
J. theor. Biol. (1990) 144, 379-396 

Efficiency in Evolutionary Games: 
Darwin, Nash and the Secret Handshake 

ARTHUR J..ROBSON 

Department of Economics, University of Western Ontario, London, Ontario, 
Canada N6A 5C2 

(Received on 19 May 1989, Accepted in revised form on 3 January 1990) 

This paper considers any evolutionary game possessing several evolutionarily stable 
strategies, or ESSs, with differing payoffs. A mutant is introduced which will 
"destroy" any ESS which yields a lower payoff than another. This mutant possesses 
a costless signal and also conditions on the presence of this signal in each opponent. 
The mutant then can protect itself against a population playing an inefficient ESS 
by matching this against these non-signalers. At the same time, the mutants can 
achieve the more efficient ESS against the signaling mutant population itself. This 
construction is illustrated by means of the simplest possible example, a co-ordination 
game. The one-shot prisoner's dilemma is used to illustrate how a superior outcome 
which is not induced by an ESS may be temporarily but not permanently attained. 
In the case of the repeated prisoner's dilemma, the present argument seems to render 
the "evolution of co-operation" ultimately inevitable. 

I. Introduction 

The title "The  Origin of Species" seems to suggest, at least to the unwary, that 
Darwin intended a group to be the unit of  selection. The subtitle of  Darwin 's  treatise 
reinforces this casual i m p r e s s i o n - - " . . ,  or the Preservation of Favoured Races in the 
Struggle for Life". However,  Darwin explicitly recognized that " the struggle for life 
(is) most  severe between individuals and varieties of  the same species",  (Darwin,  
1859; Mayr,  1982: 484-485, attributes Darwin 's  recognition of  the importance of  
intra-species competi t ion to his reading of  Malthus,  1798, but see also pp. 491-493). 
It is still not uncommon  to hear popular  explanations of  animal behavior  which 
rely upon an appeal  to the interest of  a species or, occasionally, even to the collective 
interest of  several. A few modern  biologists believe that there exist phenomena  
which cannot  be explained without invoking a group selection mechanism (see e.g. 
Wynne-Edwards ,  1962). Most other modern  biologists, on the other hand,  seem to 
find such explanations to be unattractive in the light of  the logic of  natural selection. 
Dawkins,  (1976: 8-9), for example,  argues that natural selection operates most 
forcefully below the level of  the group and, far from promoting the interest of  the 
group, might entail its extinction. Indeed, Dawkins argues that the unit of  selection 
is, in a certain sense, below even the level o f  the individual, is the gene (see, in 
part icular  Dawkins,  1982a: 45-64). 
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Views of  evolutionary biology which emphasize the role of  the individual are, of  
course, highly congenial to economists. Further strengthening both the formal and 
substantive links between the two disciplines is that game theory has now also been 
applied to evolutionary biology (see Maynard Smith & Price, 1973; Maynard Smith, 
1982). Consider the interactions of  the individuals of one particular species with 
one another. Suppose that these interactions involve two individuals at a time 
contesting some scarce resource, such as food. With a large population, the equili- 
brium outcome introduced by Maynard Smith & Price is a special kind of  symmetric 
Nash equilibrium, involving what is designated an "evolutionarily stable strategy", 
or ESS. A population playing such a strategy is immune to invasion by a mutant 
populat ion playing any alternative strategy. It need not be the case, of  course, that 
such an ESS is unique, and indeed ESSs may have different payoffs. That is, an 
ESS can exist which yields an outcome which is inferior to that obtained under 
some other ESS. Such a situation has a well-known analog within pure game theory. 
That is, it is often possible to Pareto rank some of  the Nash equilibria of  a game. 
A long-standing problem is how to construct a theory which predicts Pareto-efficiency 
within the set of  Nash equilibria. 

The intention of  the present work is to suggest that "Mother  Nature"  might be 
less baffied by this problem than are game theorists. For there is a simple mechanism, 
based on the individual as the unit of  selection, whereby such inefficient ESSs can 
be destroyed. That is, a mutation can be defined which will successfully invade a 
population which is playing any ESS which is payoff-dominated by another. This 
mutation must, of  necessity, involve more than simply a different choice from the 
original set of  strategies, for it is just these latter mutants which are considered in 
the definition of an ESS. Indeed, the mutation here entails the possession of a signal, 
that is, an observable characteristic which can be taken to have zero inherent cost. 
Mutants recognize the presence or absence of  this signal in the other individual and 
condition their choice of  strategy on this. 

It should be emphasized that there is little doubt  that animals actually use signals, 
for certain purposes at least. Thus, for example, Maynard Smith (1982: 82-86) 
discusses the Harris sparrow, individuals of  which vary in the color of  their plumage 
and also in aggression towards other birds, with the darker birds being more 
aggressive. Dark birds painted pale continued to behave aggressively but were 
involved in a larger number  of  fights than normal dark birds. Pale birds painted 
dark tended to be persecuted by normal dark birds and were sometimes forced to 
feed away from the flock. It is not asserted that this will precisely fit the model here. 
What it does demonstrate is the reality of  signaling as a natural phenomenon.  

Consider then a populat ion for some evolutionary game which is in a low-level 
trap, that is an ESS which is inferior to another  ESS. The appropriate mutant uses 
the kind of  signal discussed above as follows. Against the old non-signaling popula- 
tion the mutant plays the old inefficient EES, thus protecting itself from the con- 
sequences that would otherwise occur. On the other hand, mutants recognize the 
signal in other mutants and then can attain the more efficient ESS. It is assumed 
that the old non-signaling population remains blind to the signal. (This motivates 
the phrase the "secret handshake"  of the subtitle. This assumption of  blindness 
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is without loss of  generality in the sense that it is not- possible for non-signalers to 
do better than by playing the old ESS against such mutants, given the mutants' 
behavior.) 

The argument can better be understood with the aid of  the simplest possible 
example, an evolutionary game with two pure strategies, each of  which is an ESS. 
This is presented in section 3.1. The effect of  the mutation is to add a third pure 
strategy which plays the inferior strategy against either of  the original two strategies 
and the superior strategy against itself. Thus the entries in the new 3 x 3 matrix are 
derived in a straightforward way from those in the original 2 x 2 matrix. It is then 
readily shown that the only ESSs now are the old superior strategy and the new 
mutant strategy, which are equivalent in payoffs. Furthermore, it is shown that the 
population must converge to one of  these equivalent ESSs, given a generic initial 
point, under  the pure-strategy dynamic. Initial points near the original inefficient 
ESS converge in particular to the new efficient mutant ESS. 

The analysis of  the above example suggests that a similar mutant would be 
successful in invading a population playing some ESS if only there exists an o u t c o m e  

yielding a superior payoff. That is, the argument does not appear to use directly 
the assumption that the superior outcome be itself an ESS. In order to discuss this 
issue, the one-shot "prisoner 's  di lemma" is presented as a second example, in section 
3.2. It is noted firstly that, indeed, the addition of  an appropriate mutant to the 
standard 2 x 2 prisoner's dilemma game results in a 3 x 3 game in which the group 
preferred "co-operat ive" outcome is generated by the unique ESS. Even if this is 
credible as a short-run outcome, there is an obvious objection to this in the long-run. 
That is, there is another mutant waiting impatiently in the wings, a mutant which 
avails itself of  the signal and plays the old "rink" ESS against the old population, 
but also "finks" against the first mutant. This second mutant thus "'finks" uncondi- 
tionally. It is desirable, then, to consider the 4 x  4 game with both mutants. It is 
noted firstly that this 4 x 4  game does not, strictly speaking, possess any ESS. 
However, this is simply a technicality rather than a deep difficulty. It is shown, 
indeed, that the path of  the population over time generally converges to some 
mixture between the old "rink" strategy and the mutant which signals but "finks" 
always anyway, under the pure strategy dynamic. The limiting payoff is uniquely 
determined, in general, as the usual payoff for the 2 x 2 game. In essence then, the 
conventional equilibrium prediction for the prisoner's dilemma is ultimately restored. 

The next section defines the notion of  an ESS and the dynamical systems. Section 
3, as noted above, discusses two key examples. Section 4 discusses related work 
and the implications of  the present results. The Appendix shows how the analysis 
of  the first example can be generalized whenever there are at least two ESSs with 
differing payoffs. 

2. Definitions 

The description of  the game and motivation of  the ESS definition follow Hines 
(1987): 
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Definition 1: Basic evolutionary game 

There is a large (strictly infinite) populat ion of  individuals who interact two at a 
time. (Riley, 1979, discusses the complications needed in order to analyze small 
populat ions) .  In each interaction, each individual has pure strategies i = 1 , . . . ,  n. 
These yield the associated mixed strategies denoted by x, say, where xi->0 and 

n 
Y-i~l xi = 1 and so x ~ A n-I, the ( n -  1) simplex in R n. I f  a given individual chooses 
pure strategy i and his opponent  chooses j, the payoff to the first individual is a U. 
The payoff to the second individual, given symmetry between the two individuals, 
is therefore aji. (These payoffs measure "fitness" in the biological sense of  determin- 
ing the number  of  descendants,  as is modeled explicitly in the dynamics below.) 
This symmetry  between individuals means that it is enough to specify A = (alj), a 
single n x n matrix. 

The payoff to choice of  mixed strategy x against a mixed strategy x* is then 
readily seen to be: 

x r A x  *. 

The requirements for an ESS can then be motivated as follows. Consider a 
" 'monomorphic"  populat ion every member  of  which plays the mixed strategy x*. 
This is to be resistant to invasion by a monomorph ic  mutant  playing any alternative 
mixed strategy x, say. Suppose indeed that the fraction ( 1 - e) of  the total populat ion 
plays x* and the fraction e plays x, where each opponent  is randomly selected. 
Effectively, then, each individual faces the mixed strategy ( 1 -  e)x*+ex, where e 
is small. The payoff to x* is then; 

x* rA[(1 - e )x*  + ex] = (1 - e)x* t A x *  + ex* tAx,  

whereas the payoff to x is; 

x rA[ (1  - e)x* + ex] = (1 - e)xT Ax* + exr Ax. 

This suggests the following, as in Maynard  Smith (1982): 

Definition 2: Evolutionarily stable strategy, ESS 

An ESS is x ' c A  n-~ such that, for all x ~ A  ~-~, where x ~ x * ,  either; 

(i) x r A x *  < x ' t A x *  

or 

(ii) x r A x  * = x - t A x  * and x r A x < x * r A x .  

The above conditions can be paraphrased in game theoretic terms as follows. It is 
required that  the strategy x* be a best-reply to itself and, further, that any other 
best-reply to x*, x, say, be a worse reply to x than is x*. In particular, then, an ESS 
yields a symmetric  Nash equilibrium. Not every symmetric mixed strategy Nash 
equilibrium induces an ESS, however, as taking A to be a matrix of  zeroes shows. 
Indeed,  this also shows an ESS need not exist. 

I f  each individual were restricted to the use of  the pure strategies i = 1, 2 . . . .  , the 
vector x * ~  A ~-~ can then be reinterpreted as the distribution of  a polymorphic  
populat ion over  these pure  strategies. I f  x* is an ESS as above, its immunity to 
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invasion by any mixed strategy mutant implies immunity, in particular, to any pure 
strategy mutant. However, it is not true that immunity to invasion by any pure 
strategy mutant implies x* is an ESS (see Maynard Smith, 1982: 185). 

For some purposes it is useful to consider not only an appropriate static equili- 
brium concept, as above, but the evolution of the population over time. The first 
specifications of  dynamics were based on pure strategies (see e.g. Taylor & Jonker, 
1978; Zeeman, 1979). For simplicity of  exposition, the present paper will also confine 
attention to such pure strategy dynamics. They are given as: 

Definition 3: Pure strategy dynamics 

The fraction of  the population playing a particular pure strategy is taken to evolve 
according to the difference between the "fitness" of  this pure strategy and the average 
fitness of  the population. This yields a concrete interpretation of  the payoff matrix, 
A. Thus, 

YC-2=(Ax)i-xT Ax 
x~ 

o r  

Yci = xi[(Ax)i--xTAx], i =  1 , . . . ,  n, 

where the r.h.s, is cubic in x. Clearly, if x~ = 0, for any i, at t -- 0, then x~ = 0 always. 
Furthermore, it is easily seen that every solution path remains on the unit simplex, 
given that it starts there. Hence the dimensionality of  the system is n - 1 rather than n. 

A point x* ~ A ~-1 is said to be a "point  attractor" if it is the limit of  the solution 
path of  the dynamical system for all initial values in some neighborhood of x*. 
Zeeman (1979) shows that any ESS must be a point attractor for the pure strategy 
dynamic, but also gives an example of  a point attractor which is not an ESS. 

It should be noted, however, that it is, in some ways, more mathematically complete 
to allow mixed strategies throughout.  Thus Hines (1980, 1987) obtains the following: 

Definition 4: Mixed strategy dynamics 

Suppose that the distribution of  the population over mixed strategies is given by 
the probability measure F on Borel subsets of  A "-~. Define then the mean mixed 
strategy as; 

/z = J x dF(x ) ,  

and the associated covariance matrix as; 

C =  f ( x -  p . ) ( x - / x )  r dF(x) .  

If  x* ~ Int A n-~ is a fixed point, Hines (1980) shows that the appropriate mixed 
strategy dynamic satisfies; 

d 
d t  (/z - x*) = CA(/z - x*). 
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Hines can then show that x*~  Int A n-t is always a "sink" for the mixed strategy 
dynamic system fo r / z  if and only if x* is an ESS as above. (To be a sink here is 
to require the eigenvalues of  CA, suitably restricted, all to have negative real parts. 
This is to hold for all appropriate C). Note that convergence o f / ~ - x *  does not 
imply that the limiting distribution itself is uniquely determined (see Hines, 
1987: 208, for further complications). 

Altogether, then, the definition of  an ESS is most readily understood in terms of  
mixed strategies. Furthermore, being an ESS is, in a sense, necessary and sufficient 
for the stability of  the mixed strategy dynamic. On the other hand, whereas being 
an ESS is sufficient to be immune to invasion by any pure strategy, it is not necessary. 
Again, being an ESS is sufficient to be an attractor of the pure strategy dynamic, 
but it is not necessary. 

3. Two Key Examples 

3.1. A CO-ORDINATION GAME 

This is, it seems, the simplest possible game yielding two ESSs which have different 
payoffs. It is given in Fig. 1. 

u d 

u 1 0 

d 0 2 

FIG. 1. A c o - o r d i n a t i o n  g a m e .  

It is clear that both " u "  and " d "  are ESSs and it is not difficult to see that there 
is no other ESS (this follows also from Bishop & Cannings, 1978: 91). Clearly the 
ESS " d " ,  which yields a payoff of 2, is better for the population as a whole than 
is " u " ,  which yields only a payoff of  1. Notice however that " u "  is certainly immune 
to invasion by a small group of  mutants playing " d " .  Indeed, suppose that the 
mutant " d "  comprises a fraction e of  the total population with the remaining 
fraction ( 1 -  e) being still "u" .  In this case, each mutant obtains an average payoff 
of  2e against the whole population, whereas the original " u "  strategy yields (1 - e). 
Thus the mutant will die out if e < 1/3. 

Now suppose that the mutation discussed in the introduction is introduced. This 
mutant carries a signal which is assumed to cost nothing to produce. Furthermore 
the mutant recognizes the presence of  the signal in its opponent  and conditions its 
choice of  strategy on this. Suppose that the mutant here plays " u "  against the 
non-signaling original population but plays " d "  against other signaling mutants. 
The effect of  this is to enlarge the original 2 x 2 game to the 3 x 3 game given in Fig. 2. 

In Fig. 2, the mutant signaling strategy is labeled "m" .  It should be emphasized 
that this enlarged 3 x 3 game still has just " u "  and " d "  as its underlying choices 
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u d m 

u 1 0 I 

d 0 2 0 

m 1 0 2 

FIG.  2. T h e  c o - o r d i n a t i o n  g a m e  wi th  a s i g n a l i n g  m u t a n t .  

and that the payoff consequences of a given pair of  these underlying choices are 
also as in the 2 x 2 game. 

It is easy to check that " u "  is no longer an ESS, although (u, u) remains a Nash 
equilibrium. That is, " 'm" is also a best reply to " u "  but " m "  does better against 
itself than " u "  does against " m " .  The only ESSs are now easily seen to be " d "  and 

In order to more fully characterize the behavior of the population with these 
three strategies, the appropriate pure strategy dynamic system derived from the 
above matrix, A, is treated. This is: 

- - = x ~ + x 3 - -  W 
X1 

x2 = 2x2 - W 
X2 

x3 
- xt + 2 x 3 -  W, 

X3 

where, x ~ ,  x 2 ,  and x3 are the components  of  the vector x, corresponding to " u " ,  
" d "  and " rn"  respectively, and where, 

W = xl (xl + x3) + 2x~ + x 3 ( x l  + 2 x 3 ) ,  

now denotes the average fitness of  the entire population. Using the relation that 
x~ = ( 1 -  x2 -x3 )  to eliminate xl and simplifying yields the following equations for 
x2 and x3: 

"~ 2 Yc_.~2 = - 1  + 4x2 - 3x~  - x3 
x2 

Yc3 2 2 
- - =  X2 + X3--  3X2- -  X3. 
X3 

The phase diagram for these equations is readily derived and is sketched in Fig. 3. 
(When there are two dimensions it is not possible for exotic behavior such as "chaos"  
to arise). 

This diagram shows that generic initial points with strictly positive amounts of  
all three strategies have solution paths which tend to either " d "  or " m " ,  and there 
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2 

W=2 

:o  X--x3-- o 

, 

w=a g g 
x2 

FIG. 3. Phase diagram for the co-ordination game with a mutant. 

is a limiting payoff of  2 in all cases. All such initial points near " u "  have solution 
paths which tend to " m "  in particular. That  is, the old inefficient ESS at " u "  has, 
in this sense, been supplanted by a new efficient ESS at " m " .  Further, this new ESS 
is clearly immune to the introduction of the further mutant which signals but plays 
" u "  against other signalers. 

It should be noted that the above process is not reversible. That is, suppose 
instead the mutant plays the efficient ESS against non-signalers and plays the 
inefficient ESS against fellow signalers. It is easily shown that " u "  and " d "  remain 
the only ESSs of  this augmented game. Hence " d " ,  in particular, is not destroyed 
as an ESS by the introduction of  this mutant. Such a mutant can indeed be shown 
to die out. 

3.2. THE ONE-SHOT PRISONER'S DILEMMA 

This game is given as Fig. 4. In this case it is easily seen that the unique ESS is 
" u " ,  which yields a payoff of  2, despite the possibility of  obtaining 3 by means of  



E F F I C I E N C Y  I N  E V O L U T I O N A R Y  G A M E S  387 

u d 

u 2 4 

d 1 3 

FIG. 4. One-shot Prisoner's Dilemma. 

the entire population playing " d " .  The analysis of the previous example suggests 
that a mutant playing "u" against the old population and " d "  against itself will be 
able to successfully invade a population playing "u" .  Indeed, consider Fig. 5. 

The only ESS now is easily seen to be "'m', which entails the payoff of  3. If this 

u d m 

u 2 4 2 

d 1 3 1 

m 2 4 3 

FIG. 5. One-shot Prisoner's Dilemma with mutant. 

mutant and only this mutant were introduced, there is no reason to doubt the merit 
of  this ESS. The difficulty is just that such an ESS is a "sitting duck" for the 
introduction of  still another mutant, one which would prey on the first mutant. The 
second mutant should carry the signal, but play " u "  against the first mutant as well 
as against the non-signaling population. (It would seem that this second mutant 
could evolve relatively easily from the first since all it involves is a switch in the 
underlying choice to be played against other signalers). With the introduction of  
the second mutant in addition to the first the game is as in Fig. 6. 

In Fig. 6, the second mutant is labeled " f ' .  It is not hard to see that there are 
now no ESSs, and hence the dynamical system associated with this matrix needs 
to be analyzed directly. This is a three-dimensional system on the tetrahedron, A 3. 
In general, three-dimensional systems can have markedly more complex behavior 
than that possible in two dimensions. However, the present example is rather simple. 
Notice, in fact, that the strategy " d "  is unambiguously "dominated"  not just by 

u d m f 

u 2 4 2 2 

d 1 3 1 1 

m 2 4 3 1 

f 2 4 4 2 

FIG. 6. One-shot Prisoner's Dilemma with two mutants. 
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one of  the other strategies but by all of  them. (A strategy is said to  be dominated 
by another  strategy if it yields no more payoff for every choice of  the other player 
and strictly less for some choice.) When strategy " d "  is included in the dynamical 
system, it unambiguously decreases to zero along non-trivial solution paths. It can 
be shown that the limiting behavior of  the full system is then determined by the 
limiting behavior of  the two-dimensional system where " d "  and its corresponding 
fraction "x2",  say, are simply omitted. 

The following equations obtain in this case: 

X I = 2 X  1 + 2 x  3 + 2 X  4 -  W 
xl  

~_2= 2x~ + 3 X 3 + X  4 -- W 
x3 

- -  = 2Xi + 4X 3 + 2x4 - W, 
X4 

where xl ,  x3, and x4, are the fractions of  the population playing strategies "u " ,  
" m " ,  and " f "  respectively and where; 

W = x~ (2xl + 2x3 + 2x4) + x 3 ( 2 x  t + 3X3) + X4(2X I + 4X3 + 2X4). 

is the average fitness of  the entire population. Using the fact that x~ = (1 - x3 - x4) 
to eliminate x~ on the r.h.s., the system can be expressed as; 

El 
- -  = --(x3 + x4)x3 <-- 0 
Xi 

x3 
-- X4 + X 3 ( 1 - -  X3 -- X4) 

X3 

- - =  X3+X3(1  -- X3-- X4) ~ 0. 
X4 

The phase diagram for this essentially two-dimensional system in x3 and x4, say, is 
represented in Fig. 7. 

All generic solution paths of  the dynamical system converge ultimately to a mixture 
of  " u "  and " f " ,  and so have limiting payoff of  2 as in the usual equilibrium for 
the original 2 x 2 prisoner's dilemma game. However, each such path takes a detour 
towards the vertex at which the first mutant " m "  is the entire population and the 
average fitness is hence 3. Instead, average fitness at first increases along the path 
but  then decreases as the path heads back to a mixture of  " u "  and " f " .  Although 
the indeterminate nature o f  the mixture involved implies that there exists no ESS, 
that there exists indeed no point attractor, this is a technicality in that the payoff 
is determinate. Note that this example is clearly non-generic in that small independent 
perturbations of  the payoffs in the 4 x 4 matrix here are likely to break the ties in 
the payoffs. However, these ties are produced endogenously by the signaling mutants 
and hence should be treated as ties. 
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::~ I/V--- 2 I 

=l " / I / r  

S 
S 

\ \ A,=o 

~ = 0  

W--5 

FIG. 7. Phase diagram for reduced form Prisoner's Dilemma with two mutants. 

4. Related Works, Implications 

A large number  of  authors from several disciplines have considered how natural 
selection might be reconciled with a variety of  altemative concepts of  altruism. 
Trivers (1971) coined the term "reciprocal altruism" to describe a process for 
attaining group efficient outcomes by means which essentially respect the individual 
as the unit of  selection. Discussions of  altruism, reciprocal or not, have become a 
central concern of  sociobiology (see, e.g. Wilson, 1975: 3). 

Within biology, related kinds of  signaling mutants to those here are discussed 
by Dawkins (1982b: chapter 8). This comprises a theoretical discussion of  how 
"outlaw genes" might promote their own survival at the expense of  other closely 
related genes. Two of  these hypothetical outlaw types discussed use signals to 
distinguish themselves from other genes. These two types are christened "armpits" 
and "green beards". Within pure game theory, a related contribution is due to 
Matsui (1988). He presents an analysis of  a two-player infinitely repeated game in 
which only Pareto-efficient outcomes can be equilibria. It is assumed that there is 
a small probability that one agent's entire "supergame" strategy is revealed to the 
other. The proof  relies on a construction reminiscent of  the signaling strategy here. 
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For Matsui, of  course, the two players are fully rational human beings. Finally, 
many of  the ingredients used here can be found in Binmore (1988). He uses an 
evolutionary game argument to buttress the utilitarian outcome in a certain situation 
at the expense of  the Nash bargaining one. His argument is analogous of  that used 
here in section 3.2. to analyze the one-shot prisoner's dilemma. 

The game theoretic issue addressed here arises repeatedly in the previous literature. 
Dawkins (1976: 197-202), for example, outlines a game-theoretic approach to mutual 
grooming. He finds two ESSs with differing payoffs, thus fitting the model here. 
Axelrod & Hamilton (1981) and Axeirod (1984) contain a detailed evolutionary 
game theoretic analysis of co-operation (see also Maynard Smith, 1984: chapter 13, 
for a summary of  this). Much of this work assumes that the two individuals play 
the prisoner's dilemma not once, but repeatedly, and there is some given probability 
of  termination at each repetition. In this context, different pure strategies turn out 
to generate ties in payoffs in a manner which creates difficulties with the notion of  
an ESS as in Definition 2. Boyd (1989), however, shows that pure strategies can be 
reinstated as ESSs if individuals can make mistakes with certain probabilities. For 
such a "supergame",  indeed, always finking remains an ESS in this extended sense. 
A modified version of  the strategy "tit-for-tat", which co-operates initially but 
thereafter matches the opponent 's  last move, can also be an ESS. If so it will yield 
a group preferred outcome. This model then essentially fits the framework developed 
here. In the original analysis the "evolution of  co-operat ion" was hampered because 
"ti t-for-tat" mutants were at a disadvantage playing against an initial population 
which always finked relative to this initial population itself. Thus Axelrod 
(1984: 175), for example, emphasized the need for geographical clustering of  these 
mutants to provide a friendlier initial environment for themselves. The present 
analysis suggests how mutants might arise which are not at a disadvantage relative 
to the initial population, while still obtaining higher payoffs against one another. 
The "evolution of  co-operat ion" would then by ultimately inevitable. 

Finally, it should be noted that a full genetic model of  the above "secret hand- 
shake" mutation is ultimately desirable. It is difficult to imagine such a mutation 
as being likely to arise from a change in a gene at a single locus. It is more plausible, 
perhaps, that the gene controlling an appropriate change in appearance is at one 
locus and that controlling the recognition of  this change is at another. Sexual 
reproduction is generally believed to facilitate such compound mutations. However, 
the full implications of  genetic recombination for the "secret handshake" mutation 
are not clear. 

I am indebted to Robert Axelrod, W. G. S. Hines, John Maynard Smith, Eric van Damme 
and an anonymous referee for helpful comments. 
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APPENDIX General Case 

As a ma t t e r  o f  no ta t ion :  

Defini t ion 5. Support,  best-replies 

C o n s i d e r  an evo lu t i ona ry  game  as in Def in i t ion  1. S u p p o s e  x E A "-~, then  define;  

R ( x ) = { i ~ { 1  . . . . .  n}lx~ > 0} = suppor t  o f x  

a n d  

S ( x )  = {i ~ {1 . . . .  , n}t (Ax) ,  -- max  (Ax)j}  
J 

-- set o f  pure  s t ra tegy bes t - rep l i es  to x. 

Clear ly ,  i f  x* is an ESS as in Def in i t ion  2, R ( x * )  c S ( x * ) .  
S u p p o s e  the  fo l lowing  ho lds :  

A s s u m p t i o n  1 two E E S s  

C o n s i d e r  an  evo lu t i ona ry  game  as in Def in i t ion  1 with a non-ze ro  n u m b e r  o f  
ESSs as in Def in i t ion  2. (This n u m b e r  mus t  be finite. See van D a m m e ,  1987: 214). 
Take  p to be any  ESS which  y ie lds  the m a x i m u m  over  ESSs o f  average  fitness, a n d  
s u p p o s e  fu r the r  that  there  is an ESS q with str ict ly lower  average  fitness: 

q T A q  < p r A p .  

It is i n t ended ,  then,  to i n t roduce  p laus ib l e  mutan t ( s )  which  des t roy  any such 
inefficient  q as an ESS. The  s imples t  way  o f  d o i n g  this might  be to i n t roduce  a 
s ingle m o n o m o r p h i c  m u t a n t  which  p l ayed  the ESS q, as a mixed  s t ra tegy,  aga ins t  
the  o ld  non- s igna l ing  p o p u l a t i o n  but  p l a y e d  the ESS p, also as a mixed  s t ra tegy,  
aga ins t  fe l low s ignalers .  This  w o u l d  u n d o u b t e d l y  ach ieve  the  des i r ed  result .  I nde e d ,  
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if  the ESS q had previously been achieved by a monomorphic  population playing 
it as a mixed strategy, it seems reasonable that a mutant could also use this mixed 
strategy against non-signalers. What seems less plausible is that the mutant would 
immediately stumble upon the exact mixed strategy, p, to be used in attaining the 
new ESS. It is perhaps more plausible to hypothesize instead the introduction of  a 
number of  mutants, each of  which chooses a pure strategy against fellow signalers: 

Assumption 2 form of mutants 

Suppose the evolutionary game given in Definition 1 is augmented by the introduc- 
tion of  n signaling mutants. Mutant i plays the pure strategy i against fellow signalers, 
i = 1 , . . . ,  n. Against non-signaling players, however, every mutant plays the inferior 
ESS q, as a mixed strategy. 

Remark: 

It is easy to see, given the proof  below, that the number of  mutants can be reduced 
to IR(p)l, that is, the number of elements in the support of  p. 

The effect of  Assumption 2 is to convert the original game, represented by the 
matrix A, as in Definition 1, into the game represented by the augmented matrix; 

2 n x 2 n  

Now B = (bil) where; 

bi~ = payoff to old strategy i against mutant l 

= ~. a/jqj = (Aq)i = hi, say. 
j=l 

Furthermore, C = (Ckj) where; 

Ckj = payoff to mutant k against old strategy j 

= ~ aijqi = (qTA)j = cj, say. 
i = l  

Finally, D = (dg~) where; 

dkt = payoff tO mutant k against mutant l 

Hence; 

akl .  

A b - . .  b ] . ,  
C T 

A 

c ¥ 

where b =Aq, and c r =  qTA. 
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The main result now follows in a purely formal fashion from Definition 2. The 
interpretation intended is given below. Thus: 

Theorem 1: Elimination of an inferior ESS 
Suppose an evolutionary game is described by A as above, where Definition 1 

applies to A. Now [qr, O r ]  is not an ESS of  ,~. However, both [pr ,  O r ] and [O r, p r ]  
are ESSs of  ~, (ESSs are as in Definition 2). 

Proof: 
As purely a matter of  notation, 2n-vectors z, say z •  A 2~-~ will be written, in this 

proof, as [ar r ,  (1 - a )s  r ]  where r, s e A "-1, a ~ [0, 1]. 
(a) [qr, 0 T] is not an ESS of A. Note that; 

[ 0 r , p r ] , ~ [  q ] = [ c r , p r A ] [ 0  ]=crq=qrAq=[qr,O]A[q]. 

That is, the mutant [O r, p r ]  does exactly as well against [qr, O r]  as [qr, O r]  does. 
Further; 

whereas; 

[qr, 0 ] ,~[~]  =[qr, o][ bp] =q rb=q r Aq< pr Ap 

by Assumption 1. Thus the mutant [O r, pT] does better against itself than [qr ,0]  
does against this mutant. Hence [qr, 0] is not an ESS of  ,~. 

(b) [pr ,  0 T] is an ESS of ,~. Note that firstly since p and q are both ESSs of A, 

qrAp < p r A p ,  

that is, q cannot be a best-reply to p. For suppose; 

qTAp =p'rAp. 

Then since p is an ESS, 

qTAq<prAq, 
which contradicts q being an ESS. (This result is implied by Bishop & Cannings, 
1978: 91.) Hence, Vs • A "-~ 

[or, sr]  uj 0 

Also, of course, V r •  A"-' ,  
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since p is an ESS of A. Altogether, then, Va • [0, 1] 

and equality is only possible if a = 1. In this case, then, 

rrAp = p rAp. 

Since p is an ESS of A 

so that; 

rr Ar < p r Ar, 

] 
exactly as required in order that [ p r  O r]  be an ESS of ,~. 

(c) [ 0 ~ p  r]  is also an ESS of ,TL Note that, of  course, 

Now Vr, s • A "-1 and ~ • [0, 1], 

[~tr r, ( 1 - a ) s r ] ~ t  [ ~ ]  =arrb+(1-ct)srAp=ctr 'rAq+(1-a)sTAp,  

where, 
r rAq <_ q rAq < p r ap ,  

since q is an ESS of A and by Assumption 1. Further; 

srAp<_prAp, 

since p is an ESS of A. Hence; 

arr Aq+(1 - a ) s r  Ap<_pT-Ap, 

with equality implying a = 0. In this case, then, 

srAp = prAp,  

and since p is an ESS of  A, 

so that; 

sYAs < p r A s ,  

1 
exactly as required for [0r, p r ]  to be an ESS of  ,i,. 
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Interpretation 

The form of  the mutants given above was motivated by considering a monomorphic 
population playing the old ESS, q. The above result concerning the ESSs of  .~ also 
is best interpreted as considering the introduction of monomorphic mutants which 
mix over all 2n of the strategies involved in the construction of A. This suggests a 
motive for analyzing the appropriate mixed strategy dynamical system. For simplicity 
of exposition, however, only the pure strategy dynamic is studied here. 

Remarks 

(1) Perhaps not every monomorphic mixed strategy mutant as above is actually 
possible. For example, it would not be possible for an individual to mix over 
possession of the signal, if this were a permanent change in appearance. Of 
course, being an ESS will still suffice to deter invasion by any of the remaining 
mutants. 

(2) On the other hand, there are mutants which are not considered here. For 
example, take the class of mutants which do not possess the signal but which 
condition their behavior on its presence in an opponent. It is not claimed 
that the present result is robust to the exact specification of  the mutants. 

(3) It is readily checked that  the above result is, to some extent, robust to the 
mixed strategy played by mutants against non-signalers. That is, if mutants 
use ~ for this, where R ( ~ ) c  S(q), as in Definition 5, and ~ is sufficiently 
close to q, then the Theorem remains true. 

Consider, then, the pure strategy dynamic, as in Definition 3, for the matrix ,~. 
Note, indeed, that the coordination game of  section 3.1 has the property that points 
near the old inefficient ESS are attracted to the new "secret handshake" ESS. This 
does not follow from Theorem 1. However, the following generalization applies: 

Theorem 2: Pure strategy dynamics of augmented game 

Suppose the evolutionary game is given by ,4 as above. Consider the pure-strategy 
dynamical system as in Definition 3. Now [qr, O r]  is not even an attractor for there 
is a path from [qr ,0  r]  leading to [0r,p r]  in this dynamical system. Indeed, 
convergence to [Or, p r ]  is guaranteed if the initial point is sufficiently close to this 
path. 

Proof: 

It is convenient now to write a 2n-vector z e A "-~ in the form [x r, y r ] ,  for suitable 
x, y ~ R n÷. Now each component x~ of the vector x refers to the number of  individuals 
playing the old pure strategy i against all comers. Each component Yi refers to the 
number of  signaling mutants playing pure strategy i against fellow signalers, where 
all such mutants play the ESS q as a mixed strategy against non-signalers. 

Suppose the initial point is given on the straight line between [qr, O r ] and [O r, p r ]  
a s :  

[txqr, (1 - a ) p r ] ,  where ct ~ (0, 1). 
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It is to be shown that the solution path of  the dynamical system remains on this 
line and converges to [0 T, pT]. Now the payoff to the old strategy i is (Aq)i because 
all other strategies play q against the old population. The payoff to mutant j is; 

txq rAq + (1 - a )(Ap)j, 

because it obtains the ESS payoff for q a fraction a of  the time and pIays the mutant 
populat ion p the remaining fraction of  the time. Hence the average payoff overall is; 

ot(qT A q ) + ( 1 - t x ) [ o t q T  A q + ( 1 - o t ) p r  A p ] = a ( 2 - a ) q  T A q + ( 1 - a ) 2 p Z  Ap. 

It follows that the pure strategy dynamic for [xr ,  y r ] ,  as in Definition 3, is given by; 

- -  = q T Aq -- ot (2-- a ) q  TAq - (1 -- a)2p TAp = _(1 -- a)2[ p r a p  _ q T Aq ] < O, 
xl 

for all i c R(q) .  If  i ~ R (q )  then, of  course, xl = 0. Thus the components  of  x shrink 
at the same percentage rate, given such an initial point. Similarly, 

= txqTAq + (1 - a ) p T A p  -- ct(2 -- a ) q r A q  - (1 - a)2prAp  
Ys 

= c~(1 - c~)[prAp - qTAq] > O, 

for a l l j  ~ R (p).  If j ~ R (p) then yj - 0. Hence it is also true that the components of 
y remain in fixed proportions,  given the initial point. Clearly the solution is given by; 

x ( t ) = a ( t ) q  y ( t ) = [ 1 - a ( t ) ] p ,  

where, 

~/(t) 
= - (1  - c~(t))2[pTAp -- q rA q ]  < O, 

~(t) 

and a ( 0 ) =  a. It follows that a(t)-->O as t--> oo, that is, 

[xT(t) ,  yr(t)]--> [0, p T], 

no matter how close a(0)  = a was initially to 1, as was to be shown. 
The ESS of  ,~, [O r, p r ] ,  must be an attractor in this dynamical system. Its "basin 

of  attraction" is then an open set which includes the above path (see Zeeman, 1979). 
That is, ultimate convergence to [O r, pT] is guaranteed if the initial point is sufficiently 
dose  to the above path. Of  course such a result says little about the behavior of  
paths which start far from this particular path. 


