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Abstract. A valuation for a player in a game in extensive form
is an assignment of numeric values to the players moves. The val-
uation reflects the desirability moves. We assume a myopic player,
who chooses a move with the highest valuation. Valuations can also
be revised, and hopefully improved, after each play of the game.
Here, a very simple valuation revision is considered, in which the
moves made in a play are assigned the payoff obtained in the play.
We show that by adopting such a learning process a player who
has a winning strategy in a win-lose game can almost surely guar-
antee a win in a repeated game. When a player has more than two
payoffs, a more elaborate learning procedure is required. We con-
sider one that associates with each move the average payoff in the
rounds in which this move was made. When all players adopt this
learning procedure, with some perturbations, then, with probabil-
ity 1, strategies that are close to subgame perfect equilibrium are
played after some time. A single player who adopts this procedure
can guarantee only her individually rational payoff.

1. Introduction

Models of learning in games fall roughly into two categories. In the
first, the learning player forms beliefs about the future behavior of
other players and nature, and directs her behavior according to these
beliefs. We refer to these as fictitious-player-like models. In the second,
the player is attuned only to her own performance in the game, and
uses it to improve future performance. These are called models of
reinforcement learning.

Reinforcement learning has been used extensively in artificial intel-
ligence (AI). Samuel wrote a checkers-playing learning program as far
back as 1955, which marks the beginning of reinforcement learning
(see Samuel (1959)). Since then many other sophisticated algorithms,
heuristics, and computer programs, have been developed, which are
based on reinforcement learning. (Sutton and Barto (1998)). Such
programs try neither to learn the behavior of a specific opponent, nor
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to find the distribution of opponents’ behavior in the population. In-
stead, they learn how to improve their play from the achievements of
past behavior.

Until recently, game theorists studied mostly fictitious-player-like
models. Reinforcement learning has only attracted the attention of
game theorists in the last decade in theoretical works like Gilboa and
schmeidler (1995), Camerer and Ho (1997), Sarin and Vahid (1999),
and in experimental works like Erev and Roth (1997). In all these
studies the basic model is given in a strategic form, and the learning
player identifies those of her strategies that perform better. This ap-
proach seems inadequate where learning of games in extensive form is
concerned. Except for the simplest games in extensive form, the size of
the strategy space is so large that learning, by human beings or even
machines, cannot involve the set of all strategies. This is certainly true
for the game of chess, where the number of strategies exceeds the num-
ber of particles in the universe. But even a simple game like tic-tac-toe
is not perceived by human players in the full extent of its strategic
form.

The process of learning games in extensive form can involve only a
relatively small number of simple strategies. But when the strategic
form is the basic model, no subset of strategies can be singled out.
Thus, for games in extensive form the structure of the game tree should
be taken into consideration. Instead of strategies being reinforced, as
for games in strategic form, it is the moves of the game that should be
reinforced for games in extensive form.

This, indeed, is the approach of heuristics for playing games which
were developed by AI theorists.1 One of the most common building
block of such heuristics is the valuation, which is a real valued function
on the possible moves of the learning player. The valuation of a move
reflects, very roughly, the desirability of the move. Given a valuation,
a learning process can be defined by specifying two rules:

• A strategy rule, which specifies how the game is played for any
given valuation of the player;

• A revision rule, which specifies how the valuation is revised
after playing the game.

1Perhaps the concentration of the AI literature on moves rather than strategies
is the reason why there seems to be almost no overlap between two major books
on learning, each in its field: The Theory of Learning in Games, Fudenberg and
Levine (1998) and Reinforcement Learning: An Introduction, Sutton and Barto
(1998).
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Our purpose here is to study learning-by-valuation processes, based
on simple strategy and revision rules. In particular, we want to demon-
strate the convergence properties of these processes in repeated games,
where the stage game is given in an extensive form with perfect infor-
mation and any number of players. Converging results of the type we
prove here are very common in the literature of game theory. But as
noted before, convergence of reinforcement is limited in this literature
to strategies rather than moves.2 To the best of our knowledge, the
AI literature while describing dynamic processes closely related to the
ones we study here do not prove convergence results of this type.

First, we study stage games in which the learning player has only
two payoffs, 1 (win) and 0 (lose). Two-person win-lose games are a
special case. But here, there is no restriction on the number of the
other players or their payoffs.

For these games we adopt the simple myopic strategy rule. By this
rule, the player chooses in each of her decision node a move which has
the highest valuation among the moves available to her at this node.
In case there are several moves with the highest valuation, she chooses
one of them at random.

As a revision rule we adopt the simple memoryless revision: after
each round the player revises only the valuation of the moves made in
the round. The valuation of such a move becomes the payoff (0 or 1)
in that round.

Equipped with these rules, and an initial valuation, the player can
play a repeated game. In each round she plays according to the myopic
strategy, using the current valuation, and at the end of the round she
revises her valuation according to the memoryless revision.

This learning process, together with the strategies of the other play-
ers in the repeated game, induce a probability distribution over the
infinite histories of the repeated game. We show the following, with
respect to this probability.

Suppose that the learning player can guarantee a win
in the stage game. If she plays according to the myopic

2There is no obvious way to define an assessment for a strategy from a system
of node valuations. Therefore, a simple translation of our learning model in terms
of strategies is not straightforward. One fundamental difficulty is that the node
valuation treatment does not impose that a strategy be assessed in the same way
throughout the play of the game. Also, two strategies involving the same first move
should be assessed in the same way initially (a condition which does not make much
sense in the reinforcement learning based on the strategic form.
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strategy and the memoryless revision rules, then start-
ing with any nonnegative valuation, there exists, with
probability 1, a time after which the player always wins.

When the learning player has more than two payoffs, the previous
learning process is of no help. In this case we study the exploratory
myopic strategy rule, by which the player opts for the maximally val-
ued move, but chooses also, with small probability, moves that do not
maximize the valuation.

The introduction of such perturbations makes it necessary to strengthen
the revision rule. We consider the averaging revision. Like the mem-
oryless revision, the player revises only the valuation of moves made
in the last round. The valuation of such a move is the average of the
payoffs in all previous rounds in which this move was made.

If the learning player obeys the exploratory myopic strat-
egy and the averaging revision rules, then starting with
any valuation, there exists, with probability 1, a time
after which the player’s payoff is close to her individ-
ually rational payoff (the maxmin payoff) in the stage
game.

The two previous results indicate that reinforcement learning achieves
learning of playing the stage game itself, rather than playing against
certain opponents. The learning processes described guarantee the
player her individually rational payoff (which is the win in the first
result). This is exactly the payoff that she can guarantee even when
the other players are disregarded.

Our next result concerns the case where all the players learn the
stage game. By the previous result we know that each can guarantee
his individually rational payoff. But, it turns out that the synergy of
the learning processes yields the players more than just learning the
stage game. Indeed, they learn in this case each other’s behavior and
act rationally on this information.

Suppose the stage game has a unique perfect equilib-
rium. If all the players employ the exploratory myopic
strategy and the averaging revision rules, then starting
with any valuation, with probability 1, there is a time
after which their strategy in the stage game is close to
the perfect equilibrium.

Although valuation is defined for all moves, the learning player needs
no information concerning the game when she start playing it. Indeed,
the initial valuation can be constant. To play the stage game with
this valuation, the player needs to know which moves are possible to
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her, only when it is her turn to play, and then choose one of them at
random. During the repeated game, the player should be able to record
the moves she made and their valuations. Still, the learning procedure
does not require that the player knows how many players there are, let
alone the moves they can make and their payoffs.

The learning processes discussed here treat separately the valuation
for every node. For games with large number of nodes (or states of
the board), that may be unrealistic because the chance of meeting a
given node several times is too small. In chess, for example, almost
any state of the board, except for the few first ones, has been seen
in recorded history only once. In order to make these processes more
practical, similar moves (or states of the board) should be grouped
together, such that the number of similarity classes is manageable.
When the valuation of a move is revised, so are all the moves similar
to it. We will deal with such learning processes, as well as with games
with incomplete information, in a later paper.

2. Preliminaries

2.1. Games and super games. Consider a finite game G with com-
plete information and a finite set of players I. The game is described
by a tree (Z, N, r, A), where Z and N are the sets of terminal and non-
terminal nodes, correspondingly, the root of the tree is r, and the set
of arcs is A. Elements of A are ordered pairs (n, m), where m is the
immediate successor of n.

The set Ni, for i ∈ I, is the set of nodes in which it is i’s turn to
play. The sets Ni form a partition of N . The moves of player i at
node n ∈ Ni are the nodes in Mi(n) = {m | (n,m) ∈ A}. Denote
Mi = ∪n∈Ni

Mi(n). For each i the function fi : Z → R is i’s payoff
function. The depth of the game is the length of the longest path in
the tree. A game with depth 0 is one in which {r} = Z and N = ∅.

A behavioral strategy, (strategy for short) for player i is a function
σi defined on Ni, such that for each n ∈ Ni, σi(n) is a probability
distribution on Mi(n).

The super game Γ is the infinitely repeated game, with stage game
G. An infinite history in Γ is an element of Zω. A finite history of t
rounds, for t ≥ 0, is an element of Zt. A super strategy for player i in
Γ is a function Σi on finite histories, such that for h ∈ Zt, Σi(h) is a
strategy of i in G, played in round t+1. The super strategy Σ = (Σi)i∈I

induces a probability distribution on histories in the usual way.

2.2. Valuations. We fix one player i (the learning player) and omit
subscripts of this player when the context allows it. We first introduce
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the basic notions of playing by valuation. A valuation for player i is a
function v : Mi → R.

Playing the repeated game Γ by valuation requires two rules that
describe how the stage game G is played for a given valuation, and
how a valuation is revised after playing G.

• A strategy rule is a function v → σv. When player i’s valuation
is v, i’s strategy in G is σv.

• A revision rule is a function (v, h) → vh, such that for the
empty history Λ, vΛ = v. When player i’s initial valuation is v,
then after a history of plays h, i’s valuation is vh.

Definition 1. The valuation super strategy for player i, induced by
a strategy rule v → σv, a revision rule (v, h) → vh, and an initial

valuation v, is the super strategy Σv
i , which is defined by Σv

i (h) = σvh

for each finite history h.

3. Main results

3.1. Win-lose games. We consider first the case where player i has
two possible payoffs in G, which are, without loss of generality, 1 (win)
and 0 (lose). A two-person win-lose game is a special case, but here we
place no restrictions on the number of players or their payoffs.

We assume that learning by valuation is induced by a strategy rule
and a revision rule of a simple form.

The myopic strategy rule. This rule associates with each valuation
v the strategy σv, where for each node n ∈ Ni, σv(n) is the the uniform
distribution over the maximizers of v on Mi(n). That is, in each node
of player i, the player selects at random one of the moves with the
highest valuation.

The memoryless revision rule. For a history h = (z) of length 1,
the valuation v is revised to vz which is defined for each node m ∈ Mi(n)
by

vz(m) =

{
fi(z) m is on the path leading from r to z,

v(m) otherwise.

For a history h = (z1, . . . , zt), the current valuation is revised in each
round according to the terminal node observed in this round. Thus,

vh =
(
v

(z1,...,zt−1)
i

)zt
.

The temporal horizons, future and past, required for these two rules
are very narrow. Playing the game G, the player takes into consider-
ation just her next move. The revision of the valuation after playing
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G depends only on the current valuation, and the result of this play,
and not on the history of past valuations and plays. In addition, the
revision is confined only to those moves that were made in the last
round.

Theorem 1. Let G be a game in which player i either wins or loses.
Assume that player i has a strategy in G that guarantees him a win.
Then for any initial nonnegative valuation v of i, and super strategies Σ
in Γ, if Σi is the valuation super strategy induced by the myopic strategy
and the memoryless revision rules, then with probability 1, there is a
time after which i is winning forever.

The following example demonstrates learning by valuation.

Example 1. Consider the game in Figure 1, where the payoffs are
player 1’s.
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Figure 1. Two payoffs

Suppose that 1’s initial valuation of each of the moves L and R
is 0. The valuations that will follow can be one of (0, 0), (1, 0), and
(0, 1), where the first number in each pair is the valuation of L and the
second of R. (The valuation (1, 1) cannot be reached from any of these
valuations).

We can think of these possible valuations as states in a stochastic
process. The state (0, 1) is absorbing. Once it is reached, player 1
is choosing R and being paid 1 forever. When the valuation is (1, 0),
player 1 goes L. She will keep going L, and winning 1, as long as player
2 is choosing a. Once player 2 chooses b, the valuation goes back to
(0, 0). Thus, the only way player 1 can fail to be paid 1 from a certain
time on is when (0, 0) recurs infinitely many times. But the probability
of this is 0, as the probability of reaching the absorbing state (0, 1) from
state (0, 0) is 1/2.

Note that the theorem does not state that with probability 1 there
is a time after which player 1’s strategy is the one that guarantees him
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payoff 1. Indeed, in this example, if player 2’s strategy is always a,
then there is a probability 1/2 that player 1 will play L for ever, which
is not the strategy that guarantees player 1 the payoff 1.

3.2. The case of payoff function with more than two values.
We now turn to the case in which payoff functions take more than two
values. The next example shows that in this case the myopic strategy
and the memoryless revision rules may lead the player astray.

Example 2. Player 1 is the only player in the game in Figure 2.
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Figure 2. More than two payoffs

In this game player 1 can guarantee a payoff of 10, and therefore
we expect a learning process to lead player 1 to this payoff. But, no
reasonable restriction on the initial valuation can guarantee that the
learning process induced by the myopic strategy and the memoryless
revision results in the payoff 10 in the long run. For example, for
any constant initial valuation, there is a positive probability that the
valuation (−10, 2) for (L,R) is obtained, which is absorbing.

We cannot state for general payoff functions any theorem analogous
to Theorem 1 or even a weaker version of this theorem. But something
meaningful can be stated when all players play the repeated game
according to the myopic strategy and the memoryless revision rules.

We say that game G is generic if for every player i and for every pair
of distinct terminal nodes z and z′, we have fi(z) 6= fi(z

′).

Theorem 2. Let G be a generic game. Assume that each player i
plays Γ according to the myopic strategy rule and uses the memoryless
revision rule. Then for any initial valuation profile, with probability 1,
there is a time after which the same terminal node is reached in each
round.

The limit plays guaranteed by this theorem depend on the initial
valuations and have no special structure in general. Moreover, it is
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obvious that for any terminal node there are initial valuations that
guarantee that this terminal node is reached in all rounds.

We return, now, to the case where only one player learns by rein-
forcement. In order to prevent a player from being paid an inferior
payoff forever, like in Example 2, we change the strategy rule. We
allow for exploratory moves that remind her of all possible payoffs in
the game, so that she is not stuck in a bad valuation. Assume, then,
that having a certain valuation, the player opts for the highest valued
nodes, but still allows for other nodes with a small probability δ. Such
a rule guarantees that player in Example 2 will never be stuck in the
valuation (−10, 2). We introduce formally this new rule.

The δ-exploratory myopic strategy rule. This rule associates with
each valuation v the strategy σv

δ , where for each node n ∈ Ni, σv
δ (n) =

(1− δ)σv(n) + δµ(n). Here, σv is the strategy associated with v by the
myopic strategy rule, and µ is the strategy that uniformly selects one
of the moves at n.

Unfortunately, adding exploratory moves does not help the player to
achieve 10 in the long run, as we show now. Assume that the initial
valuation of a and b is 10 and −10 correspondingly, and the valuation
of the fist two moves is also favorable: (10, 2). We assume now that
in each of the two nodes player 1 chooses the higher valued node with
probability 1 − δ and the other with probability δ. The valuation of
a and b cannot change over time. The valuation of (L,R) form an
ergodic Markov chain with the two states {(10, 2), (−10, 2)}. Thus, for
example, the probability of transition from (10, 2) to itself occurs when
the player chooses either L and a, with probability (1− δ)2, or R with
probability δ, which sum to 1− δ + δ2.

The following is the transition matrix of this Markov chain.

( (10, 2) (−10, 2)

(10, 2) 1− δ + δ2 δ − δ2

(−10, 2) δ − δ2 1− δ + δ2

)

The two states (10, 2) and (−10, 2) are symmetric and therefore the
stationary probability of each is 1/2. Thus, the player is paid 10 and
2, half of the time each.

Note that the exploratory moves are required because the payoff
function has more than two values. However, the failure to achieve
the payoff 10 after introducing the the δ-exploratory myopic strategy
rule is the result of this rule, and has nothing to do with the number of
values of the payoff function. That is, even in a win-lose game, a player
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who has a winning strategy may fail to guarantee a win in the long run
by playing according to the rules of δ-exploratory myopic strategy and
memoryless revision.

Thus, the introduction of the δ-exploratory myopic strategy rule
forces us also to strengthen the revision rule as follows.

The averaging revision rule. For a node m ∈ Mi, and a history h =
(z1, . . . , zt), if the node m was never reached in h, then vh(m) = v(m).
Else, let t1, . . . , tk be the times at which m was reached in h, then

vh(m) =
1

k

k∑

l=1

f(ztl).

We state, now, that by using little exploration, and averaging re-
vision, player i can guarantee to be close to his individually rational
(maxmin) payoff in G.

Theorem 3. Let Σ be a super strategy such that Σi is the valuation
super strategy induced by the δ-exploratory myopic strategy and the av-
eraging revision rules. Denote by Pδ the distribution over histories in
Γ induced by Σ.

Let ρ be i’s individually rational payoff in G. Then for every ε > 0
there exists δ0 > 0 such that for every 0 < δ < δ0, for Pδ-almost all
infinite histories h = (z1, z2, . . . ),

lim
t→∞

1

t

t∑

l=1

f(zl) > ρ− ε.

We consider now the case where all players learn to play G, using
the δ-exploratory myopic strategy and the averaging revision rules.
We show that in such a case, in the long run, the players’ strategy
in the stage game is close to a perfect equilibrium. We assume for
simplicity that the game G has a unique perfect equilibrium (which is
true generically).

Theorem 4. Assume that G has a unique perfect equilibrium β =
(βi)i∈I . Let Σδ be the super strategy such that for each i, Σδ

i is the
valuation super strategy induced by the δ-exploratory myopic strategy,
and the averaging revision rules.

Let Pδ be the distribution over histories induced by Σδ. Then there
exists δ0, such that for all 0 < δ < δ0, for Pδ-almost all infinite his-
tories h = (z1, . . . , zt, . . . ), there exists T , such that for all t > T ,

σv(z1,...,zt)

i (m) = (1 − δ)βi(m) + δµ(m), for each player i and node
m ∈ Mi.
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4. proofs

4.1. Stochastic repeated games. We prove all the theorems by in-
duction on the depth of the game tree. For this we need to be able
to deduce properties of Γ from properties of repeated games of stage
games G′ which are subgames of G. This can be more naturally done
when we consider a wider class of repeated games which we call sto-
chastic repeated games. Within this class the repeated game of G′ can
be imbedded in the repeated game of G, thus enabling us to make the
required deductions.

Let S be a countable set of states which also includes an end state
e. We consider a game ΓS in which the game G is played repeatedly.
Before each round a state from S is selected according to a probability
distribution which depends on the history of the previous terminal
nodes and states. When the state e is realized the game ends. The
selected state is known to the players. The strategy played in each
round depends on the history of the terminal nodes and states. We
now describe ΓS formally.
Histories. The set of infinite histories in ΓS, is H∞ = (S × Z)ω. For
t ≥ 0 the set of finite history of t rounds, is Ht = (S × Z)t, and the
set of preplay histories of t rounds is Hp

t = (S × Z)t × S. Denote
H = ∪∞t=0Ht and Hp = ∪∞t=0Ht × S. The subset of Hp of histories that
terminate with e is denoted by F . For h ∈ H∞ and t ≥ 0 we denote by
ht the history in Ht which consists of the first t rounds in h. For finite
and infinite histories h we denote by h̄ the sequence of terminal nodes
in h.
Transition probabilities. For each h ∈ H, τ(h) is a probability
distribution on S. For s ∈ S, τ(h)(s) is the probability of transition to
state s after history h. The probability that the game ends after h is
τ(h)(e).
Super strategies. After t rounds the player observes the history of t
pairs of a state and a terminal node, and the state that follows them,
and then plays G. Thus, a super strategy for player i is a function Σi

from Hp\F to i’s strategies in G. We denote by Σ(h)(z) the probability
of reaching terminal node z when Σ(h) is played.
The super play distribution. The super strategy Σ induces the
super play distribution which is a probability distribution P over H∞∪
F . It is the unique extension of the distribution over finite histories
which satisfies

(1) P (h, s) = P (h)τ(h)(s)
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for h ∈ H, and

(2) P (h, z) = P (h)Σ(h)(z)

for h ∈ Hp.
The valuation super strategy. Player i’s valuation super strategy
in ΓS, starting with valuation v, is the super strategy Σi which satisfies

Σi(h) = σvh̄
.

4.2. Subgames. We show now how a stochastic repeated game of a
subgame of G can be imbedded in ΓS.

For a node n in G, denote by Gn the subgame starting at n. Fix a
super strategy profile Σ in ΓS and the induced super play distribution
P on H∞. In what follows we describe a stochastic super game ΓS′

n , in
which the stage game is Gn. For this we need to define the state space
S ′. We tag histories and states in the game ΓS′

n , as well as terminal
nodes in Gn. Our purpose in this construction is to imbed H ′

∞ in H∞.
The idea is to regard these rounds in a history h in H∞ in which node
n is not reached as states in S ′.

Let S ′ be defined as the set of all h ∈ Hp, such that node n is never
reached in h. Obviously, S ′ subsumes S, and in particular includes the
end state e. Note that the set H ′

∞ of infinite history in ΓS′
n can be

naturally viewed as a subset of H∞, H ′ as a subset of H, and H ′p as
a subset of Hp. We use this fact to define the transition probability
distribution τ ′ in ΓS′

n as follows.
For any s′ 6= e in S ′ and h′ ∈ H with P (h′) > 0,

(3) τ ′(h′)(s′) = P (h′, s′ | h′)Σ(h′, s′)(n),

where Σ(h′, s′)(n) is the probability that node n is reached under the
strategy profile Σ(h′, s′). For e, τ ′(h′)(e) = P (E | h′), where E consists
of all histories h ∈ H∞ ∪F with initial segment h′ such that n is never
reached after this initial segment.

Note that τ ′(h′)(s′) is the probability of all histories in H∞ ∪F that
start with (h′, s′) and followed by a terminal node of the game Gn.
These events and the event E described above, form a partition of
H∞ ∪ F , and therefore τ ′ is a probability distribution.

Claim 1. Define a super strategy profile Σ′ in ΓS′
n , by

(4) Σ′(h′) = Σn(h′)

for each h′ ∈ H ′p, where the right-hand side is the restriction of Σ(h′)
to Gn. Then, the restriction of P to H ′

∞ coincides with the super play
probability distribution P ′, induced by Σ′.
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Proof. It is enough to show that P and P ′ coincide on H ′. The proof
is by induction on the length of h′ ∈ H ′. Suppose P ′(h′) = P (h′) > 0
and consider the history (h, s′, z′). Then, by the definition of the super
play distribution (1) and (2),

P ′(h′, s′, z′) = P ′(h′)τ ′(h′)(s′)Σ′(h′, s′)(z′).

By the induction hypothesis and the definitions of τ ′ in (3), the right-
hand side is P (h′, s′)Σ(h′, s′)(n)Σ′(h′, s′)(z′). By the definition of Σ′ in
(4), this is just P (h′, s′)Σ(h′, s′)(n)Σn(h′, s′)(z′). The right-hand side,
in turn, is just P (h′, s′)Σ(h′, s′)(z′) = P (h′, s′, z′).

Next, we note that playing by valuation is inherited by subgames.

Claim 2. Suppose that i’s strategy in ΓS, Σi, is the valuation super
strategy starting with v, and using either the myopic strategy and the
memoryless revision rules, or the δ-exploratory myopic strategy and the
averaging revision rules. Then the induced strategy in ΓS′

n , Σ′
i, is the

valuation super strategy starting with vn —the restriction of v to the
subgame Gn—and following the corresponding rules.

Proof. The valuation super strategy in ΓS′
n , starting with vn, requires

that after history h′ ∈ H ′, strategy σvh̄′
n is played. Here, h̄′ is the

sequence of all terminal nodes in h′, which consists of terminal nodes
in Gn. These are also all the terminal nodes of Gn, in h′, when the
latter is viewed as a history in H.

When h′ is considered as a history in H, then the strategy Σi(h
′)

is σvh̄′
, where h̄′ is the sequence of all terminal nodes in h′. Σ′

i(h
′) is

the restriction of σvh̄′
to Gn. But along the history h′, the valuation

of nodes in the game Gn does not change in rounds in which terminal

nodes which are not in Gn are reached. Therefore, Σ′
i(h

′) and σvh̄′
are

the same.

4.3. Win-lose games. The game Γ is in particular a stochastic re-
peated game, where there is only one state, besides e, and transition to
e (that is, termination of the game) has null probability. We prove all
three theorems for the wider class of stochastic repeated games. The
theorems can be stated verbatim for this wider class of games, with
one obvious change: any claim about almost all histories should be
replaced by a corresponding claim for almost all infinite histories.

All the theorems are proved by induction on the depth of the game
G. The proofs for games of depth 0 (that is, games in which payoffs
are determined in the root, with no moves) are straightforward and
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are omitted. In all the proofs, R = {n1, . . . , nk} is the set of all the
immediate successors of the root r.

Proof of Theorem 1. Assume that the claim of the theorem holds for
all the subgames of G. We examine first the case that the first player is
not i. By the stipulation of the theorem, player i can guarantee payoff
1 in each of the games Gnj

for j = 1, . . . , k.

Consider now the game ΓS′
nj

, the super strategy profile Σ′, and the

induced super play distribution P ′. By the induction hypothesis, and
claim 2, for each j, for P ′-almost all infinite histories there is a time
after which player i is paid 1. In view of Claim 1, for P -almost all
histories in ΓS in which nj is reached infinitely many times, there exist
a time after which player i is paid 1, whenever nj is reached. Consider
now a nonempty subset Q of R. Let EQ be the set of infinite histories in
ΓS in which node nj is reached infinitely many times iff nj ∈ Q. Then,
for P -almost all histories in EQ there is a time after which player i is
paid 1. The events EQ when Q ranges over all nonempty subsets of R,
form a partition of the set of all infinite histories, which completes the
proof in this case.

Consider now the case that i is the first player in the game. In this
case there is at least one subgame Gnj

in which i can guarantee the
payoff 1. Assume without loss of generality that this holds for j = 1.

For a history h denote by R+
t the random variable that takes as

values the subset of the nodes in R that have a positive valuation after
t rounds. When R+

t is not empty, then i chooses at r, with probability
1, one the nodes in R+

t . As a result the valuation of this node after
the next round is 0 or 1, while the valuation of all other nodes does
not change. Therefore we conclude that R+

t is weakly decreasing when
R+

t 6= ∅. That is, P (R+
t+1 ⊆ R+

t | R+
t 6= ∅) = 1.

Let E+ be the event that R+
t = ∅ for only finitely many t’s. Then,

for P -almost all histories in E+ there exists time T such that R+
t is

decreasing for t ≥ T . Hence, for P -almost all histories in E+ there is
a nonempty subset R′ of R, and time T , such that R+

t = R′ for t ≥ T .
But in order for the set of nodes in R with positive valuation not to
change after T , player i must be paid 1 in each round after T . Thus
we only need to show that P (Ē+) = 0.

Consider the event E1 that n1 is reached in infinitely many rounds.
As proved before by the induction hypothesis, for P -almost all histories
in E1, there exists T , such that the valuation of n1 is 1, for each round
t ≥ T in which n1 is reached. The valuation of this node does not
change in rounds in which it is not reached. Thus, E1 ⊆ E+ P -almost
surely.
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We conclude that for P -almost all histories in Ē+ there is a time
T , such that n1 is not reached after time T . But P -almost surely for
such histories there are infinitely many t’s in which the valuation of all
nodes in R is 0. In each such history, the probability that n1 is not
reached is 1− 1/k, which establishes P (Ē+) = 0.

Proof of Theorem 2. Let i be the player at the root of G. By
the induction hypothesis and Claim 1, for each of the supergames ΓS′

nj
,

j = 1, . . . , k, for P ′-almost infinite histories in this super game, there
is a time after which the same terminal node is reached. By Claim 2,
for P -almost all histories of Γ in which nj recurs infinitely many times
there is a time after which i’s valuation of this node is constantly the
payoff of the same terminal node of Gnj

.
It is enough that we show that for P -almost all infinite histories in

ΓS, there is a time after which the same node from R is selected with
probability 1 at the root. Suppose that this is not the case. Then
there must be a set of histories E with P (E) > 0, two nodes nj and
nl, and two terminal nodes zj and zl in Gnj

and Gnl
correspondingly,

that recur infinitely many times in this set. Therefore, for P -almost all
histories in E, i’s valuation of nj and nl is fi(zj) and fi(zl). Since G
is generic, we may assume that fi(zj) > fi(zl). Thus, for P -almost all
histories in E, there is a time after which the conditional probability
of nl given the history is 0. Which is a contradiction.

4.4. The case of payoff functions with more than two values.
We prove Theorem 3 for stochastic repeated games, where the conclu-
sion of the theorem holds for Pδ-almost all infinite histories.

Proof of Theorem 3. Assume that the claim holds for all the
subgames of G. We denote by ρj, i’s individually rational (maxmin)
payoff in Gnj

.

We denote by f̄ t(h), i’s average payoff at time t in history h. Fix a
subgame Gnj

. Histories in the game ΓS′
nj

are tagged. Thus, f̄ t(h′) is i’s

average payoff at time t in history h′ in ΓS′
nj

.
Let h be a history in Γ in which nj recurs infinitely many times at

t1, t2, . . . . Let h̄ = (z1, z2, . . . ). Denote by f̄ t
j (h) i’s average payoff until

t at the times nj was reached, that is,

f̄ t
j (h) =

1

|{l : tl < t}|
∑

l:tl<t

f(ztl).

The history h can be viewed as an infinite history h′ in ΓS′
nj

. Moreover,

for each l, f̄ l(h′) = f̄ tl
j (h). By the definition of f̄ t

j (h), it follows that
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if there exists L such that for each l > L, f̄ l(h′) > ρj − ε, then there
exits T such that for each t > T , f̄ t

j (h) > ρj − ε. By the induction
hypothesis there is δ0, such that for all 0 < δ < δ0, for P ′

δ-almost all
histories h′ there exists such an L. Thus, by Claims 1 and 2, there
exists δ0, such that for all j and 0 < δ < δ0, for Pδ-almost all histories
h in ΓS in which nj recurs infinitely many times, there exists a time T
such that for each t > T , f̄ t

j (h) > ρj − ε.
We examine first the case that the first player is not i. Obviously, in

this case, ρ = minj ρj.
Let Q be a nonempty subset of R, and let EQ be the set of all infinite

histories in which the set of nodes that recurs infinitely many times is
Q. Consider a history h in EQ, with h̄ = (z1, z2, . . . ). Let νt

j(h) be the
number of times nj is reached in h until time t. Then,

f̄ t(h) =
1

t

k∑
j=1

νt
j(h)f̄ t

j (h) ≥ min
j: nj∈Q

f̄ t
j (h),

where the inequality holds, because
∑

j νt
j(h) = t, and for j /∈ Q,

νt
j(h) = 0. Thus for Pδ-almost all histories h in EQ,

lim
t→∞

f̄ t(h) ≥ lim
t→∞

min
j: nj∈Q

f̄ t
j (h)

≥ min
j: nj∈Q

lim
t→∞

f̄ t
j (h)

> min
j: nj∈Q

ρj − ε

≥ ρ− ε.

Since this is true for all Q, the conclusion of the theorem follows for all
infinite histories.

Next, we examine the case that i is the first player. Note that in
this case, for each node nj, f̄ t

j (h) = vht(nj). Observe, also, that for Pδ-

almost all infinite histories h in ΓS, each of the subgames Gnj
recurs

infinitely many times in h. Indeed, after each finite history, each of
the games Gnj

is selected by i with probability δ at least. Thus, the
event that one of these games is played only finitely many times has
probability 0.

Let Xt be a binary random variable over histories such that Xt(h) =
1 for histories h in which the node nj0 selected by player i at time t
satisfies,

(5) vht(nj0) > ρ− ε/2,

and Xt = 0 otherwise.
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Claim 3. There exists δ0 such that for all j = 1 . . . k and any 0 < δ <
δ0, for Pδ-almost all infinite histories h in ΓS there is time T such that
for all t > T ,

(6) vht(nj) > ρj − ε/4,

(7) |vht(nj)− vh′t+1(nj)| < ε/4,

for each history h′ such that h′t = ht, and

(8) Eδ(Xt+1|ht) ≥ 1− δ,

where Eδ is the expectation with respect to Pδ.

The inequality (6) follows from the induction hypothesis. For (7),
note that if nj is not reached in round t + 1 then the difference in (7)

is 0. If nj is reached then vh′t+1 =
(
νvht(nj) + f(zt+1)

)
/(ν + 1), where

ν is the number of times nj was reached in ht and f(zt+1) is the payoff
in round t + 1. But, ν goes to infinity with t, and thus (7) holds for
large enough t.

For (8), observe that (6) implies maxj vht(nj) > ρ − ε/4, as ρ =

maxjρj. Then, by (7), maxj vh′t+1(nj) > ρ−ε/2 for each history h′ such
that h′t = ht. Therefore, after ht, player i chooses, with probability at
least δ, a node nj0 that satisfies (5), which shows (8).

The information about the conditional expectations in (8) has a sim-
ple implication for the averages of Xt. To see it we use the following
convergence theorem from Loève (1963) p. 387.

Stability Theorem. Let Xt be a sequence of random variables with
variance σ2

t . If

(9)
∞∑

t=1

σ2
t /t

2 < ∞,

then

(10) X̄t − 1

t

t∑

l=1

E(Xl | X1, . . . , Xl−1)) → 0,

almost surely, where X̄t = (1/t)
∑t

l=1 Xl.

Consider now the restriction of the random variables Xt to the set of
infinite histories with Pδ conditioned on this space. From (8) it follows

that on this space, almost surely limt→∞
1
t

∑k
l=1 E(Xl | hl)) ≥ 1 − δ.

Therefore, almost surely limt→∞
1
t

∑k
l=1 E(Xl | X1, . . . , Xl−1)) ≥ 1− δ.

This is so, because the field generated by the the random variables
(X1, . . . , Xl−1) is coarser than the field generated by histories ht. Since
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condition (9) holds for Xt, it follows by the Stability Theorem that for
Pδ-almost all infinite histories h,

(11) lim
t→∞

X̄t ≥ 1− δ.

By the definition of Xt,

f̄ t(h) =
1

t

k∑
j=1

νt
j(h)vht(nj) ≥ X̄t(h)(ρ− ε/2) + (1− X̄t(h))M,

where M is the minimal payoff in G. If we choose δ0 such that (1 −
δ0)(ρ−ε/2)+δ0M > ρ−ε, then by (11), for each δ < δ0, limt→∞ f t(h) >
ρ− ε for Pδ-almost all infinite histories.

The proof of Theorem 4 is also extended to stochastic repeated
games. We show that the conclusion of the theorem holds for Pδ-almost
all infinite histories.

Proof of Theorem 4. Assume that the claim of the theorem holds for
all the subgames of G. We denote by vj the restriction of the valuation
v to Gnj

, and by βi,j, i’s perfect equilibrium strategy there, which is
also the restriction of βi to this game.

Claim 4. Let i0 be the player at the root, πj be i0’s payoff in the perfect
equilibrium of Gnj

, and ε > 0.
Then there exists δ0 > 0 such that for all 0 < δ < δ0, node nj, and

player i, for P ′
δ almost all infinite histories h′ of ΓS′

nj
there exists T such

that for all t > T ,

(12) σ
v

h′t
j

i (m) = (1− δ)βi,j(m) + δµ(m)

for each node m ∈ Mi in Gnj
, and

(13) |Eδ(f
t+1
j |h′t)− πj| < ε

where Eδ is the expectation with respect to P ′
δ, and f t+1

j is i’s payoff in
round t + 1.

The equality (12) is the induction hypothesis. Consider a history h′t
for which (12) holds. In the round that follows h′t, the perfect equilib-
rium path in Gnj

is played with probability (1− δ)d−1 at least, where d
is the depth of G. Player i0’s payoff in this path is πj. Thus for small
enough δ0, (13) holds.

By Claims 1 and 2 it follows from (12) that for 0 < δ < δ0, for Pδ

all histories h in Γ, there exists T such that for all t > T the strategies
played in each of the games ΓS′

nj
is the perfect equilibrium of Gnj

. Thus,
to complete the proof it is enough to show that in addition, at the root,
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i0 chooses in these rounds, with probability 1−δ, the node nj0 for which
βi0(r) = nj0 . For this we need to show that i0’s valuation of nj0 is higher
than the valuation of all other nodes nj.

To show it, let 3ε be the difference between πj0 and the second high-
est payoffs πj. By the assumption of the uniqueness of the perfect
equilibrium, ε > 0. Note that as all players’ strategies are fixed for
t > T , limt→∞ 1

t

∑t
l=1 Eδ(f

t+1
i0
|h′t) exists. Using the stability Theorem,

as in Theorem 3, we conclude that limt→∞ f̄ t
j (h

′) exists, and by (13) the

inequality | limt→∞ f̄ t
j (h

′) − πj| < ε holds, where f̄ t
j (h

′) is i0’s average

payoff until round t of history h′, in the game ΓS′
nj

.
As in the proof of Theorem 3, it follows that for Pδ-almost all infinite

histories h in Γ, | limt→∞ vht(nj)− πj| < ε. But then, for Pδ-almost all
infinite histories h there exists T such that for all t > T , vht(nj0) is the
highest valuation of all the nodes nj.
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