GONTROLLED RANDOM WALKS

David blackwell

1. Introduction. Let $M=\left\|m_{i j}\right\|$ be an $r \times s$ matrix whose elements $m_{i j}$ are probability distributions on the Borel sets of a closed bounded convex subset X of k-space. We associate with M a game between two players, I and II, with the following infinite sequence of moves, where $n=0,1,2, \ldots$:

Move $4 n+1$: I selects $i=1, \ldots, r$.
Move $4 n+2$: II selects $j=1, \ldots, s$ not knowing the choice of I at move $4 n+1$.
Move $4 n+3$: a point x is selected according to the distribution $\mathrm{m}_{i j}$.
Move $4 n+4: x$ is announced to I and II.
Thus, a mixed strategy for I is a function f, defined for all finite sequences $a=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{k} \in X, n=0,1,2, \ldots$, with values in the set P_{r} of r-vectors $p=\left(p_{1}, \ldots, p_{r}\right), p_{i} \geqq 0, \sum p_{i}=1$: the ith coordinate of $f\left(a_{1}, \ldots, a_{n}\right)$ specifies the probability of selecting i at move $4 n+1$ when a_{1}, \ldots, a_{n} are the X-points produced during the first $4 n$ moves. A strategy g for II is similar, except that its values are in P_{s}. For a given pair f, g of strategies, the X-points produced are a sequence of random vectors x_{1}, x_{2}, \ldots, such that the conditional distribution of x_{n+1} given x_{1}, \ldots, x_{n} is $\sum_{i, j} f_{i}\left(x_{1}, \ldots, x_{n}\right) m_{i j} g_{j}\left(x_{1}, \ldots, x_{n}\right)$, where f_{i}, g_{j} are the ith and jth coordinates of f, g.

The problem to be considered in this paper is the following: To what extent can a given player control the limiting behavior of the random variables $\bar{x}_{n}=\left(x_{1}+\ldots+x_{n}\right) / n$? For a given closed nonempty subset S of X, we shall denote by $H(f, g)$ the probability that \bar{x}_{n} approaches S as $n \rightarrow \infty$, i.e., the distance from the point \bar{x}_{n} to the set S approaches zero, where x_{1}, x_{2}, \ldots is the sequence of random variables determined by f, g. We shall say that S is approachable by I with f^{*} (II with g^{*}) if $H\left(f^{*}, g\right)=1\left(H\left(f, g^{*}\right)=1\right)$ for all $g(f)$, and shall say that S is approachable by I (II) if there is an $f(g)$ such that S is approachable by I with f (II with g). We shall say that S is excludable by I with f if there is a closed T disjoint from S which is approachable by I with f. Excludability by II with g, excludability by I, and excludability by II are defined in the obvious way.

It is clear that no S can be simultaneously approachable by I and excludable by II. The main result to be described below is that every convex S is
either approachable by I or excludable by II; a fairly simple necessary and sufficient condition for a convex S to be approachable by I is given, a specific f which achieves approachability is described, and an application is given. Finally, an example of a (necessarily nonconvex) S which is neither approachable by I nor excludable by II is given, and some unsolved problems are mentioned.
2. The main result. For any $p \in P_{r}\left(q \in P_{s}\right)$ denote by $R(p)(T(q))$ the convex hull of the $s(r)$ points $\sum_{i} p_{i} \bar{m}_{i j}, j=1, \ldots, s\left(\sum_{j} \bar{m}_{i j} q_{j}, i=1, \ldots, r\right)$ where $\bar{m}_{i j}$ is the mean of the distribution $m_{i j}$. By selecting i with distribution q at a given stage, I forces the mean of the vector x selected at that stage into $R(p)$, and no further control over the mean of x is possible. It is intuitively plausible, and true, that $R(p)(T(q))$ is approachable by I (II) with $f \equiv p$ ($g \equiv q$). Thus, unless S intersects every $T(q)$, it is excludable by II and hence not approachable by I. It turns out that any convex S which intersects every $T(q)$ is approachable by I; a more complete statement is

Theorem 1. For any closed convex S, the following conditions are equivalent:
(a) S is approachable by I.
(b) S intersects every $T(q)$.
(c) For every supporting hyperplane H of S, there is a p such that $R(p)$ and S are on the same side of H.
If S is approachable by I, it is approachable by I with f defined as follows. For any $a=\left(a_{1}, \ldots, a_{n}\right)$ for which $\bar{a}=\left(a_{1}+\ldots+a_{n}\right) / n \in S, f(a)$ is arbitrary. If $\bar{a} \notin S, f(a)$ is any $p \in P_{r}$ such that $R(p)$ and S are on the same side of H, where H is the supporting hyperplane of S through the closest point s_{0} of S to \bar{a} and perpendicular to the line segment joining \bar{a} and s_{2}.

Theorem 1 is proved in [l]; equivalence of (b) and (c) is an immediate consequence of the von Neumann minimax theorem [2], while the proof of the rest of the theorem is complicated in detail, though the main idea is simple.
3. An application. As an application of Theorem 1, we deduce a result of Hannan and Gaddum. This result concerns the repeated playing of a zero-sum two person game with $r \times s$ payoff matrix $A=\left\|a_{i j}\right\|$. If the game is to be played N times (N large), and I knows in advance that the number of times II will choose j is $N q_{j}, j=\mathbf{1}, \ldots, s$, he can achieve the average amount $h(q)$ $=\max \sum a_{i j} q_{j}$. Hannan and Gaddum show that, without knowing q in advance
i
I can play so that, for any q, I's averge income is almost $h(q)$; in our terminology, this result is the following:

Let M be the $r \times s$ matrix with $m_{i j}=\left(\delta_{j}, a_{i j}\right)$, where δ_{j} is the j th unit vector in s-space. The set S consisting of all (q, y) such that $y \geqq h(q)$ is approachable by I.

This follows immediately from condition (b) of Theorem 1, for $T(q)$ is the
convex hull of the r points $\left(q, \Sigma a_{i f} q_{j}\right)$, and one of these is the point $(q, h(q))$, so that $T(q)$ intersects S.
4. An example. If $k=1$, every closed S is either approachable by I or excludable by II. For $k=2$, there are sets which are neither; an example is:

$$
M=\left\|\begin{array}{ll}
(0,0) & (0,0) \\
(1,0) & (1,1)
\end{array}\right\|
$$

$S=A B$, where A is the line segment joining $\left(\frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{4}\right)$ and B is the line segment joining ($1, \frac{1}{2}$) and (1,1). The strategy g with $g\left(a_{1}, \ldots, a_{n}\right)=1$ for $u_{2 n} \leqq n<u_{2 n+1}, g=2$ otherwise, where $\left\{u_{n}\right\}$ is a sequence of integers becoming infinite so fast that $\left(u_{1}+\ldots+u_{n}\right) / u_{n+1} \rightarrow 0$ forces \bar{x}_{n} to oscillate between the lines $y=0$ and $y=x$, so that \bar{x}_{n} cannot converge to S, and S is not approachable by I. On the other hand, I can force \bar{x}_{n} to come arbitrarily near S infinitely often as follows. By choosing 2 successively a number of times large in comparison with the number of previous trials, I forces an \bar{x}_{n} near ($1, a$) for some $a, 0 \leqq a \leqq 1$. If $a \geqq \frac{1}{2}, \bar{x}_{n}$ is near S; if $a<\frac{1}{2}$, by choosing $1 n$ times in succession, I forces $\bar{x}_{2 n}$ to be approximately $\left(\frac{1}{2}, \frac{a}{2}\right)$, which is in S. Thus S is neither approachable by I nor excludable by II.
5. Some unsolved problems.
A. Find a necessary and sufficient condition for approachability. This problem has not been solved even for the example of section 4.
B. Call a closed S weakly approachable by I if there is a sequence of strategies $f n$ such that for every $\varepsilon>0$,

$$
\sup \operatorname{Prob}\left\{\varrho\left(\bar{x}_{n}\left(f_{n}, g\right), S\right)>\varepsilon\right\} \rightarrow 0
$$

as $n \rightarrow \infty$, where $\varrho(x, S)$ is the distance from x to S.
Define weak approachability by II similarly, and call S weakly excludable by II if there is a closed T disjoint from S which is weakly approachable by II. Is every S either weakly approachable by I or weakly excludable by II? For the example of section 4 , the answer is yes.
C. Does the class of (weakly) approachable sets for a given M depend only on the matrix of mean values of M ?

References.

[1] David Blackwell, "An analog of the minimax theorem for vector payoffs," to appear in the Pacific Journal of Mathematics.
[2] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Princeton, 1944.

University of California, Berkeley

