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A turnpike theorem is proved for a general equilibrium model with finitely many immortal 
consumers. 

1. Introduction 

This paper indicates one way to link equilibrium theory with capital 
theory and especially with turnpike theory. I consider a model with finitely 
many, infinitely lived consumers. Their utility functions are additively 
separable with respect to time and they discount future utility. There are 
finitely many, infinitely lived firms. Primary resources are necessary for 
production and their supply is constant over time. Technology and utility 
functions do not change over time either. The model is simply an ordinary 
general equilibrium model with infinitely many commodities. The infinity 
arises because the horizon is infinite and commodities are distinguished 
according to date. 

I use results from a previous paper of my own (1972) in order to prove 
that the model has an equilibrium. I also prove that the initial resources may 
be chosen so that there exists a stationary equilibrium. I prove the following 
analogue of Scheinkman’s turnpike theorem (1976). Suppose that all 
consumers discount future utility at the same rate. Then, the equilibrium 
allocation converges provided this discount rate is sufficiently small. 

Finally, I prove that if consumers do not all have equal rates of time 
preference, then the less patient consumers eventually consume nothing in 
equilibrium. The less patient consumers are those whose rates of time 
preference exceed the smallest rate among all consumers. In an equilibrium, 
the less patient mortgage all their future income beyond a certain date in 
order to consume more, earlier. 

It is easy to relate the above results to capital theory. In capital theory, 
authors tend to use a reduced form, aggregate model, in which a single utility 
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function is defined directly on a single intertemporal production possibility 
set. The following is typical of the maximization problems studied in capital 
theory: 

f’ 6’u(k,,k,+,)l(k,,k,+,)ED for all t, 
t=o 

(1.1) 

where It, is given. In this problem, t is the index for time, 6 is the discount 
factor applied to future utility where 0~6 < 1, k, is the vector of capital 
stocks at time t, u is the utility function, and D is the intertemporal 
production possibility set. 

If one makes appropriate assumptions, it is not hard to prove that (1.1) 
has a solution. A solution corresponds to an equilibrium in my model. 

Sutherland (1970) and Peleg and Ryder (1974) proved that one may choose E, 
so that (1.1) has a stationary solution. (A solution is stationary if k,= k, for 
all t.) Such a stationary optimum is known as the modified golden rule. It 

corresponds to a stationary equilibrium in my case. Scheinkman (1976) 
proved that, under appropriate conditions, any solution to (1.1) converges to 
a unique stationary optimum, provided that 6 is sufficiently close to one. 

There are subtle differences between capital theory and the theory I 
develop. In the first place, equilibria are not necessarily unique, whereas the 

optima of capital theory normally are unique. Also, the turnpike theorem of 
capital theory asserts that optimum paths converge to a stationary optimum 
which is independent of the initial conditions. In my case, the limit of an 

equilibrium is not necessarily a stationary equilibrium and the limit depends 
on the initial conditions. The initial conditions affect the limit of an 
equilibrium because they affect the relative wealths of the consumers. Also, 
because conditions change over time, some consumers may borrow or lend 
early in time. For this reason, they may be paying or earning interest when 
in the asymptotic state approached as the equilibrium converges. Thus, the 
limit is strictly speaking not a stationary equilibrium, but a stationary 
equilibrium with transfer payments. 

It is easy to see why the turnpike theorem applies to equilibrium. I assume 
that all utility functions are concave. Hence, equilibrium maximizes a 
weighted sum of consumers’ utility functions, the weights being the inverses 
of the marginal utilities of expenditure. Since I assume that all consumers 
discount future utility at the same rate, the maximand may be written as 

In this expression, i is the index for consumers, /li is the marginal utility of 
expenditure for consumer i, ui is his utility function, and xi is his 
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consumption vector at time t. 6 is the discount factor applied to future 

utility. 
(1.2) looks much like the objective function in (1.1). Hence, a version of 

Scheinkman’s theorem should imply that equilibrium converges. 
In fact, I do not apply Scheinkman’s theorem or any of the recent 

generalizations of it. Instead, I provide a direct proof of the convergence 
result. I do so for three reasons: (1) I do not want to make unnecessary 

assumptions; (2) I obtain exponential convergence, which is stronger than 
that of corresponding theorems in the literature; and (3) my method of proof 

seems to improve on existing methods. 
My proof is in many ways simply a modification of existing proofs. I use 

the value loss method. My main innovation is to use a one-sided value loss 
rather than a two-sided value loss. This value loss is easy to interpret and 
leads to many simplifications. 

Nevertheless, my proof is very long and complicated. The complications 
arise largely because I use a full general equilibrium model rather than the 

reduced form, aggregate model of capital theory. 
If one assumes that there are one consumer and one firm, then my 

turnpike theorem becomes a turnpike theorem in the sense of capital theory 

and can be compared with theorems in the literature. In this case, my result 
is neither more general nor more special than existing ones. I elaborate in 
section 6. 

I emphasize that my goal is only to link two distinct branches of economic 
theory. I do not claim that my model is realistic or that it justifies capital 
theory. The assumption of immortality is certainly not realistic. Also, prices 

in my model can be interpreted only as Arrow-Debreu prices of contracts for 
future delivery. Such prices seem especially unrealistic when there is an 
infinite horizon. 

I emphasize that I cannot avoid interpreting prices as prices for forward 
contracts. I cannot interpret prices as spot prices and say that agents have 
perfect foresight. This last point of view is the one sometimes taken in capital 
theory. In my model, consumers may borrow and lend, which means that 
there must be forward markets. In capital theory, there is only one consumer, 
and he owns the firm or firms. Hence, it is impossible for the consumer to 
borrow or lend. 

By linking equilibrium theory and capital theory, I do give some insight 
into the nature of the assumptions that must be made in order to obtain the 
turnpike property. Dealing with a general equilibrium model obliges one to 
state assumptions only in terms of individual utility functions, endowments 
and production possibility sets. Assumptions in capital theory do not always 
have a concrete interpretation, since the models are aggregated. 

I make strong assumptions. I assume that utility functions are strictly 
concave and that production possibility sets are strictly convex. The 
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assumption about production possibility sets is especially strong, for it 
excludes constant returns to scale. However, if one allows constant returns to 
scale, then there can exist optimal programs which oscillate forever, even if 
future utility is not discounted. Therefore, the turnpike theorem is not valid if 
one insists on convergence to a point. 

In order to exploit strict convexity, I must assure that price ratios exactly 
equal marginal rates of transformation in production. (The prices referred to 
are for the limit stationary equilibrium with transfer payments.) I assure 
equality by assuming that firms can use inputs and produce outputs 
efficiently in any ratios they like. This assumption excludes the fixed 
coefficients, linear production model. 

2. Definitions, notation and the model 

2.1. Commodities 

There are L types of commodities, L, c (1,. . ., L} denotes the set of 
consumption goods. L, c { 1,. . ., L} denotes the set of primary commodities, 
such as land, labor and raw materials. L, = {k = 1,. . ., L(k +! L,] denotes the set 
of producible goods. Goods not in either L, or L, should be thought of as 
intermediate goods or goods in process. 

2.2. Vector space notation 

RL denotes L-dimensional Euclidean space. A standard subspace of RL is 
one of the form 

RL’={x~RL(xL=O if k$L!) where L’c{l,...,L}. 

RL’ is said to be the subspace corresponding to L’. RLc, RLo, and RLp are the 
subspaces corresponding to L,, L,, and L,, respectively. It is important to 
keep in mind that vectors in RLc, RLo, and RLp are thought of as belonging 
to RL. 

Infinite-dimensional vectors are always written in bold face. 

2.3. Consumers 

There are I consumers, where I is a positive integer. The utility function of 
consumer i for consumption in one period is ui: RL,f+(- co, 00). Utility is 
additively separable with respect to time and consumer i discounts future 
utility by a factor ai, where O-C di< 1. That is, if consumer i consumes the 
bundle x, E Rfp in period t, for t =O, 1,2,. . ., then his total utility from the 
point of view of period zero is ctm,0 6fui(xf). 

The endowment of each consumer in each period is ORE R?. Notice that 
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each consumer is endowed only with primary goods. This assumption is not 

necessary. It is made only for convenience. 

2.4. Firms 

There are J firms, where J is a positive integer. A firm transforms inputs 
y, E RL in one period into outputs y, E R “,p in the succeeding period. Inputs 

carry a negative sign and outputs a positive sign. The production possibility 

setoflirmjis YjcRLxRp. y = (y,, y,) denotes a typical vector in Yj, where 

y,~Rk and y,~Ry. 
Firms have an endowment of producible goods, available at time zero. 

These goods should be thought of as having been produced from inputs in 

period - 1. The vector of goods available to firm j is denoted by 

y,;’ E Ry. XI= 1 y,;’ is the initial capital stock of the economy. 
Firms are owned by consumers. Consumer i owns a proportion 8, of firm 

j, where i=l,..., I and j=l,..., J. 0s8ijs1 for all i and j, and CiBij=l for 

all .j. 

2.5. The economy 

The economy is described by the list 

d = {(ui, di, q), (I$, y,; ‘), tiij: i = 1, . . ., I and 1,. . ., J}. 

2.6. Allocations 

A consumption program for a particular consumer is of the form 

x=(x0,x1,...), where X’ER 4 for all t, and sup,,,x: < co. x’ is the consump- 
tion vector at time t. A consumption program is said to be stationary if x2=x0 

for all t. 
A production program is of the form y =(y’, y’, . . .), where y’=(yb, ~1:) 

ER?xRL+” for all t 2 0, and sup,,,yi < co. The program is feasible for 
firm j if y’ E I; for all t 2 0. A production program is said to be stationary if 

yf = y” for all t. 
An allocation for the economy is of the form ((xi),(yj)), where each 

q=(x;,x!,...) is a consumption program and each yj=($, yi, . , .) is a 
production program feasible for firm j. The allocation ((xi), (yj)) is feasible if 

~XfS~Ui+~(J$o+y:,‘) for all t?O. 

Notice that the feasibility of an allocation depends on the endowments y,;’ 

of the firms. Also, the definition of feasibility implies free disposability. 
((xi), (yj)) is said to be stationary if each of the programs xi and yj are 

stationary, and if in addition y>l = y,;’ for all t. 



238 7: Bewley, Equilibrium and turnpike theories 

The vector ((+),(JJ~)) should not be confused with ((xf), (yi)), which is the 
vector of allocations at time t. 

2.7. Pareto optima&y 

A feasible allocation ((Xi), (_Vj)) is said to be Pareto optimal if there exists 

no feasible allocation ((-CJ,gj)) such that 

2 6:Ui(~) ~ ,~~ 6:Ui(X:) for all i, 
t=o 

with strict inequality for some i. 

2.8. Prices 

A price system is simply a non-zero vector p of the form (p’, pl, . . .), where 
p’eR$ and ~Y=op~<co for k=l,..., L. pi is the price of commodity k in 

period t. p is said to be stationary if pf = 6’~’ for all -t, where 0 < 6 < 1. 

If p is a price vector and x is a consumption program, then 

p.x= f pt.xt. 
1=0 

2.9. Profit maximization 

Given the price system p, each firm chooses a program so as to maximize 
its profit. That is, firm j solves the problem 

max T (p’.yb+p’+’ 
i 

. yi)[y is a production program 
t=o 

feasible for firm j . 

qj(p) denotes the set of solutions to this problem, and nj(p) denotes the 
maximum profit plus the value of the firm’s initial endowment. That is, 

7cj(p)=po-y,;‘+ f (p"yb+p'+'.Y:), 
t=o 

where y~q~(p). rj(p) and nj(p) may be empty. 
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2.10. Utility maximization 

Given the price system p, consumer i’s budget set is 

pi(p) = n 1 x is a consumption program, and 
i 

1 . 

He solves the problem 

max JO 6b4(x’)) X E BitPI 
i I 

. 

&(p) denotes the set of solutions to this problem. 

2.11. Equilibrium 

An equilibrium consists of ((xi), (yj),p) such that 

((xi),Cyj)) is a feasible allocation, 

p is a price system, and for all t and k 

(2.1) 

5i(P) may be empty. 

(2.4 

(2.3) 

Yj E rlj(P) for all j, (2.4) 

xiE t,(p) for all i. (2.5) 

An equilibrium with transfer payments consists of ((xi),CyJ),p) which 
satisfies conditions (2.2H2.4) and, for each i, xi solves the problem 

max F 6~u,(x’)~x~Z~,~,andp~x~p~x~ 
i=O 

The transfer payment made by consumer i is 

(2.6) 

~ pf’Wi+ ~ Oij71j(p)-p'Xi. 
t=o j=l 
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An equilibrium is said to be stationary if the allocation ((xi),~j)) and the 
price system p are all stationary. 

2.12. Convergence of allocations 

Let ((Xi),(jj)) be a stationary allocation. An allocation ((Xi), (vj)) is said to 
converge to ((X;.), ~j)) if 

lim I(($), b$)) - ((xi)2 OTj)) I= 03 
r-cc 

where fi and yj are defined by Xi = (Xi, Xi,. . .) and ~j = (Y; yj,. . .). 
The convergence is said to exponential if there is a such that 

0 < a < 1 and’ [[((xi), (Y;)) - ((xi), (yj)) II< a’, 

for all sufficiently large t. 

2.13. Marginal utilities of expenditure 

Corresponding to any equilibrium ((xJ,CyJ,p), there is a vector of 
marginal utilities of expenditure, 
Lagrange multiplier corresponding 
utility maximization problem (2.1). 

3. Assumptions 

A=@,,..., /13. Each ni is simply the 
to the budget constraint in consumer i’s 

I list below the assumptions I use. Some have already been mentioned. 

3.1. Consumers 

l&ERL,” for all i. (3.1) 

ui: R?+( - 00, CO) is twice continuously differentiable. (3.2) 

Df and D”f denote the first and second derivatives, respectively, of the 
function f: 

Strict monotonicity. For all i, Du,(x)%O, 
for all XER?. 

Strict concavity. For all i, D%,(x) is negative 

definite, for all x E Ry. 

(3.3) 

(3.4) 
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3.2. Firms 

yJ;’ E Ry for all j. 

I represent production in the following way: 

For allj, rj={yEM,~xMj:Igj(y)~O), 
where M, and Mi, are subspaces of RL and RLp, respectively, 
where M, = RL n-Mj, and Mj: = RLp n Mj, , 
and where gj: Mj, x M,; + R. 

For all j, M,, and Mj, are standard subspaces of RL. 

For all j, gj is twice continuously differentiable. 

For all j, Dg,(y)%O for all YE M,; x M;. 

For all j and for all YE MJ; x MG, D’g,(y) is positive 
definite on the subspace of Mj, x Mj, orthogonal to 

Dg,(y) . 
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(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

This assumption says that production possibility frontiers have positive 
curvature. In other words, production possibility sets are differentiably 
strictly convex. 

Possibility of zero production. g,(O) = 0 for all j. (3.11) 

Necessity of primary inputs. The following is true, for all j: 
Let y=(y,,yJ~ Mj, x Mj,. If Y, >O and y,,=O, 
for all k E L,, then g,(y) > 0. (3.12) 

3.3. Adequacy 

The final assumptions guarantee that no consumer would have a zero 
income in equilibrium. 

For each i, co,>0 for some kEL,nL,. (3.13) 

That is, every consumer is endowed with some primary good, such as labor, 
which is also a consumption good. 
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i o,>O for all MEL,. 
i-l 

(3.14) 

That is, there is a positive endowment of every primary good. 

There are 0 E Ry and (yjO,yjl)~ 5 for j= l,.. .,J, 

such that 6+ i (yjO+yj,)$O. 
j=l 

(3.15) 

That is, it is possible to produce some of every good in every period while 

using only primary inputs from outside the production system. 

4. Theorems 

I assume that assumptions (3.1H3.15) apply. 

Theorem. Suppose that Es= 1 y,: >O for all k E L,. 

Then there exists an equilbrium. 

Theorem. Suppose that 6,=6 for all i. If 6 is 

sufficiently close to one, then the vector (yjl’) may be 
chosen so that an equilibrium exists which is stationary. 
The equilibrium price vector is of the form p 
=(p, 6p, d2 p, . . .). 

Theorem. Any equilibrium allocation is Pareto optimal. 

Theorem. Let ((xi),Cyj),p) be a competitive equilibrium. If 

n is such that 6, <maxi di, then xk =0 for t sufficiently 

large. 

For the turnpike theorem, I need the following assumption: 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Interiority assumption. There exists [>O and 4 such that O<Lj < 1 and the 
following are true. If di= 6 for all i, where 4 <fi < 1 and if ((Xi),Cyj),P) is a 
stationary equilibrium with transfer payments, then 

Cyjli > [ for all k E L, 
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Theorem. The turnpike property. Suppose that the 
interiority assumption is satisfied. Suppose also that 
cj y;: > 0 for all k E L,, and that 6i= 6 for all i. If 6 is 
sufficiently close to one, then the following is true. If ((Xi), 
(yj),p) is a competitive equilibrium, then ((xi), cvj)) converges 
exponentially to a stationary allocation ((Xi),(j)). 

5. Discussion of assumptions 

243 

(4.5) 

All my assumptions are more or less standard in equilibrium theory, 
except for assumption (3.7) - no fixed coefficients in production, assumption 
(3.10) - strict convexity in production, and the interiority assumption. I now 

discuss what is wrong with these assumptions. 
Assumption (3.10) excludes constant returns to scale. Constant returns to 

scale is a very natural assumption to make. Production possibility sets really 

describe production processes, not firms. There is no compelling reason to 
keep the number of firms fixed. In fact, one imagines that firms can be 
replicated. This possibility is one justification for assuming constant returns 

to scale. All these considerations are especially persuasive in the context of 
growth theory, where one thinks in terms of a very long run. 

The interiority assumption is traditional in turnpike theory. It would be 

better to replace this assumption by assumptions about preferences and 
technology. It is, no doubt, possible to do so, but I have not found a 
convincing set of assumptions which do not lead to an excessively 

complicated proof. 
Assumption (3.7) is especially awkward. It makes it impossible to represent 

the use of capital equipment in production. The conventional representation 
is as follows. One labels equipment according to age. A production process 

using a machine transforms the machine and other inputs into an older 
machine and other outputs. The process transforms one younger machine 
into one older machine. A fixed coefficient of one is unavoidable. 

6. Relation to the literature 

This paper links Arrow-Debreu equilibrium theory with capital theory. 
The equilibrium theory I use is that for an economy with infinitely many 
commodities. The extension of equilibrium theory to such economies was 

made by Debreu (1954), Peleg and Yaari (1970), myself (1972) and. Stigum 
(1972,1973). Debreu proved that equilibria in such economies are Pareto 
optimal and that Pareto optima may be realized as equilibria with transfer 
payments. Peleg and Yaari, Stigum and I proved that equilibria exist. 

Capital theory has a long history. McKenzie (1979) has written an 
excellent up to date survey of turnpike theory. 

IMathE D 
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The turnpike theory existing in the literature, deals with models which 
have only one utility function and one production possibility set. I simply 
introduce many firms, many consumers and budget constraints for 
consumers. The turnpike theorem I prove is an analogue of that of 
Scheinkman (1976, theorem 3, p. 28). 

In my proof, I use a variation of the value loss method. I believe that this 
method traces back to the work of Radner (1961). It has since been improved 
by Atsumi (1965), Brock (1970), McKenzie (1974,1976), Cass and Shell (1976), 
Rockafellar (1976), Brock and Scheinkman (1976), and Magi11 (1977). 

The most recent turnpike theorem of the type I prove is contained in 
McKenzie (1979, theorem 10’). His proof builds on that of Scheinkman and 
uses methods developed in the list of papers just cited. 

It is hard to compare McKenzie’s theorem with my own, since our models 
are so different. In order to clarify the connection between his work and my 
own, I show how to derive from my model the reduced form used by 
McKenzie. This reduced form model is the one typically used in turnpike 
theory. 

Suppose that in my model there are one consumer and one firm. The 
utility function of the consumer is u: RL,E-‘( - co, co). His initial endowment is 
o. The production possibility set of the firm is Y c Rk x R!y. Let 

D = {(KO, K’) E R&y x Ry ) there exists x E i$ 

such that (x-o-K’,K’)E Y}. 

Let u: D+(- co, co) be defined by 

~(K~,K~)=max(u(x)~x~R~ and (x-o-K',K')eY}. 

McKenzie’s economy is defined by D and v. 
The key concavity assumption of McKenzie is stated in terms of the 

concavity of V. But the concavity of v depends on the properties of both u 
and Y in a complicated way. Some of the long arguments in my proof of the 
turnpike theorem may be interpreted as proving that u is concave. Benhabib 
and Nishimura (1981, section 3.3, remark a) have already pointed out that 
the concavity of u requires very strong assumptions about underlying 
production relations. They work with a continuous time model. 

I now return to the comparison of McKenzie’s theorem with my own. My 
theorem is more general in that I prove exponential convergence and he does 
not. McKenzie’s theorem is more general than mine in that he makes only a 
local strict concavity assumption. I assume strict concavity or convexity 
everywhere. McKenzie’s assumption is that the Hessian of v is negative - - - - 
definite at (K, K), where (K, K) satisfies 

- - 
o(K,K)= max{ ~(K,K)I(K,K)ED). 
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(R is the vector of golden rule capital stocks.) The other differences between 
McKenzie’s theorem and my own are of no great interest. 

Araujo and Scheinkman (1977) prove a turnpike theorem with exponential 
convergence [theorem (3.2)]. They assume that a certain infinite-dimensional 
matrix has the dominant diagonal property. I do not see that this condition 
necessarily applies in my case. For this reason, I did not use their result. 

Remark. Yano (1980) has generalized the turnpike theorem of this paper. 
He assumed constant returns to scale while assuming that the von Neumann 
facet containing the golden rule input-output vector is a single ray. 

I now turn to my result that there exists a stationary equilibrium [theorem 
(4.2)]. When there is only one firm and one consumer, stationary equilibrium 
becomes what is known as the modified golden rule. Therefore, the proof of 
theorem (4.2) provides a way to prove the existence of a modified golden 
rule. Brock has already pointed out that the modified golden rule is a 
competitive equilibrium with distortions, in section 2.3 of this paper of 1973. 

Sutherland (1970) and Peleg and Ryder (1974) proved that a modified 
golden rule exists. They used fixed point arguments. I do so as well, but my 
argument is simply a modification of the usual argument which proves that a 
general equilibrium model has an equilibrium. Thus, I clarify the tie between 
general equilibrium theory and the work of Sutherland, Peleg and Ryder. My 
proof is a variation of one given in a previous paper (1979) of my own. In 
that paper, there is uncertainty and there is no discounting of future utility. 

The idea expressed by my theorem (4.4) has already appeared in the 
literature. This theorem asserts that less patient consumers eventually 
consume nothing. Ramsey (1928, pp. 558-559) pointed out that in long-run 
or stationary equilibrium, those consumers with the highest rate of time 
preference would live at a subsistence level. Rader (1971, chapter I) makes an 
argument similar to my own. A related idea appears in the last section of one 
of his recent paper [Rader (1979)]. Finally, Becker (1980) proved an assertion 
similar to Ramsey’s 

Becker studies capital theory using a disaggregated model, just as I do. He 
proves the existence of an equilibrium [Becker (1978, chapter 4)] and the 
existence of a stationary equilibrium [Becker (1980)]. Becker’s work differs 
from mine in that his model is one of temporary equilibrium, not of general 
equilibrium. Consumers can sell or accumulate capital but they cannot 
borrow. 

7. Some lemmas 

The boundedness of feasible allocations is expressed by the following two 
lemmas. 
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Lemma. Let (yjl’) be given. There is B>O such that if 
((Xi), (yj)) is a feasible allocation with initial resources 
cj y,;‘, then all its components are bounded in absolute 
value by B. (7.1) 

Lemma. Let (y,;‘) be variable. There is B >O such that if 
((Xi),oS.,) is a feasible stationary allocation, then all its 
components are bounded in absolute value by B. (7.2) 

The proofs of these lemmas are completely routine and are not given. They 
make use of the facts that production is impossible without primary goods 
and that production sets are closed and convex. 

In proving theorem (4.1), it is easier to deal with an economy in which 

production possibility sets are cones. For this reason, I now modify the 
economy in order to obtain an equivalent economy 6* in which all 
production possibility sets are cones. E* will also be such that free 

disposability is incorporated in the production process rather than in the 
definition of feasibility. 

I introduce one new factor of production for each firm. Thejth such factor 
can be used only by firm j. This factor may be thought of as the 

entrepreneurial factor. McKenzie (1959) has suggested introducing such a 
factor in just the way I do. 

More explicitly, I introduce J new commodities, so that the list of 

commodities in d* is Lu { 1,. . ., J]. The commodity space of &* is RL x RJ. 
An input vector for a firm may be written as (yO, yg), where y06 Rk and 
y,*eR<. Let ej=(O ,..., O,l,O ,..., 0) be the jth standard basis vector of RJ. The 
production possibility set of the jth firm in b* is 

Yj*={t(Yo, --ej2Y,)l(Yo,YJE 5, tlo, 
and every component of (y,, y,) is 

bounded in absolute value by B}, 

where B is as in lemma (7.1). 

I let the endowment of the ith consumer be 

co: = (cot, 0) + 2 O,(O, ej) E RL, x R$ . 
j=l 

Notice that I have introduced one unit of factor j into the economy, for each 
j. The consumption set of every consumer is still Ry and the utility function 
of consumer i is still ui: R!p( - co, 00). 

Finally, I introduce an extra firm, firm J+ 1, which disposes of goods. The 
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production possibility set of firm J+ 1 is 

Y~*,,=R~xR~x{O}~R=+~XR=P. 

Let ei,J+l- -Z-l, for all i. The initial endowment of firm J + 1 is y;:r, 1 = 0. 

In summary, the economy &* is 

{(Ui,~i,OT), (Yjl’, Yj*),8ij: i=l,...,Z, j=1,...,5+1}. 

An equilibrium for E* is defined in the obvious way. It is easy to see the 

following. 

Lemma. There is a one to one correspondence between 
equilibria for d and for B*. (7.3) 

8. Proof of theorem (4.1) 

I prove this theorem by applying results from a previous paper (1972) on 
the existence of equilibrium when there are infinitely many commodities. The 
appropriate economy with infinitely many commodities is 8**, defined as 

follows. The commodity space is 

x=(x”,xl,...)Ixf~RL+-’ and 

The consumption set of each consumer is 

X={XEI,IX:~O, all t and k, and x:=0 if k$L,). 

The utility function of the ith consumer is 

U,(x) = ,zo b:ui(x’). 

The initial endowment of the ith consumer, OF* =(c$*‘, wT*‘, . . .), is defined 

by 

o,**~=o;+ i ei,CVjll,O)sRLx RJ and oT*‘=of for t>0. 
j=l 

Notice that the firms’ initial endowments have been transferred to the 
consumers. 

The production possibility set of firm j is 

Yj** = {y = (y’, y’, . . .) E I, 1 there exist (z-b, 2:) E YT, for t = 0, 1, . . ., 

such that y” = zz and y’ = zb + ,z:-’ for t > 0). 
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In summary, the economy CC?** is 

{(X, Ui,Wi**), Yi**, Bij 1 i= 1,. . ., I, j= 1,. . .,J+ l}. 

Price systems for d* are non-zero vectors in 

I:= x=(x’,x~,...)Ix’ER~+~ and tfox;<~, for all kj. 

p E 1: is written as p = (PO, pl, . . .), where p’ E RL, x R: for all t. 
An equilibrium for d ** is defined in the obvious way. It should be clear 

that an equilibrium for &‘** may be interpreted as an equilibrium for 6*. 
Hence by lemma (7.3), it is sufficient to prove that &** has an equilibrium. 
That &** has an equilibrium follows from theorems 1 and 3 of my previous 
paper (1972). Some routine arguments are needed to prove that &** satisfies 
the assumptions of that paper. In order to save space, these arguments are 
not given here [they do appear in my paper of (1980)]. Q.E.D. 

9. Proof of theorem (4.2) 

I prove the existence of what I call a b-equilibrium for a two-period 
economy, b”, where 6 is the discount factor applied to future utility. It will 
be easy to see that a a-equilibrium for b” corresponds to a stationary 
equilibrium for 6. In B”, consumption takes place in the first period. Firms 
j=l , . . ., J use inputs in the first period in order to produce outputs in the 
second period. An artificial firm, firm zero, transfers goods from the second 
period back to the first. Firms j, for j = 1,. . ., J, are subject to a sales tax of 
l-6 times the value of their output. This tax is paid to consumers according 
to the shares eij. Firm zero pays no tax. The tax embodies the distortion 
caused by discounting future utility. 

I now define b” precisely. The commodity space of 6’ is RL x RLp. The 
production set of firm zero is 

The production set of firm j, for j = 1,. . ., J, is simply q. The consumption set 
of each consumer is 

The utility function of consumer i is 

Uo(X, 0) = Ui(X). 
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His initial endowment is 
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w; = (coi, 0) E RL x RLp. 

The profit shares, 8,,, are as before, for j= 1,. ., J. 8io = I- 1 for all i. 
Formally, 

b” = ((X, up, OF), 5, eij: i = 1,. . ., I, j = 0, I,. . ., J}. 

An allocation for b” will be written as ((xp), (yj)), where xy =(X,O)EX for 
all i, and yj=(yjo, yjl) E 5 for j=O, 1,. . ., J. ((xp), (yj)) is feasible if 

Price systems for 8’ belong to 

A= p=(po,pl)~RL+ x R”,p kT.POk+ 1 Pik=l . 
kcLp 

If p E A, then p. E RL and p1 E RLp always denote the component vectors of p. 
Given p E A, the maximization problem of firm zero is simply 

q:(p) denotes the set of solutions of this problem. For j= 1,. . .,J, the 
maximization problem of firm j is 

~~~{P~.Y~+~P~.Y~ I(Y~,Y& q;.>. 

q:(p) denotes the set of solutions of this problem. Notice that for jl 1, firm j 
maximizes his after tax profits, the tax being (1-6)~~ . y,. 

If j? 1, the tax paid by firm j to consumer i is 8iJ{1 -6)p, . y,, where 
(y,,y,)~ylj0(p). Hence, the income of consumer i, given PEA, is 

wi(P)=PO’wi+ i ei&O’YjO+P1’YjlX 
j=O 

where (yjo, yjl) E qy(pl) for j = 0, 1, . . ., J. w,(p) is well-defined 
po. yjo + pl . yjl is independent of (yjo, yjl) E q:(p) for j = 1,. . ., J. 

The maximization problem of consumer i, given PEA, is 

max (up(x’) 1 x0 E X and p. x0 2 w,(p)>. 

provided that 

<y(p) denotes the set of solutions to this problem, for i = 1,. . ., I. 
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A S-equilibrium for 6’ is of the form ((xp), (yj),p), where ((xp), (yj)) is a 
feasible allocation for 8’; 

and 

PEA, PO~=O if CXik<Cmik+ i YjOkr 
I 1 j=O 

pik=O if O< i yjik; 
j=O 

yj~$(p)forj=O,l,..., J, and xP E t:(p) for all i. 

A stationary equilibrium for 6 corresponds to every S-equilibrium for 8’. 

Let ((x”), (yj), p) be a S-equilibrium for go, where x: =(xi, 0) and yj= (yjo, yjl) 
for all i and j. Let xi = (xi, xi,. . . .) and let ~j=(yj, yj, . . .) for all i and j. Finally, 

let P = (po, dpo, 6’~ o,. . .). It is not hard to show that ((xJ~=~, (yj)fEl,p) is a 
stationary equilibrium for B. Hence, theorem 4.2 is true provided B” has an 
equilibrium. The proof that &’ does have an equilibrium is standard and 
may be done by imitating the arguments Debreu (1959, chapter 5). Q.E.D. 

10. Proof of theorem (4.3) 

I do not give a detailed proof of this theorem, since the proof is completely 

routine. One approach is as follows. To any equilibrium for 6, there 
corresponds an equilibrium for the economy CC?** defined in section 8. A 
theorem of Debreu (1954, theorem 1, p. 589) implies that the &**-equilibrium 
allocation is Pareto optimal among feasible allocations for &**. It follows at 
once that the corresponding equilibrium allocation for & is Pareto 

optimal. 

11. Proof of theorem (4.4) 

Let ((xi), tyj),p) be an equilibrium and let ni>O be the marginal utility of 
expenditure for consumer i in the equilibrium. Suppose that p is so 

normalized that Ci/li= 1. Let B be as in lemma (7.1). Then, Ixf 1 IR for all i 

and t. By assumptions (3.2) and (3.3), Du,(x) is a continuous function of x 
with positive components. Therefore, there exist positive numbers a and b 
such that a 5 ~Yu~(x)/ax, 5 b for all i and k, if 1x15 B. Let 6 = maxi di. 

Let i be such that 6i= 6. Then, for any t and k, 

Now suppose that i is such that 6,<6. If x:,>O, then 

b 2 &+(x:)/8x, = A,S,‘p: 2 A,(& ‘6)‘~ 
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Let T be such that b<Ai(6ip’6)Ta. Then if t 2 7: it must be that x:=0. 
Q.E.D. 

12. Proof of theorem (4.5) 

Let ((ai),vj),a) be a competitive equilibrium for &. I first define the 
allocation to which ((ii), ($j)) converges. For each i, let Ai> be the marginal 
utility of expenditure for consumer i in the equilibrium ((~i),~j),~). This 
marginal utility was defined in section 2. I assume that fi is so normalized 
that xi Ai= 1. Let U: Ry+(- co, co) be defined by 

U(x) =max 
ii 

1 Ai- ‘ui(xi) ) xi E R? for all i, and 1 Xi =x . 
I I 

Let 8’ be the economy obtained from & by replacing all the consumers 
with a single consumer whose utility function is U and whose initial 
endowment is o =ci wi. By a slight modification of theorem (4.2), 6’ has a 
stationary equilibrium (X,(jj),p). I will assume that @ is so normalized tha 
the marginal utility of expenditure of the single consumer is one. Let (Xi) be 
such that 

X=x Xi and U(X3=C ni- ‘u(Xi). 

It is easy to see that ((XJ,(jJ,j) is a stationary equilibrium for & with transfer 
payments. In this equilibrium, the marginal utility of expenditure for each 
consumer i is Ai. ((Xi),~j)) is the stationary allocation to which ((ai),Gj)) 
converges. 

The proof that ((ii), ~j)) converges to ((Xi), OTj)) uses the fact that these 
allocations solve related maximization problems. The set of feasible 
allocations for d depends on the initial holdings, Cjyi,‘, of produced 
goods in the economy. Think of these initial stocks as a variable. This 
variable is denoted by K, where K E RL +“. For each value of K, let R(K) be 
the set of feasible allocations ((xi),bj)) for & such that 

The relevant maximization problem is the following: 

max 2 S’c Ai- ‘Ui(X:) 1 ((Xi), olj)) E F(K) . 
f=O i 

The stationary allocation ((Xi,~j)) solves this problem with initial resources R 

(12.1) 
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=cjyjl. The allocation ((ii), vj)) so ves 1 this problem with initial resources 
R” =cjyJ<‘. These assertions may be proved as follows. Because ((Xi),wj),A 
and ((ai),(Jj),i) are both equilibria with marginal utilities of expenditure 
A Ir.. ., A,, they solve the first-order conditions for solutions of (12.1). Because 
the constraints are convex and the objective function is concave, any solution 
of the first-order conditions is an optimum. 

Problem (12.1) is a variant of the maximization problem traditional in 
growth theory. I now simply adapt the well-known proofs of the turnpike 
theorem to the situation here. 

First, I define an appropriate Liapunov function. For K E Rp, let 

where ((xi), bj)) is a solution to problem (12.1) with initial stocks K. [Of 
course, I$(K) exists only if (12.1) has a solution with initial stocks K.] Recall 
that Ji is of the form ~=(P;GP;c?~P;...). Let F,(K)=@*(K--@-T/,(K). F, is 
the Liapunov function I will use. The diagram presented in fig. 1 may help 
one visualize F,. 

I now turn to a few technical matters. A series of lemmas then follow 
which establish properties of F,. The actual proof of convergence is 
contained in the last few paragraphs. 

Lemma. There exist 1>0 such that Ai> /z for all i, 
no matter what the value of 6. (12.2) 

Proof. As in the proof of theorem (4.4), there exist numbers a and b such 
that as aui(x:)/ax,~ b for all i, t and k. 

By the definition of ni, G’aUi(x:)/aX,~nip:, with equality if xf,>O for all i, 
k and t. Since ci/li= 1, there is i such that /lizl-r. At the end of the proof 
of theorem (4.1), I noted that the income of every consumer is positive in 
equilibrium. Therefore, xik > 0 for some t and k, so that 

b 2 aui(x;)/ax, = A,6 -‘pi 2 I ‘6 -‘pi. 

That is, 6-‘pf,i bl. It now follows that for the same value of t and for any 
n = 1,. . ., I, 

a 5 au,(xf,)/ax, 5 A,6 -‘pf, 5 A,bz. 

In conclusion, A, zab- ‘1-l. Q.E.D. 
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A F6 (K) 

Fig. I 

I next show that 

if ((xi), bj),p) is any equilibrium for E, then 

p’>>O and Cxt=Coi+C(Y~o +y&) for all t. 
I I j 

(12.3) 

By the definition of an equilibrium, it is enough to prove that ~‘$0 for all 

t. By the monotonicity of preferences [assumption (3.3)] all consumption 
goods have positive price. Define a good to be productive if either it is a 
consumption good or may be used directly or indirectly to produce 
consumption goods. Assumptions (3.7) and (3.8) imply that this definition 
makes sense. Since all consumption goods have positive price, all productive 
goods have positive price. The interiority assumption implies that all goods 
are productive. This proves (12.3). 
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I now prove the following: 

There exist numbers q and 4; such that 0 < q 5 P;, s tj for 
all k, if 6 2 4 where &-is as in the interiorityassumption. (12.4) 

If (12.4) were not true, then a compactness argument would imply that 
there is a stationary equilibrium with some price equal to zero, which is 
impossible by (12.3). The compactness argument makes use of lemma (7.2), 
which asserts that stationary allocations are uniformly bounded. 

I now turn to the properties of the Liapunov function Fs. The next lemma 
says that fig. 1 is correct. It says that @is a subgradient of I/ at R. 

Lemma. Zf F,(K) is well-defined, then F,(K) 2 0 = F,(R). (12.5) 

Proof It is obvious that F&)=0. 

Let ((xi), (yj)) EP(K). I must show that 

(12.6) 

Choose (yj’) arbitrarily so that cjy,;’ = K. In order to see that the 
equation below is true, cancel terms and use the fact that 

(12.7) 

It is convenient to write the right-hand side of the above as S, +SZ +S,, 
where Si is the ith infinite sum. 
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Clearly, Xi maximizes the function ni- ‘Ui(X)-_P. X, SO that S, 20. Since 
((Xi), kj)) is feasible, S2 20. By profit maximization in the equilibrium 

((*A Wj),A S, 2 0. Q.E.D. 

Recall that Z?’ is the vector of initial resources associated with the 

equilibrium ((ai), (yj),~). For t > 0, let R’ = C j & i. By (12.3) 

R’=~(~i-wi)-C~:O. 
j 

Lemma. 6F,(R’+ ‘) - F&z?) 

=T [(/i;‘ui(ay)-p.~2:)-(n;‘ui(xi)-p.xi)] 

+CC~‘~~O +6P’~~~)-~.yjO+6P’yjl)], 
(12.8) 

for all tz0. 

Proof: By the definition of F,, 

dF,(Z?+‘)-F,(R’+‘) 

=gp.@+’ -K)--p@-R)+ v,(z+Sv,(lz”‘). (12.9) 

Clearly, 

I/s(Rf)= -f sn~‘~n,~‘(ui(al)-ui(x,)). 
“=f 

Substituting this into (12.9) and rearranging, I obtain 

6F,(Z?+ ‘) - &(I?) 

=(,,-.p+1 -p. I?) -(&If. R - p. R) + T A; ‘(t#) - l&q)). 

If one substitutes Ci(R:-oi)-Cjsfo for I?‘, &J$l for P+‘, Cjyji for the 
first R, and ‘&(&--oi) -cjyjo for the second K, and rearranges terms, one 

obtains the lemma. Q.E.D. 

In what follows, 1.1 will denote the maximum norm. That is, if u is a 
vector, then (u) =maxk 1~~1. 
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Lemma. There exist c( > 0 and E>O, such that 

GFJiZ” ‘) - Fa(P) 5 -a min [s’, I((@, (_$)) -((Xi), (~j))(‘], 

provided 6 2 6. (12.10) 

This lemma follows in a routine way from the previous one and from the 
differential concavity of utility functions and production possibility sets 
[assumptions (3.4) and (3.10)] and from the boundedness of feasible 
stationary allocations [lemma (7.2)]. 

Lemmas (12.5) and (12.10) imply the following: 

(12.11) 

Hence, in order to demonstrate that ((ai),( converges to ((Xi),~j)) 
exponentially, it is sufficient to prove that Fa(If’) converges to zero 
exponentially. 

The next lemma is simply a corollary of the previous one: 

Lemma. There exist cc>0 and E>O, such that 

Fa($?+‘)-6p’F,(I?‘)~ -2amin(s2,1Z?-K)2), 

provided 6 2 6. -- (12.12) 

Proof: It is enough to observe that 

I((a:),(~~))-((~i),(yj))J~(Z+J)-l JR’-RI. Q.E.D. 

The next lemma puts an upper bound on Fa(go): 

Lemma. There exist C> 0, such that 

Fd(Ko) 5 C for all 6 >O. (12.13) 

I prove this lemma by adapting an argument of Gale (1967, proof of 
theorem 6, p. 12). It is at this point that I use the hypothesis that 

c y,<: = K,O > 0 for all k E L,. 
j 

Proof By assumptions (3.14) and (3.15), there exist yj~ I$ for j= 1,. . .,J, 
such that 
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I may assume that Cjyj, sCjy,;i, for I may multiply the yj by an arbitrarily 
small positive constant. Hence, I may assume that 

Choose a such that 0 <a < 1 and a is so close to one that 

(l-a)~xi~~oi+(l--GI)CYjO+aCYjO+CYjll. 
j j j 

(12.14) 

Let 

x:=(1-a’+‘)& and yfi=(l -at+ljyj+a’+‘yj. 

Clearly, ((q),cvj>) is an allocation. One may prove that it is feasible by 
imitating the argument used by Gale. 

Observe that lim f+O x: = Xi exponentially. Since Ui is differentiable, it follows 
that there is c > 0 such that 

*~~(ui(xf)-s(x,))~ -C for all i. 

Let I be as in lemma (12.2). Then, 

W0)2 5 s’~A;l(ui(x:)-ui(xi))~ -IA-‘c. 
f=O i 

Hence, 

F&P) = p* $0 - R) - v,(P) 

~p~(k”-K)+ZA-‘c~~ maxRO+B +ZA-‘c, 

(k k > 

where 4 is as in (12.4) and B is as in lemma (7.2). Q.E.D. 

The proof of the next lemma is the most difficult step in the proof of the 
theorem: 

Lemma. There exist E > 0 and A >O, such that 

if (K-KI<E and 824, then 

F,(K) is well-defined and F,(K) 5 Al K -RI’. (12.15) 
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This lemma implies, of course, that the value function, V,, is differentiable at 
R and that P=DI/,(R). V, is probably differentiable everywhere. See 
Benveniste and Scheinkman (1982) and Araujo and Scheinkman (1977). 
(1977). 

ProoJ It is sufticient to prove the following: 

There exist E>O and A >O, such that if (K-RI <E, 

then there exists ((Xi), (‘j))H(K), such that (12.16) 

If (12.16) is true, then a Cantor diagonalization argument proves that F,(K) 
exists. [Such an argument is given in Brock (1970, proof of lemma 5, pp. 
277-278)) 

I start by defining a feasible allocation ((‘Xi), (“Yj)) which converges to 
((%J,(Y;-)) exponentially and from below. I do so by using the construction of 
Gale, which I have already used in proving lemma (12.13). Clearly, 

$Czi~i;CWi+~~~jo+Cyjl. 

I 1 j j 

This is simply (12.14), with c(=& Yjo=$jo, and YJ;’ =Yj,. Let 

Then, ((‘xi), (“Yj)) is a feasible allocation. 
I now modify ((OXJ,(OYj)) SO as to obtain an allocation ((‘xi),(rYj)) such that 

g,(‘yi) = 0 for all j and t. For all j and t, let 

(‘Y& ‘Y;l) = (“Y;,,, a:OY:.l) where u; = max {a 2 11 (“yi,, a’y:,) E y}. 

This defines ((‘xi), (‘yj)). Since ‘yil 2 “yil for all j and t, ((‘xi), (ly,)) is feasible. 

The E of (12.16) is defined by the formula 

&=(1+4[-rB)-‘D-‘, (12.17) 

where B is a bound on stationary allocations [which exists by lemma (7.2)], 
where [ >0 is as in the interiority assumption, and where D is a constant 
defined just after (12.18) below. It will be seen that D could be defined before 
E, so that the argument is not circular. D> 1, and I assume that B> 1 and 
i < 1, so that E < c/4. 
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I next show that the part of ((‘xi),(‘yj)) from some time t on is feasible, 

provided that the vector of initial capital stocks, K, satisfies (IK - RI <E. 
Suppose that 0 < 1 K - RI = E and let T be the largest non-negative integer 

such that 

$T+2KkzlK -KI for all k. 

Such a T exists since E < c/4 and K,z [ for all k. I claim that the part of 

((‘xi)2 (‘Yj)) 

Therefore, 

from T on belongs to 9(K). For all keL,. 

Kk&-IK-Kl~(1-$T+2)Kk. 

=(l-$Tf2)Kk5Kk for all keL,,. 

This proves the claim. 

Let ((“Xi),(“yj)) be defined by ((‘x~),(“~~))=((~x~‘~),(~$+~)). I have shown 
that ((2Xi), (“Yj)) belongs to F(K), that it converges exponentially to ((xi), (yj)) 
and that it satisfies g,(“y:) =0 for all t and j. I need an additional condition, 
which is that the feasibility condition be satisfied with equality in every 
period. I define surplus vectors Z’E R$ as follows: 

z’=K+&u- C”x”- 
i (i 

and 

I next define a process which I call distributing surpluses. This process will 
transform the given allocation into one which has no surpluses and still 

satisfies the conditions listed below. 
Suppose that we start with an allocation ((xi),oJj)) which has the property 

that a positive quantity of every good is either consumed or used directly or 
indirectly to produce some consumption good. By the interiority assumption, 
the stationary allocation ((xJ, gj)) has this property, and it follows that ((2~J, 

('Yj)) does so as well. I show how to distribute the surplus vector ZE RL, 
available at time t. I describe how to distribute the first component of z. 
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Each of the other components are distributed in succession in the same 
manner. The distribution of the first component results in a new allocation 
(&),cV;) which is defined as follows. If the first good is consumed by some 

consumer, say by consumer i, then let *1 =xfi + z1 and let all other 
components of the allocation ((A?~),($~)) be the same as the corresponding 

components of ((Xi),(yj)). If the first good is not consumed by anyone, then 
there exists a sequence of the form k, j, k, ,. . .,j, k,i, where k,= 1, and with 
the following interpretation. In the allocation ((Xi),(yj)), firm j, uses good k, 
to produce good k,, 1, for n = 0, 1, . . ., N - 1, and a positive quantity of good 
k, is consumed by consumer i. Clearly, the sequence may be chosen so that 

N<L. For n=O,l,..., N, let e, be the k,th standard basis vector of Rt. 
Define a,, a,, . . ., uN as follows. Let a, =zr. Given a,_ 1, let 

u,=max(u2O((yb+“-‘--ua,_,e,_,, y~:n-l+ue,)~ qj 

for j =j,_r. 

By assumptions (3.7)-(3.9), a, is well-defined and a, >O if a,_ r >O. if 

n=O 1 , ,..., N- 1, let 

~+n=(y:.o+n-unen,yf,:“+u,+,e,+,) for j=j,. 

Let &= xi + aNeN. Let all the other components of the allocation ((x”J,(yj)) be 

the same as the corresponding components of ((xJ,(~j)). 

The allocation ((3xi),(3yj)) is defined to be an allocation obtained from 
((‘xi),(‘yj)) by distributing the surpluses z’ for t=O, 1,. . . . It should be clear 

that the new allocation belongs to F(K) and that gj(“y;)=O for all j and t. I 
now show that ((3xi), (“yj)) converges exponentially to ((Xi), gj)). 

First of all, let a,,~,, . . ., uN be as in the construction just described. If the 

starting allocation ((xi), (yj)) equalled the stationary allocation ((pi), (_Vj)), then 
it would follow from profit maximization and from inequality (12.4) that 

Because the production possibility sets are differentiably strictly convex 
[assumption (3.10)], it follows there is C 2 1 such that if [((xf),(y$) 

-((xi), (yj)\ 5 2 for all t, then 

a,~[~-Lq-‘cfzl for all n. 

If one takes into account the fact that a component of ((‘xi), (“yj)) may be 
affected by at most L2 distributed surpluses, one obtains that 

]((3x:), (“yi))-((‘xi), (‘y>))l 5 L.? i~-‘$-‘~rnax lzS1 for all t, 



7: Bewley, Equilibrium and turnpike theories 261 

if the allocation to which surpluses are distributed is always at most distance 
2 from ((xi), bj)). In summary, 

1((%), (‘Y!)) - ((3~:), (3~$)1 5 D m:f lzSl for all r, 

where 

provided I((“$), (‘JJ~)) - ((Xi), _Vj))( 5 1 

and Iz’IgDD-’ for all t, 

D = L2[eLq- ‘4. 

(12.18) 

I next show that the conditions in (12.18) apply. it is easy to see that 

I((‘x:),(~Y~))-((XJ,(Y;.))I s+T+t+lB for all t, (12.19) 

where B is the bound on stationary allocations which appears in the 
definition of E, (12.17). Recall that T is the largest non-negative integer such 
that IK - KI St” ’ R, for all k. Hence, for some k, 

where [ is as in the interiority assumption and in (12.7). It follows that 

3T+1~4r~11K-RI~41-ls~B-1. (12.20) 

The last inequality follows from the definition of E, (12.17). Hence by 
inequality (12.19), 

I((2xi) ("Yil) -((xiX (.Vjl)l5 1 for all 4 

and the first condition of (12.18) is satisfied. 

I next show that 

Iz’I~(~[-~B+~)$IK-KI for all t. 

Recall that 

(12.21) 

z’=C lyjT1+t+l +FOi- CIXT+f- ‘YJTOf’ if t>O. 
j (i =,I i 
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It should be clear that ly;l syj, for all t and j. Therefore, for all kELp, 

=~lX:k_C1yIOk~C1y~;kl~Klr. 
_i i 

Hence, 

OIZ~~$~+‘IK(~~~+‘+‘B for all kg&. - - 

If k E L,, then 

Tmik-(T lx:k--c 'Y;Ok i > 

Hence, 

Zf jlT+t+ 1B 
k-2 

Using (12.20), it now follows that 

Iz’I~~[-~ B$‘IK-RI if t>O. 

Since 

it follows from what has been proved that 

~zo~~lK-KI+IK+Soi-(~lx~-~lYh)~ 

j~K-R~+4~-1~K-zq. 
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This completes the proof of (12.21). 
Since /K-RI SE, (12.21) implies that 

Iz’I~D-’ for all t, 

and the second condition of (12.18) is satisfied. 

Combining (12.18H12.21) and using the triangle inequality, I obtain that 

where 

)((3X:),(3y~))-((~i),(y;.))(~~‘EJK-R( for all t, 

E=41-‘B(D+l)+D. 

(12.22) 

Let ((“XJ,(“yj))=((XJ,bj)). I now show that ((Xi), @j)) satisfies (12.16) for a 
suitable choice of A and for the E defined in (12.17). Let B be as in the 
definition 

all i, 

provided 

of E. By assumptions (3.2) and (3.4) , there exists b, > 0 such that for 

Us+ Du~(x).(X’-X)-U~(X’)~~~IX-X’I~~ 

that 1x1~~ and IX-~‘15 1. Let i be as in lemma (12.2). Then for 

provided that xk = 0 whenever Xik = 0 for k = 1,. . ., L. 
By assumptions (3.8) and (3.10), there exists b,>O such that for all j, 

Dg,(y’).(y’-y)&ly’ -YI’> 

provided ly’ls~, ly-~‘15 1, and gj(y)=gj(y’)=O. Let 

11 
-1 

lyls~, i=O,l, k=l,..., L, j=l,..., J , 

where 4 is as in (12.4). By assumptions (3.8) and (3.9), p exists. Then, 

provided yOk =0 whenever J& =O, and y,, =0 whenever ylk =O, for k 
= 1 , . . ., L, and provided gJ(y) = 0. 

I have been careful to choose ((Xi),~j)) so that the following are true: xik 
= 0 whenever &=O for all t, i, and k, &,=O whenever Y;.Ok =O, and yi,, = 0 

9 
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whenever Yjlk =0 for all t, j, and k, and gj(y:,, =0 for all t and j. It follows 
that 

where 

5 b(z + J)l(M <Y;)) -((4, <_Vj))l", for all 4 (12.23) 

b=max(A-lb,,&). 

Let A =QEb(I+J). I now show that (12.16) is true for E, A, and ((xi), bj)) as 
defined above. By (12.7), 

P’(K-_R)- ~ s*CA;l(Ui(X:)-Ui(~i))~Sl +Ss+S3, 
t=O i 

where S,, S, and S3 are defined just after (12.7). Since 

~(r’jo+y~~‘)+~(wi-Xl)=O for all t, 

it follows that S, =O. By (12.22) and (12.23), 

This proves (12.16) and hence proves the lemma. Q.E.D. 

I now may prove that lim,,, F,(K’) =0 exponentially. By (12.11) this proof 
will complete the proof of the theorem. 

Choose a small positive number no larger than the E of lemma (12.12) and 
the E of lemma (12.15). Call this number E again. Let LX be as in lemma 
(12.12) and let A be as in lemma (12.15). Clearly, I may assume that c1< A. 
Finally, let C be as in lemma (12.13). Then, I know that Fa(Z?‘)s C. 

If 1~824 and I~‘-RI~s, then 

F,(I?)~AIlt’-~12. 

Also, 

Fg(Kf+1)--6-1F,(IZ’)~ -2dlmin(s2, llZ’-RI’) for all t. 
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Let 

6= max (4, A/(A + c(), C/(C + as’)). 

From now on, I assume that 6 2 6. I claim that 

F&K’+ ‘)sFa(lZ’)--amin(sZ, IKI’-K12). (12.24) 

The argument involves induction on t. Recall that F&Z?‘)5 C. Assume by 
induction that F,($?) 5 C. If JR’- KI 2 E, then 

FG(IZf+1)~Fa(R’)+(6-1-1)F,(R’)-2a11Z’-R12 

~;Fa(Rf)+[(6-1-1)A-2a]IR’-R12 

~F~(R~)-~lRf-K~2. 

The last inequality follows from the choice of 6. If IR’- RI 2 E, then 

5 F,(P) + (6 i - 1)C - 2ae2 

5 &(I?) - a&2. 

The last inequality again follows from the choice of 6. It now follows that 
F,(@+‘)s C. Hence, I may continue the above argument inductively. This 
proves (12.24). 

I now prove that 

F@+ ‘) 5 max [( 1 - crA _ i)F@), F,(P) - as2]. (12.25) 

By (12.24), 

F,(R’+‘)~F,(R’)-as2 if I&‘-RIZE. 

Also 

F,(~‘+‘)~F,(~‘)-~~K’-~~2~F,(~‘)-~A-’F,(~’) 

if [P-R/+&. 

This proves (12.25). 
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I complete the proof by showing the following: 

There exists a positive integer T, such that 

FJRt)~C--t~s2 if tsT, and 

Fa(F?)s(l -cu-‘)‘-~AE~ if tz T. (12.26) 

If F,(R’) 2 A&Z, then a.4 - ‘F&‘) 2 CIE’, so that by (12.25), F,(Z?+‘) 5 
Fa(&‘) - CIE~. Similarly, if Fd(?) 5 As’, then aA - ‘F,(e) 5 a.?, so that 
F&Z?+ ‘) z(l -a.K1)F,(I?‘). Let T be the smallest positive integer such that 
As2 2 C-aE2T. This completes the proof of assertion (12.26). Q.E.D. 

Acknowledgement 

I am very grateful to William Brock and Lionel McKenzie for their advice 
and encouragement and a great deal of help. I am also grateful to Makoto 
Yano for pointing out an error in an earlier version of this paper. In that 
version, I made no interiority assumption, and my proof of the turnpike 
theorem was incorrect. 

References 

Araujo, Aloisio and Jose Scheinkman, 1970, Smoothness, comparative dynamics and the 
turnpike property, Econometrica 45, 601-620. 

Atsumi, Hiroshi, 1965, Neoclassical growth and the efficient program of capital accumulation, 
Review of Economic Studies 32, 127-136. 

Becker, Robert, 1978, Simple dynamic models of equilibrium, Ph.D. dissertation (University of 
Rochester, Rochester, NY). 

Becker, Robert, 1980, On the long-run steady state in a simple dynamic model of equilibrium 
with heterogeneous households, Quarterly Journal of Economics 45, 375-382. 

Benhabib, Jess and Kazuo Nishimura, 1981, Stability of equilibrium in dynamic models of 
capital theory, International Economic Review 22, 275-293. 

Benveniste, Lawrence and Jose Scheinkman, 1982, Duality theory for dynamic optimization 
models: The continuous time case, Journal of Economic Theory 27, 1-19. 

Bewley, Truman, 1972, Existence of equilibria in economies with infinitely many commodities, 
Journal of Economic Theory 4, 514540. 

Bewley, Truman, 1980, An integration of equilibrium and turnpike theory, Discussion paper no. 
405 (Center for Mathematical Studies in Economics and Management Science, Northwestern 
University, Evanston, IL). 

Bewley, Truman, 1981, Stationary equilibrium, Journal of Economic Theory 24, 2655295. 
Brock, William, 1970, On existence of weakly maximal programmes in a multi-sector economy, 

Review of Economic Studies 37, 2755280. 
Brock, William, 1973, Some results on the uniqueness of steady states in multisector models of 

optimum growth when future utilities are discounted, International Economic Review 14, 
535-559. 

Brock, William and Jose Scheinkman, 1976, Global asymptotic stability of optimal control 
systems with applications to the theory of economic growth, Journal of Economic Theory 12, 
164190. 



7: Bewley, Equilibrium and turnpike theories 261 

Cass, David and Karl Shell, 1976, The structure and stability of competitive dynamical systems, 
Journal of Economic Theory 12, 31-70. 

Debreu, Gerard, 1954, Valuation equilibrium and Pareto optimum, Proceedings of the National 
Academy of Science 40, 588-592. 

Debreu, Gerard, 1959, Theory of value (Wiley, New York). 
Dunford, Nelson and Jacob Schwartz, 1957, Linear operators, Part I: General theory (Wiley, 

New York). 
Gale, David, 1967, On optimal development in a multi-sector economy, Review of Economic 

Studies 34, l-l 8. 
Kelley, John, Isaac Namioka et al., 1963, Linear topological spaces (van Nostrand, Princeton, 

NJ). 
Magill, Michael, 1977, Some new results on the local stability of the process of capital 

accumulation, Journal of Economic Theory 15, 174210. 
McKenzie, Lionel, 1959, On the existence of general equilibrium for a competitive market, 

Econometrica 27, 54-7 1. 
McKenzie, Lionel, 1974, Capital accumulation optimal in the final state, in: G. Bruckmann and 

W. Weber, eds., Contributions to the von Neumann growth model (Springer-Verlag, Vienna). 
McKenzie, Lionel, 1976, Turnpike theory, Econometrica 44, 841-865. 
McKenzie, Lionel, 1979, Optimal growth and turnpike theorems, in: K.J. Arrow and M.D. 

Intriligator, eds., The handbook of mathematical economics (North-Holland, Amsterdam) 
forthcoming. 

Peleg, Bezalel and Harl Ryder, Jr., 1974, The modified golden rule of a multi-sector economy, 
Journal of Mathematical Economics 1, 193-198. 

Peleg, Bezalel and Menahem Yaari, 1970, Markets with countably many commodities, 
International Economic Review 1 I, 369-377. 

Rader, Trout, 1971, The economics and feudalism (Gordon and Breach, New York). 
Rader, Trout, 1979, Utility over time: The homothetic case, Mimeo. (Department of Economics, 

Washington University, St. Louis, MO). 
Radner, Roy, 1961, Paths of economic growth that are optimal with regard only to final states, 

Review of Economic Studies 28, 98-104. 
Ramsey, Frank, 1928, A mathematical theory of saving, Economic Journal 38, 543-559. 
Rockafellar, R. Tyrell, 1976, Saddle points of Hamiltonian systems in convex Lagrange 

problems having a nonzero discount rate, Journal of Economic Theory 12, 71-113. 
Schaefer, Helmut, 1971, Topological vector spaces (Springer, New York). 
Scheinkman, Jose, 1976, On optimal steady states of n-sector growth models when utility is 

discounted, Journal of Economic Theory 12, 1 l-20. 
Stigum, Bernt, 1972, Competitive equilibria with infinitely many commodities, Metroeconomica 

24, 221-244. 
Stigum, Bernt, 1973, Competitive equilibria with infinitely many commodities (II), Journal of 

Economic Theory 6,4 15445. 
Sutherland, W., 1970, On optimal development in a multi-sectoral economy: The discounted 

case, Review of Economic Studies 37, 585-589. 
Yano, Makoto, 1980, Competitive equilibria on turnpikes in a McKenzie economy, Mimeo. 

(Department of Economics, University of Rochester, Rochester, NY). 


