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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 23, No. 2, May 1998 
Printed in U.S.A. 

ON THE CONVERGENCE OF FICTITIOUS PLAY 

VIJAY KRISHNA AND TOMAS SJOSTROM 

We study the Brown-Robinson fictitious play process for non-zero sum games. We show that, 
in general, fictitious play cannot converge cyclically to a mixed strategy equilibrium in which 
both players use more than two pure strategies. 

1. Introduction. This paper studies the "fictitious play" (FP) learning process due 
to Brown (1949) and (1951) and Robinson (1951). The FP process was originally pro- 
posed as a computational tool for determining the value of a two-person zero-sum game. 
However, it can also be interpreted as a learning process for boundedly rational agents in 
which each player plays a myopic best response in each period, on the assumption that 
the opponent's future actions will resemble the past. 

Robinson (1951) established the result that in finite two-person zero-sum games every 
FP process converges to the set of equilibria of the game. Miyasawa (1963) showed the 

convergence of FP in 2 x 2 games. However, the convergence cannot be guaranteed in 

general non-zero sum games as an important 3 x 3 example due to Shapley (1964) shows. 
In Shapley's example the FP process follows a cycle in which runs of pure strategy 
combinations are repeated over and over but the run-lengths increase exponentially. The 

resulting mixed strategies then also cycle and are bounded away from the unique equilib- 
rium. Shapley's example is generic in the sense that small perturbations of the payoffs do 
not affect this conclusion. More recently, Foster and Young (1996) have constructed an 
8 x 8 generic coordination game in which an FP process does not converge to any of the 
equilibria. 

In his original formulation of fictitious play Brown considered both a discrete time 
version and a continuous time version of fictitious play (see Brown 1949 in particular). 
The convergence results cited above hold for both the discrete and the continuous time 
versions, as does Shapley's counterexample. Indeed, many of the results are easier to 
derive in the continuous time model than in the discrete time model (Harris 1996, Hof- 
bauer 1994 and Monderer et al. 1997). We also find it convenient to first study continuous 
time fictitious play (referred to as CFP) and to then extend our results to the discrete 
process (DFP). 

Our main result (Theorem 1) is that CFP almost never converges cyclically to a mixed 
strategy equilibrium in which both players use more than two pure strategies. Thus, Shap- 
ley's example of nonconvergence is the norm rather than the exception. Mixed strategy 
equilibria appear to be generally unstable with respect to cyclical fictitious play processes. 
In a recent paper, Hofbauer (1994) has made a related conjecture: if CFP converges to a 

regular mixed strategy equilibrium, then the game is zero-sum. 
We then show (in ?10) how the main result may be extended to include DFPs also. 
As is well known, the interpretation of mixed strategy equilibria is problematic (see, 

for instance, Rubinstein 1991). In two person zero-sum games a justification for mixed 
strategies is that the "correct" probabilities provide the best defense against the opponent. 
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But in non-zero-sum games a justification on defensive grounds cannot be made. A point 
of view originating with Harsanyi (1973a) takes the position that the equilibrium prob- 
abilities represent only the subjective beliefs of other players about the behavior of a 
particular player; thus it is not necessary to assume that players actually choose random- 
ized strategies. Fictitious play and associated learning procedures suggest a way in which 
such beliefs can form over time by means of a gradual process. However, learning pro- 
cedures can serve to justify mixed strategy equilibria only in circumstances in which the 
procedures converge to an equilibrium. Our result shows that, in general non-zero-sum 
games, mixed strategy equilibria are inherently unstable. 

The behavior of dynamical processes in the presence of mixed equilibria has previously 
been examined in a related context by Crawford (1985). Crawford studies a class of 

learning procedures in which players (a) have a finite memory and (b) play mixed strat- 

egies which are adjusted in response to the difference in payoffs from playing a particular 
pure strategy and the mixed strategy against the actual play in the recent past. Crawford 
then shows that mixed strategy equilibria are generally unstable. The procedures consid- 
ered do not include the CFP; they are more akin to evolutionary processes like the so- 
called "replicator dynamics." Evolutionary dynamical systems are considered in more 
detail by Hofbauer and Sigmund (1988). Their results also suggest that mixed strategy 
equilibria are unstable in general (asymmetric) bimatrix games. 

In other, more closely related work, Fudenberg and Kreps (1993) study interpretational 
issues concerning mixed strategies and learning processes like FP. They propose some alter- 
native systems based on ideas stemming from Harsanyi's (1973a) purification theorem and 
derive convergence results for 2 x 2 games. Jordan (1993) points out other difficulties in 

interpreting the convergence of learning processes to mixed equilibria. In particular, he points 
out that the convergence concerns players' expectations and not strategies or payoffs. 

2. Fictitious play. Let G = (A, B) be a two-player game where A and B are I x J 
matrices. We will refer to I = {1, 2, ..., I} and J = {1, 2, ..., J} as the sets of pure 
strategies available to players 1 and 2, respectively. As usual, if player 1 chooses strategy i 
and player 2 chooses strategy j, the payoff to player 1 is au and the payoff to player 2 is bii. 
The sets of mixed strategies are denoted by A(I) and A(J), respectively. Let 6i C A(I) be 
the mixed strategy that assigns weight 1 to i. We will identify i with 6i and write i E A(I) 
instead of 6i E A(I). For any finite set X, let #X denote the number of elements in X. 

For all q E A(J), let BR(q) be the set of pure strategy best responses for player 1 and 
denote by supp q = {j : qj > 0 } the support of q. The mixed strategy pair (p*, q*) is a 
Nash equilibrium if sup p * c BR(q*) and supp q* c BR(p*). 

DEFINITION 1. For t = 1, 2, 3, .... the sequence (p(t), q(t)) is a discrete time 

fictitious play process (DFP) if 

(p(l), q(l)) E A(1) x A(J); 

and for all t - 1, 

tp(t) + i(t) tq(t) +j(t) 
p(t + 1) , q(t + 1) = 

where i(t) E BR(q(t)) andj(t) E BR(p(t)). 
The discrete time fictitious play process (DFP) is also known as the "Brown-Robinson 

Learning Process." In this paper, we find it convenient to work with both DFP and a 
continuous time version (CFP). Let dp(t)/dtl + denote the right-hand derivative of p at 
time t. 
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DEFINITION 2. For t > 1, the path (p(t), q(t)) is a continuous time fictitious play 
process (CFP) if (p(t), q(t)) are continuous functions of t satisfying: 

(p(l), q(l)) E A(I) X A(J); 

and for all t >_ 1, 

dp(t) i(t) - p(t) dq(t) j(t) - q(t) 
dt t ' dt t 

where i(t) E BR(q(t)) andj(t) E BR(p(t)). 
It is well known that if the DFP (or CFP) (p(t), q(t)) converges to (p*, q*), then 

(p *, q*) is a Nash equilibrium of G. 
Recently, Harris (1996) and Hofbauer (1994) have looked at differential inclusions of 

the form: for almost all t, 

dp BR(q(t)) - p(t) dq BR(p(t)) - q(t) 
dt t ' dt t 

where BR(q) and BR(p) are the (closed, convex and upper semi-continuous) correspon- 
dences consisting of mixed strategy best responses. The theory of differential inclusions 

guarantees the existence of a solution for each initial condition. Our definition of CFP is 
more restrictive in that we do not allow players to randomize when indifferent. But any 
CFP we consider will satisfy the differential inclusion. 

Cyclic play. Under fictitious play, each player plays a best response against the em- 

pirical distribution of the opponent's play. Under CFP, therefore, when a player switches 
from one pure strategy to another he is precisely indifferent between these two strategies, 
a fact that is crucial for our analysis. We shall consider play which takes the following 
form. There is a sequence of times (to, tl, t2, t3, * * ), with to = 1, such that for each n 
2 1, BR(q(t)) and BR(p(t)) are singletons for all t c (tn_,, tn). The times (to, tl, t2, t3, 

? *) are the times when some player switches his strategy (in an exceptional case, both 
players may switch at the same time). Let 

(itn, j) (BR(q(t)), BR(p(t))) for t E (tn-_, tn) 

denote the (uniquely determined) constant choices in the interval (tn_,, tn). The interval 
(tn-l, tn) consists of continuous play of (it, jt), referred to as a run. The run-length is 
tn - tn-l. The sequence of play is the sequence of pure strategy combinations: 

(itl jtl), ( it2 jt2) * * *... ( 'it nt) ''' 

A CFP follows a cycle c if there is a sequence of K pure strategy combinations 

c = ((ii,ji), (i2,j2), (i3,j3), . . *, (iK,JK)) 

such that for all n 2 1, n mod K = k implies that (it, ,tn) = (ik, jk) In other words, CFP 
is cyclic if a particular sequence of K pure strategy combinations c is played over and 
over in the same order. We emphasize that cyclic play refers to the fact that pure strategy 
combinations are played in a fixed pattern, and not that the trajectory (p(t), q(t)) reaches 
a limit cycle. Cyclic play has been called "quasi-periodic" play by Rosenmiller ( 1971). 
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A cycle c is robust if there is an open set of initial conditions E such that for all (p (), 
q( 1)) E E there exists a CFP that follows the cycle c. 

EXAMPLE 1. Matching Pennies: 

H T 

H 1,-1 -1,1 

T -1,1 1,-1 

In this game, any initial condition (other than the equilibrium) generates the following 
cycle of play (see Metrick and Polak 1994 or Rosenmiiller 1971): 

c= ((H, H), (H, T), (T, T), (T, H)). 

Thus, Matching Pennies has a robust cycle. Moreover, from every initial condition the 
resulting trajectory converges to the unique Nash equilibrium. 

EXAMPLE 2. Shapley's Game: 

X Y Z 

X 0,0 1,2 2, 1 

y 

z 

2,1 0,0 1,2 

1,2 2,1 0,0 

In this game there are two possible cycles. Any initial condition (p( 1), q( 1 )) satisfying 
p(l) * q( 1) generates the cycle of play (Shapley 1964): 

c = ((X, Y), (Z, Y), (Z, X), (Y, X), (Y, Z), (X, Z)) 

and thus c is a robust cycle. The cycle c results since it is the unique "better response" 
path of pure strategies (see Monderer and Sela 1993). On the other hand, ifp( 1) = q( 1 ) 
the resulting cycle of play is 

c'= ((X, X), (Y, Y), (Z, Z)) 

which is not robust since it is generated only by very special initial conditions. Thus, 
Shapley's game has both a robust and a nonrobust cycle of play. Moreover, a CFP that 
follows the (robust) cycle c does not converge (Shapley 1964) whereas every CFP that 
follows the (nonrobust) cycle c' converges (see ?9 below for details). 

3. The main result. Let F denote the set of all I x J games. Each game G E r can 
be associated with a point in the Euclidean space R'XJ x RIXJ. A set of games F' C F is 
null if it is contained in a closed set of Lebesgue measure zero. A statement is true for 
almost all games if the set of games for which it is not true is null (Harsanyi 1973b). 

As argued above, in Matching Pennies a robust cycle leads to the convergence of every 
CFP. Moreover, a small perturbation of the payoffs of Matching Pennies will destroy 
neither the cycle nor the convergence, so there is an open set of games with a robust 
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convergent cycle. However, in the case of Matching Pennies only two pure strategies are 
used by each player. Our main result is: 

THEOREM 1. For almost all games, if there is an open set of initial conditions and a 
cycle c such that (from these initial conditions) there exists a CFP thatfollows the cycle 
c and converges to a Nash equilibrium (p*, q*), then # suppp* = # supp q* c 2. 

The proof of Theorem 1 is somewhat involved and so we first present a brief outline 
of the argument. 

3.1. An outline of the proof. Fictitious play (CFP) is a continuous, nonlinear and 
nonautonomous dynamical system. The first step is to reformulate the system so that the 

problem reduces to the study of an associated discrete, linear, and autonomous system. 
Once this is done, standard tools can be brought to bear on the problem. In the second 

step, these tools are employed to analyze the linear difference equation system and obtain 
the main result. 

Step 1: Reduction. When the play is cyclic, a sequence of choices is 

(i,,j), (i2,2), (i3,j3), . . * a (iKJK) 

repeated over and over in the same order. K consecutive runs corresponding to the choices 
(il, j), (i2, 2), (i3,j, j ... , (iK, jK) are a round. Thus, cyclic play consists of rounds r 
= 1, 2, 3, .... A run corresponding to the choice (ik, jk) is referred to as a k-run. Let 

nk(r) denote the length of the k-run in round r, that is, nk(r) is the amount of time spent 
playing (ik, jk) in round r. Let n(r) = (n1(r), n2(r), .... nK(r)). 

We will argue that if the CFP is cyclic, then there exists a K X K matrix F such that 
for all r, 

(1) n(r + 1) = Fn(r). 

Since CFP is completely determined by the associated system determining the run- 
lengths, the problem has been reduced to the study of a linear difference equation. A 
similar reduction appears in Rosenmiller (1971). 

Step 2: Analysis of F. The behavior of the discrete linear dynamical system (1) is 
determined by eigen roots of F, and in the long run the evolution is determined by the 
dominant eigen root. The matrix F is singular, and so one of its eigen roots is 0, but the 
crucial fact (Lemma 2) is that the product of the nonzero eigen roots of F is one. Geo- 
metrically, this means that F is volume preserving in a K - 1 dimensional invariant 
subspace M, that is, if S C M has volume V (relative to M) then the set F(S) = {Fn : n 
E S} also has volume V. Then there cannot exist an open set of starting positions such 
that the run-lengths decrease from round to round, for that would imply a reduction in 
volume. Run lengths must then be either constant or increasing. 

The next step in the proof is to establish that if each player uses at least three pure 
strategies in the cycle, for almost all games, not all (nonzero) eigen roots of F can have 
absolute value equal to one. This involves a rather detailed analysis of the matrix F. In 
fact F always has some unit roots, and the crucial step is an exact determination of the 
number of unit roots of F (Lemma 3) and the dimension of the corresponding eigen space 
(Lemma 7). This, combined with Lemma 2, implies that there exists a real eigen root X 
of F such that X > 1. This shows that for almost all initial conditions the run-lengths 
increase exponentially as in Shapley's (1964) example, and CFP does not converge. 

For nongeneric classes of games (such as zero-sum games) it may well happen that all 
nonzero eigen roots of F have absolute value equal to one, which allows for convergence. 
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We discuss this issue below in ?9. Moreover, the result does not rule out convergence 
from exceptional starting positions, as illustrated by Example 2. 

4. Determination of the run-lengths. We start by assuming that the game G is non- 
degenerate in the following sense. 

DEFINITION OF Fl. Let Fr C r denote the set of games such that 
(a) every Nash equilibrium (p*, q*) satisfies 

(al) # suppp* = # supp q*; 
(a2) i E BR(q*) implies i E suppp* andj E BR(p*) implies j E supp q*; 

(b) if i i' then for allj, aij - ai,j and ifj ] j' then for all i, bij bij,. 

It is well known that F\ F1 is null. This is because all regular equilibria (p *, q *) satisfy 
(al) and (a2), and the class of bimatrix games with a nonregular equilibrium is null (van 
Damme 1991, Chapter 3). Clearly, the set of games not satisfying (b) is also null. For 
the proof of our theorem we shall consider only games in Fl. Notice that this allows us 
to restrict attention to cycles where each player uses the same number of pure strategies, 
for if (p (t), q (t)) -o (p *, q *) then by continuity, every pure strategy used along the cycle 
is a best response at (p*, q*). Thus, by (a2) only pure strategies in the support of (p*, 
q*) can be used along the cycle, but then by (al) each player uses the same number of 
pure strategies. 

Notation. Suppose CFP follows the cycle 

c = ((il,/jl) (i),j2), (i3,3), ..., (iK,jK))- 

We will argue that there exists a K x K matrix F (which depends on the particular cycle 
and on the payoff matrices) such that for all r, 

n(r + 1) = Fn(r). 

Let (ai, a2, ..., ai) denote the I rows of A and let (/31, /2, ... , Pj) denote the J 
columns of B. Let P? and Q? be vectors denoting the total amount of time each player 
has used each strategy prior to the start of round r. If r = 1 then (P0, Q?) = (p( 1), q(1)) 
are the initial conditions at the start of the game. It is convenient to write n = n(r) and 
n' = n(r + 1). 

Define an I x K matrix P by: 

1 if ik=i, 
Pik = 

0 if ik i, 

and a J x K matrix Q by: 

1 if jk = , 

Qjk = 
0 if ik *. 

Observe that (Pn), is the amount of time player 1 played strategy i in round r and (Qn)i 
is the amount of time player 2 played strategy j in round r. Notice also that ai Q 
= (aik jl, aik2, .... aikjK) and PikP = (biljk, bi2jk, . .. biKik). 

Let ek denote the kth K-dimensional unit vector. It is convenient to define the K x K 
matrix: 
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Ek = (el, e2, .. .,ek,, 0,...,0) 

whose first k columns are the first k unit vectors and the last (K - k) columns are 0. By 
definition, EK = I, the identity matrix. We also have Ekn = (nl, n2, ..., nk, 0, ..., 0). 

Round r equations. Under CFP, when a player switches from one pure strategy to 
another he is precisely indifferent between these two strategies. Using this fact, we find 
that the players switch from (il,j ) to (i2, j2) in round r when: 

ai2Q0 + ai2i,nl = a1Q? + ailj1n 

and 

Pi2PO + bilj2nl = PjlP + biljnl. 

It is convenient to rewrite these as: 

(2) (ai2 - ai)QEln = -(ai2 - ail)Q 

and 

(3) (pi2 - Pi,)PE,n = -(/j2- j,)P?. 

We show below that in a robust cycle, only one player switches strategy in the transition 
from (il, jl) to (i2, j2), and thus only one of Equations (2) or (3) will be nontrivial. For 
instance, if only player 1 switches strategies, that is, if i2 # i1 but j2 = jl, then (3) is 

trivially satisfied and hence redundant. 
In general, for k = 1, 2, ..., K, when the players switch from (ik,jk) to (ik+I,jk+l) we 

have: 

k k 

aik+,Q0 + E aik+ljsns = aikQ? + E aikjisn 
s=l s=l 

and 

k k 

ikj,+, P + E biS jk+ ns = /pjk P + Y bi,jk ns 
s=l s=l 

which can be rewritten as: 

(4) ( ik+l 
- 

aik) QEkn = -(aik+, - aik) QO 

and 

(5) ( /pk+ - 3ik) PEkn = -( pj,k+ 
- 

jk ) P 

where we always write K + 1 1. 

Round (r + 1) equations. By the earlier arguments, for k = 1, 2, ..., K, when the 
players switch from (ik, jk) to (ik+l, k+l) in round r + 1 we have: 
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(6) (a,,k+ - ai,)QEkn' =-(ak -(a - a,))Qn - (ai,+l 
- 

aik) Q 

( ajk, - /ik)PEkn' = -(Pjk+,I- ,jk)Pn - (jk,,, 
- 

Pjk)P. 

The basic difference equation. By substituting (4) and (5) into (6) and (7), respec- 
tively, we obtain for k = 1, 2, . . ., K: 

(aik+, 
- 

ai,)QEkn' = - (ai,k+ 
- 

ak)Q(I - Ek)n, 

( ,+ I 
- 

Pk ) PEkn = - (jk+, - jk ) P( - Ek)n, 

where 

I- Ek = [0, 0, . . .,ek+ 1,ek+2 , * * eK]. 

Let a(k) E { 1, 2 } denote the player who switches after k: 

= if ik 
ik+l, 

(10) 1(k)= f 

2 if jk jk+l. 

For convenience, we usually assume player one is the first to switch in each round 
(a( 1 ) = 1) and player 2 switches next (or(2) = 2). This is without loss of generality as 
there must always exist some k such that a(k) = 1 and a(k + 1) = 2. 

Consider the system of equations that results when out of Equations (8) and (9), for 
each k, only the kth equation corresponding to the switching player u(k) is considered. 
This results in a system of equations of the form 

Cn ' = Dn. 

The kth row of C is 

(11) (aik+ 
- 

aik)QEk = [aik+lj, - 
aikil, aik+lj2- aikj2 . , aik+jk 

- 
aikjk, 0, 0 . . , 0], 

if a(k) = 1, and is 

(12) (jk+ l - Pik)PEk = [ biljk+ - biljk, bi2jk+ 
- 

bi2jk . . .bik k+ - bikjk, 0 , ..., 0], 

if o(k) = 2. Therefore, C is a lower-triangular matrix (that is, for all k < 1, Ckl = 0). 
The kth row of D is 

-(aCik+ 
- 

ai,) Q(I - Ek) 

(13) 
= -[0, 0, .... O, aik+lJk+ 

- 
ajikj+, aik+ljk+2 - aikjk+2, ... ai., ljK - aikjK], 

if a(k) = 1, and is 

and 

(7) 

(8) 

(9) 
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-( pk+ - pjk) P ( - Ek) 

(14) 
= -[0, 0, ..., , bik+jk+ 

- 
bik+ljk, bik+2jk+l - bik+2j, ..., biKjk+l - biKjk], 

if o(k) = 2. Thus, D is a strictly upper-triangular matrix (that is, for all k - 1, dkl = 0). 
If G E FI then the diagonal elements of C are all strictly positive (Monderer and Sela 

1993 call this the "better response property"). Thus, C is invertible and we can write 

(15) n' = C-'Dn. 

This establishes that the run-lengths are determined by a first-order linear difference 

equation. The behavior of the difference Equation (15) is determined by the eigen roots 
of the matrix C- D. And clearly C and D are completely determined by the game G and 
the cycle c. 

5. Robust cycles. A cycle c = ((il, j), (i2,J2), (i3,j3), ..., (iK,jK)) has a simul- 
taneous switch if there exists a k such that ik t ik+1 and jk * jk+l. An example is the cycle 
c' of Example 2. Recall that a cycle is robust if there is an open set of initial conditions 
E such that for all (p( 1), q( 1 )) E E there exists a CFP that follows the cycle c. 

LEMMA 1. For all G E Ti, if c is a robust cycle then c has no simultaneous switches. 

PROOF. Let Eo be an open set of initial conditions that result in the cycle 

c = ((i,j), ... , (ik,jk), (ik+l,jk+l), ..., (iK, jK)) 

and suppose both players switch simultaneously in c for the first time after run k, that is, 
both ik+l ikand jk+ jk. 

We first argue that there cannot be a simultaneous switch after the first run, (il, jl). If 
there were, then the same n, would have to solve both (2) and (3). Since G E F1, this 

requires that 

(ai2 - ai,)Q _ (P3J - pi3)P0 

(ai2j, - ailj,) (bi12 - bi jl) 

But since the cycle c is robust this condition would have to hold for all (P?, Q0) E Eo 
which is impossible since Eo is an open subset of A(I) x A(J). (Every (P?, Q0) satisfies 
the normalization Yi P? = Ej Q9 but since none of the strategies used in the cycle can be 

strictly dominated the condition given above is not the same as the normalization condi- 
tion.) Thus, there cannot be a simultaneous switch after the first run and k > 1. 

Let I < k and without loss of generality suppose that player 1 makes a switch after run 
1, that is, (il, jl) (i,j) and (il+l,jl+l) (i', j). For any t and t' > t, define the mapping 

(p, q) = (p', q') by: 

(t' - s)i' + (s-t)i + tp 
pt = 

t' 

(t' - t)j + tq 
q t' 

where 
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(aij - aij) - (ai, - ai)q 

(ai,j- aij) 

This is well defined since G E F1 and thus aij - aij > 0. 
It may be verified that i'>,, is an affine function. Its inverse 4-,, is defined by 

t,' (p', q') = (p, q) where 

t'p' - (t' s' )i' - (s' - t)i 
p= t t 

tq' ( - (tt - t)j 
q = t 

and s' is defined by: 

(ai,j- aij)t- (ai, - ai)(t'q' - (t' - t)j) 
st-- 

(aij - aj) 

Then ,1 -t is also affine. 
Consider a CFP (p(t), q(t)) which follows the cycle c from some starting position 

(p(l), q(1)) = (pf, q-) E0. We will write (p(t), q(t)) as (p(tlp, q), q(tlp, q)) to 
indicate the dependence of the CFP on the initial condition (p, q). 

Consider the switch from i to i'. The mapping <t,,' is defined so that if 

(p(t), q(t)) E int BR- (i,j) 

and 

(p(t'), q(t')) E int BR-(i',j) 

then It,t'(p(t), q(t)) = (p(t'), q(t')). Thus, there is an e > 0 such that for all (p, q) 
in an open ball E around (p(t), q(t)), t,t,,(p, q) E int BR- (i',j). Moreover, since ',.t, 
is affine and invertible, the image of E, 5,t, (E) is also open. Because this is true at each 
I = 1, . . ., k, we obtain that if (p, q) E Eo and (p(t* lp, q), q(t* IP, q)) E int BR-' (ik, 
jk) for some t*, then there is an open e-ball E, C Eo around (p, q) such that for all (p, 
q) E E, we have 

(p(t* Ip, q), q(t* Ip,q )) E int BR -(ik, jk) 

Moreover, the set E* = { (p(t* Ip, q), q(t* I, q-)) : (p, q-) E E} is an open subset of 
BR- (ik, k). 

Our hypothesis implies that for any starting position (p, q) E E, both players switch 
at the same time after run k. The time of the switch tk(p, q) must simultaneously satisfy 

(16) (a,k+,jk - aikjk)(tk(p, q) - t*) = -(aik, - aik)t*q(t* Ip, q) 

and 

(17) (bikj+, 
- 

bikj,)(tk(p, q') - t*) = -(jk+, - pjk)tp(t* I, ). 

Equations (16) and (17) imply 
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a1)Oik+l- 
a ik q(*If 3Jk+ - I 3Jk 

(18) alp+ - a (t*p, = b1 p(t*p, q). 
aik+l k 

- 
aikk bik k+l ikJk 

As we vary (p, q) E E,, (18) must hold for all (p(t* IP, q, q(t* lp, q)) in the open 
set E*, but this is obviously impossible. This contradiction proves the lemma. D 

6. The eigen roots of C- D. The eigen roots of C- D are determined by the solu- 
tions to the equation: 

Xx = C-'Dx 

where x * 0 is an eigen vector, which are the same as the solutions to: 

(XC - D)x = 0. 

Suppose the matrix C-'D has S + 1 distinct eigen roots o , k1, ..., s so that we can 
write the characteristic polynomial of C-'D in the form: 

[VA-C-1DI II(Xs- X)a 
s=O 

The number as is called the algebraic multiplicity of the root as. 
The number ys = dim ker(XsI - C-'D) is called the geometric multiplicity of the root ks. 
Note that for all s, ys < as. 
Now observe from (14) that the first column of D is 0. Thus C-1D is singular and Ao 
0 is an eigen root of C-'D. Furthermore for all G E F1, the algebraic multiplicity of 

Xo is exactly 1. To see this, notice that if we write 

Ix - C-1DI = IC-1 I IXC- D = x M(X)l, 

then for G E Fl, IM(O) * 0. 
We now establish an important result about the nonzero roots of C~-D. 

LEMMA 2. For all G E Fr and all cycles without simultaneous switches, the product 
of the nonzero eigen roots of C-1D is 1. 

PROOF. Write: 

Cll 0 C = 
c C 

where C is the triangular (K - 1) x (K - 1) submatrix of C in the lower right comer 
and c = [c21, c31, ..., cKl]T. Since G E rl, the diagonal elements of C are all strictly 
positive. 

Similarly, write: 

0 d- 
D= _ 

0 D 

where D is the (K - 1) x (K - 1) submatrix of D in the lower right corer and d 
= [dl2, d13, ... , dK1]. Now: 
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(1 

(2 

9) C-1D = 

0 C-'( -I cd) 

Let Ik denote the k X k identity matrix. The characteristic polynomial of C-'D is: 

0 = det(VrK - C-'D) 

1- 1 A --d 

Cil 

;0) = det c1 

L|0 lK l - 
C-C(D--cfd)J 

= Xx det(K-- C-1(D 
- 1 

cd)) 
\ \ ~~~~~cn / 

using (19). 
Claim. 

det ( C- 5- -cd)) 1. 
Cll 

PRO OF OF CLAIM. Observe that 

_ 1 
D - -cd 

C11 

0 d23 d24 d2Kl C21 d12 21 d13 

= 0 0 0 d4K -- C41d12 c41d13 

' .. 0 CKid 

0 0 0 .: o LCKIldl2 CKldl3 

c21dl4 C21dlK 

C31 d4 ... C31dlK 

C41 d14 C41 dlK 

CK1 d14 ** CK4 dlK cxlAd4 ... cK~dIK_ 

By repeated use of the rule that if a column of a matrix is the sum of two column 
vectors then the determinant is the sum of two determinants, we obtain: 

- C21 dl2 d23 d24 d2K 

1 c31d12 0 d34 ** d3K 
det(D - cd) = det -c4d2 0 0 d4K 

\ Cl Cll 

--CK1dl2 0 0 . 

Evaluating the determinant by expanding along the last row yields: 

detD - - cd) = (-l)K+ - CKldl2d23d34 . dK-iK. det C1 

d)( 1+ Cl 
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From Equations (11) to (14), for all k, dk,k+l = -Ckk and CK1 = CKK. (Recall that if a(k) 
= 1 then jk = jk+l and if a(k) = 2 then ik = ik+ .) Thus: 

detD - - cd) = (-1)K+- CKI(- C11)(--C22)(- C33)' ' (-CK-1,K-) 
Cll Cll 

= (-1)2K22 C33 ... CK-1,K- CKK 

= det C. 

This establishes the claim. 
By (20), Xh 0 is an eigen root of C-1D if and only if it is an eigen root of C-1(D 

- cdlcll). Thus, the claim implies that the product of the nonzero roots of C-'D 
is one. D 

7. Unit roots of C-1D. 

Reversions. Suppose player 1 plays strategy iko in run ko, then plays some other 
strategies (but not iko) for a while, and then returns to playing ikl = ik0 in run kl in the 
same round. That is, ko < kl - 1, iko = ikl, andik 4 iko for all k such that ko < k < kl. If 
this happens, we say that a reversion to strategy iko occurs in run kl. Suppose that there 
are pi reversions for player i in each round. Let p = p, + P2. Notice that there is always 
at least one reversion for each player, since K + 1 1 by definition and hence p 2 2. 

7.1. Algebraic multiplicity of the unit root of C-1D. We now show that for almost 
all games, if each players uses at least three different pure strategies, the algebraic mul- 
tiplicity of the unit root is equal to the number of reversions in the cycle. 

LEMMA 3. There exists r4 C F such that r\F4 is null, and for all G E F4, if c is a 
cycle in which each player uses at least three pure strategies and c has p reversions, then 
the algebraic multiplicity of the unit root of C-1D is p. 

The proof of Lemma 3 is by induction on p, the number of reversions in the cycle. We 
have broken the proof into two steps: the initial step for p = 2 is in Lemma 5 and the 
induction step is in Lemma 6. 

DEFINITION OF F2 AND F3. Let F2 C rl be the set of games in F1 such that there do 
not exist I numbers r71,, /2, .. , 1, 2 < I - Il + I JI + 1, where for each k = 1, 2,..., 
1 - 1, 7k E {-1, 1}, and ikjk is some assignment and i* + il_l, satisfying: 

1-1 

(21) ? lk(aikjk - ai*jk) = 0. 
k=l 

Let r3 C r2 be the set of games in r2 such that there do not exist 1 numbers 77, 772, ... 

771, 2 < 1I _ II + I J + 1, where for each k = 1, 2, ... 1 - 1, rk E {-1, 1}, and ikjk 
is some assignment and j* jI-_, satisfying: 

1-1 

(22) , 7k (bikj - bikj*) = 0 
k=l 

Since (21) and (22) involve only a finite number of linear relationships among the 
payoffs, \ F3 is null. 
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7.1.1. Initial step (p = 2). In this step we show that Lemma 3 is true for p = 2. It 
is useful to define a simple cycle to be a cycle where the players alternate in switching 
strategies: for all k, a(k) * a(k + 1). After a relabeling of players and strategies, we can 
write the simple cycle as 

(23) c* = ((1, 1), (2, 1), (2, 2), (3, 2), . . ., (K, K), (1, K)). 

The number of pure strategies used by each player is K = K/2 > 2, and (ik, jk) = ((k 
+ 1)/2, (k + 1)/2) if k is odd, (ik,jk) = (k/2 + 1, k/2) if k is even. For a simple cycle, 
we have 

(24) 

(1,1) (2,1) (2,2) (ik,k) (1,K) 
a21 - all a21- all a22- a12 *. a2jk- aljk "' a2- alK 

b12- bll b22- b21 b22- b21 bik2 - bikl b12- bl 

a31 
- 

a21 a31 - a21 a32 - a22 a3jk - a2k a3K 
- 

a2K 

C*- D* = b13-b12 b23 - b22 b23 - b22 bik3 - bik2 b13 - b12 

blK - blK-l b2K- b2K-1 b2K - b2K- bikK 
- 

bikK-1 bl - bK- 

all - aKl all - aKl a12 - aK2 alk - aKjk alK - aKK 

bll - blK b21 - b2K b21 - b2K *. bikl -bik 
'" bll - b 

where the first row of the matrix contains labels that indicate the strategy combination 
relevant for the column. 

We now show how to "simplify" an arbitrary cycle with p = 2. Recall that if G E Fi 
then in a convergent cycle each player uses the same number of pure strategies, say K, 

along the cycle. 

LEMMA 4. If c is any cycle such that p = 2 and each player uses K pure strategies, 
then there exists a matrix 1* such that (C - D)I* = C* - D*, where C* and D* 
correspond to the simple cycle c*. 

PROOF. Consider a cycle 

c = <(i,/I), (i2,j2), (i3,j3), (i4,j4), * * ., (iK,jK)) 

which is not simple, with p = 2. Choose any three successive plays in the cycle, (ik,jk), 
(ik+1,Jk+l), (ik+2,jk+2) such that a(k) = 1 and a(k + 1) = 2. It is convenient to rename 
these as (1, 1), (2, 1), (2, 2). All this is without loss of generality, and thus c can be 
relabeled so that it is of the form: 

c = ((1, 1), (2, 1), (2, 2), (i4, j4), .... (i-i,jK-1), (iK, jK)). 

Notice that the cycle c is simple at least up to run 3, corresponding to the choices 
(2,2). 

Suppose that the cycle c is simple up to run r, r >- 3. In other words, the players 
alternate in switching until run r. Suppose, however, that a(r - 1) = c(r). This means 
that either c is of the form: 
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(25) 

or c is 

(26) 

Run r Run r+l-k 

of the form: 

Run r Run r+1-k 

Case I. Suppose c is of the form (25). Consider the C - D matrix corresponding to 
the cycle c. The submatrix of the columns corresponding to the sequence of runs (k, k), 

(k, + 1, . ., ( , I 1) (k,1), k + 1, 1) is: 

(k, k) (k,k+1) (k,I-1) (k,l1) 
a2k - alk a2,k+1 - a1,k+ I a2,11 - a1,,,- a21 - all 
bk2 - bkl bk2 - bkl ... bk2- bkl bk2 - bkl 

a3k - a2k a3,k+1 - a2,k+ 1 a3,1-1 - a2,1-1 a31 - a21 

akk - ak- l,k ak,k+1 - ak-l,k+I ak,l- I- ak., 1 k,kl - ak- 

bk,k+1 - bk,k bk,k+1 - bk,k ... bk,k+I - bk,k bk,k+1 - bk,k 

bk,l - bk,l- bk,l- bk,l-I bk,l - bk,l-1 bk,1 - bk,l- 

ak+I,k - ak,k ak+l,k+1 - ak,k+1I... ak+ 1,l 1 - ak,l-l ak1 1,1- ak,l 

(k+ , 1) 
a21 - all 

bkl1,2 - bk+l,l 

a31 - a2l 

aki - 
ak-l,1 

bk+l,k+1 - bk+1,k 

bk+,l - bk+1,l 1 

ak+1,l - ak,l 

In the matrix C - D perform the following sequence of column operations. First replace 
column (r + 1 - k) by (column (r + I - k - 1) - column (r + 1 - k) + column (r 
+ I - k + 1)). Next replace column (r + 1 - k - 1) by (column (r + I - k - 2) 
- column (r + I - k - 1) + column (r + 1 - k)), and perform a similar operation 
sequentially on all columns (r + I - k - 2), (r + I - k - 3), ..., r. These operations 
are equivalent to post-multiplying C - D by some matrix El. It is easy to check that for 
all] = k + 1, ..., 1 - 1, in the column originally corresponding to the (k, j)-run, post- 
multiplication by H replaces any entry pertaining to a switch by player 1 by the entry 
corresponding to a (k, j - 1)-run, and replaces any entry pertaining to a switch by player 
2 by the entry corresponding to a (k + 1, 1)-run. 

As a result of post-multiplying C - D by r, the submatrix corresponding to (27) 
becomes: 

(k + 1, k) 
a2,k - al,k 

bk+1,2 - bk+l,l 

a3,k - a2,k 

ak,k - ak l,k 

bk+1,k+1 - bk+I,k 

(k+ 1,l-2) (k+ 1,l- 1) 
a2,1 2 - al,1 2 a2,1..1 - a,,,-1 
bk+1,2 - bk?1,1 bk+1,2- bk+l,l 

a3,1-2- a2,1-2 a3,1 1 - a2,1-1 

ak,l.2 
- 

ak-1,1-2 akl - ak- ,1 

bk+l,k+1 - bk+1,k bk+l,k+I - bk+l,k 

bk,l - bk,l-l bk+1,1 - bk+1,11I bk+ 1,1- bk+1,l 1 bk+ 1,1- bk+,,+, 1 bk+1,1 -bk+ 1,- 

ak+1,k - ak,k ak+ ,k- ak,k - .. 
ak+ 1,12 - ak,,12 ak+ 1,1- 1- ak,l-I ak+1,1 - ak,l 

(27) 

(k,k) 
a2k - alk 

bk2 bkl 

a3k - a2k 

akk - ak- ,k 

bk,k+1 - bk,k 

(k+ , 1) 
a21 - all 

bk+1,2 - bk+l,l 

a31 - a21 

akl - ak- ,1 

bk+ l,k+ 1- bk+ I,k 
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Up to a rearrangement of the rows, these columns correspond to the sequence of runs: 
(k, k),(k + 1, k), (k + 1, k + 1), (k + 1, k + 2), . . ., (k + 1, - 1), (k + 1, ). If 
we let fI be the matrix which performs the required rearrangement of rows, and define 
fI =- nI, then the matrix (C - D)fI corresponds to the cycle: 

((1, 1), ... (k, k), (k + 1, k), (k + 1, k + 1), .... 
Run r Run r+2 

(k + 1, 1 - 1), (k + 1, 1), ...,(i, K)) 

which is simple until run r + 2. 
Case II. This is treated in the same way as Case I. After post-multiplying C - D by 

a suitable matrix fI, we obtain a matrix (C - D)fI which corresponds to the cycle: 

((1, 1)..., (k + , k), (k + 1, k + 1), (k + 2, k + 1),... 
Run r Run r + 2 

(1 - 1, k + 1), (1, k + 1) ...(iK,iK)) 

which is simple until run r + 2. 
Thus, in either case we can, by row and column operations, extend the number of runs 

for which the relevant columns originate from a simple cycle. Because these operations 
can be applied repeatedly, there exists some matrix I*l so that (C - D)n* = C* - D*, 
where C* - D* corresponds to a simple cycle. o 

LEMMA 5. There exists F4 C F3 such that F\F4 is null, andfor all G E F4, ifc is a 

cycle with p = 2 in which each player uses K 2 3 pure strategies, the algebraic multiplicity 
of the unit root is 2. 

PROOF. Fix a cycle 

c = ((1, 1), (2, 1), (2, 2) (4, j4),... (iK-,jK-1), (iK jK)) 

with p = 2. There are two cases. If a(K) = 1 then (iK, K) = (K, 1), and if a(K) = 2 
then (iK, j) = ( 1, K). 

Case 1. Suppose (iK, jK) = (1, K). Then we obtain 

[XC-D] 

X(a21- all) a21- all a22 - a12 * 
a2jk- aljk a2K - alK 

(b12- b-ll) X(b22- b21) b22- b21 bik2- bikl b12- bll 

_(bll - 
blK) (b21 - b2K) X(b21 b2K) (bikl - 

bikK) (bll - K) 

where the kth row of XC - D is 

[X(aik+,, 
- 

aikl), .. ., X(ak+ljk 
- 

aikjk), (aik+ljk+l 
- 

aikjk+l ) ..* (aik+lK 
- 

aikK)], 

if r(k) = 1, and 
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[k(bljk+l - bik), . . . , X(bikjk+l - bikjk), (bik+2jk+, - bik+2jk), . . . (bjk+, - 
bljk)], 

if o(k) = 2. 
Observe that for this matrix: 

]; row k 
(k:a(k)=l) 

= (0, (1 - X)(a21 - all), . . ., (1 - X)(aikjk - aljk), . . . , (1 - X)(a,,,KK - alK), 0), 

and 

y, row k 
{k:a(k) =2 } 

= (0, 0, (1 - X)(b22- b21), ... , (1 - X)(bikjk- b,kl), ... , (1 - X)(blK -bll)). 

Therefore, replacing row 1 by (;{k:a(k)= 1 row k) and replacing row 2 by (2{k:a(k)=21 
row k), we obtain: 

IXC-Dl 

0 (1 -X) 
X (a21 - all) 

0 0 

X(bll - blK) (b2l- b2K) 

? 

- 

(1-X) 

( bikl) 
X (bikl 

- bikK) 

? " X(bi,, - bi,,,) 

0 

( 1-X) 
X (blK- bll) 

.'" k(bll-blK) 

= X(1 - X)2 x I Ll(\)l, 

where 

0 (a21--all) 
0 0 

I Ll(X)I := 

(bl - blK) X(b21 - b2K) 

(a22 - a12) 

(b22 - b12) 
'" (ao - al.j) 

( bikjk - bikl ) 

(b2l - b2K) . 
X(bik, - bkK,) 

Observe that only the first two rows of XC - D have been changed. 
There exists a third unit root only if I L1( 1) = 0. Now I L1 (1) is a function of the 

payoffs (aij, bij), which are points in RK2 x R. 
Claim. The set of points in R K X R K2 such that I L1 ( 1 ) = 0 is null. 
PROOF OF CLAIM. Since I L1 (1)1 is a polynomial function of the payoffs (aij, bij), it 

suffices to show that it is not true that I L1 (1) = 0 identically on RK2 x RK2. This can 
be shown by an example. 

Consider the game defined by the payoff matrices A and B given by 

... 0 

(blK--bll) 

'" k(bll -blK) 
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0 ifi=j = 1, 

1 if =j> 1, 
a,i = 

x ifi = 2 andj = 1, 

0 otherwise, 

x ifi = j= 1, 

1, 

.0 ifi ij, 

where x is an arbitrary parameter which will chosen later. Since the cycle must end with 
a sequence of runs of the form: 

*..**(K, ), (1, 1), (1, 1 + 1),...,(1, K) 

we obtain that for this game 

0 x 1 (aikjk,-a) 0 0 0 ' 0 
0 0 -1 (bijk- bikl) 0 -x -x - 

I L,(1)I 

x 0 0 (bikl -bik) 0 x x x 

Now consider the matrix L1 (1 )n* where Il* is the matrix that simplifies the cycle, as 
given by Lemma 4. Only the first two rows of LI ( 1 ) differ from the corresponding rows 
of C - D. Thus, the last K - 2 rows of Li( 1 )I* are exactly the same as the last K - 2 
rows of C* - D*, as defined in (24). For the game at hand: 

(30) C* - D* 

x x 1 1 0 0 0 
-x -1 -1 0 0 0 0 
-x -x -1 -1 1 1 0 
0 1 1 -1 -1 0 0 
0 0 0 0 -1 -1 1 
0 0 0 1 1 -1 -1 
0 0 0 0 0 0 -1 

0 
0 
0 
0 
0 
0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 O O 0 
O O 0 0 
0 0 0 0 

... 0 0 0 
0 0 0 0 -x 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

-1 1 1 0 0 
-1 -1 0 0 0 
0 -1 -1 1 1 
1 1 -1 -1 0 
0 0 0 -1 -1 

?.. 0 0 1 1 x *@O 0 1 1 x 

In the second row of L ( 1) there are (K - 1 - 1) x's which occur only in the columns 
corresponding to the runs (1, 1), (1, 1 + 1), ..., (1, K). Now consider the second row 
of L ( 1 ) I*. Recalling the sequence of column operations used to simplify the cycle, the 

(28) 

(29) 

0 0 
0 0 
0 0 
0 0 
O O 
x 0 
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operations that involve the columns corresponding to the runs (1, 1), (1, 1 + 1), ..., (1, 
K) occur when the cycle has been "simplified" until run r so that it ends in a sequence 
of runs of the form: 

* *,( + 1,/),(/ + 2 , /) .. ., (1,), ( 1,/1 + 1 ),...(1, K). 
Run r 

In the next column operation, the entry in the second row corresponding to the run (I 
+ 2, 1), which does not involve x, is replaced by the entry corresponding to the run (1 
+ 1, 1), which does not involve x either. This remains true at each iteration since successive 
columns of the form (1, k) and (1, k + 1) are always added with opposite signs, elimi- 

nating the x's. Thus, once the matrix is simplified, only the last entry in the second row, 
corresponding to the run ( 1, K ), involves an x. The first two rows of L1 ( 1 ) n* are therefore 
of the form: 

-o x 61 
o o -6 

62 63 62K-4 62K-3 0 

i1 -62 -63 - 2K-4 - 2K-3 -X 

where the 6k's are numbers which are independent of x. 
The last K - 2 rows of LI (1 )II* are exactly the same as those of C* - D* (as given 

in (30)) and thus we obtain that: 

I L(l)n*I = A(x) 

where: 

(31) A,(x) 

0 
0 

-x 

0 
0 
0 
0 

0 
0 
0 
0 
0 
X 

X 

0 
-X 

1 
0 
0 
0 

0 
0 
0 
0 
0 
0 

O 

-1 

-1 
1 

0 
0 

0 

0 
0 
0 
0 
0 

1 

62 

-62 

-1 
-1 
0 
1 
0 

0 
0 
0 
0 
0 
0 

63 

-63 
1 

-1 
-1 
1 
0 

0 
0 
0 
0 
0 
0 

64 

-64 

1 
0 

-1 
-1 
0 

0 
0 
0 
0 
0 
0 

65 

-65 
0 
0 
1 

-1 
-1 

0 
0 
0 
0 
0 
0 

62K-6 62K-5 

-62K- 

0 
0 
0 
0 
0 

O 

-1 
-1 
0 
1 
0 
0 

6 -62K-5 

0 
0 
0 
0 
0 

1 
-1 
-1 
1 
0 
0 

O 

62K-4 

~62K-4 

0 
0 
0 
0 
0 

1 
0 

-1 
-1 
0 
1 

O 

62K-3 

-62K-3 

0 
0 
0 
0 
0 

0 
0 
1 

-1 
-1 
1 

O 

1. 

0 
-x 

0 
0 
0 
0 
0 

0 
0 
1 
0 

-1 
x 

O 

X 

where, as above, the 6k's are independent of x. 
Now routine determinantal calculations show that 

2K-3 

AI(x)= x + , (-1)6 X (K - 2)x2. 
j=1 

Since the 6j's are independent of x we can choose an x * O so that the term in the square 
brackets is not zero. Since K > 2 this guarantees that Al (x) 0. 
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Thus, in case 1 I L ( 1) I is not identically zero. Exactly the same argument works for 
case 2, but is omitted for brevity. Thus, for the given cycle c, the set of games for which 
I L1 ( 1 ) = 0 is null. Denote this set by Fc C F. There are only a finite number of possible 
cycles with p = 2, and thus the set F* = UFc is also null, where the union is taken of 
all cycles c such that each player is using at least three strategies and p = 2. For any such 
cycle and any game not in F*, the number of unit roots of C- D is 2. Now let r4 
= F3\F*. m 

7.1.2. The induction step. By construction, every G E r4 has the property that if c 
is any cycle with p = 2 such that each player is using at least three pure strategies, then 
the number of unit roots of C-'D is exactly 2. We now extend the result to all cycles. 

LEMMA 6. Fix a game G E I4. Suppose for all cycles cwithout simultaneous switches 
which have p reversions and where each player is using K 2 3 pure strategies, the 
corresponding matrix C-1D has p unit roots. Then, for any cycle c without simultaneous 
switches which has p + 1 reversions and where each player is using K - 3 pure strategies, 
the corresponding matrix C-'D has p + 1 unit roots. 

PROOF. Suppose that for all cycles without simultaneous switches in which the num- 
ber of reversions is p > 2, the number of unit roots of C-1D is p. Now consider an 

arbitrary cycle without simultaneous switches c of length K in which the number of 
reversions is p + 1. Since p + 1 - 3 and K > 3, there is a player, say player 1, who plays 
i* in (say) run 1, switches to i2 in run 2, possibly plays other strategies in runs 2 to I 
- 1, then after run I - 1 switches from some strategy ill- "back" to i*, then plays i* 
for a number of runs, say I through m, and then switches to im+l * i-l. (It is possible 
that I = m so that 1 switches away from i* after run 1.) The cycle c is then of the form: 

C = (i*j, ... . ii-li-l, ji-j, ... , i*jm, im+ljm+l ... . iKjK) 
1 1-1 I m m+l K 

where the numbers under the strategy labels are the runs. Notice that without loss of 

generality we can take I < II + I J I + 1, because a reversion has to occur as soon as 
each player has used all his pure strategies. 

Consider the matrix C - D that corresponds to the cycle c. We will construct a cycle 
c with one fewer reversion and study the corresponding matrix C - D. 

For all k such that I < k <- m, add column I - 1 of C - D to column k and subtract 
column I from column k. Add row I - 1 to row m. Call the resulting matrix X. 

For all k such that I < k _ m, and all h * k, the hth element in the kth column of X 
is (using the fact that jl = j-l 1): 

(32) (aih+lj-1 
- 

aihj- ) - 
(aih+j, 

- 
aihjl) + (aih+jk 

- 
aihk) = (aih+lk 

- 
aihjk), 

if a(h) = 1, and (using the fact that ik = il = i*): 

(33) (bil,-lh+ 
- 

bi -li) 
- 

(bitjh+ 
- 

biljh) + (bikih+ 
- 

bikjh) 
= (bi1jh+ 

- 
bil-lh), 

if a(h) = 2. 
Similarly, for h * m, the hth element in the mth row of X is 

(ailjh - ail, jh) + (aim+ljh - 
ai,jh) = aim+,jh - ai,l-,lh 

Delete row I - 1 and column I from k and call the new matrix X. 
Now, consider the K - 1 cycle 
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c = (* ilj il -l1, i * l-j+l , i - n 
il- jm, im+ljm+l . , iKjK) 

1 1-1 -1m m K-1 

which is the same as c except that the sequence 

(il-ljI-1, i*jl . . . i*jm, im+lJm+l) 

in runs I - 1 to m has been replaced by the shorter sequence 

(il-lij-1, i-ljl+l . . * , il-ljm, im+ljm+l). 

Note that the number of reversions in cis p. Let C - D denote the matrix corresponding 
to the cycle c. 

We now claim that X = C - D. Indeed, the elements in (32) and (33) are the entries 
in the (k - 1)th column of X, and they correspond to a run where player 1 uses il_l and 

player 2 uses jk. This is precisely the (k - 1 )th run in the cycle c. Similarly, the lth row 
of the matrix X corresponds to a switch from strategy il_l to strategy im+\ by player 1. The 
other rows and columns have not been disturbed, and hence X = C - D. 

We have thus shown that we can write 

(34) |C-DI =? 
a P 

since the operations we have performed on C - D do not affect the determinant, but 
interchanging rows and columns may affect the sign. In (34), C - D is the matrix resulting 
from the smaller cycle c, [b] is the Ith column of X, and [a /] is the (1 - 1)th row of 
X. Thus in particular, 

A/ =- ailjl 
- ail,ijl_- 

In the form (34), y is a linear combination of the columns of C - D, and a is a linear 
combination of the rows. That is, there exist 6 and r such that: 

a + 6(C - D) =O 
(35) 

7 + (C-D)7 =0. 

More precisely, recalling that a( 1) = 1, r7 is defined by: 

-1 k=l, 

-1 if 1 < k I - 1, c(k- 1)=2and a(k)= 1, 
7rk = 

1 if 1 < k - 1, a(k- 1)= land a(k) = 2, 

0 otherwise, 

and 6 is defined by: 

499 



V. KRISHNA AND T. SJOSTROM 

1 if l k < I- and a(k) = 1, 
6k -= 

0 otherwise. 

It can then be checked that (35) holds. 
Now consider the matrix T(X) that results when the row and column operations de- 

scribed above are performed on XC - D. 
The operations are: For all k such that I < k - m, add column I - 1 of C - D to 

column k and subtract column I from column k. Add row I - 1 to row m. Finally, place 
row I - 1 as the last row and column I as the last column. 

These operations preserve the determinant (up to a sign change) and thus IT(X)| 
= +I C - D . From (34) it follows that: 

- 
L1(X) y(X) 

a(X) /P()_ 

where Ll (X) is a (K - 1) x (K - 1) matrix with the property that L (1) = C - D. 
Now add 6[L1(X) y(k)] to the last row of T(X), resulting in the matrix 

X- L,(X) 7y(A) 

a(X) + 6L1(X) /P(X) + 6y(\X) 

It can be checked that 

a(X) + 6L1(X) = (0, (1 - X)(a,22 - ai,2),..., 

(36) (1 - X)(aikljk_, - ai*jk_,), (1 - k)(aikjk- ai*jk) ... 

(1 - X)(ail-2jl 2 - ai*jl,2), 0, . . ., , 0) 

where the jth entry is zero if j - I - 1, and 

/3(k) + 6y(A) = 0. 

Add 

- L1(X) 

_a() + 6L1()_ 

to the last column of X. By (35), this results in a matrix: 

- 
L1(X) (1 - )yo 

TE(X) = 1) (1 -)ao (1-A)/ao_ 

where again we have that IT (X) i = | C - DI. 
Consider the form of /o. Multiplying the expression in (36) by r7, the result is 
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1-2 

(1 - X)/,o = (1 - h) I 77k(aikk - ai,k). 
k=2 

Since we are assuming the game G E F4 C F3, /o0 * 0. 
We now investigate the unit roots of the matrix C- D. Since 

I I- C-'DI = IC-'1 IXC- D 

we can investigate equally well the roots of the polynomial XC - D I = O. We can write: 

IXC-DI = IT1(X)I 
(37) 

= (1- )|LL(X)| 

where 

-L,(X) (1 -X)yo 
Li ( () = 

- o Po 

Hence there is at least one unit root. If there is another one, then I LI (1) = 0 and there 
exists a vector y = (y, YK) * 0 such that 

-Li(l) 0- 
L(l1)y = y = 0. 

ao 0Po 

Since L1 (1) = C - D, this implies that 

(C-D)y=O 
(38) 

aoy + YK/3 = 0. 

If y = 0, then YK * 0. Since /3o * 0, this contradicts (38). Thus, y T 0. Suppose without 
loss of generality that yj = 1 for some j < K. 

Since L (1 )y = 0, we have 

L,(X)y = (1 - X)v 

for some vector v. Replace the jth column of LI (X) by (1 - X)v and call the resulting 
matrix T2(X). Let 

L2 (X) (1 - X)yo L2(X) = 
_a(X) /3o 

be the matrix that obtains when the jth column of L1 (X) is replaced by v. Then 

(39) IXC - DI = (1 - X)IL1(X)I = (1 - X)IT2(X)I = (1 - X)2IL2(X)I. 

Suppose that there is a third unit root. Then I L2( 1) = 0 and there is z = (z, ZK) * 0 
such that 
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L,(1) 0 
L2(1)z = 

a zi= 0. 
a( 1 ) /po 

Again /o * 0 implies that z * 0. Therefore, as in (39), we can use z to show that 

IXC-D I = (1 - )3L3(X )I 

for some matrix L3 ( ). This procedure can be repeated until I Lk(l 1) | 0 for some k. 
Now we note that one unit root resulted directly from (37). After that each step of the 

procedure corresponds not only to a unit root of I XC - D I = 0, but clearly also to a unit 
root of I XC - D I = 0, where the matrix XC - D comes from the smaller cycle c. By the 
induction hypothesis, C-1D has exactly p unit roots. Therefore, we can repeat the argu- 
ment precisely p times. Therefore, 

I|C - DI = (1 -X)+' I L(X) 

and I Lp( 1) I * 0. This completes the induction step. o 
Lemma 5 and Lemma 6 together complete the proof of Lemma 3. 

7.2. Geometric multiplicity of the unit root of C- D. From (11) to (14), the kth 
row of(C - D) is 

(40) [aik+lj, 
- 

aik l, a,ik+j2- aik, . . 
aik+iK - aikjK] = (aik+l - tik)Q, 

if o(k) = 1 and 

(41) [biljk+l -biljk, bi2jk+l - bi2jk, * . bi jk+l - biKjk] = (Jk+l 
- pk)P 

if a(k) = 2. 
If a(k) = 1, then the kth element in the Ith column of (C - D) is 

(C - D)kl = (a ik+lj 
- aikl). 

Suppose ko < kl - 1, and suppose that a reversion to strategy iko occurs in run kl. Then 

iko = ik, and ik * iko for all k such that ko < k < kl. Consider the vector s = (s, s2,..., 

SK), where 

iS if a(k) = 1 and ko k< kl, 

0 otherwise. 

Then we have, for each 1, 

K 

E Sk(C - D)kl = E (aikl 
- 

aikj,) 
= 

(aik+, 
- 

aik ) 
k=1 k:a(l) 1 {ko-k<ki} 

and ko-k<kl 

in view of the fact that aik+lj, = aikj, if a(k) = 2. But ikl = iko. Therefore, 
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K 

X Sk(C 
- 

D)kl = (aiko+l,1 - 
aik,jl) + (aik+2, 

- 
aiko+1li) + - + (aik,( - 

aik-,_li) 
= 0 

k=I 

for each 1. Hence, 

s E ker(C - D)T 

where (C - D)T is the transpose of (C - D) and ker M denotes the kernel (or null-space) 
of the matrix M. 

By the same method, each reversion generates a vector in ker(C - D)T. It is clear that 
this set of vectors is linearly independent. A similar procedure works for player two, and 
we then use vectors of the form 

s 1 ifa(k)=2 andko _ k<kl, 
Sk= 

0 otherwise. 

There are pi reversions for player i in each round, say. This implies that there are pi 
+ P2 linearly independent vectors in ker(C - D)T. But 

dim ker(C - D)T = dim ker(C - D) = dim ker(I - C-'D) 

so that 

dim ker(I - C-1D) p. 

On the other hand, under the hypotheses of Lemma 3, dim ker(I - C1-D) is no greater 
than p, the algebraic multiplicity of the unit root, and hence 

dim ker(I - C -D) = p, 

a fact that we state for later reference as: 

LEMMA 7. For G E F4, if c is a cycle in which each player uses at least three pure 
strategies and c has p reversions then the geometric multiplicity of the unit root of C-1D 
is p. 

8. Nonconvergence. We can now complete the proof of Theorem 1. 

PROOF OF THEOREM 1. Suppose G E F4. Let the robust cycle be such that there are 
p reversions, and each player uses K 2 3 pure strategies. Let Xo, i ., ks be the S 
+ 1 distinct eigen roots of C-1D. We know that 0Xo 0 is an eigen root of C-1D with 
algebraic multiplicity of 1 and from Lemma 3 we know that i - 1 is an eigen root of 
C-1D with algebraic multiplicity a = p. But 

= K 
s=O 

where as is the algebraic multiplicity of KX, and since K = 2K + p - 2, this implies that 
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S 

as,=K-p- 1 =2K-3 
s=2 

which is an odd number. 
Since the number of complex (nonreal) roots is always even, the multiplicity of the 

real roots is an odd number. It cannot be the case that the only real root is -1 since from 
Lemma 2 

S 

Hn s= 1. 
s=2 

This implies that there is a nonzero real root, say X2, such that X2 # 1 and X2 * -1 and 
hence I X21 I 1. Since the product of all nonzero roots is one, there exists a root Xs such 
that I \X > 1. Let Ks be the dominant root, that is, the root with the largest absolute value. 
If Xs is either negative or complex, the cycle cannot persist since run-lengths would be- 
come negative. Thus Xs must be real and positive and hence Xs > 1. (If there are many 
roots with the largest absolute value, there must be at least one real Xs > 1.) 

Finally, consider the vectors P? = p(l) and Q0 = q( ) that describe the initial con- 
ditions before the cycle begins and let n(0) be the vector of run lengths in the initial 
round that the cycle is played. We know from (4) and (5) that n(0) satisfies 

(ai+,,, - aik)QEkn(O) =-(ai+l- atik)Q 

and 

(pjk+ - Pik )PEkn(O)= -(pjk+1 - Pik)P 

which can be rewritten as: 

n(O) = (C-'D - I)m(O) 

where m(O) E RK is a vector satisfying Q? = Qm(O) and P? = Pm(O). It is in fact 
convenient to take m(0), normalized so that ;'=I mk(O) = 1, as the initial condition. (For 
any such m(O), there are initial beliefs Q? = Qm(O) and P? = Pm(O) satisfying ]_=j 
p0 = i, 

0 
QO = 1.) 

Some notation: If K, is an eigenvalue x is a vector such that (C-1D - XjI)vs-'x * 0 
and (C-1D - XsI)vx = 0 then x is a generalized eigenvector for Ks with index , >- 1. 
Let ,u, be the largest index of any generalized eigenvector for X,. The generalized eigen- 
space of the eigenvalue \, is 

Xs = {x: (C-'D - KsI) sx = 0} 

and by the Jordan decomposition theorem (Hirsch and Smale 1974) dim Xs = as, the 
algebraic multiplicity of Xs, and 

(42) RK = XO ? X1 ? X2 ? '" E Xs 

where X ( Y denotes the direct sum of X and Y. 

Claim. Range (C-'D - I) = Xo ( X2 .' (G3 Xs. 

PROOF OF CLAIM. Since G E 1r4, we know that if hi = 1 then 
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dim X = a1 = p. 

Moreover, as dim ker(C-'D - I) = p (Lemma 7) then ul = 1 and so there are no 

generalized eigenvectors associated with the unit root with index greater than 1. Thus, 

X1 = ker(C-'D - I). 

Now dim Range(C-'D - I) + dim XI = K; and Range (C-tD - I) and X1 are disjoint 
subspaces; for if 0 * x = (C-'D - I)u and (C-'D - I)x = 0 then (C-'D - I)2u = 0 

contradicting the fact that ,l = 1. Thus, RK = X1 ? Range (C-'D - I). But now (42) 
implies Range (C-'D - I) = Xo ? X2 .. * Xs. This proves the claim. 

The claim implies that there cannot be an open set of initial conditions m(0) such that 
when n(0) (C-'D - I)m(O) is written as a sum of K - p vectors of the form csxs 
and x' E Xsit is the case that for some I = 0, 1,...,, and s = 0, 2, 3, ...,S, c =0. 
(The index I indicates that there could be more than one linearly independent generalized 
eigenvector corresponding to the eigenvalue Xs.) 

We have: 

n(r) = (C-lD)n(O). 

Thus n(r) has a component of the form csrJXsx}, where j 2 0 and hs > 1 is the 
dominant root identified above (again see Hirsch and Smale 1974). Since Xs > 1 the run- 
lengths grow exponentially as in Shapley (1964), and CFP does not converge for any 
starting position outside the set for which Cs = 0. This last set does not contain an 
open set. 

This completes the proof of Theorem 1. o 

9. Discussion. CFP converges for every zero-sum game, but the property of zero- 
sumness is nongeneric, and our main result is a statement about generic games. Further- 
more, the class of 2 x 2 games is not covered by our result, and as we have already 
pointed out, there is an open set of 2 x 2 games with a unique equilibrium in mixed 
strategies for which every CFP is cyclically convergent. However, every 2 x 2 game with 
a unique equilibrium in mixed strategies has the same best-response correspondence as a 
zero-sum game. Since CFP depends only on the best-response correspondence, the 2 X 
2 exception is a consequence of this equivalence. 

Shapley's game (discussed in Example 2) is a 3 x 3 nonzero sum game where, for 
very special initial conditions, CFP converges cyclically to a mixed strategy equilibrium 
where all three pure strategies are used. Consider a slightly more general version: 

EXAMPLE 3. Shapley's Game: 

X Y Z 

X 0,0 1,x x, 1 

y 

z 

x, 1 0,0 1,x 

1, x x, 1 0,0 

where x > 1. 
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There exists a unique equilibrium p* = q* = (-, 3, ). It can be shown that any CFP 

starting from an initial condition where p(l) = q( 1), converges in a cyclical manner; 
both players play the same pure strategy at all times and follow the cycle: (X, X) -- (Y, 
Y) -- (Z, Z). Of course, this cycle is not robust. For this cycle we have: 

0 x-1 - x-' 
C-D = 0 x- - x-2 1-X- + X-2 

LO x-1 - x-2 + x-3 1- - + x-2 - x-3 

and the eigen roots of this matrix are: 0, 1 and -x-3. For any x > 1, the dominant root 
is 1. The run-lengths are, in the limit, constant and the CFP converges. The important 
point to notice is that if x > 1, the (absolute value of the) product of the nonzero roots 
is less than 1. Thus the conclusion of Lemma 2 does not hold and the run-lengths do not 
conserve volume. Recall that the assumption that the players do not switch simultaneously 
played an important role in the proof of Lemma 2. 

Foster and Young (1996) have constructed an 8 x 8 coordination game in which the 
fictitious play does not converge to any of the equilibria. They show this by establishing 
that FP will follow a simple cycle in which each player uses 8 pure strategies. The cycle 
is robust and the game is generic in our sense. Thus Theorem 1 can be used to deduce 
that CFP will not converge in their game. 

10. Discrete time process. Our main result concerns the continuous time version of 
fictitious play (CFP). We now indicate how the result may be applied to discrete time 
fictitious play processes (DFP). 

Recall that a DFP is a sequence (p(t), q(t)), for t = 1, 2, 3, ... such that 

(p(l), q(l)) E A(I) A(J) 

and 

tp(t) + B(q(t)) tq(t) + B(p(t)) 
p(t+ 1), q(t + 1) = 

t+l t+l 

Thus p(t + 1) is a weighted average of p(t) and B(q(t)) where the weights are tl(t 
+ 1) and 1 /(t + 1 ) and players can adjust their strategies in each period, that is, after 
one unit of time has elapsed. 

Now suppose A > 0 is the time between adjustments, that is, players can adjust their 

strategies after A units of time have elapsed. Then using the weights t/(t + A) and A/ 
(t + A), we get: 

p(t + A) = tp(t) + AB(q(t)) 
p( t + A) = t+A 

or, equivalently: 

p(t + A) - p(t) B(q(t)) - p(t + A) 
A t 

As the time between adjustments A -- 0, we obtain that the right derivative of p(t) for 
t> 1: 
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dp(t) B(q(t)) - p(t) 
dt t 

which is the CFP. 
Thus a CFP approximates a DFP when the time between adjustments, A, is small. We 

now show how our main result applies to DFP's with small A. 

DEFINITION 3. A A-DFP is a sequence (p(t), q(t)), for t = 1, 1 + A, 1 + 2A, 1 
+ 3A, * such that 

(p(l), q-(l)) E A(J) x A(J) 

and 

+ A) tpf(t) + AB(q(t)) ( t) + AB(t(t)) tT(t + A) = ,(t + A) = 
t+A t+ A 

Of course, when A = 1 we obtain the original Brown-Robinson process. 
For t - 1 let (p(t), q(t)) be a cyclic CFP with the cycle c. Let n(r) E RK, r = 1, 2, 

.. be the run-lengths associated with the CFP (p(t), q(t)). Let F-- C-D be the matrix 
associated with the cycle c, as defined earlier, so that for all r: 

(43) n(r + 1) = Fn(r). 

For t = 1, 2, 3, ... let (p(t), q(t)) be a cyclic A-DFP with the same cycle c. Let the 
amount of time spent playing the strategy combination (ik, jk) in round r be written as 
ik^(r)A so that nTk(r) E Z+ is the number of "periods," each of length A, that (ik, jk) 
is played. Define na(r) E Z K, r = 1, 2, * to be the vector of run-lengths associated 
with the A-DFP (p(t), q(t)). Also notice that given the initial condition (/p(l), q(l)) 
= (po, qo) we have, as in the proof of Theorem 1, that na(O)A (C-'D - I)m(O) 
where m(0), as before, is a vector satisfying Pm(0) = Po and Qm(0) = q0. Thus as A 
-0, 

(44) n(0) = - (C-D - I)m(0) -* oo. 

From now on we economize on notation by writing n(r) instead of nF(r). 
For any vector x let llxll denote the absolute value of the largest component of x. Sim- 

ilarly, for any matrix M let II1MI denote the absolute value of the largest entry in M. Observe 
that since in a A-DFP the run-lengths must all be positive integers (43) cannot hold 
precisely for the discrete process. However, (43) is approximately true: 

LEMMA 8. There exists a y such that for all r: 

Iln(r + 1) - Fn(r)ll < y. 

PROOF. Consider a cycle c and a switch from ( i , ji) to (i2, 2) by player 1, say. Then 
analogous to equation (2) in ?4, we obtain for the A-DFP that player 1 switches when 
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(aiaj, - aily)ni 1A -(a2 - ai,)Q?, 

(ai2l - ai,)(nl - 1)A -(a i2- ai,)QO, 

which can be rewritten as 

0 < (ai2jl - ai,jl)nlA + (ai2 - a,il)Q0? (ai2jl - ai,,y)A < QA, 

where Q is the largest payoff difference in the game. 
In general, for k = 1, 2, ..., K when the players switch from (ik, jk) to (ik+l, jk+1 ) in 

round r, we have, analogous to Equations (4) and (5), that 

0 (ai,k+ - aik)QEkn-/ + (aik+, 
- aik)Q)? A, 

o < (/jk+, - /3j)PEknA + (pjk+, 
- 

Pjk)Po? QA. 

In the switch from (ik, jk) to (ik+1, jk+l) in round r + 1, we have, analogous to Equations 
(6) and (7), that 

0 _ (ak+, - aik)QEkn A + (aik+, - aik)QnA + (ail - ik)Q , 

0 (p/3jk - ,kj)PEkn'A + (pjk+, - Ijk)Pn'A + (/ jk+1- j)Po 
< A. 

Combining these we obtain: 

- 
?/ ( (aik+, - aik)QEk 'A + (aik+, 

- 
aik)Q(I - Ek)nTA _ 0A, 

--A 5 (3jk+l- IJk,)PEk A + (j,k+ 
- 
PI)P( 

- Ek)nA - QA, 

which is the same as: 

-Qu 

< 

Cn' - Dn F- u, 

where u = [1, 1, ..., l]1 or equivalently 

liCn' - Dinl < Q, 

which proves the result. o 
Notice that F in the statement of the lemma above is the same matrix as in (43). We 

have shown in earlier sections that for almost all games, all cycles such that (a) there are 
no simultaneous switches; and (b) each player uses at least three strategies, have the 

property that the dominant root of the associated matrix F is X > 1. We now show that 
these same conditions make cyclic convergence impossible for the A-DFP also, for almost 
all initial conditions once A is sufficiently small. 

LEMMA 9. For almost all (Po, qo) there exists a Ao such thatfor all A < Ao if(pf(t), 
q(t)) is a cyclic A-DFP such that the dominant root of the associated matrix F is A > 1 
then (p(t), q(t)) does not converge starting from (p(1), q( 1)) = (po, qo). 

PROOF. Since X is the dominant eigen root of F, there exists a matrix F* such that 
lim,r(Fr/lr) = F* and hence there exists a number M such that for all s, IIFS'/X'S < M. 
Assume for simplicity that \ is real and has a multiplicity of 1 (the general case is similar, 
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see Rosenmiller 1971). Then F*n(O) = 0 only if Cs = 0 in the sense of the last paragraph 
of the claim at the end of the proof of Theorem 1. And the set of such n(0) is a closed 
subspace of measure zero. 

Thus, as in the proof of Theorem 1, for almost all initial conditions (po, qo), n(O) 
i ker F*. Fix such a (po, qo). Recall that the amount of time spent playing (ik, jk) is 
ffkA. Therefore as A -/ 0, with a fixed (f(l), q(1)) = (po, qo), fk(O) - oo as in (44). 
As n(0) t ker F* we can choose A0 such that for all A < A0, 

(45) IIF*n(0)l > yM 1+ 1. 

Using the previous lemma we can write for all r: 

n(r) = Fnf(r- 1) + e(r) 

where Ile(r)[l < y and thus for all r: 

n(r) = Frf(O) + , Fe(r - s + 1) 
s-=1 

or that: 

if(r) Frr F 
xr --+ s --,(r - + 1). 

Since X > 1, 

if(r) Fr r 1 FSr 1 1 
,--h (O) jI E s + 1)11 - + I 

YM + M --s-- yM 
Xr Xr X-( 

x 
rs xrs x - I 

s=l s=l 

There exists an R such that for all r > R, 

Fr 1 
- F* c 

xr lln(O){ 
' 

Thus for all r > R: 

_(r) i(r) 
r 

F Fr 

r -F*n(O) r Ar i(O) + f(O) - F*n(O) 

1 
<yM + 1 

X- 1 

and because of (45) there exists a , > 0 such that if A < Ao then for all r > R: 

n(r) 
r > 

Thus the sequence of run-lengths n(r) grows at least exponentially at the rate X > 1. As 
before, this implies that the A-DFP sequence (p(t), q(t)) does not converge. o 
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Recently, Harris (1996) and Hofbauer (1994) have also investigated the relation be- 
tween continuous and discrete time fictitious play using the theory of differential inclu- 
sions. By embedding the discrete time fictitious play in continuous time, the convergence 
of the continuous time fictitious play for zero-sum games can be used to show the con- 
vergence of the discrete time fictitious play for zero-sum games. The argument depends 
on the fact that in zero-sum games the convergence is uniform in the starting positions. 
It is then possible to show that limiting behavior of the discrete time process approximates 
that of the continuous time process. 

11. Other related processes. CFP belongs to a more general class of continuous 
time processes which may be described as follows. 

Suppose ): [to, oo) - [0, oo) is a one to one and onto function that is differentiable on 
(to, oo) and satisfies 4' > 0. Consider the system: 

d#f d47 
(46) d = 0'(t)[B(q(t)) - p(t)], d'(t)[B(p(t)) - q(t)] dt ? dt + 

where B(q(t)) E BR(q(t)) and B(p(t)) E BR(p(t)). Suppose (p(t), q(t)) is a path 
that satisfies the system (46) from the initial conditions (p(to), 7(to)) = (po, qo). 

(Observe that CFP is just a special case of (46) when ((t) = In t.) 
Define s = )(t) and consider the path Pb(s) = ( -1 (s)) and qb(s) = q( -1 (s)). We 

now obtain 

dpb dp(- 
~ 

(s)) dt 

ds + dt + ds 

= 4'((4- (s))[B(q(- 1(s))) - p(4- (s))] X 1,, ) 
4' (4P (s)) 

= B(qb(s)) - Pb(s) 

and similarly for qb. 
Thus (pb(S), qb(S)) is a path satisfying the system 

dpb dqb 
(47) d = B(qb(s)) -Pb(s), = B(pb(s)) - qb(s) ds + ds + 

from the initial conditions (Pb(O), qb(0)) = (po, qo) if and only if (p(t), q(t)) is a path 
that satisfies the system (46) from the initial conditions (p(to), q(to)) = (po, qo). 

The system given by (47) is called the continuous time best response (CBR) dynamics 
by Hofbauer (1994). (Harris 1996 calls this "continuous time fictitious play of the sec- 
ond-kind." ) 

Since CBR is just CFP with a different time scale (s = In t) this does not affect the 
convergence properties of the system, and thus our results hold for CBR also. Now by 
extension they hold for all systems of the form (46). 

Another useful equivalent process is the continuous time weighted fictitious play 
(CWFP): 

dp = r[B(q(t)) - p,(t), 
dq 

r[B(pw(t)) - q(tt)] dt + dt + + + 
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which is a system in which players use an exponentially weighted average of past plays 
to evaluate their beliefs about their opponent's play. 

Acknowledgments. We are grateful to S. Hahn, C. Hara, A. Sela, two anonymous 
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