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We examine dynamic models of evolutionary selection processes on asymmetric 
two-player games. Conditions are established under which dynamic selection pro- 
cesses will yield outcomes that respect iterated strict dominance. The addition of a 
stability requirement ensures that outcomes will be Nash equilibria. However, we 
find that stable outcomes need not respect weak dominance, and hence need not 
yield perfect equilibria. We conclude that evolutionary arguments readily motivate 
such equilibrium oncepts as rationalizability and Nash equilibrium, but appear to 
provide little basis for even such simple refinements of Nash equilibrium as the 
recommendation that dominated strategies not be played. Journal of Economic 
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I. INTRODUCTION 

This paper investigates the ability of evolutionary arguments to provide 
foundations for common game theoretic solution concepts. We find that 
evolutionary arguments readily motivate such equilibrium concepts as 
rationalizability and Nash equilibrium, and provide some grounds, based 
on stability considerations, for choosing between them. At the same time, 
evolutionary arguments appear to provide little basis for even such simple 
refinements of Nash equilibrium as the recommendation that dominated 
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strategies not be played. A belief in evolutionary foundations for game 
theory may thus lead to the avoidance of strong equilibrium refinements 
and to consideration of outcomes in which weakly dominated strategies are 
played. It appears as if this conclusion can be avoided only if some 
additional structure can be placed on the evolutionary process, perhaps 
with the help of explicit models of how players learn. 

We examine two-player games. Section III establishes notation and 
definitions. Section IV shows that if the evolutionary process satisfies a 
condition called monotonicity, then any strategy which fails to survive the 
iterated elimination of pure strategies which are strictly dominated by other 
pure strategies will be eliminated from the population. This holds 
regardless of whether the process converges. Section IV then shows that 
if the evolutionary system satisfies a stronger condition called aggregate 
monotonicity, then any strategy which fails the iterated elimination of 
strictly dominated strategies, or is not rationalizable, will be eliminated. 
Aggregate monotonic systems are shown to include the replicator dynamics 
and simple transformations of the replicator dynamics. 

Section V examines asymptotically stable equilibria. We find that 
asymptotically stable equilibria are “nearly” strict Nash equilibria. 
Section V also presents a .theorem showing that if an evolutionary path 
converges “quickly” under’the replicator dynamics, then its outcome must 
be a quasi-strict equilibrium. Each of these is a potentially troubling result; 
the first because a theory which simply recommends strict Nash equilibria 
is of relatively little use and the second because it suggests that we must 
either work with the relatively strong equilibrium concept of quasi- 
strictness or work with systems in which the limiting outcome of the 
evolutionary path is a poor approximation of behavior along the path. 

Section VI attempts to find a middle ground between the rationalizable 
outcomes of Section IV and the strict Nash equilibria of Section V by 
relaxing the requirement of asymptotic stability to simply stability. We 
find that stable points of a monotonic evolutionary process must be Nash 
equilibria. However, Section VI also shows by example that stable points 
need not be perfect equilibria or limit ESSs. This is an interesting finding 
in light of the apparent similarity between the trembles involved in the 
definition of a perfect equilibrium or limit ESS and the (possibly small) 
proportions of the population in an evolutionary system which play each 
of the strategies of a game. 

It is not clear that the stability notion employed in Section VI is satisfac- 
tory. Unlike the case of an asymptotically stable equilibrium, it appears as 
if the cumulative effect of successive mutations could be to lead the system 
away from a stable outcome, causing “stable” points to exhibit very little 
stability. Section VI addresses this concern by examining stable outcomes 
in a model which explicitly allows for mutation. We again find that stable 
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outcomes must be Nash equilibria but need not be perfect. This prompts 
our conclusion that evolutionary considerations motivate equilibrium 
concepts such as rationalizability and Nash equilibrium, with stability 
considerations invoked to choose between the two, but do not motivate 
stronger solution concepts. 

Section VIII shows that stable outcomes will respect weak dominance 
and hence be perfect in a model in which trembles appear not as mutations 
but as players making mistakes when playing strategies. This suggests that 
the choice trembles which appear in the definition of trembling hand 
perfection differ in important ways from mutations. Section IX concludes. 

II. RELATED LITERATURE 

Three types of previous work are related to our results. First, Brown [3] 
and Robinson [ 161 used the concept of fictitious play to construct a 
dynamic process in which players adjust their strategies by choosing best 
responses to the mixed strategies implcitly defined by accumulated previous 
play. If the expected payoffs from these accumulated mixed strategies 
converge (which occurs on zero-sum games), then the limiting payoffs 
correspond to a Nash equilibrium. This is perhaps the first of many 
theorems of the type “convergence or stability implies Nash.” Interest in 
fictitious play waned after Shapley [22] presented an example in which the 
process does not converge. Our work differs both in considering a different 
class of dynamic processes and in establishing some results for processes 
which do not converge. 

Second, biologists and game theorists have developed an extensive 
theory of evolutionary games. The standard solution concept in evolu- 
tionary game thoery, introduced by Maynard Smith [ 111 and Maynard 
Smith and Price [12], is that of an ESS, or evolutionarily stable strategy. 
Attention has also been focused on dynamic evolutionary models, with 
particular attention devoted to the replicator dynamics, borrowed from 
biology. A stable outcome under the replicator dynamics must be a Nash 
equilibrium, producing a second “stability implies Nash” theorem. If an 
outcome is an ESS, then it is asymptotically stable under the replicator 
dynamics. The converse holds under some (e.g., two player games with two 
strategies per person) but not all circumstances ([24, section 9.43). ESSs 
also exhibit considerable structure. For example, an ESS is a symmetrically 
strictly perfect and proper equilibrium [24, section 9.31. At the same time, 
Ref. [24, example 9.4.31 shows that there exist outcomes which are stable 
under the replicator dynamics but not perfect (and hence not an ESS). 

Some work has been done on extending these results beyond the 
replicator dynamics. Nachbar [ 141 shows that if a dynamic process 
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satisfies the condition we call monotonicity below, then a limiting outcome 
of a converging process must be a Nash equilibrium. In addition, Nachbar 
shows that if a game is such that the iterated elimination of pure strategies 
which are strictly dominated by pure strategies yields a unique outcome, 
then a monotonic adjustment process will converge. 

Third, the results cited above apply only to symmetric games. Our work 
differs in its primary emphasis on asymmetric games. A body of literature 
has appeared to address asymmetric games. Selten [ 181 shows that an ESS 
in an asymmetric game must be a strict Nash equilibrium. While it is well 
known that a strict Nash equilibrium exhibits virtually all desirable proper- 
ties, a theory which confines attention to strict Nash equilibria is too 
restrictive to be useful. More importantly, it is not clear how an ESS 
corresponds to the limiting outcomes of dynamic evolutionary processes in 
asymmetric games. 

Selten [19] and [20] offers the more general limit ESS (the limit of 
ESSs in games with perturbed strategy choices) as an alternative to the 
ESS. Any ESS is a limit ESS and limit ESSs exist in some games with no 
ESS. The relationship between the limit ESS concept and the limiting 
outcomes of dynamic evolutionary processes in asymmetric games is again 
unknown. 

Progress in the study of evolutionary arguments in asymmetric games 
now requires examination of the links between equilibrium concepts and 
the outcomes of dynamic evolutionary processes. Friedman considers 
general monotonic adjustment processes on asymmetric games, establishing 
four basic results [7, Propositions 46 and Counterexamples l-31: Every 
Nash equilibrium is a rest point of the dynamic system (i.e., a point with 
the property that if the dynamic system begins at the point then it will not 
move away). Asymptotically stable outcomes are Nash equilibria. An ESS 
need not be asymptotically stable for all monotonic adjustment processes 
(in symmetric or asymmetric games). Finally, a regular ESS is asymptoti- 
cally stable for a class of monotonic adjustment processes. 

This paper continues the investigation of dynamic evolutionary processes 
on asymmetric games. Our finding that monotonic adjustment processes on 
asymmetric games will respect the iterated elimination of pure strategies 
which are strictly dominated by other pure strategies generalizes Nachbar’s 
result that monotonic processes will converge in symmetric games in which 
the iterated elimination of pure strategies strictly dominated by other pure 
strategies yields a singleton outcome. Our finding that stable points must 
be Nash equilibria is another of the many “stability implies Nash” 
theorems. Our finding that asymptotically stable outcomes must be 
essentially strict Nash equilibria strengthens Friedman’s result that 
asymptotically stable outcomes must be Nash equilibria. 

Technically, the specifications of the dynamic processes, the definition of 
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stable outcomes, and some of their properties (such as the findings that 
stable outcomes must be Nash equilibria but may fail to be perfect) 
generalize from symmetric to asymmetric games in a straightforward way. 
However, symmetric and asymmetric games are distinguished in two 
respects. First, the ESS concept does not appear to be useful in the latter 
(nor do obvious alternatives exist). As mentioned above, the ESS concept 
in asymmetric games is equivalent to strict Nash equilibrium. Much of the 
literature on equilibrium refinements is motivated by a belief that there are 
interesting equilibria that are not strict; and that one cannot be content 
with a restriction to strict equilibria. More importantly, one easily finds 
games (such as (27) below) that have no strict Nash equilibria and hence 
have no ESS but in which evolutionary arguments still appear to have 
interesting implications. This prompts us to appeal directly to dynamic 
arguments as the primary form of analysis, unlike the case of symmetric 
games where considerable work has been done by simply using the ESS 
concept. 

Second, asymptotical stability in asymmetric games is also essentially 
equivalent to strict Nash equilibrium (this is made precise in Theorem 4 
below). For reasons analogous to the case of the ESS concept, asymptotic 
stability is then less useful in asymmetric than in symmetric games, forcing 
us to look at other stability notions. One can thus easily extend techniques 
from symmetric to asymmetric games, but finds that the results are less 
useful in the asymmetric case and is prompted to look for alternative 
techniques. Sections VI-VIII below are in this spirit. 

Finally, it is useful to note that attempts have recently been made to 
construct decision theoretic foundations for solution concepts, Tan and 
Werlang [23] show that the common knowledge of rationality implies that 
players will choose rationalizable strategies and that common knowledge of 
rationality coupled with a consistency condition on beliefs yields Nash 
equilibrium. Our results provide an alternative, evolutionary foundation for 
these concepts, with aggregate monotonicity of the learning process 
implying rationalizability and monotonicity plus stability implying Nash 
equilibrium. For those who are troubled by the strength of assumptions 
such as the common knowledge of rationality or the consistency of beliefs, 
this may be an appealing alternative. 

III. GAMES AND DYNAMIC PROCESSES 

Let ({L2},Z,J,~,, 7~~) be a two-player normal-form game. The players 
are denoted 1 and 2. Z and J are finite sets of pure strategies for players 1 
and 2 with generic elements i and j. n,:Zx.Z+R and rc,:Zx.Z+R are 
payoff functions. Let the cardinalities of Z and J be denoted n, and n,. Let 
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x and y be elements of S”’ and S”*, where S”’ is the (n, - 1 )-dimension 
simplex. x and y are interpreted as vectors identifying the proportions of 
populations 1 and 2 playing each of the pure strategies in I and J. 

We will abuse notation somewhat by letting the expected payoff 

1 1 711(itj)xi.Vj 

iel .jtJ 

be written simply as n,(x, y), with rr,(x, y) being analogous and with 
rc, (i, y) (for example) being the special case in which player 1 plays pure 
strategy i. In addition, let A and B be n, x nz matrices of player 1 and 
player 2 payoffs, where ad is the payoff to player 1 if player 1 plays his ith 
strategy and 2 plays her jth strategy and where b, is analogous for player 2. 
Then 

x,(i, y) = el?Ay 

n,(x, Y) =x=4 

x2(x, j) = xTBej 

d.~, Y) = xTBy, 

where ei is a vector of zeros except for a 1 in the ith place and T denotes 
transposition. 

We now introduce the concept of a selection process. Intuitively, we 
think of there being two large (formally, infinite) populations of players 1 
and 2 who are repeatedly, randomly matched to play single repetitions of 
the game G. Each player plays a pure strategy, with the distribution of 
strategies among players being given by x and y. Over time, the propor- 
tions of the populations playing the various pure strategies adjust in 
response to payoff differences. We assume that these changes in population 
proportions can be described in the following way: 

DEFINITION 1. Let f: S”’ x S”* + IF!“’ and g: S”’ x S”* + R”*. Then the 
system 

ii=fifi(x9 Y) i= 1, . . . . n, 

.Pj= gjtx3 Y) j=l , ..., n2 

is a selection dynamic if it satisfies, for all (x, y) E S”’ x S”*, 

(1.1) f and g are Lipschitz continuous, i.e., 3k E R, s.t. Vx, x’ E Snl, 
v y, y’ E P, 

max{If(x, Y)-fb’, y’)l, Isk y)-&‘, y’)ll Gk lb, Y)-(x’, Y’)I 

(1.2) CIL,fitx, Y)=“=C~=, gjlx, Y) 

(1.3) VxES”‘,Xi=O*fi(X, y)aO 
VylzS”2, y,=o* gj(x, y)>O. 
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We will write x(t) and y(t) to denote the time-t values of x and y, but will 
suppress t whenever possible. i Note that fi/xi is the growth rate of the 
proportion of population 1 playing strategy i. It is convenient to define 
f/x= (fi/Xl, *..3 fn,/xn,). The Lipschitz condition contained in (1.1) ensures 
that for any initial condition, the selection dynamic has a unique solution. 

Ideally, one would like to build the selection dynamic up from a precise 
theory of how individual players switch strategies. Unfortunately, it 
appears as if such a theory must include a number of ad hoc elements. 
We attempt to avoid arbitrary choices in the construction of a theory of 
learning and individual behavior of placing assumptions directly on the 
selection dynamic. We hope that these properties are general enough to 
include the dynamic processes produced by a variety of selection or 
learning theories.2 

We will make use of the following two properties: 

DEFINITION 2. f and g yield a regular selection dynamic if (l.lk( 1.3) 
hold and the following limits exist and are finite: 

fi fi 6=.llm - 
x,-O xi 

gin ]im 42. 
0 .v/ -+ O .V, 

DEFINITION 3. f is monotonic if, for i, i’ E I, 

fitx7 Y) 7b(i, Y) >(=)nl(i', Y)*- >(=]fi~(% Y) ~ 
X, xj, ' 

and f is aggregate monotonic if, for all p, p’ E S”‘, 

nl(P7 Y)>nl(P’, Y)* g (Pi-Pi!7 
a4 Y)>. 

. 
i= 1 I 

(1) 

(2) 

Regularity causes the growth rates f/x and g/y, which are continuous on 
the interior of S”’ x S”* as a result of Definition 1, to be continuous on all 

’ Following standard practice, the aggregate selection dynamic is taken to be deterministic 
even though the players are randomly matched by a stochastic process. Boylan [2] rigorously 
investigates the stochastic foundations of the deterministic replicator dynamics. 

’ Constructing models of how individuals in an evolutionary system make choices and learn 
is an important area for research. Fudenberg and Kreps [S] examine learning in extensive 
form games of perfect information which have the property that in any course of play, each 
agent moves at most once. See also [4, 10, 13,211. 

642/57:2-a 
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of S”’ x S”*. This has the important implication of ensuring that if x(0) and 
y(0) are strictly positive, as we will assume, then x(t) and y(t) are strictly 
positive for all t. This allows us to avoid problems which arise because of 
extinction, Monotonicity requires that if pure strategy i receives a higher 
expected payoff than i’ and if x, and xi, are both positive, then xi grows 
faster than xi,.3 

Regularity and monotonicity together have the key effect of ensuring 
that if one takes a sequence of values of xi and xi, on which the expected 
profit of xi is higher than that of xi,, and with the expected-profit difference 
bounded away from zero, then the difference in growth rates of Xi and xi, 
does not deteriorate to zero along this sequence even if one of xi or xi, 
approaches zero. 

The interpretation of monotonicity is that, on average, players are able 
to switch form worse to better strategies. Aggregate monotonicity requires 
that if the population 2 vector y is such that a mixed strategy p would 
receive a higher payoff against y than would p’, then the system grows 
faster toward p than toward p’. One readily verities that an aggregate 
monotonic system is monotonic but the converse does not hold. Note that 
while mixed strategies are involved in the definition of aggregate 
monotonicity, we maintain the convention that individual agants play pure 
strategies. 

The biology literature makes frequent use of a particular selection 
dynamic which we adapt to our asymmetric model: 

DEFINITION 4. The selection dynamic (f, g) is the replicator dynamics, 
denoted (f*, g*), if 

k=l 
(3) 

with an analogous specification for gj(x, y), 

IV. MONOTONICITY AND STRICT ADMISSIBILITY 

We now consider the following question. What are the implications of 
assuming that a regular, monotonic selection process governs the play of a 
game? Our first results will examine strictly dominated strategies, and we 
accordingly begin with some definitions. 

3 Note that monotonicity allows i to receive a higher expected payoff than i’ without x, 
growing faster than xi, if one of xi or xi. is zero. In the case of the replicator dynamics, for 
example, xi = 0 implies f,(x, y) = 0, so that (1) can hold with x, = 0 and without xi growing 
faster than xi.. 
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DEFINITION 5. Strategy iE I is strictly dominated if there exists x E S”’ 
such that 

711(x, Y) > nItiT Y) v y E P. 

Let D,(X,, X,) be the set of pure strategies in X, c Z that are not strictly 
dominated by any pure strategies in Z given that player 2 chooses strategies 
from X, GJ. Let D,(M,, M2) be the set of mixed strategies in M, c S”’ 
that are not strictly dominated by any strategies in MI given that player 2 
chooses from Mz c Sn2. Similar definitions apply to player 2. 

DEFINITION 6. The strategy i E I survives pure strict iterated admissibility 
if there exist sequences of the form I= X,,, A’,, , . . . . X,, and .I= X2,,, 
X2,, . . . . X2,, where Xl,,+ 1 = D,(X,,, X2,), and X2,+, = D,(X,,, X2,) for 
n= 1, . . . . T- 1, with X17=D1(XIT, X,,) and X,,=D,(X,., XzT) and with 
iEXIT. The strategy XE s”’ survives strict iterated admissibility if Dj is 
replaced by 4, (i= 1,2) in this definition. 

Pearce [ 151 shows that the set of strategies which survives strict iterated 
admissibility is nonempty and coincides with the set of rationalizable 
strategies in two-player games. 

We now show that a monotonic selection process will eliminate 
strategies which do not survive pure strict admissibility. We establish this 
result for all evolutionary systems, regardless of whether they converge. 

THEOREM 1. Let (f, g) be a monotonic, regular selection dynamic. 
Suppose i E Z does not survive pure strict iterated admissibility. Then for any 
evolutionary path (x(t), y(t)) with (x(O), y(0)) completely mixed, we have 

lim x,(t) = 0. 
,-cc 

Proof Let Z,,c I be the set of player-one strategies which do not 
survive pure strict iterated admissibility and are not eliminated in the limit 
by the selection process. Let .I,, c J be similarly defined. Suppose the 
theorem fails, so that Z,, u J,, # 121. For all 1 E I, u J,,, let k(l) be such that 
ZE XlkCl)\XlkCl)+, (if I E I,,) or X2ku)\X2k(lI+I (if 1 E Jo). Let I, be the mini- 
mizer of k(Z) on I0 u .I, and let k = k(f,). Without loss of generality, we can 
assume lo E I, and can rename I, to be iO. Then there exists i, E Z such that 
zl(iO, j) < 7c,(i,, j) for all jE X,,. Since k minimizes k(l), we have 
lim y,(t) = 0 for all j$ X,,. Then 

dio7 r(t)) - n,(i,, Y(t)) = C (n,(&, j) - r,(i,, i)) Yj(t) 

JEXZk 

+ C (~,(i,,j)-n,(i,,j))y,(t). (4) 
idxu 
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As t + co, the second part of (4) goes to zero, while the first approaches 
a negative number. Therefore, there exist E > 0 and T> 0 such that 

~,(io, y(t)) - n,(i,, y(t)) +=I --E Vt> T. (5) 

By monotonicity and regularity, we then have, for some 6 > 0, 

aio(t) ai,(t) 
--- 

xio(t) xi,(t) 

< -6 Vt> T, 

and hence, Vt > T, 

x,(t) Xi,(T) -~-e-~(‘-n,o~ 
xi,(t) -xi,(T) 

(6) 

(7) 

Therefore, lim, _ o: x,(t)=O, contradicting the definition of i,. Thus 
I,, u J,, = 0 and the theorem holds. 0 

As a special case of this theorem, we obtain Nachbar’s [ 143 result that 
if pure strict iterated admissibility in a symmetric game removes all but a 
single strategy for each player, then a monotonic adjustment process will 
converge to these strategies. In particular, we find that a monotonic 
selection process always respects the outcome of pure strict iterated 
admissibility, regardless of the number of strategies which survive such a 
procedure. If only one strategy remains, then respecting pure strict iterated 
admissiblity implies convergence.4 

Pure strict iterated admissibility falls short of rationalizability in two 
ways. First, strategies may fail to be eliminated which are dominated by 
mixed strategies. Second, dominated mixed strategies may fail to be 
eliminated. 

We can extend the results of Theorem 1 to mixed strategies, i.e., to strict 
iterated admissibility, if we strengthen monotonicity to aggregate 
monotonicity: 

THEOREM 2. Let (f, g) be a regular, aggregate monotonic selection 
dynamic. Let XI E S”‘fai1 strict iterated admissibility. Then for any evolution- 
ary path (-4th At)) with (x(O), Y(O)) completely mixed, there exists a 
function E(t) with lim,,, z(t) = 0 such that for every t, there exists a pure 
strategy i(t) in the carrier of x’ such that x,,,(t) <E(t). 

Proof: Let p be a mixed strategy for player 1 (without loss of 
generality) which fails strict iterated admissibility (SIA), and let (x(t), y(t)) 

4MiIgrom and Roberts [13], restricting attention to the case of supermodular games, 
obtain similar results (among other findings). 
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be an evolutionary path with (x(O), y(0)) completely mixed. It is sufficient 
to show 

lim fi xr(t)=O. (8) 
r-m i=l 

Suppose (8) does not hold. Define 

UE S”’ ) u fails SIA and lim fi (~~(t))~g#O 
r-m i=l 

UEP 1 vfailsSIAand lim fi (yi(t))“f#O . 
*-cc /=I 

Because (8) fails for p, Al u A, is nonempty. For a’ E A, u AZ, let k(a’) be 
such that a’ E MlkCa,)\Mlk(a,) + I or MZkCo,)\MZkCn,) + 1, depending on whether 
a’ E S”’ or Sn2. Let a be a minimizer of k on A, u A*. Without loss of 
generality, assume a E A,. Then since a E M,,\M,,+ , , there exists b E &Ilk 
such that b strictly dominates u for all y in MZkr i.e., 

~,(a, Y) - n,(b, Y) < 0 VY E Mzc. (9) 

Let Y consist of all those YES”* with the property that y,>O only if 
j E MZk. Then 

JQ(U, Y) - nn,@, Y) < 0 VyE Y. 

By aggregate monotonicity, we have 

c (ui-bi$m<O Vye Y, XES”‘, 
I xi 

Because Y is a closed subset of S”*, regularity ensures that there exists E > 0 
such that 

C (ui-bi)fH< -c<O VYE Y,xES”‘. 
I Xi 

Now given y(t), define J(t) by 

if jEMzk 
otherwise, (12) 

where z, is chosen so that Jj( t) E S”*. Because y,(t) -+ 0 for j $ M,, (by 
definition of k), we have P(t) - y(t) + 0. Let 

Z(t) = n xp& x?(t). (13) 
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Differentiating (13) gives 

+ 2 (Uj-hi) [1 
fi(x(t), Ytt)) h(x(t)7 P(t)) 1 (14) 

i=l xi(t) - x,(t) . 

The first part in (14) is bounded above by --E (from (ll)), the second part 
is bounded by &/2 when t is large. Thus, there exists T > 0 such that 

-<-E -at) 
Z(t) 2 

for t > T, or, equivalently, 

Z(t)= fi x;(t)jfi x~(t)<Z(T)e-o.~“‘~-=)~O, 
i=l I i=, 

Therefore, 

which contradicts the fact that a E A,. Therefore A, u AZ must be 
empty. I 

In light of this result, interest naturally turns to the question of which 
selection dynamics satisfy aggregate monotonicity. The following theorem 
shows that aggregate monotonic systems consist of the replicator dynamics 
and multiples of the replicator dynamics. 

THEOREM 3. The replicator dynamic (f *, g*) is aggregate monotonic. In 
addition, if (f, g) is a regular, aggregate monotonic selection dynamic, then 
there exist functions 1(x, y) > 0 and /?(x, y) > 0 such that 

.htx7 Y)=L(x, Y)fi*(x, Y)l i= 1 , a.-, nl 

&g-c Y) = m Y) gi*(x, Y), ... j= 1, . . . . n,. 

ProoJ: It is straightforward to verify that the replicator dynamic is 
aggregate monotonic. Next, let (f, g) be regular and aggregate monotonic. 
Given (x, y) E S”’ x P, let < = (e:Ay, . . . . e:Ay). 
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Case a. Suppose 5 = c( 1, 1, . . . . 1) for some real number c. Then, 

x,(4 Y) = n,(i’, Y) Vi, i’ E I. 

Thus, by aggregate monotonicity 

fl(X, y) fn,(-x2 Y) 
(ei-eT)[y y]=O, 3 ..., 

I nl 

which implies 

.fi(X~ Y) fik Y)-h(x y) 
-=-= ) Vi, i’ E I. 

xi Xj’ 
(16) 

By condition (1.2) of Definition 1, 

0 = 1 ii= 1 fi(x, y) = 1 xi h(x, y) = h(x, y). 
I I I 

Therefore, for any 2(x, y) > 0, we have 

(17) 

fitx3 Y) = xi h(x7 Y) = O = n(x, Y) .fi*tx, Y), (18) 

where the last equality holds because f* is the replicator dynamics and 
5 = c( 1, . ..) 1). 

Case b. Suppose 5 # c( 1, . . . . 1) for any c E R. By aggregate 
monotonicity. Vu E S”’ - P, 

(19) 

Let X=span{u) uES”‘- S”‘, Ci ti ui = 0 ). Then the orthogonal comple- 
ment of X in IJP is span { (1, . . . . l), {} G X’ and we have 

[ 
fl(X, Y) 

1 ..., 
f&, y) EXI ~ ~ 

XI X RI 1 . (20) 

Thus, there exist A(x, y) and a(x, y) such that 

[ 
j-lb, y) *A y) 

~ , . . . . (21) 
Xl 1 =4x, y)t+a(x, y)(L . . . . 1). 

X n, 

There exists UE S”’ -9’ such that ~‘5 >O, since 5 #(c, . . . . c). Then 
aggregate monotonicity implies 

()<UT 
[ 
*4c5A, . . . fnl(xy lJ) =qx Y)U=(. 3 

Xl X”, 1 (22) 
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Therefore 1(x, y) > 0. Now, by condition (1.2) of Definition 1, 

O=~.L(x, Y)=~xi(4x? V)ri+44 Y)) 
I I 

= ntx, y) xTAy + a(x, y). 
Therefore 

4x5 Y) = -w, Y) XT4 
and 

fitx3 Y)=xi(A(x~ Y) titx9 Y) + a(x9 Y)) 

= 2(x, y) xi [$4y - xT4Ay-J 

= w, Y)“L*@, Y). 

Combining cases a and b, we have A(x, y) > 0 such that 

.L(x, Y) = ax? Y) fi*cG Y) V( x, y ) E S”’ x P. 

Similarly, g+, v) = PC4 v) gi*(x, Y). I 

Note that this proof uses a purely local argument, so that the statement 
of the theorem could be strengthened to the claim that if a selection 
dynamic is locally aggregate monotonic then it is locally a multiple of the 
replicator dynamics. 

These results show that monotonic evolutionary paths readily yield 
results respecting strict admissibility. Given a belief in the evolutionary 
approach to games, one can thus embrace the proposition that strictly 
dominated strategies and iteratively strictly dominated strategies should 
not be played. This already presents results as strong as many that have 
emerged from models of rationality. 

V. ASYMPTOTIC STABILITY 

We now ask what additional statements can be made about the outcome 
of the evolutionary process if we restrict attention to asymptotically stable 
outcomes. Note that this investigation of stable points represents a depar- 
ture from the analysis Section IV. We have previously worked only with 
assumptions on the structure of the selection process, such as monotonicity 
and regularity. We now introduce an assumption on the outcome of the 
process, namely that it is asymptotically stable. On the one hand, the 
assumption of asymptotic stability appears to be less primitive than 
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assumptions such as regularity or monotonicity. On the other hand, 
stability is (at least in principle) observable, so that one can first ascertain 
whether one is investigating stable behavior and (if so)) then apply the 
following results. 

We begin by defining: 

DEFINITION 7. (x*, y*) is asymptotically stable if there exists a 
neighborhood U of (x*, y*) such that 

(x(O), Y(O)) E u* ,‘it (4th Y(f)) = (x*9 Y*). 

Asymptotic stability thus requires that any path starting sufficiently close 
to (x*, y*) converge to (x*, y*). 

We now show that asymptotically stable outcomes are “almost” strict 
Nash equilibria. 

THEOREM 4. Let (f, g) be a regular monotonic selection dynamic. Let 
(x*, y*) be asymptotically stable. Then (x*, y*) is a Nash equilibrium and 
there does not exist x’ E SnL such that 

~t(X’, Y*) = n,tx*, Y*) (23) 

dx’, i) = m*, j’) Qj, j’ E supp y*. (24) 

In particular, there must exist no alternative best reply x’ for player 1 such 
that player 2 is indifferent over the strategies in the support of y* given x’.~ 

Proof Fix (x*, y*). It is clear that (x*, y*) cannot be asymptotically 
stable if there exists x’ such that 

?(X’, Y*) > x1(x*, Y*) 

since there would then be strategies i, i’ E Z, a time T, and an E > 0 such that 
x,?>O and, for all t> T, z,(i’, y(t))-lr,(i, y(t)) >E (given convergence 
to (x*, y*)). This in turn implies that there exists 6 >O such that 
fi(x(t), y(t))/xi,(t) -fi(x(t), y(t))/x,(t) > 6, precluding convergence to 
(x*, y*) and hence precluding the asymptotic stability of the latter. 
Suppose next there exists x’ such that (23) and (24) hold. Consider an 
initial condition given by (( 1 - E) x* + EX’, y*) = (x”, y*). Equations (23) 
and (24) and monotonicity ensure that 

f(XU, y*) = g(xN, y*) = 0, 

5 See [9, p. 282, exercise l] for a similar result for the special case of the replicator 
dynamics. 
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so that no subsequent movement in the dynamic process occurs. Then the 
path originating at (x”, y*) does not converge to (x*, y*), precluding the 
asymptotic stability of the latter. 1 

To appreciate the strength of this condition, consider: 

COROLLARY 1. Zf (x*, y*) is pure and asymptotically stable, then 
(x*, y*) is a strict Nash equilibrium. 

Note that Theorem 4 strengthens Friedman’s result that asymptotically 
stable equilibria must be Nash equilibria by showing that asymptotically 
stable outcomes possess additional structure (strictness in the case of pure 
strategies). 

Theorem 4 poses a dilemma for a research program designed to provide 
evolutionary foundations for refinements of Nash equilibria. On the one 
hand, we can work without assuming stability, but find that the implied 
equilibrium concept is rationalizability. On the other hand, we can work 
with asymptotically stable equilibria and find that the implied equilibrium 
concept is virtually as strong as strict Nash equilibria. There appears to be 
little support for the Nash equilibrium concept and the equilibrium 
refinements literature, which deals with the gap between Nash and strict 
Nash equilibria. 

We can offer another perspective on strict Nash equilibria: 

THEOREM 5. Let (x(t), y(t)) be an evolutionary path produced by the 
replicator dynamics with a strictly interior origin and converging to (x*, y*). 
Suppose that 

s om jxi(t)-x,Y dtzX<co 

for all i = 1, . . . . n,, and 

(25) 

for all j= 1, . . . . n2. Then (x*, y*) is quasi-strict.6 

The interpretation of (25) and (26) is that the evolutionary path 
converges relatively quickly, so that the cumulative difference between the 
path and its limit is finite. 

6 An equilibrium (p, q) in a bimatrix game is quasi-strict if p, = 0 implies that i is not a best 
reply to q and q, = 0 implies that j is not a best reply to p. See [24]. 
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Proof Suppose (x*, y*) is not quasi-strict. Then there exists i’ such 
that xi’ =0 and i’ is also a best reply to y *. Consider the function defined 

by 

U(t) = fi x~*(t)/x,,(t). 
i= I 

Then, as t -+ co, U(t) + co (because x,.(t) + 0 and lim,, m n;L 1 x?*(t) > 0). 
Now 

O(t) “’ 

v(t) = i:l Cx* - Gii’)(e,TAY(f) -xTAY(t)) 

= x*TAy(t) - eFAy(t) 

= (x*‘- e,? AtAt) - y*) 

where the last equality appears because x* and i’ are both best replies to 
y* and where 

aij, = 
i 

:, 
if i= i’ 

otherwise 

is the Kronecker delta. Solving this differential equation, 

In U(T) - In U(0) = IO’ ( x*-eir)TA(y(t)-y*)dt 

<C IU~J Ix*-6ii,I [Tl~~(~)-~~l di 
ij 0 

contradicting the fact that U(t) + co as t -+ co. 1 

This theorem indicates that equilibria which are not quasi-strict appear 
only if every converging evolutionary path under the replicator dynamics 
converges slowly. The conclusion is then that unless we can restrict atten- 
tion to quasi-strict equilibria, the cumulative error involved in taking the 
limit of an evolutionary process to be an estimate of the path of the process 
will be infinitely large. 

This result again poses a challenge. To apply evolutionary game theory, 
we must hope that the limit serves as a reasonable approximation of the 
outcomes which appear along the evolutionary path. Theorem 5 shows that 
unless one is willing to confine attention to quasi-strict Nash equilibria, 
there is good reason to doubt the reasonableness of this approximation. 
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A possible alternative interpretation of this result is to let 
L(x-x*, y - y*) be a bounded function identifying the cost of an 
incorrect prediction of the outcome of the game, where the actual outcome 
is given by the path (x(t), y(t)) and the limit (x*, y*) is predicted. Then 
(25) and (26) are sufficient to ensure that the discounted loss 

s 
mep6rL(x(t)-x*, y(t)-y*)dt 

0 

does not increase without bound as 6 + 0. If (25 and (26) fail, as will be 
the case with equilibria which are not quasi-strict, then patient 
investigators will suffer arbitrarily large losses when using evolutionary 
game theory to make predictions. 

VI. STABLE EVOLUTIONARY OUTCOMES 

The previous section suggests that if we are to insist on asymptotic 
stability, then evolutionary arguments provide a foundation for the game 
theoretic solution concepts of rationalizability (if stability fails) and 
(nearly) strict Nash equilibrium. These are essentially the weakest and 
strongest of equilibrium concepts, and we would like to investigate 
intermediate solution concepts such as Nash equilibrium. 

To do this, we investigate a weaker stability requirement. 

DEFINITION 8. (x*, y*) is stable if, for any neighborhood V of (x*, y*), 
there exists a neighborhood U with (x*, y*)~ UC V such that 
(x(O), y(0)) E iY3 (x(t), y(t)) E V for all t. 

Stable points thus have the property that evolutionary paths which start 
nearby, stay nearby. At the end of this section, we discuss the adequacy of 
this requirement as a stability notion in a evolutionary context. 

We first show that there is a relationship between stabiity and Nash 
equilibrium: 

THEOREM 6. Let (f, g) be a regular, monotonic selection dynamic and let 
(x*, y*) be stable. Then (x*, y*) is a Nash equilibrium. 

Proof: Suppose (x*, y*) is not a Nash equilibrium. Then there exists a 
player, say 1, and strategies i and k such that 

xt>o 

nl(i, Y*) < nl(k, Y*). 
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Because 7c is continuous, there exists a neighborhood V2 of y* such that 
rci(i, y’) < n,(k, y’) for all y’ E V2. Then there exists a enighborhood V, of 
x* such that, letting V= V, x V,, we have 

for some 6 > 0 and for all (x, y) E V. No path originating in the interior of 
V can then remain in V, precluding the stability of (x*, y*). 1 

Intuitively, a stable point (x, y) must be a Nash equilibrium because if 
a reply to y that is superior to x exists, then the dynamics around (x, y) 
must lead toward the superior reply and away from (x, y), precluding 
stability of (x, y). We can interpet Theorem 4 as indicating that the 
conditions yielding the Nash equilibrium concept match those yielding 
rationalizability plus a stability requirement. 

Because Nash equilibria respect strict interated admissibility, we 
immediately have: 

COROLLARY 2. Let (f, g) be a regular, monotonic selection dynamic and 
let (x*, y*) be stable. Then (x*, y*) survives strict iterated admissibility. 

Attention now turns to refinements of Nash equilibria. In particular, we 
examine normal form perfection. It is useful to recall that all pure strategies 
are played by a positive proportion of the population along the path 
induced by a regular selection dynamic. This is reminiscent of the 
completely mixed strategy perturbations of the perfect equilibrium concept, 
and suggests that stable points should be perfect equilibria. 

In two-player games, an outcome is a perfect equilibrium if and only if 
it is a Nash equilibrium in undominated strategies. The following result 
then reinforces the suspicion that stable points must be perfect: 

THEOREM 7. Let (f, g) be a regular, monotonic selection dynamic and let 
(x*, y*) be a limiting outcome of (f, g) given completely mixed (x(O), y(0)). 
Then (x*, y*) cannot attach unitary probability to a weakly dominated 
strategy. 

Proof: Let i be weakly dominated by the (possibly mixed) strategy x’ 
and let XT = 1. Then for every t there exists a strategy j with 

ii-- * 
2,s. 
xi xi 

This precludes the possibility that (x*, y*) is a limiting outcome. i 
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We can show, however, that stable outcomes need not be perfect.’ 
Consider the following game: 

L R 

T 1,l 1,O 

B 1,l 0,O 
(27) 

It is straightforward to calculate that under the replicator dynamics, any 
point in which player 2 plays L and player 1 mixes between T and B is a 
stable outcome and is also the limiting outcome of some evolutionary path 
(under the replicator dynamics).8 These are Nash but not perfect equilibria, 
since player 1 attaches positive probability to the dominated strategy B. 
The difficulty is that T dominates B, but only weakly, and the payoff dif- 
ference between T and B disappears as population 2 becomes concentrated 
on L. It is then possible that population 2 can converge to L sufficiently 
rapidly that the pressure pushing population 1 toward T dissipates too 
quickly to drive all of population 1 to T, yielding an outcome in which 
population 1 is split between T and B. 

This argument gives: 

THEOREM 8. Let (x*, y*) be stable. Then (x*, y*) can attach positive 
probability to a weakly dominated strategy even if (f, g) is regular and 
aggregate monotonic. 

Stable points of regular, monotonic selection dynamics will thus be Nash 
equilibria but need not be perfect equilibria. 

Before interpreting these results, we must examine our stability notion. 
An evolutionary model should capture a learning or selection process that 
causes agents to adjust their choices in light of their experience and that is 
buffeted by rare mutations. Our selection dynamic captures the former of 
these considerations but not the latter. When working with asymptotically 
stable systems, the failure to capture mutations does not appear to be a 
difficulty. The asymptotic stability of the system ensures that it will return 
to its limiting outcome after being disturbed by any (small) mutation. 

Stable outcomes are less satisfactory in this regard. A small mutation will 
not prompt the system to move far away from a stable outcome, but the 
system need not return to the stable outcome. This is the case with out- 

’ This result does not depend upon asymmetry, as ~24, example 9.4.31 illustrates this 
possibility in a symmetric game. 

* Under more general evolutionary processes, such outcomes will exist as long as there exist 
numbers a, )9 E (0, 1) such that the slope of the direction of movement in the phase diagram 
is bounded above by some E > 0 for all (x(f), y(l)) satisfying x,(t) <a and yR(t) -C 8. 
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comes in (27), where mutations toward R will be followed by convergence 
to nearby points for which yg = 0, but with a slightly larger proportion of 
population 1 playing T. The effect of a mutation can thus remain per- 
manently. No matter how rare mutations are, successive mutations can 
then produce a large drift away from the stable point. 

These considerations suggest that if we are to work with stable rather 
than asymptotically stable outcomes, then the model must be altered to 
explicitly include mutation. Note that mutations appear to allow some 
hope of finding a foundation for perfect equilibria. In the game given by 
(27), the effect of successive mutations toward R will apparently be to drive 
the system to the perfect quilibrium (T, L), suggesting that stable outcomes 
of evolutionary systems with mutation may be perfect. 

VII. MUTATIONS 

This section constructs an evolutionary model with mutations. 
Intuitively, we assume that the agents do not live forever. Instead, agents 
continually exit the game or “die” and are replaced by new entrants or 
“births.” The strategies played by entrants mirror those of existing agents 
with probability II E (0, l), but are given by an exogeneously specified 
“mutant” distribution with probability 1. 

More formally, we work with the following process:9 

ni=fi(X, y)(1--6,)+6,(~x,+(l--)r;-x;) i = 1, 2, . . . . n, (28) 

$,=gjtx3 Y)(1-62)+62(~~,+(1--)~j--y,) j= 1, 2, . . . . n2, (29) 

where ti> 0, qj>O, and 

and where (f, g) is a selection dynamic. The distribution of strategies 
among surviving members of a population evolves according to the selec- 
tion dynamic (f, g). However, population k agents die at rate dk and are 
replaced by entrants whose strategies are governed by the existing distribu- 
tion with probability (1 -A) and by the mutant distribution 5 or q with 
probability 1. While 5 or r] could be made to vary over time, it is 
convenient to take them to be fixed. 

9 See 19, chapter 251 for a similar model of an evolutionary process with transmission 
errors. Reference [l] examines an analogous process in symmetric games. An alternative 
model of evolutionary trembles is examined by [6]. 
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Let (x, y) be called a rest point of (28) and (29) if (x, y) yields f = 0 = J;. 
Denote such a point (x(6,, 6,), y(6,, 6,)). We are interested in cases in 
which mutations occur relatively infrequently. The appropriate object of 
study is then the limit of the rest points of the system as the 6, approach 
zero. Let such points be called limit rest points. (x*, y*) is then a limit rest 
point if (x*, ~*)=lim~,,,,,~(x(~~, &I, y(d,, &)I. 

Given this evolutionary process with mutation, consider the game given 
by: 

2 

L R 

T 1,l 1,l 
1 

Bl,l 0,o’ 
(30) 

This is a variant of game (27) in which either player can play a weakly 
dominated strategy in a Nash equilibrium. We then have 

THEOREM 9. 

(9.1) Let (f, g) be regular and monotonic. Then a limit rest point of 
(28) and (29) is a Nash equilibrium. 

(9.2) A limit rest point of (28) and (29) need not be a perfect equi- 
librium. In particular, let { 6 ,,,} ,“= 1 and { &,}z=, be sequences such that 

exists. Let (f, g) be the replicator dynamics. Then the system of rest points 
of (28) and (29) converges to (T, L) in (30) as n approaches 00 only if 

A = (1 - VLMl - 57-l 

Proof. 9.1. Let (x, y) be a limit rest point of (28) and (29) but not be 
a Nash equilibrium. Without loss of generality, assume that x attaches 
probability to a pure strategy which is not a best reply to y. Let i E Z be the 
strategy in the carrier of Z that earns the lowest expected payoff against y. 
Then there must exist an alternative strategy i’ E Z and an E > 0 such that for 
all 6,, and a,, suhiciently small, zl(i’, y(6,,, 6,,)) - zl(i, y(6,,, 6,,)) >E. 
Monotonicity and regularity in turn imply that there exists a 6 > 0 
such that, for all 6,, and a,,, sufficiently small, fj(x(b,,, &,J, 
y(Glnr 82n))/~i(6,n, a,,,) < 6. Condition (28) can then hold only if xi + 0 as 
6,, and 6,, approach zero, contradicting the definition of i. 
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9.2. To conserve on notation, let x (y) denote the proportion of 
population 1 (2) playing T (L) and let tT and yap be denoted simply r 
and q. Then the replicator dynamics with transition errors for game (30) is 
given by: 

i=x(l -x)(1 -y)(l-61)+6,(1 -n)(r-.U) 

j=y(l-y)(l-x)(l-6,)+6,(1-~)(~-y). 
(32) 

Letting i = p = 0, a rest point must satisfy 

where 

x(1 -x)(1-y)+c1(<-x)=0 
(33) 

Al -x)(1 -JJ)+B(rl-y)=Q 

(1 -AIS, 
ICY= l-6, 

p=u-~)b 
l-62 . (34) 

From (33), we have 

45-x)Y-P(~-Y)x=O. (35) 

Let aI,, + 0, 6,” + 0, and S,,/&,, + A; and let (x*, y*) be a limit rest point. 
From (34), we have or//3 -+ A. From (35), the limiting outcome (x*, y*) will 
then equal (1, l), the perfect equilibrium, only if n = (1 - q)/( 1 - 5). 1 

The model with mutations thus provides a motivation for Nash 
equilibria but does not provide a basis for a theory in which players shun 
dominated strategies, or play perfect equilibria. A limit ESS must 
be perfect, so our results also show that stable points of evolutionary 
processes with mutations need not be a limit ESS. 

VIII. EVOLUTIONARY CHOICE TREMBLES 

The previous section suggests that a model of mutations does not 
provide an effective theory of perfect equilibria or limit ESS. We are then 
still left with the puzzle that the outcome (T, L) appears to be “more 
stable” than other outcomes in (27) or (30). In this section we examine 
an alternative temble-based theory in which the trembles appear not as 
mutations but mistakes when agents play their strategies. 

To construct this theory we now let x(t) and y(t) denote the “intended” 
strategies of the agents, which are to be interpreted as the population 

642i57P9 
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proportions which would arise if no mistakes in play were made. We let 
Z(t) and y(t) be the realized strategy proportions, with 

Zj(t)=(l-&)X,(t)+& g Xktki (36) 
k=l 

(37) 

where (&i, . . . . tk,,,) E & E S”’ identifies how the mistakes made by players 
intending to play strategy k are distributed among strategies 1, . . . . n,. 
(qkl 7 ...Y qkn2) is similar. The interpretation of (36) and (37) is then that 
agents play their intended strategies with probability 1 -6. With proba- 
bility E, however, a mistake is made and the actual play is governed by the 
functions 5 and q. We assume & and qk are strictly positive. We also find 
it COnVenient to let c;‘= 1 Xk<k = c(x) and x2=, ykqk = q(y). 

To specify the evolutionary process, we allow a selection dynamic to 
adjust players’ intended strategies in response to payoffs determined by 
realized strategies: 

ii = Xi(e”,7Ajj - a=&) (38) 

,‘, = y,(2’Bi?, - FBj), (39) 

where 

and where A and B are matrices of payoffs and Z(t) and J(t) are given by 
(36) and (37). It is readily verified that (38) and (39) specify a mapping 
from Snl x Sn2 + S”l x Sn2.10 

We now examine the limiting outcomes of this selection dynamic with 
strategy errors. 

DEFINITION 9. Let (x(O), y(0)) be completely mixed and let (x(t), y(t)) 
converge to (x*, y*). Then (x*, y*) is an s-evolutionary outcome of (38) 
and (39). 

It is easy to show that the limiting outcome of this model with errors in 
strategy choices respects weak dominance: 

lo Note that in specifying (38t(39), we have now restricted attention to the replicator 
dynamics, unlike the previous section. We do so because the replicator dynamics are used in 
verifying that (38t(39) yield a mapping that stays within the appropriate simplices. It is not 
obvious how to ensure this with general monotonic processes. 
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THEOREM 10. Let (x*, y*) be an &-evolutionary outcome of (38) and 
(39). Then 

(10.1) x* and y* are not weakly dominated 

(10.2) (a*, j*) is an E-perfect equilibrium” 

(10.3) (x*, y*) need not be a Nash equilibrium. 

Proof: 10.1. Suppose that x* is dominated by p and hence I* is 
dominated by ,% Let 

u(t) E fi xi(t)-:. 
i=l 

Then we have 

=u(t) : (pi-x*)[t?,TAj(t)-a(t)?4j(t)] 
i= 1 

=u(t)[~?4jqt)4.*?4jqt)]Z0. 

Because j(t) converges to j* with j* in the interior of P, there must exist 
a T such that for tE CT, co), 

d=.4j( t) - 1* ‘Aj( t) > 6 > 0 

and hence 

Because (x(T), y(T)) is in the interior of S”’ x P, we have u(T) > 0. Hence 

lim u(t) = co. 
, - 7; 

This gives 

lim fi xl(t)“: =O, 
f-m j=, 

which is a contradiction because x,(t) converges to x* and hence x,(t)“: 
converges to x*“: > 0. 

‘I An s-perfect equilibrium is a Nash equilibrium of a perturbed game in which strategies 
must be completely mixed. See [24] for details. 
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10.2. We first show that x* is a best reply to jj* = (1 - E) y* + EV( y*). 
Suppose there exists i with XT > 0 and i not a best reply to j*. Then there 
exists i’ such that 

Because j(t) converges to y”*, there exists a T> 0 such that for t > T, we 
have 

and hence 

and 

xi(t) 

?!t x,,(t) = O 

which contradicts lim x,(t) =x,? > 0. Because x* is a best reply to J*, I* 
is a best reply to j in the restricted strategy set p1 - {Ci(xi Pi ) xi xi = 1, 
xi > O}. A similar argument for jj* yields an s-perturbed game with strategy 
sets p1 and &!? in which (X*, J*) is a Nash equilibrium, yielding (10.2). 

10.3. Consider the following game: 

L R 

T 1,O 0,l 

B 0,l 1,0 
(40) 

Let (LTy LB) = (b-, LB) = (0.25, 0.75) and (11~~~ 11~~) = hRLy vRR) = 
(0.5,0.5). Then it is easily verified that (x*, y*) = (((2 - .s)/4(1 - s)*, 
(1 - (2 - &)/4( 1 - &)2)), (0.5,0.5)) is an a-evolutionary outcome but is not a 
Nash equilibrium. 1 

We have thus finally established a link between evolutionary outcomes 
and weak dominance. At the same time, (10.3) indicates that Nash equi- 
libria need not appear. However, this is an artifact of presuming that the 
tremble probability E is “large.” To see this, we next examine the limits of 
the s-evolutionary outcomes which appear as the tremble probabilities 
become small. 
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THEOREM 11. Let (x*(e,), y*(~,)) be a sequence of &,-evolutionary out- 
comes of(51) and (52) with lim,, a;l E, = 0. Then iflim, _ m(~*(~,), y*(s,)) = 
(x*, y*), then (x*, y*) is a perfect equilibrium. However, (x*, y*) need not 
be a limit ESS. 

Proof. From (10.2), we know that (Z*(E,), j*(s,,)) is s-perfect. Because 
(x*, Y*)=lim,,, (x*(6J, y*(b)) = lim, + oo (~*(hJ, j*(h)), (x*, Y*) is 
then perfect. To show (x*, y*) need not be a limit ESS, we consider again 
the example given by (40). Let the error generating process be g,, = trs = 
rBT=rBB=~LL=YlLR=~RL=~RR= 0.5. Then (x*(s,), y*(s,))= ((0.5,0.5),, 
(0. 5,0.5)) is an &,-evolutionary outcome. (x*, y*) = lim, _ a (x*(6,), y*(s,)) 
= ((0.5, 0.5), (0.5, 0.5)) is then a perfect equilibrium but not a limit ESS 
(because it is not pure, see [17]). m 

These results suggest that an evolutionary model with strategy errors can 
provide a foundation for perfect equilibrium. These results are no surprise, 
since this strategy-choice formulation provides a fairly transparent 
transition of the definition of trembling hand perfection into evolutionary 
terms. At the same time, it is not clear that the model provides support for 
the seemingly similar limit ESS concept.” 

It may initially appear surprising that the models of Section VII and VIII 
give different results. The first model might be described as one in which a 
small proportion of agents make mistakes with large probability while in 
the latter model all agents make mistakes with small probability. These 
may appear equivalent. However, the difference is that with strategy mis- 
takes, the evolutionary process operates in intended strategies. In the game 
given by (27) it is as if evolutionary adjustment proceeds with population 
one free from trembles to B, with these trembles added after evolution has 
played its course. This yields an outcome that can be viewed as “(T, L) 
plus mistakes,” and in the limit, as these mistakes become arbitrarily small, 
the result is (T, L). With mutations it is as if the order in which the two 
limits (evolutionary adjustment and shrinking mistakes) are taken is 
reversed. The evolutionary process is continually buffeted by trambles to B. 
This gives evolutionary outcomes which are different from (T, L). In the 
limit as mutations go to zero, these errors continue to drive a wedge 
between (T, L) and the evolutionary limit. 

The question remains as to which of the evolutionary models with trem- 
bles is most appropriate. Each may apply in some circumstances, though 
mutations appear to be more easily interpreted in evolutionary terms. The 

I2 For an alternative perspective on the limit ESS, note that, from [17], the essential 
difference between a limit EST and perfection is that the latter allows mixed strategies. 
Doubt has been cast on the ability of evolutionary processes to yield mixed strategy outcomes 
(e.g., [S]). If mixed strategies do not generally appear, then the limit EST concept is more 
applicable. 
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choice of which model is appropriate is potentially important. If one desires 
an evolutionary foundation for game theoretic solution concepts, then the 
choice has implications for such matters as whether one embraces the 
perfect equilibrium concept. 

IX. CONCLUSION 

Our results suggest that evolutionary arguments readily motivate the 
solution concepts of iterated strict admissibility and Nash equilibrium, with 
the difference between the two being that the latter requires stability. 
However, we have encountered difficulty in establishing conditions under 
which evolutionary outcomes respect weak admissibility and must conclude 
that evolutionary models generally do not provide support for such 
refinements of Nash equilibrium as the perfect equilibrium concept. 

One’s initial impression might be that tremble-based arguments, and 
hence the avoidance of weakly dominated strategies, are built into dynamic 
evolutionary models. We have seen that this is not the case. Trembles must 
be explicitly built into the model in order to motivate admissibility, and 
even then these trembles must involve not the seemingly natural conven- 
tion of mutations, but instead mistakes in playing strategies. If one is 
uncomfortable with such mistakes, then evolutionary arguments may drive 
one to a theory in which weakly dominated strategies are played. It 
appears as if such a conclusion can be avoided only if additional structure 
is placed on the evolutionary selection or learning process. Theories of 
learning are thus an important area for further research. 
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