +2x( l  - x)wl2(q) +(1 - x)2w22(q)" 

Notice that by (2.16) the denominator, the mean viability of  the population, 
#(x, q) is just the mean payoff Apq = A tq +p(Aoq -Aiq) .  Substituting (2.16) into 
(2.17) we define a function x' = ~(x, Aoq , Alq ). The function q~ of  (2.12) is obtained 
by conjugating with the monotone function h, i.e. p ' =  h(x') and p = h(x) or 
x = h-l(p). 

q~(p, Aoq, A~q) = h[~b(h-~(p), Aoq, A~q)]. 
(2.18) 

O(q, Bpo, Bp,) = k[~(k- '(q),  Bpo, Bp,)] 

where (h(y, Bpo, Bpl) is defined via the analogues of  (2.16) and (2.17). 
Conditions (2.13) and (2.14) are easily verified directly and so (2.18) defines 

a smooth coevolutionary process. (2.19) alone follows from Fisher's Fundamental 
Theorem which says, in this case, that for fixed q, ~(x', q)>~ff~(x, q) (with equality 
only at equilibrium), i.e. p'(Aoq- A I q)>1 p(Aoq- A~ q). (See for comparison Eshel 
1982). 

Proof of  Theorem 6: Now suppose there is a fully-mixed Nash equilibrium (p*, q*). 
To discuss local stability we linearize at the equilibrium. Our result follows from 
the discovery that at least one eigenvalue has absolute value greater than 1. 

The key fact is that Aoq* = Alq* and so f (p ,  q * ) = p  for all p. Consequently, 
fp =Of lOp = 1 at (p*, q*). Similarly, gq =Og/Oq = 1 there. The matrix of the 
linearization is thus: 

with eigenvalues 

A• = 1 +~/fqgp. 

Iff~gq>0: The eigenvalues are real and A+>I. Because the map preserves 
orientation of the square the determinant A+A_>0 and so 0<A_<I .  So one 
eigenvalue is larger than 1. 

I f  fpgq<O" The eigenvalues are complex conjugates and I , + 1 2 - - I , _ 1 2 -  - 
l +  gql> 1. 

With a bit more analysis we will see that these two possibilities correspond 
to the hyperbolic and elliptic cases respectively. Furthermore we will see that 
fpgq = 0  corresponds to the degenerate cases where (2.1 l) fails to hold. 
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Notice that when a = b, - ~ 2  = q~3>0. To see this differentiate the equation 
q~(p, a, a)=p with respect to a to get ~2+~03 = 0  and apply (2.14). 

fq = ~pz(Ao, - aoo) + q~3(a,, - A,o) 

= -- ~3(Aol - A o o )  + q93(Al 1 - A i o )  = ~P3(al - ao). 

Similarly, gp = 4`3(/31 -/3o) with 4,3>0 and so the sign offqgp is that of  (al  - ao) 
(/31-/3o). In particular, fqgp = 0 is equivalent to a~ = ao or/31 =/3o. I f  al  = ao # 0 
there is domination for P and so no fully-mixed equilibrium. I f  the common 
value is zero then as described above strategies 0 and 1 are indistinguishable for 
P and p does not move. Even in this case it is easy to check by looking at phase 
portraits with/3o,/31 having unlike nonzero signs that there is no local stability 
unless /31 =/3o = 0 also. So in the 2 x2  case there is local stability only in the 
trivial case where (p, q) never moves. 

The general r e s u l t - - w h i c h  we will just ske tch - -d i f f e r s  only in various 
technicalities from the 2 •  case. Now p, q are vectors and f(p, q), g(p, q) are 
vector functions of  vector variables. We assume 

with 

f(p, q) = ~o(p, { A J )  

g(p, q) = 4`(q, {Bpj}) 

p = ~P(p, {as}) 

q = 4`(q, {bj}) 

(when all a~'s are equal) 

(when all bfs are equal). 
(2.19) 

The conditions analogous to (2.14) only arise in connection with degeneracy 
questions as we will see below. 

Again, if (p*, q*) is a fully mixed equilibrium then differentiating f(p, q) with 
respect to the p~'s at (p*, q*) yields the identity matrix and similarly for differen- 
tiating g(p, q) with respect to the qfs. Thus the matrix of  the linearization at 
(p*, q*) is of  the block form 

o3 
where 1 i, 1j are the I • I and J • J identity matrices, Or and Oj are square matrices 
of  zeros. U is the matrix of  partials (Of/Ogj) and V is the matrix of  partials (OgJOpi). 

Because the left term is the identity, the eigenvalues of  the linearization consist 
of  {A = 1 +/z} where {/x} is the set of  eigenvalues of  the off diagonal matrix 

Claim: The nonzero eigenvalues of M are exactly the square roots of  the nonzero 
eigenvalues of  UV or equivalently the square roots of the nonzero eigenvalues 
of  VU. 
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To see why this is so, notice first that the square of  any eigenvalue of M is 
an eigenvalue (with the same eigenvector) of  

M2 ( UV O~ 
\o vu]" 

Because this matrix is block diagonal its eigenvalues are those of  UV and VU. 
(These two matrices actually have the same set of  nonzero eigenvalues but we 
won' t  need that result.) 

On the other hand, suppose UVz = wz (w ~ O) and tx 2 = to. It is easy to check 
directly that the vector 

t x 

is an eigenvector of  M with eigenvalue tx. 
Now suppose UV or VU has some nonzero eigenvalue to. 

Case 1: I f  w is real and positive then tx = ~ / ~  is an eigenvalue of M and so 
A = 1 +~/-~ is an eigenvalue of the linearization, with A > 1. 

Case 2: I f  ~o is real and negative then ~ = + i~/~-] is a conjugate pair of  pure 
imaginary eigenvalues and so A ~ = 1 • i , ~  is a conjugate pair for the linearization 
with IA~I> 1. 

Case 3 : I f  o)• is a conjugate pair of  complex eigenvalues then the four resulting 
square roots •177 are symmetrically distributed about the origin and contain 
one conjugate pair, which we label/~• with positive real part. Then A• = 1 + tz• 
is a conjugate pair for the linearization with IA• > 1. 

So the only possibility remaining is that all eigenvalues of  UV and VU are 
zero and so all of  the eigenvalues of  the linearization are exactly 1. This case is 
degenerate in the sense that given conditions analogous to (2.13) a perturbation 
of the payoff matrices should eliminate it as a possibility just as weak domination 
represented the boundary between the four robust types in the 2 x 2 case. 

Corollary 7. A nondegenerate, locally stable equilibrium for a smooth coevolutionary 
process can occur only at a vertex, i.e. pure strategies for P and Q. In particular, 
only a vertex can be a nondegenerate sink. 

Proof: Suppose (p*, q*) is an equilibrium and the supports p* and q* are Io C I 
and Jo c J respectively. I f  Io and Jo both contain at least two strategies then by 
restricting to the Io x Jo subgame and applying the previous theorem we see that 
(p*, q*) cannot be locally stable even with respect to perturbations having the 
same support.  I f  J0 contains only one strategy, say Jo={jo} so that q * =  6jo then 
p* is an equilibrium only if all the Aqo'S are equal. This case is degenerate if Io 
contains more than one strategy. So we are left with the vertex case. 

3. Summary and discussion 

For an inter population game we have shown, first, that the equilibria depend 
only upon the payoff matrices of  the game and the boundary behavior assumptions 
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but are independent of the choice of coevolutionary process modelling the 
dynamics. Secondly, we have seen that - -  barring degenerate cases - -  only a Nash 
equilibrium of pure strategies can be an attracting equilibrium and so only these 
positions represent biologically observable stationary states. These results overlap 
with those of Hines (1981). Hines' models are more general in considering the 
use of  mixed strategies by individuals. On the other hand, he restricts attention 
to a particular dynamical system. 

Underlying the mathematics of the failure of stability for mixed equilibria is 
a simple idea. Suppose (p*, q*) is a fully-mixed equilibrium, q* determines the 
environment of population P and because p* is a fully-mixed equilibrium every 
strategy i for P yields the same payoff. Thus, as long as Q remains at q* there 
is no selection pressure tending to hold P at p* and it is free to drift away. 
Dynamically, this is the neutral stability of a cone lying on its side as opposed 
to balanced on its point or resting on its base. Of course, once both P and Q 
have drifted away from equilibrium the strategies are no longer equivalent and 
selection pressures begin to move both populations about. But a priori there is 
no reason that the dynamic behavior should tend to damp out the perturbations 
and return the system to (p*, q*). In fact, our analysis shows the opposite. Small 
perturbations are intensified and the populations move away from the original 
equilibrium. 

Where then does the system go? In three of the four 2 x2  cases the population 
comes to rest at a pure strategy Nash equilibrium. In the elliptic case there is no 
such equilibrium. The orbits spiral away from the center but their limiting behavior 
is uncertain. Do they approach the boundary or some compact set of nonequili- 
brium strategies in the interior (periodic points or limit cycles)? Unlike the 
equilibrium behavior, the answers to these questions do depend on the choice 
of coevolutionary process. For example, in Fig. 4 any map of  the square consistent 
with the directions given by the arrows is a coevolutionary process and any of 
these outcomes can occur. 

In comparing our discrete time results with a continuous time model, Maynard 
Smith has mentioned that mixed strategy equilibria can be locally stable in the 
latter case. While true we regard this result as misleading. Consider the differential 
equation model which generalizes the Taylor-Jonker  equations: 

dp__~= 
dt pi(Aiq - Apq) 

(3.1) 
dq;= 
dt qj( Bpj - Bpq) 

At a fully mixed equilibrium the matrix of linearization is of the form 

and the proof  of Theorem 6 shows that if no eigenvalues with positive real part 
occur then all the eigenvalues must be zero or pure imaginary. If  they are not 
all zero then the introduction of any lag into the system at all renders the 
equilibrium unstable (cf. Chapter 2 of May (1973)). 
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More generally, using the machinery of differential forms it is possible to 
write down a volume form ~ on the interior (=  {p: p i>0  and ~ Pi  = 1} • qj>0 
and ~, t b = 1}) such that the flow of  (3.1) preserves the associated volume or 
equivalently the vectorfield has zero divergence with respect to g2. This means 
that the motion is like that of  an incompressible fluid. Stable equilibria can occur 
but they are never asymptotically stable, i.e. there are no sinks. Perturbations are 
not intensified but neither are they damped out. In fact there can be no compact 
set contained in the interior which attracts all nearby orbits. For if A were such 
an attractor it would have a compact neighborhood U which is mapped to a 
smaller neighborhood in U by the flow. This is impossible because U has finite 
volume and this volume is preserved by the flow. Attractors can occur in the 
b o u n d a r y -  e.g. vertices which are Nash e q u i l i b r i a -  because the volume form 
blows up at the boundary and so neighborhoods of  vertices have infinite volume. 
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