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We investigate whether replicator dynamics justify “survival of the fittest” when 
players inherit pure strategies, mixed strategies, or rules for choosing strategies. A 
strategy that never is a best reply can survive replicator dynamics if only pure 
strategies are heritable, but only rationalizable strategies survive if mixed strategies 
are heritable. Now suppose agents can inherit the rule of choosing a best reply to 
the last period’s population, rather than inheriting a strategy itself. Such optimizers 
need not drive out players who inherit a dominated strategy. If  we interpret 
replicator dynamics as a learning process, this means that non-optimizing behavior 
can survive. Journal of Economic Literature Classification Number: C73. ir 1992 

Academic Press. Inc. 

1. INTRODUCTION 

This paper investigates the evolutionary justification for “survival of the 
fittest.” We provide an example where a strategy that is not fittest against 
any population, a “never-fittest strategy,” survices. We discuss two inter- 
pretations of this result: the biological interpretation that evolution need 
not select the fittest, and the economic interpretation that evolution may 
fail to select for rationality. 

We model evolution using replicator dynamics, which are based on the 
following biological model. In each generation each player is randomly 
matched with an opponent and they play a one-shot normal-form game 
where payoffs represent numbers of offspring. Each offspring inherits from 
its parent a rule that determines its strategy in the game, so successful rules 
proliferate. 

* We thank Morris W. Hirsch for useful advice, and John Nachbar, George Mailath, an 
anonymous referee, and seminar participants at the University of North Carolina, the Santa 
Fe Institute, the Stanford Institute on Theoretical Economics, and the Stony Brook Interna- 
tional Game Theory Conference for helpful comments. This research was supported by the 
National Science Foundation. 
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Evolutionary models have typically restricted attention to very simple 
heritable rules, of the form “play s,” where s is a pure strategy in the game. 
Recently some authors (Hines [14, 151, Zeeman [28], van Damme [7], 
and Robson [24]) have assumed that players can inherit mixed strategies 
as well. In addition to considering these two cases, we introduce a broader 
perspective: Players can inherit rules that determine strategies in the one- 
shot game as a function of the history of play (as in learning models).’ In 
addition to broadening the scope of evolutionary models, this should allow 
one to extend the focus of learning models. These models typically ask 
what strategies result from exogenously given learning rules. Allowing for 
heritable rules can endogenize the determination of rules and can model 
which rules survive.* 

The outcome of evolution depends on what is heritable. In Section 2 we 
show by example that if players inherit pure strategies, then never-fittest 
strategies can survive evolutionary forces. On the other hand, we show in 
Proposition 2 that if players inherit mixed strategies, then never-fittest 
strategies will become extinct. In Section 3 we assume that some players 
inherit a never-fittest strategy while others choose best replies to last 
period’s population. Although naive, this rule seems more complex and 
rational than simply inheriting strategies. Nevertheless we show by example 
that if fails to drive out the never-fittest strategy. 

It turns out that our first example relies on discrete time dynamics. 
Samuelson and Zhang [26] show that in continuous time the replicator 
dynamics with heritable pure strategies extinguish never-fittest strategies.3 
Cabrales and Sobel [S] provide an informative reconciliation of our results 
with theirs, and develop sufficient conditions (analogues to conditions 
provided by Samuelson and Zhang [26]) under which discrete time 
dynamics extinguish never-fittest strategies. 

The biological interpretation of our results is clear: Evolution does not 
guarantee “survival of the fittest” since, when the fittest strategy depends on 

’ One could also consider the opposite approach. Whereas we allow players to inherit more 
complicated objects than just pure strategies, one might want to restrict attention to players 
who can inherit only a strict subset of the set of pure strategies. This seems most natural when 
the one-shot game is complicated, e.g., if it itself is an extensive form game. In interesting 
models of evolution of play in infinitely-repeated games, Binmore and Samuelson [3] and 
Fudenberg and Maskin [12] assume that the only heritable strategies are those that can be 
played by finite automata. 

*Of course, the process selecting among rules, namely the replicator dynamics, is 
exogenous. Thus, we only move the exogenous assumption one step back. 

3 Our example in Section 3 does not have a continuous time analog, since some players 
form beliefs based on play in the immediately preceding period. However we can ask what 
happens in the limit, as the time period is made short (as in Cabrales and Sobel [S]). In this 
example, making the time period short does not effect our result: the never-fittest strategies 
survive regardless of the time period. 
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what other agents are doing, a never-fittest strategy might survive. This 
failure is distinct from, and possibly more severe than, a failure discussed 
in the biology literature, that evolution selects for local, not global, optima. 

The economics interpretation of the model is less straightforward. If the 
payoffs in the game are interpreted as utility payoffs, then we have shown 
how strategies that never are best replies can survive. Thus, evolution fails 
to imply that people play “as if’ rational since, whatever their beliefs, 
rational players would only choose best replies. 

However, the motivation for replicator dynamics relies on the idea that 
payoffs represent reproductive success, not utility. There are two routes to 
justifying the economics interpretation. The simplest is to identify utility 
with fitness payoffs: assume that higher utility coincides with more 
children, and each Chile inherits (either genetically, or by learning) its 
strategy or rule for choosing a strategy from its parent. Emulation of 
parents might be plausible in complex environments, as when children 
follow in their parents’ footsteps. A second way to justify payoffs as utility 
is based on the view that replicator dynamics are a model of learning with 
bounded rationality. While popular, this justification has not yet been for- 
malized, and such a formalization lies outside the scope of this paper. 
Nevertheless, it is useful to identify the features of replicator dynamics that 
the learning process must obey: the dynamic path shifts weight toward 
better-than-average strategies even if they are not best replies; worse-than- 
average strategies are not totally abandoned; and best replies might change 
along the dynamic path (so the path need not converge to a steady state). 
While we do not provide a learning model with these features, we feel that 
they are sufficiently plausible to justify the economics interpretation of our 
results: rational choice (in the sense of choosing best replies) is not easily 
justified as the outcome of evolutionary dynamics or as the limit of 
boundedly rational learning. 

2. BETTER-THAN-AVERAGE STRATEGIES VERSUS BEST STRATEGIES 

We begin by describing replicator dynamics, then present our example in 
which a strategy that never is a best reply survives, and conclude this 
section with our positive result: when mixed strategies are heritable, 
nonrationalizable strategies (as defined by Bernheim [2] and Pearce [23]) 
will vanish. 

Consider a symmetric game with pure strategies described by the set 
s= { 1, . ..) n}, and payoffs given by the matrix ZZ= (xii)‘, ,,TS1. That is, if 
player 1 plays pure strategy i and player 2 plays pure strategy j, then the 
payoffs are 7cV to player 1, and nji to player 2. We will let C, with generic 
element o’, be the simplex that represents mixed strategies. We will let ei 
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represent the ith vertex of L’, and will refer to the distribution of strategies 
in period t as cr’, so that the proportion of people playing strategy i in 
period t is rr:. 

Assume that people play pure strategies, players (asexually) reproduce 
(without mutations) according to rrV and players are randomly paired from 
the population, which involves a continuum of people. These assumptions 
motivate the following replicator dynamics:4 

a:+ ‘/CT: = (ei. Z7.a’)/(a’. Z7.d). (1) 

It is convenient to define the function f: 2 -+ Z that describes the dynamic 
path determined by Eq. (1) f(cr’) = off’. Typically the initial distribution, 
o”, is assumed to assign strictly positive weight to all heritable strategies. 
This captures the idea that mutations may introduce any strategy (cp > 0 
for all i), and that mutations are rare relative to the adjustment time of the 
dynamic process (so that mutations at any time t are not modeled).’ In the 
replicator dynamics, if strategy i does better than the population average in 
period t, so that (ei Z7.o’) > (a’ .ZZ. a’), then strategy i becomes more 
prevalent. The best reply to the population average (i.e., the fittest strategy 
in any given period) will have the highest rate of growth, since the 
numerator in (1) is largest for the strategy that is a best reply. However, 
other strategies may also grow, provided they are better than average. 

EXAMPLE 1. Now we provide an example with four strategies A, B, C, 
and D. The proportions of people playing these strategies (i.e., population 
distributions) are denoted by 0 = (~1, B, y, 6). The payoffs are chosen so that 
for any population distribution 0 there is a strategy (A, B, or C) that does 
better than D does against G. We will show that, even though there is 
always a rule in the population that grows faster than the rule “play D," 
dynamic paths from a generic set of initial populations do not have the 
property that 6 converges to zero. 

The example augments a rock-scissors-paper game by adding a strategy 
D that is not a best reply to any mixed or pure strategy. 

ABCD 

A 1 2.35 0 0.1 

II= 
B 0 1 2.35 0.1 
C 2.35 0 1 0.1 
D 1.1 1.1 1.1 0 

4 For more discussion of these dynamics see, for example, van Damme [7], Friedman [9], 
and Nachbar [22]. 

5 Some recent papers assume that mutations can occur along the dynamics path as well as 
initially, see, for example, Foster and Young [S] and Kandori, Mailath, and Rob [20]. 
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Strategy D survives because, under replicator dynamics, it proliferates if 
it does better than the current population average, even when it is not a 
best reply to the current population, or, in fact, to any population. An 
intuitive argument is as follows. A dynamic path, beginning from any point 
where 6 = 0, except where CI = /I = y = l/3, will spiral outward, approaching 
the boundary. This follows from well-known properties of rock-scissors- 
paper games; for appropriate payoffs the discrete dynamics diverge (Hof- 
bauer and Sigmund [ 171). Intuitively, therefore, if 6’ becomes small and 
the path approaches any point where 6 =0 except (l/3, l/3, l/3,0), the 
dynamic path will spiral out. Now, as the path spirals close to the 
boundary the strategy that is a best reply changes, but whichever it is 
(A, B, or C), it is scarce. Hence it constitutes a small part of the population 
average. Thus D can be better than average even though it is not a best 
reply. Simple calculations show that, in fact, it is better than average. 
Hence 6’ is growing, conflicting with the premise that it converges to zero.6 
The only other possibility is for the path to converge to (l/3, l/3, l/3,0). 
But the only way to get there is from a path along which a’ = fl’ = y’. 

PROPOSITION 1. In Example 1, a dynamic path beginning at (cl’, so, y”, ho), 
with 6’ > 0, has 6’ converging to zero if and only if a0 = a0 = y”. 

Proof Let Co be the face of the simplex where 6 = 0, Co = ((IX, b, y, 6) : 
(a, p, y, 8)~ C, 6 =O). Let L be the line in the simplex where the first three 
strategies get equal weight: L = { (CI, /I, y, 6) E Z : M = /3 = y }. These two sets 
are shown in Fig. 1. 

6=1 

FIGURE 1 

6 In the matrix Ii’ the payoff to playing C against A is 2.35. This payoff must be strictly 
greater than 2.3 for D never to be a best reply, and it must be strictly less than 2.4 for D to 
be better than the population average for any population near the boundary. The last condi- 
tion is not necessary-for example, the result holds with the payoff of 2.Gbut it simplifies 
the proof. 
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Only Zf: We prove the result using the following steps. 

1. If 6’ converges to zero, then either the boundary of C, contains an 
accumulation point of the dynamic path or (a’, fir, y’) converges to 
(l/3, l/3, l/3). 

2. If the dynamic path has an accumulation point on the boundary 
of ,X0, then 6’ does not converge to zero. 

3a. If (l/3, l/3, l/3, 0) is an accumulation point of a path, then the 
path lies in L for all t sufficiently large. 

3b. If gT E L, then for all t, cr’ E L. 

Therefore a dynamic path that starts anywhere in C except on the line 
L cannot have 6’ converging to zero. Further, if any point of a path is on 
L, the entire path is on L. 

The first step follows from a basic result on continuous dynamic systems 
(see Arrowsmith and Place [ 1, p. 171): Let G” be an accumulation point of 
a given dynamic path, say {o’}, and suppose G’ is an accumulation point 
on a dynamic path that starts at a”. Then 0’ is also an accumulation point 
of the dynamic path {a’}. (This result follows from continuity of the map 
that defines the replicator dynamics.) Consider now a dynamic path {a’} 
with 6’ -+ 0. It follows from compactness that {(r’} has an accumulation 
point in .X0. As mentioned above (see Hofbauer and Sigmund [ 17]), the 
dynamic path starting from any point in ,X0 other than the center has an 
accumulation point on the boundary. Thus, using the basic result on con- 
tinuous dynamic systems, if {a’} does not have an accumulation point only 
at the center, then it has an accumulation point on the boundary. 

For the proof of step 2 it is helpful to think of the dynamic path given 
by p’= (q5’, St), where qY= CI’ . B’. y’. See Fig. 2. The proof involves three 
substeps. 
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(i) There exists a closed ball with non empty interior, B c [0, 1 ] x 
[0, 11, that includes the origin, such that for all Q’E B, &+I ~4’ and 
6’+ ’ > 6’. This is proved ‘as follows. For points in the interior of the sim- 
plex where #>O and 6~0, $‘+‘/#= [Xi=.,,, (e,.n.o’)]/(o’.n.o’)‘. 
This is a continuous function which is bounded below one for all points (T 
on the boundary of ZO. Therefore, in a neighborhood, G, near the 
boundary of ZO, d’+ i/d’ < k where k < 1. Similarly, since D is better than 
the population average for all populations on the boundary of .ZO, there is 
a neighborhood, H, of the origin for which 6’+ l/b’ > p where p > 1. The 
desired B is given by G n H. 

(ii) Choose # >O and S >O such that: (a) the set M defined by 
[0, 41 x [0, $1 is a subset of B; and (b) 4’ < 4 for infinitely many t. We can 
satisfy (b) because of the hypothesis that the dynamic path has an 
accumulation point on the boundary of C,. 

(iii) If dT< 4 and dT< 4, then there exists S’ > 0 and t > T such that 
6’> 6’. If pr is in M for all t > T, then, since M c B, 6’ is increasing and 
converges to some 6* > 0. If pr leaves M, it must do so with 6’ going above 
4. Otherwise the path would violate the condition that, within B, q4 is 
decreasing and 6 is increasing. To conclude, let 6’ = max{ 6*, 6 }. 

Thus we have shown that, when {cr’} gets sufficiently close to the 
boundary of L’,, 6’ cannot remain small. Together with step 1, this implies 
that for 6 to converge to 0, the dynamic path must be converging to the 
unique Nash equilibrium, (l/3, l/3, l/3,0). But step 3 below implies that 
only paths starting from the line L will converge to the Nash equilibrium. 

The proof of step 3a relies on the Invariant Manifolds Theorem 
(Arrowsmith and Place [l, p. 681). To apply this theorem, we recall that 
the space (domain and range) of a linear hyperbolic system has a direct 
sum decomposition into stable and unstable invariant manifolds 
(Arrowsmith and Place [ 1, p. 64]), whose dimensions sum to the dimension 
of the space. (A hyperbolic fixed point is one at which no eigenvalues of the 
Jacobian Df have modulus equal to one. The stable invariant manifold is 
the union of all convergent dynamic paths. The unstable invariant manifold 
is the union of all nonconvergent paths for which the inverse path con- 
verges.) The Invariant Manifold Theorem allows us to study the behavior 
of a nonlinear dynamical system in a neighborhood of a hyperbolic fixed 
point g by studying the stable and unstable manifolds of its linearization, 
Of,, at that point: The locally stable and unstable invariant manifolds of 
the nonlinear system have the same dimensions as those of the linear 
system. In the nonlinear system, the line L is a stable invariant set and C, 
is an unstable invariant set. Since the dimensions sum to the dimension of 
the space, namely R3, the stable invariant manifold has dimension one, and 
is therefore L: The only paths that converge lie entirely on L. 
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Since the replicator dynamics system turns out to be hyperbolic at 
cr = (l/3, l/3, l/3,0), this completes the argument for step 3a. Step 3b 
claims that if a path begins on L it stays on L, and points on L can only 
be reached from L. The first claim can be seen directly from the replicator 
dynamics, Eq. (1). The second claim follows from a straightforward 
application of the inverse function theorem: f is invertible starting at any 
point on L, and can therefore be reached from only one point, which must 
also lie on L. 

ZJ We have already argued that a path that begins on L stays on L. It 
follows from the replicator dynamics in Eq. (1) that 6 is strictly decreasing 
when the distribution of strategies starts on the line L. Therefore, such a 
path has a limit point, and the limit point is a Nash equilibrium (see, e.g., 
Nachbar [22]). Hence the limit point is (l/3, l/3, l/3,0). Q.E.D. 

We now develop the positive result for the case of heritable mixed 
strategies. If a strategy is never a best reply, then there is some (possibly 
mixed) strategy that does better against every population (Pearce [23]). 
Individuals playing strategies in a neighborhood of this dominating 
strategy will replicate faster than, and hence drive to extinction, those 
individuals who play the dominated strategy. If only pure strategies can be 
inherited, as in the above example, then, whenever the dominating strategy 
is a mixed strategy, the dominating strategy will not be played by any 
person in the population; thus the previous argument could not be applied. 

To develop the argument, we need some additional notation. Previously 
we used the vector G E C to represent the distribution of pure strategies in 
the population, We now assume individuals can play mixed strategies (T E C 
themselves, and we need another notion-a distribution on C-to describe 
the distribution of mixed strategies in the population. We will let 0 c 2’ be 
the Bore1 field of mixed strategies in C, with generic elements denoted by 
8. We will let d(C) be the set of probability measures on the Bore1 field of 
C, with generic element cc. The probability measure pf E d(C) represents the 
distribution of mixed strategies in the population at time t, and ~~(0) is the 
proportion of the population playing mixed strategies in 8 E 0. 

To describe the replicator dynamics with mixed-strategy inheritance, we 
need notation for the average strategy played by players whose strategies 
lie in a particular subset B of C. This average depends on p, and is given 
by the function T : d(C) x 0 + Z, where t(p, 0) = Jase 0 &/p(8). The 
weight assigned to pure strategy j by s(p, 0) is then z#, f3). The replicator 
dynamics are given by the following equation, where 8 is a measurable 
subset of 5 

p,+ l(e) = cw 0) .n+, ai 
[TOJ’, Z) . z7. T($, C)] . /-Qe). (2) 

It is easy to verify that if p’~d(C) then p’+i EA(Z). 
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With this definition of the replicator dynamics, we now can state the 
result.’ The next proposition states that for large t, the population will, in 
aggregate, play dominated strategies with arbitrarily small probability. 

PROPOSITION 2. Suppose that pure strategy j is never a best reply, so that 
it is dominated by a (possibly mixed) strategy 6 that assigns zero probability 
to strategy j. Then, if pO has full support, lim,_ Lo z,(p’, L’) = 0. 

Proof We will first show that for sufficiently large t and for + > 0, the 
dynamic path assigns arbitrarily small weight to the set of mixed strategies 
with aj > $, or almost all its weight to the subset of mixed strategies with 
o, < $. Since this is true for any Ic/ E (0, 11, the replicator dynamics remove 
population weight from strategies that place positive weight on strategy j. 
See Fig. 3. 

We need to define a function r that “replaces pure strategy j with 6 in 
each strategy a.” This function is given by r(a) = G - ojej + a,&. The proof 
of the following claim is straightforward, hence omitted. 

Claim 1. If strategy j is strongly dominated by 5, then for any 0 such 
that aj > 0, CJ is strongly dominated by r(o). 

Choose II/, 0 < 1,9 d 1. Partition C into two subsets, CA and ZB, where 
‘zB=(oEC:oj<l//) and CA is its complement. We will define a function 
N: C x (0, 1) + C to describe neighbourhoods: N(a, A) = (6’ E C : for all 
i E S, 10; - ail < A}, i.e., it is the i open ball around e under the sup norm. 

Claim 2. There exists 1, 0 < J. < $, such that for any IJ E .ZA and any 
5 E N(a, A) A ,ZA, 5 is dominated by r(a). The claim follows from continuity 

FIGURE 3 

’ The replicator dynamics given in Eq. (2) coincide with the dynamics for heritable mixed 
strategies proposed by Hines [14, 151 and Zeeman [28], although Zeeman restricts attention 
to measures that have densities. 
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of the payoffs and of the function r, and the fact that CA is compact. 
(Clearly L depends on 1,9, but we do not write this explicitly for notational 
simplicity.) 

Claim 3. Using Claim 2, continuity, and compactness, there exists q > 0 
such that given any GEL”, for all c+ E N(a, 2) n CA and for all 
d E N( r(a), q) A Z*, B dominates g’. 

Claim 4. Using compactness of CA, there is a finite number of 
strategies {g’}y1”1 in CA, such that the union of the neighborhoods N(a’, ;1) 
contains CA. 

Claim 5. For each o >O, there exists T, such that p’(N(a’, A))/ 
h’(N(r(o’), r]) <w for all t > T,, and all i. 

Proof of Claim 5. The replicator dynamics imply Eq. (3) below. 

)Ld+ ‘(N(a’, A)) /oNa’, A)) 
P’+w(r(d, v)) = ,eNr(d, rl)) 

T($, N(o’, 1)). n. T($, 2) 

’ T(P’, N(r(a’), ?)) . n. T(P’, c)’ 
(3) 

We show that the rightmost fraction in (3) is bounded above by some 
&< 1. 

r(p’, N(a’, A.)) . n. T($, Z) U.17.T 

T(p', N(r(U'), Yf)).n.T($, c) 
=- 

t7'qn.T' 

where 0 E N(a’, A), and (T’ E N(r(a’), q), by the mean value theorem. By 
Claim 3, the right-hand side equals some E < 1. Thus, the weight on the 
neighborhood of 0’ is decreasing at a rate bounded below one, relative to 
the weight on the neighborhood of r(oi). This completes the proof of 
Claim 5, 

Hence, 

p’(C”) < zi p’(N(d, A)) < ci PW(~‘> A)) <n(n) w 
/-4Nr(d v)) ’ ’ 

for t>T,. 

In the argument above we can choose II/ ‘as small as we like, and for any 
$, we can choose n(L) -w as small as we like. Thus: zj(p’, Z) < p’(Z”) + 
II/ . pr(CB) < n(L). o + $, which we can make as small as we like. Q.E.D. 

Proposition 2 assumed that p. has full support, and therefore that there 
is a continuum of players. A similar theorem can be proven for finite 
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populations which inevitably have initial distributions with finite support.’ 
In particular, assume that finitely many players, say m, are drawn at 
random according to some distribution, ji E d(C), with full support. This 
draw determines an initial distribution, pO, with m elements in its support. 
Suppose that the population evolves according to replicator dynamics. For 
any u > 0, if m is large enough, then, if the population evolves according to 
replicator dynamics, with probability 1 -u the weight on a never-fittest 
strategy is eventually less than u. The proof follows the same lines as above: 
For any $, if m is large, then, with high probability, the initial distribution 
will include strategies belonging to all of the “dominating sets,” 
N(r(a’), r/), . . . . N(r(a”‘“’ ), q), referred to in Claims 2-4. 

Thus, after a sufficiently long time T,, any dominated strategy is played 
with arbitrarily small probability. We can apply the same reasoning to 
assert that after a sufficiently long time, say T, the population weight on all 
dominated strategies will be less than any given E > 0. Now consider a 
strategy k that is strictly dominated in the game that would remain if we 
had gone through some rounds of entirely deleting dominated strategies. 
Lemma 1 below asserts that there is a mixed strategy, c’, that does strictly 
better than k against any belief over opponents’ strategies (i.e., against any 
population distribution) that assigns probability less than a small enough 
E to those strategies that were deleted. The proof is straightforward: By 
hypothesis k is dominated in the game where some strategies were deleted, 
so the statement is true for E = 0; by continuity of payoffs and finiteness of 
the game we can find a strictly positive E that works for all possible 
strategies k, and all possible deletions. 

LEMMA 1. Given a game with strategy space S and payoffs IT, there 
exists E > 0 such that the following is true. Suppose strategy k is strongly 
dominated in the game with strategy space S’ and payoffs IIs, where S’ c S, 
and 17,. is the payoff matrix II restricted to S’. Then, there exists o’ E C such 
that (a’.ZT.o)> (e,.ZT.a) for all CTEC such that ZieS-s,oi<~. 

Therefore, by an argument similar to that yielding Proposition 2 above, 
there exists a T after which k and all strategies that are strongly dominated 
in the smaller game, are played with arbitrarily small probability, and so on. 
This proves the following. 

PROPOSITION 3. Zf p” has full support and strategy j is not rationalizable, 
then for any n > 0, there is a T such that rj(p’, L’) < n for t > T. 

s A model of a finite population with heritable mixed strategies was introduced by Robson 
[24] in order to prove that the set of evolutionary stable strategies (ESS] coincides with the 
set of asymptotically stable equilibria of the continuous time replicator dynamics. 
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3. HERITABLE RULES 

The previous section illustrated that evolutionary outcomes depend on 
what is heritable: Never-best replies cannot survive if mixed strategies can 
be inherited, but might survive if only pure strategies can be inherited. 
Pure-strategy and mixed-strategy inheritance are both very simple rules; it 
is easy to imagine that organisms can inherit more complicated rules than 
just “play strategy s,” or “play the mixed strategy a,” even though more 
complicated rules might be “harder” to inherit than simpler ones. Although 
we do not know how to rank the complexity of rules in terms of 
heritability, we would like to consider more complex rules than in the 
previous section. 

An interesting class of rules, typical of learning models, is to choose a 
strategy optimally given beliefs, where beliefs are given by some function of 
the history of play.’ Learning models typically take the distribution of rules 
as exogenously given and focus on the path of strategies that the rules 
induce.” We find the evolutionary perspective provocative in that it gives 
a framework for endogenizing the path of rules.’ ’ By determining which 
rules survive, evolution can shed light on the vexing problem of how beliefs 
are formed. For example, does evolution select for Bayesian updating 
starting from some common prior? 

A general analysis of heritable rules is beyond the scope of this paper. 
However, we conclude with an example in which a heritable strategy that 
never is a best reply survives even if some players inherit the apparently 
more sophisticated rule “play a best reply to the distribution of strategies 
last period.” This rule of belief formation is boundedly rational in that 
players do not account for the fact that if everyone obeys that rule, the dis- 
tribution of strategies in the current period will differ from the distribution 
last period. These optimizers are a special case of the boundedly rational 
optimizers in the learning model of Milgrom and Roberts [21], whose 
result implies that a population of such optimizers will eventually play only 
rationalizable strategies. Since we have shown that never-best replies can 

9 Learning models include Canning [6], Fudenberg and Kreps [lo], Fudenberg and 
Levine [ll], Jordan [lS], and Kalai and Lehrer [19]. 

lo In addition to determining the strategies, the rules may also endogenously determine 
some aspects of behavior. For example, Fudenberg and Levine [ 111 adopt the exogenous 
assumption that players are rational Bayesians who choose strategies optimally and calculate 

conditional probabilities. In each period an extensive form game is played, so that these 
rational players will optimally decide how much to experiment in order to observe their 
opponents’ strategies. Thus the level of experimentation is endogenous. 

I’ Blume and Easley [4] provide an interesting alternative approach to endogenizing rules: 
they ask which investment strategies will disappear (own a vanishing share of wealth) and 
which will dominate (own a positive share of wealth in the limit). 
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survive when players inherit pure strategies, it is natural to ask whether 
never-best replies can survive when some players are optimizers. The 
following extension of Example 1 shows the answer is yes. Thus, the 
existence of boundedly rational optimizers (with naive beliefs as described 
above) will not lead to the extinction of even more naive players, and 
hence rationalizable strategies are not guaranteed. 

EXAMPLE 2. We will again use the augmented rock-scissors-paper 
game described above, and will suppose that there are two heritable rules 
of behavior: Players can either play the dominated strategy D with 
probability one or they can be optimizers in the sense we have described. 
We claim that the replicator dynamics will allow both strategies to persist 
in equal numbers. 

We will demonstrate that there is a stationary dynamic path in which 
half the population plays D every period, and the other half cycles among 
strategies A, B, and C. First suppose the path begins with a population in 
which half the population plays D and the other half, who are optimizers, 
play A. Strategy D yields payoff zero if the opponent is also playing D, but 
yields payoff 1.1 if the opponent is an optimizer, since optimizers play A, 
B, or C. Thus, the payoff to a player who plays D is (.5)(1.1) = .55. An 
optimizer gets .l if the opponent is playing D, which occurs with proba- 
bility .5, and gets 1 if it meets another optimizer who is also playing A. 
Thus, the optimizer’s payoff is also .55. In the following period the payoffs 
will again be .55 for each type of player, but the optimizers will all play B, 
which is the best reply to the previous population, which was playing A 
and D, each with probability .5. Since the two strategies-playing D with 
probability one or being an optimizer-always have the same payoff, they 
will continue to coexist in equal numbers. 

Now suppose the initial population has more than half optimizers and 
fewer than half D-players. Then the probability that a D-player meets an 
optimizer is higher than when they are equally represented. These meetings 
will favor D-players, who get payoff 1.1, and D-players will grow faster 
than optimizers until the two strategies are represented in equal propor- 
tions. A symmetric argument shows that if there are more D-players than 
optimizers, D-players will grow more slowly. Therefore the only outcome 
of the replicator dynamics is equal proportions. This completes the presen- 
tation of Example 2. 

Thus, “optimizers” might be no more successful in propagating their 
genes than naive players who bequeath genes for playing never-best replies. 
This example also demonstrates the sensitivity of how one models “a little 
bit of irrationality”: having everyone almost rational is not robust to intro- 
ducing a small group of very simple-minded players. As we have shown, 
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introducing a few simple-minded players who copy their parents’ never-best 
reply can destroy the conclusion that “sophisticated” players will learn to 
play rationalizable strategies (Gul [ 131, Milgrom and Roberts [21]). 
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