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Abstract

In the presence of a time-inconsistency problem with optimal agency contracts,
we show that competitive markets implement allocations that Pareto dominate those
achieved by a benevolent planner, they induce strictly more effort, and they some-
times make the commitment problem disappear entirely. In particular, we analyze a
model with moral hazard and two-sided lack of commitment. After agents have cho-
sen a hidden effort and the need to provide incentives has vanished, firms can modify
their contracts and agents can switch firms. As long as the ex-post market outcome
satisfies a weak notion of competitiveness and sufficiently separates individuals who
choose different effort levels, the market allocation is Pareto superior to a social plan-
ner’s allocation. We construct a specific market game that naturally generates robust
equilibria with these properties. In addition, we show that equilibrium contracts with-
out commitment are identical to those with full commitment if the latter involve no
cross-subsidization between individuals who choose different effort levels.
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Carlos Alós-Ferrer, Helmut Bester, Peter Diamond, Dennis Gaertner, Mike Golosov, Jon Gruber, Bard
Harstad, Casey Rothschild, Armin Schmutzler, Jean Tirole, Iván Werning, and seminar participants at FU
and HU Berlin, MIT, Northwestern University, and the University of Zurich for valuable suggestions. All
errors are our own.



1 Introduction

Optimal contracts in the presence of moral hazard, where a risk-averse agent is able to
affect the probability distribution over output by choosing some hidden action, reflect a
tradeoff between providing incentives and insurance. However, such contracts are subject
to a fundamental time-inconsistency problem: Whereas underinsurance is typically optimal
ex ante so that the agent has incentives to exert effort, it becomes suboptimal once effort
has been chosen. Since the need to provide incentives has vanished, a risk-neutral principal
would find it optimal to provide the agent with full insurance after effort choice has been
made, but before output is fully realized. The agent, anticipating this, then would have
incentives to exert the least costly effort level.

The mechanism to deal with commitment problems in this and other related settings
that has received most attention is reputation.1 Repeated interaction between the principal
and the agent allows to avoid the outcome with lowest effort and full insurance based on
the credible threat of punishments in future periods. In this paper, we examine how an
alternative mechanism performs in the framework of the outlined time-inconsistency problem:
competitive markets.2 Notably, we consider a model where contracts are offered by many
competing principals in a market, and there is two-sided lack of commitment: Principals
are unable to commit to contracts before agents choose their hidden effort, and agents are
free to choose different contracts or principals after they have taken their effort decision.3

We demonstrate that this form of competition without commitment is able to deal with
the time-inconsistency problem very successfully, even without allowing for any reputational
effects.

To evaluate the performance of competitive markets without commitment relative to
other institutions, we start with considering a government faced with the same informational
and commitment constraints. In particular, it offers incentive contracts to a population of
agents who differ in their privately known disutility of effort, and is free to change them after
agents have chosen their effort and hence their ex post type, but before output is realized.

1Zhao (2006) studies the above mentioned problem of moral hazard without commitment in an infinitely
repeated principal agent model. Other applications, where reputational concerns can affect a commitment
problem, include monetary policy (Kydland and Prescott (1977), Barro and Gordon (1983)) and capital
taxation (Chari and Kehoe (1990), Phelan and Stacchetti (2001), Farhi and Werning (2008)).

2With the notable exception of some contributions to capital tax competition (e.g. Kehoe (1989) or
Conconi, Perroni, and Riezman (2008)), the effect of competition on time-inconsistency problems has received
little attention. The tax competition literature is concerned with the optimal degree of cooperation between
countries, facing a trade-off between disciplining effects of non-cooperative behavior and an adverse race-to-
the-bottom.

3In contrast, Phelan (1995) and Krueger and Uhlig (2006) study a competitive market structure with one-
sided commitment, where, in the context of optimal risk sharing without an ex ante moral hazard problem,
financial intermediaries are committed to contracts but agents are free to switch.

1



We first show that, with a utilitarian social planner, the unique equilibrium is such that no
agent provides effort and everybody is fully insured.4 The same holds whenever the planner
attaches overproportional Pareto-weights to agents with a high effort cost compared to their
population share, which may be a particularly realistic case in many applications where
the government is driven by redistributive concerns. This is because the social planner in
this case still has incentives to provide full insurance (or even overinsurance) ex post, which
eliminates ex ante incentives.

We then turn to the analysis of competitive markets, where a large set of risk-neutral
principals (firms) offer contracts to screen agents. Firms can offer new and modify their old
contracts, and agents can move to other firms once they have chosen effort.5 Then, firms
take the agents’ effort decision and the composition of the population of agents as given in
the ex post stage. We first show that, whenever the outcome of an ex post market satisfies a
weak notion of competitiveness (minimal contestability) and it sufficiently separates agents
who have taken different effort choices, it Pareto-dominates the government outcome. The
reason is that, whereas incentives for effort completely break down if contracts are provided
by a utilitarian government, this is not the case with competitive markets even in our one-
shot economy without reputation effects. Importantly, while this result depends on the
assumption that markets are competitive, it does not rely on a detailed specification of a
particular market game. However, our results do not apply to the comparison between a
monopolistic private firm and a government: competition is crucial.

We next construct a game-theoretic foundation for our analysis of competitive markets
that generates allocations with the desired properties as sequential equilibrium outcomes.
The extensive form is such that, first, agents take a hidden effort decision. Then, each firm
forms a belief about agents’ effort choices and offers a finite number of incentive contracts.
Following the suggestion by Miyazaki (1977), we introduce a withdrawal phase to guarantee
equilibrium existence: After observing the set of offered contracts, firms can decide to become
inactive at a small cost. Finally, agents choose one of the remaining contracts, and the
uncertainty is realized. The withdrawal phase yields equilibrium existence in the ex post
market, but also equilibrium multiplicity.6 We show that the multiplicity problem can be
solved by introducing a simple robustness requirement based on varying withdrawal costs,

4The mechanism underlying this result relates to what has been described as the Samaritan’s dilemma
(Buchanan 1975) or the problem of soft budget constraints (Kornai, Maskin, and Roland 2003). The same
result, which predicts a complete breakdown of incentives, has been obtained by Boadway, Marceau, and
Marchand (1996) in the setting of education and redistributive tax policy.

5Our analysis thus applies whenever a switching agent can take along its type to the new firm. This is
plausible in many applications, as we will discuss below.

6A similar problem has been observed by Engers and Fernandez (1987) in a game with an infinite sequence
of contract offers.
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which yields Miyazaki-Wilson type contracts as the unique robust outcome in the ex post
market with given effort choice. These contracts correspond to the optimal solution a social
planner would implement who places welfare weight only on high effort types.

We then provide a characterization of robust sequential equilibrium outcomes in the
complete market game without commitment, including the agents’ optimal effort choice. We
show that they are the solution to a fixed point problem, where the agents’ ex ante effort
decision must be optimal given the resulting ex post equilibrium contracts, and vice versa.
We provide conditions for the existence and uniqueness of such equilibria. Moreover, we
show that sequential equilibrium outcomes Pareto-dominate the allocation with a utilitarian
planner from both an ex ante and ex post perspective, i.e. all effort cost types ex ante prefer
the market allocation to that implemented by the planner, and the same holds for all ex post
types.

We consider three main extensions of this result. First, we assume that, even when
competitive markets are in place, the government may shut them down ex post with some
exogenous probability, and implement the policy it considers optimal. Whenever the prob-
ability that the market outcome is destroyed ex post is strictly less than one (but possibly
arbitrarily close to one), our Pareto comparison goes through. Intuitively, if agents antici-
pate that the market outcome has some chance of being implemented, there remain some ex
ante incentives left, in contrast to the equilibrium with a government only.

Second, whereas the Pareto comparisons depend on the social planner being concerned
about a utilitarian welfare criterion or one that makes redistribution towards high effort cost
types desirable, we show that, for any distribution of Pareto-weights that the planner may use
to evaluate welfare, competitive markets without commitment implement more effort than
the social planner with the same commitment problem under general conditions. Intuitively,
as our ex post market replicates a social planner who cares only about high effort types, it
provides maximal incentives for effort ex ante.

Finally, we compare competitive markets without commitment to the full commitment
benchmark. Here, firms are able to sign binding contracts with agents before the hidden effort
choice. Thus, they take the effect of their contract offers on the ex post composition of their
agent pool fully into account. We find that, with competitive markets, the commitment
problem disappears for an entire class of economies: Whenever an equilibrium with full
commitment involves no cross-subsidization between ex post types, i.e. between agents who
have chosen different effort levels, it is also an equilibrium if there is no commitment. In
that case, competitive markets fully solve the commitment problem. Otherwise, lack of
commitment leads to less effort and more equilibrium insurance than in the full commitment
case. However, even in this case, competitive markets are able to provide effort incentives
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for a non-zero mass of agents.
In terms of economic settings to which our model applies, consider for instance an in-

dividual’s education decision, as in Boadway, Marceau, and Marchand (1996) and Konrad
(2001), and subsequent labor markets. Significant parts of education are private information
and are typically completed before binding contracts with employers are signed. Even if
there are contracts, as in the case of executive education, agents cannot be prevented from
moving to other employers some time after their education has been completed, and employ-
ers are able to modify employment contracts or eventually lay off employees. We characterize
the equilibrium level of education and the form of employment contracts in such a setting
when there is competition between employers. Another example for our general model are
insurance markets with ex ante moral hazard. Here, agents can influence their risk of a neg-
ative outcome, such as a damage, illness or unemployment, by choosing some hidden effort.
Once preventive effort has been chosen, but before the risk is realized, competitive insurance
companies can modify contractual terms and customers can switch insurers.

The paper most closely related to ours is the seminal contribution by Fudenberg and
Tirole (1990). They observe the same time-inconsistency problem that we analyze here in
a principal-agent economy where a monopolistic risk-neutral principal designs the optimal
contract for a risk-averse agent but cannot commit not to renegotiate it in the interim stage
after effort choice.7 When contracts are provided by competing principals as opposed to
a monopolist, the commitment problem becomes of a different nature. Notably, the issue
of two-sided lack of commitment arises, since agents may switch firms after choosing their
hidden effort. However, although this additional commitment problem may be expected
to lead to even worse equilibrium outcomes, it turns out that, with competitive markets,
the equilibrium cross-subsidization between ex post effort types is crucial in determining
whether there is a commitment problem at all. Moreover, Fudenberg and Tirole (1990) do
not compare the performance of different institutions in view of the commitment problem.

Asheim and Nilssen (1996) study renegotiation in competitive insurance markets, but the
time-inconsistency problem that they consider is different from the moral hazard problem
analyzed here. Risk types are exogenous in their model, and insurance firms renegotiate the
contracts with their customers after they have observed initial contract choices, making use
of the information revealed through choice.8 Yet another type of commitment problem occurs

7Since our model includes heterogeneity in effort costs, the equilibria that we consider do not involve
agents randomizing between effort levels, as opposed to the equilibria in Fudenberg and Tirole (1990).
In their section 3, Fudenberg and Tirole (1990) outline the possibility of purification through effort cost
heterogeneity.

8Bester and Strausz (2001) investigate the validity of the revelation principle in a general mechanism
design setting with a similar commitment problem.
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when insurance companies can use individual loss histories to update their information on
(exogenous) risk types. This problem has been investigated by Kunreuther and Pauly (1985),
Dionne and Doherty (1994) and Nilssen (2000) for the case of competitive markets.9 Since
there is no time-inconsistency problem related to moral hazard in these models, they are not
able to make predictions about how the commitment problem affects ex ante effort incentives,
which is what we are interested in here. Thus, we ignore these types of commitment problems
in the present paper.

Comparing the efficiency of markets and governments in a setting without commitment,
our paper shares a common goal with the contributions by Acemoglu, Golosov, and Tsyvinski
(2008a, 2008b). However, their modelling of both markets and governments is very different
from the approach taken here. The provision of insurance contracts by private firms in
competitive markets is ruled out, and government policies are distorted by political economy
constraints. Moreover, their equilibria crucially rely on reputational concerns in an infinitely
repeated game. In contrast, we completely abstract from reputational effects, assume a
benevolent government and consider markets where competitive firms can offer insurance
contracts that are only restricted by informational and commitment constraints.

Finally, our results also complement a vast literature on public versus private provision
of goods and services in an incomplete contracts world (see Shleifer (1998) for an overview).
Whereas this literature focuses on how privatization affects the asymmetry of information or
the production technology in a firm, we derive a clear advantage of competitive markets over a
benevolent government without assuming any differences in the technological, informational
or commitment constraints faced by these different institutions. In contrast to Schmidt
(1996) and Bisin and Rampini (2006), where privatization or the creation of anonymous
markets, respectively, is assumed to conceal information from the government and to act as
a constraint on the set of feasible policies,10 we show that the establishment of competitive
markets can be interpreted as the choice of a specific, effort prone welfare function.

The paper is structured as follows. Section 2 introduces our model economy. In section 3,
we compare competitive equilibria without commitment to those achieved by a social plan-
ner with the same commitment problem. The analysis rests on a very general, axiomatic
treatment of competitive market outcomes. We then provide a rigorous game-theoretic foun-
dation for this procedure in section 4, where sequential equilibria of a specific market game
are characterized. Section 5 contains the extensions, notably our comparison of competitive

9All these types of commitment problems, caused by the flow of additional information after initial
contract conclusion, are in line with the literature on the ratchet effect (see Freixas, Guesnerie, and Tirole
(1985) and Dewatripont (1989)).

10Konrad (2001) also highlights that having less information can be beneficial for a government in the
presence of a commitment problem.
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markets without commitment to the full commitment case, and section 6 concludes.

2 The Model

To study the issues raised in the previous section formally, we consider the following model
economy. There is a continuum of risk-averse agents, indexed by the set [0,∞). Agents are
expected utility maximizers with a Bernoulli utility function U(c), where c is consumption.
U(c) is twice continuously differentiable, with U ′ > 0 and U ′′ < 0. Following Fudenberg and
Tirole (1990), we assume that both the domain and the range of U are given by R, so that
limc→−∞ U(c) = −∞ and limc→∞ U(c) = ∞.11 We also assume that the Inada condition
limc→∞ U ′(c) = 0 is satisfied. Let Φ(U) be the inverse function of U , which then satisfies
Φ′ > 0, Φ′′ > 0, limU→−∞ Φ(U) = −∞, limU→∞ Φ(U) = ∞ and limU→∞ Φ′(U) = ∞.

Each agent faces idiosyncratic risk with respect to the amount of the consumption good
that she produces for a firm (or principal). The output can either be high, yh, or low, yl,
with yl < yh. If the agent is a good type (g), the probability of the high output is pg. Bad
types (b) produce the high output with probability pb, where 0 < pb < pg < 1 holds.12 An
agent’s type depends on the effort level e ∈ {e, e} that she exerts. Upon choosing the high
effort e, the agent becomes a good type, whereas an agents who chooses the low effort e

becomes a bad type. We assume that a law of large numbers applies to the continuum of
random variables defined by the population facing idiosyncratic risk. That is, we assume
that exactly the share pg (pb) of any set of good (bad) type agents with positive measure
does eventually produce the high output.13

The agents’ preferences are assumed to be separable between consumption and effort, so
that overall utility is given by U(c) − H(e), where H(e) denotes effort cost. We normalize
H(e) to zero. Agents differ in their disutility of effort H(e) = d, which is given by their index
d ∈ [0,∞). The composition of the population is described by a continuous distribution
function G, defined on R with G(d) = 0 for all d ≤ 0. We adopt the convention of extending

11These assumptions can be relaxed to accommodate frequently used utility functions, such as those with
constant absolute or relative risk aversion, but they simplify the proofs in the following.

12In an insurance market application, yh represents each agent’s endowment, and yh − yl is a possible
damage. The damage occurs with low probability 1 − pg for good types, i.e. low risks, and with larger
probability 1− pb for bad types, i.e. high risks. In other applications, where yk, k = l, h, actually represents
the amount of output produced in a firm, our partial equilibrium model could be embedded into a general
equilibrium model under the assumption of price-taking behavior on the output market. See Schmidt (1997)
for a model that analyzes managerial incentives under imperfect product market competition.

13While laws of large numbers for a continuum of random variables may fail due to technical complications
(see Judd (1985)), they can be put back into force through a variety of approaches. These include the
application of a weaker convergence criterion (Uhlig (1996)), the redefinition of the set indexing consumers
(Green (1994)), or the derivation of individual risk from the desired aggregate level properties (Alós-Ferrer
(2002)).
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G to G(∞) = 1. We also assume that G has an associated density g that satisfies g(d) > 0

for all d ∈ [0,∞).14 We assume throughout the paper that neither effort cost nor effort
choice are observable to anyone besides the agent herself.

For our analysis, it is very convenient to operate in the utility space. In this space, a
contract that a planner or a firm offers to an agent is a tuple (uh, ul) of consumption utilities
that the agent obtains when producing the high and the low output, respectively. Let I =

{(uh, ul) ∈ R2|uh ≥ ul} be the set of possible contracts.15 We denote the set of all finite, non-
empty subsets of I by Q. Finally, let V = {(ub,h, ub,l, ug,h, ug,l) ∈ R4|ub,h ≥ ub,l, ug,h ≥ ug,l}
be the set of quadruples representing pairs of contracts, one intended for bad types (ub,h, ub,l)

and one for good types (ug,h, ug,l).

3 Markets Versus Governments

In this section, we are concerned with the comparison between a benevolent planner and
competitive markets. We first demonstrate that a complete breakdown of incentives is the
unique outcome if a social planner is in charge who maximizes some welfare function from
a large class that includes, for example, the utilitarian case.16 Our subsequent analysis of
competitive markets abstracts from details of a market game by proceeding axiomatically:
We formulate plausible properties that outcomes of an ex post market should satisfy to
capture a weak notion of competitiveness. Based on these properties only, we are able to
prove a first result on the Pareto dominance of markets over a planner. In Section 4, we
provide a game theoretic foundation for our approach by modelling an explicit game in which
equilibrium outcomes satisfy the properties postulated in the following.

3.1 A Social Planner Without Commitment

We consider the following reduced timing:

Stage 1 : Agents simultaneously choose their effort level.
Stage 2 : The social planner announces a policy, i.e. a set of two contracts.
Stage 3 : Agents simultaneously choose among the offered contracts.

14In fact, all our results go through with the somewhat weaker assumption that g(d) > 0 for d = 0 and
for some sufficiently high d.

15Contracts with negative incentives uh − ul < 0 are not relevant for our analysis. Since agents are
risk-averse, such contracts waste resources without being able to induce any effort.

16This result is a generalization of a similar one that Boadway, Marceau, and Marchand (1996) derive in
the setting of education and redistributive taxation.
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One could think of stage 1 being preceded by an additional stage where the planner
announces an initial policy. Then, the agents choose an effort level and possibly one of
the contracts that the planner has offered. If the planner is not committed to its initial
announcement, however, she is free to change the policy ex post, after effort choice, and the
initial offers become irrelevant.17 In an insurance application, the policy could be an opti-
mally designed social insurance arrangement, such as a mandatory public health insurance
where individuals can still choose between different levels of franchise.18 In an education
and job market application, the policy describes the payment structure of jobs in the public
sector, such as in schools or prisons (Hart, Shleifer, and Vishny 1997) or in other firms owned
by the state (La Porta, Lopez-De-Silanes, and Shleifer 2002), or a redistributive tax policy
(Boadway, Marceau, and Marchand 1996).

We solve the game backwards. First, for any given (unobservable) effort choice in stage 1
and policy announcement in stage 2 (consisting of two contracts), each ex post type k ∈ {g, b}
selects the best contract in stage 3, where we break ties in favor of the contract with larger
insurance coverage, i.e. smaller difference ug − ub. Stage 3 can then be eliminated by
subsuming this choice into the planner’s payoff function. We can next derive the planner’s
optimal policy at stage 2 when effort choices have been made. Observe first, however, that
optimal effort choices in stage 1 must be of a threshold type in any equilibrium, with a
critical value d̂ ∈ R+

0 ∪ {∞} such that

e(d) =

{
e if d < d̂,

e if d ≥ d̂,
(1)

where e(d) is the effort choice of an agent of type d ∈ [0,∞). Whenever an agent with effort
cost d finds it optimal to choose the high effort, in anticipation of some final policy, the same
holds for any agent of cost type d′ ≤ d. Thus, in any equilibrium, agents with small effort
cost (d < d̂) choose the high effort and those with high effort cost (d ≥ d̂) the low effort, and

17The irrelevance of initial offers rests on two assumptions. First, and as discussed in Section 1, we do not
allow the planner to make use of information possibly revealed through the initial contract choice, as this
might introduce an additional time-inconsistency problem different from the one we are interested in. This
is not necessarily a restrictive assumption, however. A utilitarian planner, for example, does not benefit
ex post from the additional information and would not use it anyway. Second, the initial announcement
does not constitute binding reservation constraints to the planner, because there is no higher authority
to enforce it. The two assumptions together imply that the planner is free to deviate from earlier policy
announcements but cannot target specific individuals ex post. To allow for a reasonable comparison, we will
impose analogous assumptions on firms in a market later.

18Observe that we allow the planner to offer two contracts, which enables her to design an unrestricted
optimal policy. More than two contracts are indeed not necessary in the present setup with only two ex
post types. Separability of effort cost implies that the ex ante heterogeneity cannot be used to screen the
population ex post when effort is sunk.
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the share of good types in the society becomes G(d̂).19 Suppose then that the planner has
formed a correct belief about d̂ and uses a distribution of Pareto-weights Ψ(d) for ex ante
cost types d ∈ [0,∞) to evaluate social welfare in the economy. For example, the weights
used by a utilitarian planner are the respective population shares, such that Ψ(d̂) = G(d̂).
In general, varying welfare weights allow us to derive the whole ex post Pareto frontier.20

Then, whenever d̂ ∈ (0,∞) so that both ex post types exist, the planner solves the
following problem, which we refer to as program SP(d̂):

max
(ub,h,ub,l,ug,h,ug,l)∈V

Ψ(d̂)[pgug,h + (1− pg)ug,l] + (1−Ψ(d̂))[pbub,h + (1− pb)ub,l] (2)

subject to the constraints

pgug,h + (1− pg)ug,l ≥ pgub,h + (1− pg)ub,l, (3)

pbub,h + (1− pb)ub,l ≥ pbug,h + (1− pb)ug,l, (4)

G(d̂)[pgΦ(ug,h) + (1− pg)Φ(ug,l)] + (1−G(d̂))[pbΦ(ub,h) + (1− pb)Φ(ub,l)] ≤ E[ỹ|d̂]. (5)

The planner maximizes a weighted average of the expected utilities of good and bad types
subject to the two standard incentive constraints and the resource constraint. Here, ỹ is a
Bernoulli random variable that takes the value yh with probability G(d̂)pg +(1−G(d̂))pb and
yl otherwise, and hence E[ỹ|d̂] = [G(d̂)pg + (1 − G(d̂))pb]yh + [1 − G(d̂)pg − (1 − G(d̂))pb]yl

are the average resources per capita. The following lemma characterizes the solution of this
problem:

Lemma 1. (i) For any given d̂ ∈ (0,∞), the program SP(d̂) has a unique solution V SP (d̂) =

(uSP
b,h (d̂), uSP

b,l (d̂), uSP
g,h(d̂), uSP

g,l (d̂)). It is such that uSP
b,h (d̂) = uSP

b,l (d̂) and constraints (4) and
(5) are binding.
(ii) If Ψ(d̂) ≤ G(d̂), V SP (d̂) satisfies uSP

b,h (d̂) = uSP
b,l (d̂) = uSP

g,h(d̂) = uSP
g,l (d̂) = U(E[ỹ|d̂]) ≡

uSP (d̂).

Proof. See Appendix A.1.

A social planner who puts a welfare weight on high effort cost agents that corresponds to
or exceeds their population share always implements a pooling allocation with full insurance

19Also, since we assume that effort choice in stage 1 is unobservable, we do not need to derive the planner’s
optimal policy for effort choice profiles different from those threshold profiles, because potential deviations
from an equilibrium candidate cannot be detected by the planner.

20Also, the approach can be interpreted as the reduced form of a model in which the planner is concerned
about effort and hence aggregate resources directly, or even takes into account individual effort costs in a
non-separable manner. As long as her ex post policy is located on the ex post Pareto frontier, an appropriate
weighting scheme Ψ can be found that induces the equivalent government behavior.
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ex post.21 Incentive contracts with output-dependent utilities can only be optimal from such
a planners’s perspective if they increase effort investments. But if the effort choice has already
been taken, the planner can always increase welfare by removing incentive components from
the contracts and by pooling all agents into a single contract with output-independent utility.
The assumption that a social planner puts weakly more weight on high effort cost types than
on low cost types (relative to their population density) due to some redistributive concerns
may be particularly realistic in many of the applications discussed above.

Clearly, the same holds if d̂ ∈ {0,∞}, i.e. if all agents are either good types or bad
types. In that case, the planner’s problem SP(d̂) prescribes the utility maximization of
the unique ex post type, subject to a resource constraint. First, resources will clearly be
exhausted in the solution. Second, convexity of Φ implies that the solution entails an
output-independent payment. Hence, for d̂ ∈ {0,∞}, we analogously define V SP (d̂) =

(uSP
b,h (d̂), uSP

b,l (d̂), uSP
g,h(d̂), uSP

g,l (d̂)) by uSP
b,h (d̂) = uSP

b,l (d̂) = uSP
g,h(d̂) = uSP

g,l (d̂) = E[ỹ|d̂].22 Based
on the planner’s solution to SP(d̂) for any d̂ ∈ R+

0 ∪ {∞}, we define an equilibrium with a
social planner without commitment as follows.

Definition 1. An equilibrium with a social planner without commitment (ESP) is
a pair (d̂, V SP (d̂)) where
(i) V SP (d̂) is a solution to SP(d̂) and
(ii) d̂ = pgu

SP
g,h(d̂) + (1− pg)u

SP
g,l (d̂)− pbu

SP
b,h (d̂)− (1− pb)u

SP
b,l (d̂).

The idea behind the fixed point condition (ii) is the following. Assume that agents’ effort
choices in stage 1 are given by a threshold d̂ as described above, and the planner implements
V SP (d̂) subsequently. Given that agents in stage 1 anticipate this, their actually optimal
effort choice is described by the threshold

DSP (d̂) = pgu
SP
g,h(d̂) + (1− pg)u

SP
g,l (d̂)− pbu

SP
b,h (d̂)− (1− pb)u

SP
b,l (d̂).

This holds because each agent calculates her ex post utility from being a good type (choosing
the good type’s optimal contract) and the corresponding utility from being a bad type,
and compares the difference to her effort cost d. The function DSP (d̂) therefore yields the
indifferent cost type for any exogenously given d̂, and no agent has an incentive to deviate
if and only if the fixed point condition d̂ = DSP (d̂) and hence (ii) is satisfied.

21This is due our restriction that solutions must be in the set V, which rules out overinsurance. Without
that restriction, the government would ex post fully insure good types and overinsure bad types, leading to
the same result that no incentives for effort can be provided.

22We let V SP (0) and V SP (∞) be elements of V for notational consistency, even though there is only one
ex post type if d̂ ∈ {0,∞}. One can still think of (uSP

k,h(d̂), uSP
k,l (d̂)) as the best contract for type k ∈ {g, b}

among those offered, even though only one type actually exists and the planner offers a single contract only.
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Now assume that Ψ ºFOSD G, i.e. Ψ(d̂) ≤ G(d̂) for all d̂. It then follows immediately
from Lemma 1 that DSP (d̂) = 0 for all d̂, which implies that d̂SP = 0 is trivially the only
fixed point of DSP (d̂), and we obtain the following result:

Proposition 1. If Ψ ºFOSD G, then (0, V SP (0)) is the unique ESP.

If the government puts weakly more welfare weight on high cost types than is given
by their population share, which is implied by the assumption Ψ ºFOSD G, then it also
puts overproportional weight on bad types ex post for any given d̂. Continuation contracts
are therefore such that all agents obtain full insurance, and no ex ante incentives can be
sustained. We will return to the case where Ψ ºFOSD G is not satisfied in Section 5.2.

3.2 Competitive Markets Without Commitment

We now turn to the case where contracts are provided by competitive firms rather than a
social planner, and both firms and agents are unable to commit to contracts before the hidden
effort choice. That is, we consider a time structure with two-sided lack of commitment,
where, after an initial phase of contract offers and agents’ choices of contracts and effort,
firms are free to alter their existing contracts and offer additional ones, while agents are free
to abrogate their contract and choose a new one, possibly switching between firms.

It is again important to notice that we do not allow the firms’ new contract offers or
modifications to be conditioned on an agent’s initial choice of contract. First, this allows us
to isolate the effects of our time-inconsistency problem from those in Asheim and Nilssen
(1996) and the literature on the ratchet effect (Freixas, Guesnerie, and Tirole 1985). Second,
it captures the realistic scenario that firms can modify concluded contracts only if they do not
target specific individuals. For instance, insurance contracts often contain clauses that give
the firm the right to modify some terms of the contract, without discriminating between
customers and also before a damage event has occurred, leaving the decision whether to
accept or to opt out of the contract to the insurant. On the other hand, the insured person
can often cancel its policy with relatively short notice.23 In an education application, long-
run contracts that arrange the terms of employment before educational choices have been
made often do not exist at all, yielding an equivalent game theoretic structure.

Besides these justifications, there are two additional, methodological reasons for our ap-
proach with two-sided and hence a rather strong form of lack of commitment. First, our
following results that competitive markets are under some conditions able to deal with the

23Of course, our model does not predict that such type of behavior must actually be observed in reality.
The equilibrium contracts that we derive are renegotiation-proof in the sense that, if they are already offered
initially, there will be no incentive for firms to alter them later or for agents to switch to a new contract.
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commitment problem rather efficiently becomes stronger the greater the assumed lack of ex-
ogenously given commitment opportunities. Second, the assumed structure parallels the one
introduced for the social planner above, who is not bound to an initial policy announcement.

Since initial contract offers – if they exist – are not relevant under these assumptions, we
can again examine a reduced timing:

Stage 1 : Agents choose an effort level.
Stage 2 : Some market game takes place, resulting in a set of offered contracts.
Stage 3 : Agents simultaneously choose a contract.

The key here is that the comparison between markets and governments that we derive in
the following does neither require a detailed specification of a competitive market game in
stage 2, nor does it rest on a particular equilibrium notion for the ex post market. We only as-
sume that, after agents have chosen their effort according to a threshold d̂, some ex post mar-
ket game takes place which results in an equilibrium set of contract offers. While the market
game for given effort d̂ could be complicated, with respect to the timing of moves or its ob-
servability assumptions, we restrict attention to its outcome, i.e. to the two contracts among
the final offers that maximize the utility of the two different effort types and will thus be cho-
sen in stage 3. We denote this outcome by V M(d̂) = (uM

b,h(d̂), uM
b,l(d̂), uM

g,h(d̂), uM
g,l(d̂)) ∈ V and

proceed to formulate plausible conditions on V M(d̂), which essentially require informational
and resource feasibility as well as a minimal degree of competitive pressure. This approach
builds on the insights of Rothschild (2007), who has observed a similar robustness property
in a setting of categorical discrimination in insurance markets. In particular, we impose the
following axioms:

(C1) V M(d̂) is incentive compatible, i.e.

pku
M
k,h(d̂) + (1− pk)u

M
k,l(d̂) ≥ pku

M
k′,h(d̂) + (1− pk)u

M
k′,l(d̂) ∀k, k′ ∈ {g, b},

(C2) V M(d̂) is resource feasible, i.e.

G(d̂)[pgΦ(uM
g,h(d̂))+(1−pg)Φ(uM

g,l(d̂))]+(1−G(d̂))[pbΦ(uM
b,h(d̂))+(1−pb)Φ(uM

b,l(d̂))] ≤ E[ỹ|d̂],

(C3) V M(d̂) is minimally contestable, i.e. there does not exist an incentive compatible
outcome Ṽ = (ũb,h, ũb,l, ũg,h, ũg,l) ∈ V such that

1. πk(ũk,h, ũk,l) ≥ 0 ∀k ∈ {g, b}, and
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2. πk(ũk,h, ũk,l) > 0 and pkũk,h+(1−pk)ũk,l > pku
M
k,h(d̂)+(1−pk)u

M
k,l(d̂) for some k ∈ {g, b},

where πk(uh, ul) = pk(yh−Φ(uh)) + (1− pk)(yl−Φ(ul)) are the profits earned with one unit
of k-types in contract (uh, ul).

Clearly, any market outcome V M(d̂), whether competitive, monopolistic, or in between,
has to satisfy (C1) and (C2). The third requirement (C3), introduced by Rothschild (2007),
captures a minimal notion of competition. It implies that a market outcome fails to be mini-
mally contestable only if a firm could offer a pair of incentive compatible deviation contracts
that are such that they make non-negative profits no matter what types they attract, and
they earn strictly positive profits on some type that strictly prefers them to V M(d̂). This
rules out market outcomes that do not survive even the slightest degree of competitive pres-
sure. Let us provide an example for an outcome V M(d̂) that satisfies conditions (C1) to (C3).

Example. Consider the Rothschild-Stiglitz contracts (uRS
g,h , uRS

g,l ) and (uRS
b , uRS

b ), where
uRS

b = U(pbyh + (1 − pb)yl) is the output-independent payoff for bad types, and the good
type’s contract satisfies πg(u

RS
g,h , uRS

g,l ) = 0 and pbu
RS
g,h + (1 − pb)u

RS
g,l = uRS

b . These contracts
are independent of the threshold d̂, and the outcome V RS = (uRS

b , uRS
b , uRS

g,h, uRS
g,l ) satisfies

conditions (C1) and (C2) for any d̂ ∈ (0,∞) by definition. It also satisfies (C3) because V RS

simultaneously maximizes the utility of both types among the incentive compatible pairs of
contracts that break even individually.

The example illustrates that axioms (C1) - (C3) are actually weak. Even though the
Rothschild-Stiglitz contracts might not be considered a reasonable market outcome for all
d̂ ∈ (0,∞) (due to equilibrium non-existence problems), they still satisfy the axioms. Also,
we will later illustrate that the axioms do not rule out cross-subsidization between ex post
types, and outcomes satisfying them might still be susceptible to cream-skimming behavior.
But these considerations strengthen our following result, which is based on (C1) - (C3) only,
and will thus hold a forteriori for market outcomes that satisfy even stricter requirements.24

24The axioms (C1) - (C3) coincide with those used by Rothschild (2007) except for two differences. First,
in the definition of minimal contestability, Rothschild (2007) requires the deviation Ṽ to be resource feasible,
but this is implied by property 1. in the definition of (C3) and can be omitted. Second, in addition to (C1)
- (C3) Rothschild (2007) also requires a market outcome to be individually rational, which amounts to the
assumption that pkuM

k,h(d̂)+(1−pk)uM
k,l(d̂) ≥ pkU(yh)+(1−pk)U(yl) ∀k ∈ {g, b}. As we show in the proof of

Theorem 1, this axiom is actually not independent, i.e. it is implied by (C1) - (C3) and can also be omitted.
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3.3 A Comparison

We will now compare markets based on properties (C1) - (C3) to a planner as analyzed above.
We use the following concepts of Pareto dominance. An outcome V = (ub,h, ub,l, ug,h, ug,l)

ex post Pareto dominates an outcome V ′ = (u′b,h, u
′
b,l, u

′
g,h, u

′
g,l) if pkuk,h + (1 − pk)uk,l ≥

pku
′
k,h + (1− pk)u

′
k,l ∀k ∈ {g, b} with strict inequality for at least one k ∈ {g, b}, i.e. both ex

post effort types weakly prefer their optimal contract in V over their optimal contract in V ′,
and at least one of them strictly. Because the concept of ex post dominance ignores effort
choice, we say that V ex ante Pareto dominates V ′ if for each ex ante cost type d ∈ [0,∞), the
overall expected utility, including effort cost, under outcome V is weakly larger (and strictly
so for at least one d) than the overall utility under V ′, when effort is chosen optimally for V

as well as for V ′.25 Based on this terminology, we have the following result:

Theorem 1. Suppose a market outcome V M(d̂), d̂ ∈ (0,∞), satisfies (C1)-(C3). Then it ex
post Pareto dominates V SP (0). If V M(d̂) also satisfies

d̂ = pgu
M
g,h(d̂) + (1− pg)u

M
g,l(d̂)− pbu

M
b,h(d̂)− (1− pb)u

M
b,l(d̂), (6)

then it also ex ante Pareto dominates V SP (0).

Proof. Suppose V M (d̂) satisfies (C1) - (C3). We first show that pku
M
k,h(d̂) + (1 − pk)uM

k,l(d̂) ≥
pkU(yh) + (1 − pk)U(yl) ∀k ∈ {g, b} must hold. Assume to the contrary that this is violated for a
type j ∈ {g, b} and consider the outcome Ṽ = (U(yh)− ε, U(yl)− ε, U(yh)− ε, U(yl)− ε) for small
ε > 0. Ṽ is incentive compatible and satisfies πk(U(yh)− ε, U(yl)− ε) > 0 ∀k ∈ {g, b} by definition.
Also, for ε sufficiently small, we have that pj(U(yh)−ε)+(1−pj)(U(yl)−ε) > pju

M
j,h(d̂)+(1−pj)uM

j,l(d̂)

still holds, so that V M (d̂) violates (C3), a contradiction. Thus any outcome that satisfies (C1) -
(C3) must be individually rational as defined by Rothschild (2007).

Consider the Rothschild-Stiglitz contracts as introduced before. They satisfy uRS
g,h > uRS

g,l and
hence, since pg > pb, pgu

RS
g,h + (1− pg)uRS

g,l > uRS
b . Lemma 4 in Rothschild (2007), considering the

special case of only two types, now implies that, for any given d̂ ∈ (0,∞), the outcome V M (d̂)

satisfies pgu
M
g,h(d̂)+ (1− pg)uM

g,l(d̂) ≥ pgu
RS
g,h +(1− pg)uRS

g,l and pbu
M
b,h(d̂)+ (1− pb)uM

b,l(d̂) ≥ uRS
b , i.e.

both types are ex post weakly better off in V M (d̂) than in the Rothschild-Stiglitz contracts. Since
uRS

b = uSP (0) and pgu
RS
g,h + (1 − pg)uRS

g,l > uRS
b = uSP (0), this implies that V M (d̂) ex post Pareto

dominates V SP (0).
If d̂ and V M (d̂) satisfy condition (6), then pgu

M
g,h(d̂) + (1 − pg)uM

g,l(d̂) − d > pbu
M
b,h(d̂) + (1 −

pb)uM
b,l(d̂) ≥ uRS

b = uSP (0) for all d < d̂, where the first inequality follows direct from condition (6),
and the other comparisons from the above argument for ex post Pareto dominance. Hence under

25The definition is based on optimal effort choice for both outcomes because in any equilibrium, in markets
and under a social planner, the agents will actually choose effort optimally in anticipation of the continuation
equilibrium contracts.
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(6), the threshold d̂ describes optimal effort choice for outcome V M (d̂), and all agents who prefer the
high effort (d < d̂) and subsequently contract (uM

g,h(d̂), uM
g,l(d̂)) have a strictly larger utility, including

effort cost, than they obtain as bad types in V SP (0). Agents preferring the low effort (d ≥ d̂) are
weakly better off in V M (d̂) compared to V SP (0) from the above ex post Pareto result.

To be able to make Pareto comparisons, we thus do not need to know exactly how markets
work. The theorem shows that whenever the outcome of a market with a fixed interior share
of good types satisfies the plausible conditions (C1) to (C3), the contracts that it provides to
both types are Pareto better than those implemented by a social planner in the ESP. This ex
post comparison is, however, still incomplete for two reasons. First, it ignores the effort costs
paid by good types. Second, it compares the planner’s performance in the game without
commitment to the market’s performance with given effort. But suppose that there exists
a d̂M ∈ (0,∞) such that the associated outcome V M(d̂M) satisfies the fixed point condition
(6). Then we can consider V M(d̂M) an equilibrium outcome in the market game without
commitment, and Theorem 1 shows that the market outcome under lack of commitment
Pareto dominates the planner’s outcome ex ante, taking effort cost into account.26 To show
that there actually exist market outcomes that satisfy conditions (C1) - (C3) and consti-
tute an interior fixed point of (6), we again consider the example from the previous section,
which also illustrates that the market outcomes V M(d̂) must involve a sufficient degree of
separation for all d̂ ∈ (0,∞) to guarantee the existence of such a fixed point.

Example continued. Consider the Rothschild-Stiglitz outcome V RS. Since V RS is sep-
arating with pgu

RS
g,h + (1 − pg)u

RS
g,l > uRS

b , the optimal critical value for effort choice ∆ ≡
pgu

RS
g,h + (1 − pg)u

RS
g,l − uRS

b is strictly positive and independent of the exogenously given d̂.
Thus d̂ = ∆ is the (unique) interior value of d̂ that satisfies the fixed point condition (6).

More general sufficient conditions for the existence of such a fixed point would, for ex-
ample, be continuity of V M(d̂) in d̂ together with boundedness of DM(d̂) ≡ pgu

M
g,h(d̂) + (1−

pg)u
M
g,l(d̂)− pbu

M
b,h(d̂)− (1− pb)u

M
b,l(d̂) and limd̂→0 DM(d̂) > 0, which requires that some sep-

aration is sustained as the share of good types goes to zero. Sufficient ex post separation is
indeed necessary to obtain a no commitment equilibrium in which good types do exist. But
separation and existence of both types does not already guarantee that the corresponding
allocation Pareto dominates the planner’s outcome. If the minimal notion of competition as
captured by condition (C3) is not satisfied by a separating outcome, we cannot expect it to
be Pareto superior to V SP (0). Consider, for example, a monopolistic firm that screens the

26See section 4 for a rigorous game-theoretic analysis of equilibria with competitive markets, which also
addresses the issue of equilibrium existence.
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population of agents. For any given threshold d̂ and share of good type G(d̂), the monopo-
list will extract from the agents as many resources as possible.27 Then, even if there is an
equilibrium with no commitment in which both types do exist and are separated, there is
no reason to expect that its outcome leaves both types better off than in V SP (0).28 Hence,
while our comparison between markets and governments does not depend on the details of
the market game, it depends on the assumption that the market satisfies a minimal notion
of competition.

4 A Game Theoretic Foundation

The results in the previous section were based on plausible assumptions about market out-
comes. It remains to be shown that there is indeed a reasonable game in which the discussed
properties arise in equilibrium. There are several requirements such a game should satisfy.
First, an ex post market equilibrium should exist for every stage 1 effort choice as described
by d̂. Second, firms should not be restricted to offer only one contract, as such a restriction
is not imposed on a social planner either.29 Neither of these conditions are satisfied by the
basic model of Rothschild and Stiglitz (1976) that we used to illustrate Theorem 1 above.
In this section, we therefore construct an extensive form game in which firms can offer any
finite number of contracts, and we characterize sequential equilibria of it.30

4.1 The Market Game

Let J = {0, 1, 2, ..., N} be a set of risk-neutral firms, each of which can offer up to r ≥ 2

contracts from I.31 We assume that firm 0 is not a regular player of the game but always
offers a contract (ūh, ūl), of which we only assume that it imposes no binding constraint on
the optimization problem in Section 4.2. Choosing firm 0’s contract corresponds to choosing

27Clearly, the outcome under a monopolist will depend on the specification of the agents’ outside options,
which we could ignore so far. Since a planner maximizes welfare ex post, she implements contracts on which
a reasonable outside option, such as for example the possibility to remain uninsured (U(yh), U(yl)), imposes
no binding constraint. The same conclusion holds for weakly competitive markets from our previous results.

28In fact, the agents will be strictly worse off whenever their outside option is sufficiently unattractive.
29This requirement is of greater importance than it might appear at first glance. Restricting the number

of contracts that firms can offer amounts to a restriction on their ex post deviation possibilities. Such a
restriction reduces the scope for profitable deviations from initial announcements and thus acts to increase
commitment.

30This is in contrast to most approaches in the literature on competitive insurance markets, such as
Rothschild and Stiglitz (1976), Wilson (1977) and Hellwig (1987), who restrict a given firm to offer a single
contract only. Our game-theoretic approach is also different from the general equilibrium approaches in
Dubey and Geanakoplos (2002) and Bisin and Gottardi (2006), although the equilibria we construct are
always constrained-efficient as in the latter model.

31The equilibria that we construct require the existence of at least 4 active firms.
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an outside option, such as carrying out a project without a firm, or remaining uninsured.32

The extensive form is the following:

Stage 1 : Agents choose an effort level.
Stage 2a: Firms simultaneously decide on their contract offers.
Stage 2b: After observing all contract offers from stage 2a, firms simultaneously decide
whether to remain in the market or to become inactive. Becoming inactive requires all
offered contracts to be withdrawn, with a resulting payoff of −δ ≤ 0.
Stage 3 : Agents simultaneously choose among all remaining offers.

Stages 1 and 3 are as before. Since we do not restrict the number of contracts that
a given firm can offer in stage 2a to be one, the presence of another stage 2b in which
firms can become inactive is crucial to avoid problems of equilibrium nonexistence that arise
otherwise, as already observed by Miyazaki (1977).33 Unfortunately, the withdrawal phase
also introduces a problem of equilibrium multiplicity: Non-competitive equilibria emerge
where several firms offer competitive contracts only to withdraw them in equilibrium, but
credibly threaten to remain active if they observe deviations in stage 2a. These equilibria
are, however, not robust in the sense that they are destroyed by arbitrarily small withdrawal
costs. On the other hand, large withdrawal costs would effectively eliminate stage 2b and thus
lead to equilibrium nonexistence. These arguments motivate our introduction of withdrawal
costs to select robust equilibria, i.e. equilibria that exist if withdrawal is costless (δ = 0) but
still for sufficiently small values of δ > 0.

We solve the game backwards and begin after stage 1, when effort choices of all agents are
given by a critical value d̂ as before. From the perspective of the firms, agents then differ only
with respect to their effort type, and the game reduces to a standard market with exogenous,
private types from stage 2 on. As outlined in Section 2, firms cannot observe effort choice.
For the analysis of this and the next subsection, however, let us assume that they know the
threshold d̂ for effort choice and hence the share G(d̂) of good types in the population at the
beginning of stage 2. When characterizing equilibria of the entire game, this assumption will

32Hence a natural outside option, which satisfies our requirement, could be the contract (ūh, ūl) with
ūh = U(yh) and ūl = U(yl). The only role firm 0 plays in the following is to make sure that there is always
a non-empty set of contracts the agents can choose from.

33Our extensive form is different from the suggestion by Miyazaki (1977) and also from the contestable
monopoly model by Fernandez and Rasmussen (1993), where firms offer multiple contracts but can with-
draw individual contracts. While all of our results remain unchanged if withdrawing individual contracts is
possible, the present approach has the advantage that it allows for equilibria with more than just one active
firm in the market. Also, while some of our proofs are similar, Fernandez and Rasmussen (1993) resort to a
special equilibrium concept, which is not used here.
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be motivated by a sequential consistency requirement on the firms’ beliefs in equilibrium.
We start with characterizing the agents’ optimal strategies in stage 3 for any history of

play up to stage 2. First, we restrict the history dependence of agents’ strategies such that
they are contingent only on the set of offered contracts available after stage 2, excluding
the possibility that choices depend on the history of offers and withdrawals. We can then
describe contract choices in stage 3 by functions Ik : Q → I, k = g, b, that give the contract
Ik(Q) ∈ Q that an agent of ex-post type k = g, b chooses out of any offered set Q. In
particular, optimality of choice requires that for k = g, b and any Q ∈ Q,

I∗k(Q) ∈ arg max
(uh,ul)∈Q

pkuh + (1− pk)ul. (7)

We restrict attention to stage 3 strategies according to which the contract with smaller
difference uh−ul, that is, with weaker incentives, is chosen in case of indifference. Moreover,
we assume that, whenever the optimal contract for an ex post type is offered by several
different firms, then each firm receives the same share of these individuals.

We now proceed backwards to stages 2a and 2b by subsuming the agents’ optimal strate-
gies in stage 3 into the firms’ payoff functions. Stages 2a and 2b then constitute a well-defined
extensive form game of complete information, denoted by Γd̂, in which firms are the only
strategic players (we suppress the dependency of the game on the withdrawal cost parameter
δ for notational convenience). Pure strategy profiles are denoted by s = (s0, s1, ..., sN) ∈ S,
where a firm’s strategy sj = (s1

j , s
2
j) has two components. First, s1

j is a set (possibly
empty) of up to r contracts to be offered at stage 2a. Let S1

j be the set of possible first
period offers of firm j.34 Then, S1 =

∏
j∈J S1

j is the set of possible histories to be ob-
served at the beginning of stage 2b, and we can associate a stage 2b subgame Γd̂(s̃1) to
each history s̃1 = (s̃1

0, ..., s̃
1
N) ∈ S1. For each subgame, s2

j then prescribes a withdrawal
decision, i.e. s2

j : S1 → {NW,W}, where NW stands for no withdrawal and W for with-
drawal. As before, denote by S2

j the set of firm j’s possible stage 2 strategies and by
S2 =

∏
j∈J S2

j the set of stage 2 strategy profiles.35 Then, given a profile s2 ∈ S2 of func-
tions, s2(s̃1) = (s2

0(s̃
1), ..., s2

N(s̃1)) ∈ {NW,W}N+1 is the vector of withdrawal decisions that
s2 prescribes after history s̃1.

We first define payoffs for each stage 2b subgame Γd̂(s̃1). Let Q(s2(s̃1)|s̃1) be the
nonempty (due to existence of company 0), finite set of contracts that is available for choice

34Formally, S1
j = {Q ∈ Q| |Q| ≤ r}⋃

∅ for j = 1, ..., N, and S1
0 = {(ūh, ūl)}.

35Formally, S2
j = {NW,W}S1

for j = 1, ..., N , while S2
0 is the singleton set containing only the function

s2
0(s̃

1) = NW,∀s̃1 ∈ S1.
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at the end of Γd̂(s̃1) under the withdrawal decisions s2(s̃1). Formally,

Q(s2(s̃1)|s̃1) =
⋃

j∈J/

s2
j (s̃1)=NW

s̃1
j .

As before, let πk(uh, ul) denote the profits earned with one unit of k-types in contract (uh, ul).
Then, the payoffs of firm j in subgame Γd̂(s̃1) are given by Πd̂

j (s
2(s̃1)|s̃1) = −δ if s2

j(s̃
1) = W

and otherwise, if s2
j(s̃

1) = NW , by

Πd̂
j (s

2(s̃1)|s̃1) = fπg(I
∗
g (Q))

1s̃1
j
(I∗g (Q))

∑
i∈J/

s2
i (s̃1)=NW

1s̃1
i
(I∗g (Q))

+ (1− f)πb(I
∗
b (Q))

1s̃1
j
(I∗b (Q))

∑
i∈J/

s2
i (s̃1)=NW

1s̃1
i
(I∗b (Q))

,

where f = G(d̂), Q = Q(s2(s̃1)|s̃1), and 1X is the indicator function of set X. Given a
strategy profile s ∈ S, the actual payoff of firm j in Γd̂ is then Πd̂

j (s) = Πd̂
j (s

2(s1)|s1). Mixed
strategies and the associated payoffs are defined analogously.

We are interested in pure strategy subgame perfect equilibria (SPE) of Γd̂. However, we
have to allow for randomization in some off-equilibrium path stage 2b subgames which do
not have a Nash equilibrium in pure strategies.36 We denote equilibrium candidates by σ(d̂),
i.e. strategy profiles that are pure everywhere except in such off-equilibrium path subgames,
and SPE of Γd̂ by σ∗(d̂). In stage 3 of any SPE, agents are faced with a nonempty set Q of
available contract offers and will make their choices I∗g (Q) or I∗b (Q), respectively. Thus, any
SPE σ∗(d̂) is associated with an outcome V ∗(d̂) = (u∗b,h(d̂), u∗b,l(d̂), u∗g,h(d̂), u∗g,l(d̂)) ∈ V that
summarizes the optimal contract choices of both ex post types in equilibrium.

4.2 A Characterization of SPE Outcomes with Given Effort

In this subsection, we characterize the set of SPE outcomes V ∗(d̂) of Γd̂ for varying levels of
δ and any d̂ ∈ (0,∞). As we will demonstrate below, this set is fundamentally related to the
set of solutions to the following optimization problem, which we call problem GE(d̂) (given
effort):

max
(ub,h,ub,l,ug,h,ug,l)∈V

pg ug,h + (1− pg)ug,l (8)

36In the SPE that we construct in the proofs of Propositions 2 and 5, any potentially profitable deviation
is destroyed using a pure strategy Nash equilibrium in stage 2b. Thus we allow for randomization only to
guarantee that there exists a Nash equilibrium in all of the (uncountably many) stage 2b subgames, including
those that cannot even be reached by unilateral deviations, but we do not use randomization explicitly in
our constructions.
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subject to the constraints

pgug,h + (1− pg)ug,l ≥ pgub,h + (1− pg)ub,l, (9)

pbub,h + (1− pb)ub,l ≥ pbug,h + (1− pb)ug,l, (10)

G(d̂) [pgΦ(ug,h) + (1− pg)Φ(ug,l)] + (1−G(d̂)) [pbΦ(ub,h) + (1− pb)Φ(ub,l)] ≤ E[ỹ|d̂], (11)

Φ(pbub,h + (1− pb)ub,l) ≥ pbyh + (1− pb)yl. (12)

In program GE(d̂), the expected utility of good types is maximized under the ex post
incentive compatibility constraints (9) and (10), the resource constraint (11), and a constraint
(12) that requires the certainty equivalent of the bad types’ contract to be at least as large as
their expected endowment. This constraint makes sure that cross-subsidization can only go
from good to bad types in any solution, because it implies that the resource cost of the bad
types’ contract must always be weakly larger than their expected output, i.e. it earns zero or
negative profits taken on its own. Note that, comparing with SP(d̂), the only two differences
are the additional constraint (12) and the objective function (8), which is a special case of
(2) putting weight exclusively in good types. The following lemma characterizes the solution
to program GE(d̂):

Lemma 2. For any given d̂ ∈ (0,∞), GE(d̂) has a unique solution V GE(d̂) = (uGE
b,h (d̂),

uGE
b,l (d̂), uGE

g,h (d̂), uGE
g,l (d̂)). It is such that uGE

b,h (d̂) = uGE
b,l (d̂) ≡ uGE

b (d̂), the constraints (10)
and (11) are binding, and (9) is slack. Moreover, it satisfies conditions (C1) to (C3) from
Section 3.2.

Proof. See Appendix A.2.

The lemma states that bad types obtain a flat contract in which their utility is output-
independent, while the good types’ utility depends on their stochastic output, i.e. they are
only partially insured. The bad types’ incentive compatibility constraint is binding, and
resources are exhausted. Moreover, the solution is unique for any given d̂ ∈ (0,∞).

Let us denote the set of SPE outcomes of Γd̂ for given d̂ ∈ (0,∞) and cost parameter
δ ≥ 0 by Ω∗(δ, d̂) ⊆ V . Then the main result of this subsection is the following:

Proposition 2. (i) For any d̂ ∈ (0,∞) and δ > 0, Ω∗(δ, d̂) ⊆ {V GE(d̂)} ⊆ Ω∗(0, d̂).
(ii) Given any d̂ ∈ (0,∞), there exists a δ > 0 such that V GE(d̂) ∈ Ω∗(δ, d̂) for all δ < δ.

Proof. See Appendix A.3.
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Consider a fixed value of d̂ ∈ (0,∞). Part (i) of the proposition states that, whenever
withdrawal costs are strictly positive, the set of SPE outcomes is either empty due to equi-
librium nonexistence (which will be the case if withdrawal costs are too high), or it contains
exactly the solution to GE(d̂).37 This solution is also an equilibrium outcome if δ = 0,
but additional equilibria with new outcomes can emerge in this case. All these additional
outcomes are, however, not robust, i.e. they disappear for arbitrarily small withdrawal costs
δ > 0. On the other hand, part (ii) states that the solution to GE(d̂) is actually robust,
because it is an SPE outcome for sufficiently small but strictly positive values of δ. The
proposition implies that, for any sequence {δn}∞n=0 with δn ≥ 0∀n and limn→∞ δn = 0,

lim sup
n→∞

Ω∗(δn, d̂) = lim inf
n→∞

Ω∗(δn, d̂) = {V GE(d̂)},

where

lim sup
n→∞

Ω∗(δn, d̂) =
∞⋂

n=1

∞⋃
m=n

Ω∗(δm, d̂) and lim inf
n→∞

Ω∗(δn, d̂) =
∞⋃

n=1

∞⋂
m=n

Ω∗(δm, d̂).

In an insurance setting, Proposition 2 can be interpreted as showing that our market
game Γd̂ produces Miyazaki-Wilson type contracts as the unique robust equilibrium outcome.
There are two cases depending on whether constraint (12) does or does not bind in an SPE
outcome. If it does, each contract individually makes zero profits, and we obtain the classical
Rothschild-Stiglitz outcome. Otherwise, the full insurance contract makes negative and the
partial insurance contract makes positive profits, so that there is cross-subsidization from
low to high risks. We will derive comparative static effects of a changing value of d̂ on the
outcome V GE(d̂) in the following subsection when analyzing sequential equilibria of the entire
game without commitment. It will turn out there that cross-subsidization occurs whenever
d̂ and thus the share of good types G(d̂) is large, while the Rothschild-Stiglitz contracts are
the equilibrium outcome for small values of d̂.

For completeness, we briefly turn to the case where d̂ ∈ {0,∞}, so that all agents are
of the same ex post type and there is no issue of asymmetric information. First, define
V GE(d̂) = (uGE

b,h (d̂), uGE
b,l (d̂), uGE

g,h (d̂), uGE
g,l (d̂)) by uGE

b,h (d̂) = uGE
b,l (d̂) = uGE

g,h (d̂) = uGE
g,l (d̂) =

U(E[ỹ|d̂]) for d̂ ∈ {0,∞}. Next, it is straightforward to show that SPE σ∗(d̂) of Γd̂ do exist
for d̂ ∈ {0,∞}, irrespective of the value of δ ≥ 0. As in Section 3, we still write SPE
outcomes as elements of V , denoted by V ∗(d̂), and it follows quickly that for all δ > 0,
Ω∗(δ, d̂) = {V GE(d̂)} ⊆ Ω∗(0, d̂) if d̂ ∈ {0,∞}. Put differently, whenever withdrawal costs

37Observe that this is a statement about uniqueness of the equilibrium outcome, not about the equilibrium
itself. There are always multiple equilibria with the same outcome, which differ with respect to irrelevant
contract offers that no agents chooses.
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are strictly positive, in any outcome of any SPE, the unique ex post type obtains a contract
with a flat payment that corresponds to its expected output. If δ = 0, additional equilibria
emerge even if d̂ ∈ {0,∞}, but none of them is robust.38

4.3 Sequential Equilibria Without Commitment

We now proceed to analyzing equilibria of the entire market game without commitment,
including optimal effort choice by the agents, defined as follows.

Definition 2. An equilibrium with no commitment (ENC) is a pair (d̂, σ∗(d̂)) where
(i) σ∗(d̂) is an SPE of Γd̂ and
(ii) d̂ = pgu

∗
g,h(d̂) + (1− pg)u

∗
g,l(d̂)− pbu

∗
b,h(d̂)− (1− pb)u

∗
b,l(d̂).

The definition is based on the following reasoning. Assume that agents’ effort choices
are given by a threshold d̂, which is without loss of generality as argued before. Firms
then observe neither individual nor aggregate effort but have to form a belief about d̂,
which has to be correct on the equilibrium path. We are interested in sequential equilibria
of the subsequent game of incomplete information between insurers, that is, we impose
the sequential consistency condition that requires the beliefs to be correct even after stage
2a deviations, when companies observe contract offers which do not occur in equilibrium.
Firms also need to behave sequentially rational, i.e. they must make optimal choices in
all information sets. But then, any profile of firms’ strategies for the game of incomplete
information that simultaneously satisfies sequential consistency and rationality is equivalent
to a SPE of Γd̂, the game with given effort described in the previous subsections.39 Given
that agents in stage 1 anticipate the outcome of this game, their actually optimal effort
choice is prescribed by a threshold that equals the right-hand side of (ii), and there is no
incentive to deviate if and only if the fixed point condition (ii) in the definition is satisfied.40

For any given value of δ ≥ 0, denote by Ω̂∗(δ) the set of ENC outcomes. We again

38Besides the different definition of V GE(d̂), the only difference to the previous result is therefore that
large withdrawal costs do not lead to equilibrium nonexistence if there is no asymmetric information.

39Of course, our definition is slightly abusive, as the game with incomplete information has non-singleton
information sets while all information sets are singletons in the game with given effort. But since there is a
bijective relationship between the firms’ information sets in the two games, we use strategy profiles σ of the
game Γd̂ to represent the corresponding strategies in the game of incomplete information.

40Analyzing sequential equilibria of a game without commitment, our approach follows those in Chari and
Kehoe (1990) and Phelan and Stacchetti (2001), although in a different framework. Both of these papers
consider a time-inconsistency problem related to capital taxation as opposed to moral hazard, and do not
consider competitive markets. Chari and Kehoe (1990) refer to their equilibria as ‘sustainable equilibria’,
but they are in fact sequential equilibria as observed by Phelan and Stacchetti (2001).
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characterize the robust ENC outcomes. For this purpose, it is useful to define the set

ΩNC ≡ {V GE(d̂)|d̂ = pgu
GE
g,h (d̂) + (1− pg)u

GE
g,l (d̂)− pbu

GE
b,h (d̂)− (1− pb)u

GE
b,l (d̂)} ⊂ V .

ΩNC contains those robust SPE outcomes of the game with given effort for which the ex-
ogenously given d̂ constitutes a fixed point in the sense of Definition 2. The first step to
characterizing robust ENC outcomes is the following proposition.

Proposition 3. (i) For any δ > 0, Ω̂∗(δ) ⊆ ΩNC ⊆ Ω̂∗(0).
(ii) For each V ∈ ΩNC, there exists a δ > 0 such that V ∈ Ω̂∗(δ) for all δ < δ.

Proof. We first show that, if δ > 0, Ω̂∗(δ) ⊆ ΩNC . Consider any V = (ub,h, ub,l, ug,h, ug,l) ∈ Ω̂∗(δ)
and define d̄ ≡ pgug,h + (1 − pg)ug,l − pbub,h − (1 − pb)ub,l. By definition of ENC, it must then be
true that V is an SPE outcome of Γd̄, i.e. V ∈ Ω∗(δ, d̄). Proposition 2 (or the analogous arguments
if d̄ ∈ {0,∞}) then implies that V = V GE(d̄), which immediately implies that V ∈ ΩNC , and hence
Ω̂∗(δ) ⊆ ΩNC .

Second, for any V = (ub,h, ub,l, ug,h, ug,l) ∈ ΩNC there exists a d̄ such that V = V GE(d̄) and
d̄ = pgug,h +(1− pg)ug,l− pbub,h− (1− pb)ub,l. It then follows from Proposition 2 (or the analogous
arguments if d̄ ∈ {0,∞}) that there exists a value δ̄ such that V ∈ Ω∗(δ, d̄) for all 0 ≤ δ < δ̄, and
thus V ∈ Ω̂∗(δ) for all 0 ≤ δ < δ̄. This implies statement (ii) and also that ΩNC ⊆ Ω̂∗(0).

According to the proposition, the set of robust ENC outcomes coincides with ΩNC . While
any other potential ENC outcome can be destroyed by the introduction of arbitrarily small
withdrawal costs, any element of ΩNC is actually an ENC outcome for sufficiently small
but positive δ. This again implies that the set of sequential equilibrium outcomes Ω̂∗(δ)

converges to ΩNC as δ vanishes. Formally, given a sequence {δn}∞n=0 with δn ≥ 0 ∀n and
limn→∞ δn = 0, lim supn→∞ Ω̂∗(δn) = lim infn→∞ Ω̂∗(δn) = ΩNC .

Since the definition of the set ΩNC itself relies on a fixed point condition, it is useful for
the subsequent analysis to explicitly define a function D as follows. For any given threshold
d̂ ∈ [0,∞) ∪ {∞} for effort choice, consider the unique robust SPE outcome V GE(d̂) of Γd̂.
The contracts given by V GE(d̂) then induce the critical value

D(d̂) = pgu
GE
g,h (d̂) + (1− pg)u

GE
g,l (d̂)− pbu

GE
b,h (d̂)− (1− pb)u

GE
b,l (d̂)

for optimal effort choice by all agents if they anticipate V GE(d̂), and ΩNC can be rewritten
as ΩNC = {V GE(d̂)|d̂ = D(d̂)}. If d̂ ∈ (0,∞), we know from Lemma 2 that uGE

b (d̂) =

pbu
GE
g,h (d̂) + (1− pb)u

GE
g,l (d̂), so that we can simplify D(d̂) to

D(d̂) = (pg − pb)
(
uGE

g,h (d̂)− uGE
g,l (d̂)

)
(13)
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in this case. If d̂ ∈ {0,∞}, i.e. all agents are either good or bad types, we immediately obtain
D(0) = D(∞) = 0. Since the continuation contract is an output-independent payment in
this case (or, equivalently, a full insurance contract), nobody finds it optimal to invest effort
to increase the probability of high output.

Let us collect some useful properties of the function D in the following lemma. These
properties are based on comparative static effects of varying levels of d̂ on the robust SPE
outcome V GE(d̂).

Lemma 3. (i) D is continuous in (0,∞).
(ii) limd̂→0 D(d̂) > 0 and limd̂→∞ D(d̂) = 0.
(iii) If

d

du

Φ′′(u)

Φ′(u)
≥ 0, (14)

then there exists d̃ ∈ (0,∞) such that D(d̂) is flat in (0, d̃], and strictly decreasing in d̂ for
all d̂ > d̃.

Proof. See Appendix A.4.

Properties (i) and (ii) together with the fact that D(0) = 0 imply that, while D is
continuous otherwise, there exists a discontinuity at d̂ = 0. This is because a contract with
output-independent utilities and hence no incentive for effort provision is the unique outcome
if d̂ = 0, while for any positive d̂ and also in the limit as d̂ → 0, the good type’s contract
remains high-powered. Specifically, we show in the proof of the lemma that (12) is binding
in V GE(d̂) for sufficiently small but positive d̂, which is saying that the Rothschild-Stiglitz
contracts obtain if the given share of good types is small. As d̂ →∞, on the other hand, the
good type’s contract converges to an output-independent, full insurance contract, which re-
quires cross-subsidization to the bad types to preserve incentive-compatibility. Property (iii)
shows that, if preferences satisfy condition (14), there is exactly one critical value d̃ at which
the transition from zero to positive cross-subsidization occurs. Furthermore, an increase in
d̂ above d̃ then leads to an increased subsidy and lower-powered incentives uGE

g,h (d̂)−uGE
g,l (d̂),

such that D is strictly decreasing.
The following properties of the utility function U(c) are sufficient to guarantee (14):

Lemma 4. (i) If U(c) has constant or increasing absolute risk aversion, (14) is satisfied.
(ii) If U(c) has constant relative risk aversion with coefficient α, then (14) is satisfied if and
only if α ≥ 1.

Proof. See Fudenberg and Tirole (1990), Lemma 3.2.
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Figure 1: Fixed Point Problem with Competitive Insurance Markets

Figure 1 depicts the function D(d̂) for preferences as described in Lemma 4. By definition
of D in (13), the shape of D(d̂) depends on whether the good types obtain a more or less
high-powered incentive contract in response to an increase in d̂, as this determines ex ante
incentives for effort choice. In the proof of Lemma 3 we show that, given slackness of (12), the
robust equilibrium contracts for given d̂ solve the following first-order condition of problem
GE(d̂):

G(d̂)

1−G(d̂)
=

pg − pb

pg(1− pg)

Φ′(uGE
b (d̂))

Φ′(uGE
g,h (d̂))− Φ′(uGE

g,l (d̂))
. (15)

Equation (15) captures the tradeoff between providing more insurance to good types and
increasing the cross-subsidy for bad types to preserve incentive compatibility. Condition (14)
makes sure that an increase in d̂ increases the good types’ demand for insurance, Φ′(ug,h)−
Φ′(ug,l), faster than it increases the cost of increasing the bad types’ utility, Φ′(ub). Then, the
good types always obtain a less high-powered contract in response to an increase in d̂. For
this to be the case, risk aversion must not decline too quickly, which explains the conditions
in Lemma 4. Otherwise, the power of the good types’ contract may be increasing in d̂ in
some range, and thus D may have increasing parts.

We can now state the main result of this subsection, which is a direct implication of the
previous results and standard fixed point theorems.

Proposition 4. (i) V GE(0) ∈ ΩNC.
(ii) There exists a value d̂NC > 0 such that V GE(d̂NC) ∈ ΩNC.
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(iii) Under condition (14), d̂NC is unique, so that ΩNC = {V GE(0), V GE(d̂NC)}.

Clearly, d̂ = 0 is always a fixed point of D, meaning that, for small δ, there is a sequential
equilibrium in our model without commitment where no agent exerts effort and everyone
obtains a contract with an output-independent payment that corresponds to the level of
expected output for bad types. However, there always exists at least one other fixed point
d̂NC > 0 of D and hence a robust ENC outcome in which a non-zero mass of agents exert
the high effort. Since D is weakly decreasing under condition (14), the positive fixed point
is unique in this case. Otherwise, multiple non-zero fixed points and associated robust ENC
outcomes may exist.

4.4 A Comparison with Governments

We are now in a position to compare welfare in the robust ENC outcomes implemented by
competitive markets to that achieved by the government outcomes considered in section 3:

Theorem 2. Any robust ENC outcome V GE(d̂NC) with d̂NC > 0 ex-ante Pareto dominates
V SP (0), and strongly so if V GE(d̂NC) satisfies (12) with slack.

Proof. We consider two cases, depending on whether constraint (12) is binding or not in V GE(d̂NC).
Assume first that it does, implying uGE

b (d̂NC) = U(pbyh + (1 − pb)yl) = uUP (0), i.e. bad types
in V GE(d̂NC), who do not exert any effort, obtain the same utility as all agents in V UP (0), where
nobody exerts any effort. By definition of d̂NC , we then have that pgu

GE
g,h (d̂NC)+(1−pg)uGE

g,l (d̂NC)−
d > uGE

b (d̂NC) = uUP (0) for all d < d̂NC . Given that d̂NC is a fixed point of D, the critical value
d̂NC determines optimal effort choice in V GE(d̂NC), so that all good types in V GE(d̂NC) are ex-ante
(including effort cost) strictly better off than they are as bad types in V SP (0). If (12) is slack in
V GE(d̂NC), then uGE

b (d̂NC) > uSP (0), and both low and bad types are ex-ante strictly better of in
V GE(d̂NC), with the same argument.

The first part of Theorem 2 is a corollary of previous results (although we present a
convenient direct proof above). From Lemma 2 we know that V GE(d̂NC) satisfies (C1) -
(C3) if d̂NC > 0. The definition of ENC then implies that V GE(d̂NC) also satisfies the fixed
point condition (6), so that the ex ante Pareto dominance result follows from Theorem 1. We
thus know that all agents are weakly and some are strictly better off in competitive markets
than under a benevolent government that is concerned about a welfare criterion from a large
class that includes the utilitarian case. This holds even from an ex-ante perspective, i.e.
taking effort cost into account. Note that Theorem 2 applies to every robust ENC outcome
with a positive share of good types, not only if this outcome is unique as under condition
(14). The second part of Theorem 2 goes beyond the general insight of Theorem 1. If
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the market equilibrium involves cross-subsidization from agents who choose to become good
types to those who prefer to become bad types, as captured by slackness of (12), even all
agents are strictly better off in the market than under a social planner.

The general intuition for Theorem 2 is that, with a social planner as specified in Propo-
sition 1, all agents end up being bad types in a contract with an output-independent payoff,
equal in size to their expected output. In a market, only some agents remain bad types,
obtaining a flat payment at the same or even a subsidized level, whereas the other agents
prefer to become good types and choose an incentive contract that makes them strictly
better off. Thus it is the ex post adverse selection problem in competitive markets, lead-
ing to underinsurance of some agents, which is crucial for the dominance of markets over
governments.

In an environment with lack of commitment, competitive markets have a clear advantage
over a benevolent utilitarian government or one that puts overproportional weight on high
effort cost types. Because competitive forces lead to a separating outcome that gives good
type agents the best incentive-compatible and resource-feasible contract, better incentives
for effort provision can be sustained by markets than by a social planner. At the same time,
the cross-subsidization constraint (12) implies that ex post bad types are never worse off in
the market than under a centralized regime.

Establishing a competitive market can thus be interpreted as the delegation of allocation
decisions to a planner who cares only for high effort types, and who faces the additional
cross-subsidization constraint. The similar idea that the creation of an independent agency
and the subsequent delegation of decisions to this agency can be beneficial in the presence
of a commitment problem is central to the research on central bank independence. In our
model, the advantage of a competitive market is that it acts as if it was a specific planner
while individual firms are still maximizing profits and hence their real objective. In an
independent agency, such as a central bank, there is still a problem of aligning individual
incentives with the imposed objective, giving rise to additional moral hazard problems (see,
e.g. Walsh (1995)).

5 Extensions

5.1 Ex Post Market Shutdown

Our main results are about the comparison of a centralized solution to a competitive market,
without asking how a market comes into being. The concluding discussion of the previous
section suggests that one might actually think of a meta-game with an initial phase of
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institutional choice, where allocation decisions are delegated to either the government or
to a market. In such a game, whenever a market has been established, the question arises
whether the government will keep the promise of leaving the market in place ex post. After
all, even though the market Pareto dominates the centralized solution from an ex ante
perspective, a planner would still be tempted to abolish the market ex post to implement a
pooling solution. While it is reasonable to assume that the existence of a market imposes
some obstacle on the government’s ability to redistribute ex post, we still want to address
the question what happens if the government is able to shut down the market with some
exogenous probability 1 − q ∈ [0, 1]. Will the Pareto-comparison from the previous section
generalize to such a situation?

To answer this question, consider again the situation after stage 1, when agents have
chosen their effort according to some threshold d̂ and the market begins to operate. The
assumption that q is exogenous implies that neither effort choice nor the subsequent market
outcome can influence the probability that the market will persist.41 The market will then
work exactly as described in the preceding section, producing the outcome V GE(d̂). With
probability q, this will be the final outcome. Otherwise, assuming Ψ ºFOSD G as before, the
government steps in and provides full insurance to all agents at the identical level U(E[ỹ|d̂]).
The agents anticipate this when making their ex ante effort decisions. It is straightforward
to show that the threshold for optimal effort choice in stage 1 is now given by

Dq(d̂) = q
[
pgu

GE
g,h (d̂) + (1− pg)u

GE
g,l (d̂)− pbu

GE
b,h (d̂)− (1− pb)u

GE
b,l (d̂)

]
.

Obviously, the family of functions {Dq}q∈[0,1] contains D as defined in the previous section
for the special case when q = 1 and markets persist definitely. For q = 0, on the other
hand, Dq coincides with DSP from Section 3, where the planner always decides on the final
allocation. In all intermediate cases q ∈ (0, 1), Dq is a scaled-down version of D, and Lemma
3 immediately implies that Dq has at least one strictly positive fixed point d̂q > 0. Theorem
2 then still applies, which shows that the market outcome Pareto dominates the centralized
solution whenever there is some positive probability that the market is not destroyed by the
government, even if this probability is arbitrarily small.42

On the other hand, the possibility of ex post government intervention has an impact on
the equilibrium level of effort. In general, agents’ ex ante incentives for effort are weakened
compared to the case where q = 1, since the separating market outcome is realized ex post

41This is clearly a simplifying assumption. If individual effort choice or the market outcome affect the
probability of market shutdown, additional strategic effects appear which are not taken into account in our
game theoretic model from the previous section.

42Furthermore, the Pareto comparison extends to expected utilities taking into account the possible shut-
down case.
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only with some probability, whereas government equalizes consumption otherwise. Assume,
for example, that (14) is satisfied. The unique interior fixed point d̂q > 0 of Dq is then
increasing in q, such that an increasing probability of market shutdown decreases equilibrium
effort.43

5.2 A Social Planner with General Pareto-Weights

In sections 3 and 4, we have obtained strong results comparing welfare under competitive
markets and a social planner if the latter is concerned about a utilitarian welfare criterion
or aims at redistributing towards agents with high effort cost. If the government is putting
overproportional Pareto-weights on low effort cost types compared to population shares,
then such clear welfare comparisons with markets are not generally available. However, we
show in this subsection that it is possible to compare the level of effort implemented by a
social planner with a general distribution Ψ(d) of Pareto-weights to that implemented by
competitive markets.

A first issue that arises in the analysis for general weights is that the function DSP as
defined in Section 3 is no longer simple in shape. Depending on Ψ, it can have increasing
and decreasing parts, resulting in the possibility of multiple fixed points and thus ESP.44

Such equilibria will differ in the aggregate level of effort described by their threshold level
d̂SP for effort choice. Despite the potential multiplicity, we still have the following result:

Theorem 3. Suppose condition (14) is satisfied and d̂NC > d̃. Then d̂SP ≤ d̂NC for any
ESP (d̂SP , V SP (d̂SP )).

Proof. Fix a value d̂ ∈ (0,∞) and consider two cases. First, suppose that Ψ(d̂) ≤ G(d̂). Then,
arguing as for the proof of Proposition 1, we obtain DSP (d̂) = 0. Second, consider the case
Ψ(d̂) > G(d̂). Lemma 1 implies that the unique solution to SP(d̂) is such that constraints (4) and
(5) bind and uSP

b,h (d̂) = uSP
b,l (d̂). From the fact that pg > pb and uSP

g,h(d̂) ≥ uSP
g,l (d̂) is then also follows

that (3) is automatically satisfied. Defining

p(d̂) ≡ pgΨ(d̂) + pb(1−Ψ(d̂)), (16)

the solution must therefore be such that (uSP
g,h(d̂), uSP

g,l (d̂)) solves the simplified problem

max
(ug,h,ug,l)∈I

p(d̂)ug,h + (1− p(d̂))ug,l (17)

43If (14) is not satisfied and there are several interior fixed points, the usual comparative statics results
apply, i.e. some of the fixed points will be increasing (including the highest one) and others will be decreasing
in q.

44If Ψ is not continuous, DSP can have discontinuities as well. The existence of an ESP is still guaranteed,
because DSP (0) = 0 always holds.
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subject to the resource constraint

G(d̂) [pgΦ(ug,h) + (1− pg)Φ(ug,l)] + (1−G(d̂))Φ(pbug,h + (1− pb)ug,l) = E[ỹ|d̂]. (18)

Suppose d̂ > d̃. First, for d̂ = ∞, DSP (d̂) = D(d̂) = 0 holds. Otherwise, if d̂ ∈ (d̃,∞), by Lemma
2 the robust equilibrium outcome with given effort choice in competitive markets V GE(d̂) is such
that (uGE

g,h (d̂), uGE
g,l (d̂)) solves

max
(ug,h,ug,l)∈I

pgug,h + (1− pg)ug,l (19)

subject to the same budget constraint (18), because (12) does not bind for d̂ > d̃ as shown in the
proof of Lemma 3. Since (18) is a convex constraint by the proof of Lemma 1, and p(d̂) ≤ pg holds
by (16), the solutions (uSP

g,h(d̂), uSP
g,l (d̂)) and (uGE

g,h (d̂), uGE
g,l (d̂)) must be such that

uSP
g,h(d̂) ≤ uGE

g,h (d̂) and uSP
g,l (d̂) ≥ uGE

g,l (d̂).

This implies

DSP (d̂) = (pg − pb)(uSP
g,h(d̂)− uSP

g,l (d̂)) ≤ (pg − pb)(uGE
g,h (d̂)− uGE

g,l (d̂)) = D(d̂). (20)

Under property (14) and d̂NC > d̃, the function D is strictly decreasing in d̂ above its unique fixed
point d̂NC , so that D(d̂) < d̂ for all d̂ > d̂NC . Together with (20) and DSP (∞) = D(∞) = 0,
this implies DSP (d̂) ≤ D(d̂) < d̂ for all d̂ > d̂NC , so that any fixed point d̂SP of DSP must satisfy
d̂SP ≤ d̂NC .

According to the theorem, whenever condition (14) is satisfied and the market outcome
without commitment involves cross-subsidization from good to bad types (as captured by
d̂NC > d̃), the associated equilibrium share of good types G(d̂NC) is higher than the share of
good types G(d̂SP ) in any equilibrium with a social planner, irrespective of the distribution
of Pareto-weights Ψ(d) that is used. Hence, in terms of incentives for effort, a social planner
can do only as well as or worse than competitive markets, but never better. Figure 2
illustrates this comparison. Although DSP may be non-monotonic and have several fixed
points, we show in the proof of Theorem 3 that DSP (d̂) must always lie below D(d̂) for all
d̂ ≥ d̃ if condition (14) is satisfied, which implies the result. The restriction to the case
that the market equilibrium involves cross-subsidization is necessary because, while markets
are constrained by the fact that there cannot be cross-subsidization from bad to good types
in equilibrium, the planner is not. A planner who is otherwise similar to the market, in
that she uses a large weight Ψ(d̂) > G(d̂) close to one, may find it optimal to provide even
stronger incentives for effort provision than the market. This further slackens the incentive
constraint and makes it possible to extract additional resources from the bad types, which

30



Figure 2: Fixed Point Problem with a Non-Utilitarian Social Planner

could more than compensate the good types for their reduced insurance. As Proposition
1 makes clear, this can only occur if the planner puts sufficiently overproportional welfare
weight on low effort cost types. Otherwise, the reason why competitive markets are more
successful in providing incentives is again that they replicate an extreme planner who cares
only about ex post good types.

5.3 Competitive Markets with Full Commitment

In this subsection, we take another approach to evaluating the performance of competitive
markets without commitment. Rather than comparing them to another institution such
as a government, we now ask how the equilibrium outcomes studied so far compare to the
benchmark of full commitment. We demonstrate that competitive equilibria without and
with full commitment fall together whenever the latter involve no cross-subsidization between
ex post effort types. This illustrates from yet another perspective that competitive markets
are an institution that is able to deal effectively with lack of commitment, even to the degree
that the commitment problem may entirely vanish.45

45Moreover, analyzing markets with full commitment in our model economy is in itself an interesting
exercise, as the working of markets in the presence of both adverse selection from private cost parameters
and moral hazard from hidden effort choice is not yet well understood, even in a setting without commitment
problems. To our knowledge, the only contributions addressing both issues simultaneously, in the framework
of insurance markets, are Stewart (1994) and Chassagnon and Chiappori (1997). Their models, however,
include additional dimensions of individual heterogeneity, leading to multidimensional screening problems.
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Let us consider the following modified timing:

Stage 1a: Firms simultaneously decide on their contract offers.
Stage 1b: After observing all offers, firms simultaneously decide whether to remain active.
Stage 2 : Agents choose among remaining offers and between the effort levels.

The only difference to the extensive forms considered in sections 3 and 4 is that effort
choice takes place after binding contract offers have been announced. Firms are therefore able
to take into account the effect of their contract offers on the composition of their customer
pool in terms of effort types, rather than taking it as given.

As in Section 4, we again subsume the agents’ optimal strategies for effort and contract
choice in stage 2 into the firms’ payoff functions and consider stages 1a and 1b as a dynamic
game of complete information between firms, which we denote by ΓFC . Firms’ strategies and
strategy profiles are exactly as in Section 4, and payoffs are defined analogously. Then, any
SPE σ∗ of ΓFC is again associated with an outcome V ∗ = (u∗b,h, u

∗
b,l, u

∗
g,h, u

∗
g,l) representing

the best contracts for both effort types. In addition, the threshold for effort choice in V ∗ is

d̂∗ = pg u∗g,h + (1− pg)u
∗
g,l − pbu

∗
b,h − (1− pb)u

∗
b,l.

In principle we could have d̂∗ = ∞ or d̂∗ ≤ 0, i.e. all agents might decide to become of
the same ex post type.46 Observe that the outcome V ∗ is then still well-defined, because
an optimal contract for each ex post type exists in every nonempty, finite set Q, even if all
agents eventually choose the same effort level.

The set of robust SPE outcomes of ΓFC , which exist for both δ = 0 and small δ > 0,
is again related to the set of solutions to an optimization problem that we call problem FC
(full commitment):

max
(ub,h,ub,l,ug,h,ug,l)∈V

pg ug,h + (1− pg)ug,l (21)

subject to the constraints

pgug,h + (1− pg)ug,l ≥ pgub,h + (1− pg)ub,l, (22)

pbub,h + (1− pb)ub,l ≥ pbug,h + (1− pb)ug,l, (23)

G(d̂) [pgΦ(ug,h) + (1− pg)Φ(ug,l)] + (1−G(d̂)) [pbΦ(ub,h) + (1− pb)Φ(ub,l)] ≤ E[ỹ|d̂], (24)

46In Section 2, we have defined G on R such that G(d̂) = 0 for all d̂ ≤ 0.
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Φ(pbub,h + (1− pb)ub,l) ≥ pbyh + (1− pb)yl, (25)

where d̂ is given by

d̂ = pg ug,h + (1− pg)ug,l − pbub,h − (1− pb)ub,l. (26)

Program FC is the same as program GE(d̂) considered in section 4, with the only compli-
cation that d̂ is now not given exogenously, but depends on contracts endogenously through
(26), which captures agents’ optimal effort choice in stage 2. The following lemma summa-
rizes properties of any solution V FC = (uFC

b,h , uFC
b,l , uFC

g,h , uFC
g,l ) to problem FC, and its induced

threshold for effort choice d̂FC = pgu
FC
g,h + (1− pg)u

FC
g,l − pbu

FC
b,h − (1− pb)u

FC
b,l .

Lemma 5. Any solution V FC to problem FC is such that d̂FC ∈ (0,∞), uFC
b,h = uFC

b,l ≡ uFC
b ,

the constraints (23) and (24) are binding, and (22) is slack. A solution does exist.

The lemma states that both good and bad types do exist in any solution V FC , and
the solutions have the same structural properties as the solutions to GE(d̂). The proof is
indeed a simple extension of the proofs of Lemmas 1 and 2, but is given in Appendix B.1
for completeness. In contrast to the situation with given effort, however, the solution to FC
may not be unique. The same optimal expected utility of good types may be attained by
different contracts for the following reason. One solution may be such that the good types
pay a high cross-subsidy to bad types, but obtain relatively much insurance, i.e. a low value
of ug,h−ug,l. This leads to a low amount of available aggregate resources E[ỹ|d̂] since, at the
optimum, d̂ is given by d̂ = (pg − pb)(ug,h − ug,l) by the binding constraint (23) and by (26).
Now assume the good types’ incentives to invest effort are increased along their indifference
curve, i.e. ug,h − ug,l is increased without changing the good types’ expected utility. Risk
aversion (convexity of Φ) implies that this move requires additional resources. Resources
become available, however, for two reasons. First, the reduction of good types’ insurance
slackens the incentive constraint (22) and makes it possible to reduce the utility given to
bad types through the cross-subsidy. Second, the critical value d̂ and thus the amount
of aggregate resources is increased.47 If these two effects together exactly compensate the
increased resource requirement, an additional solution, or even a continuum of solutions, can
be constructed.

Whenever there are multiple solutions to FC, they are Pareto ranked. This is because
good types are equally well off in all solutions, whereas bad types are better off the higher
the good types’ insurance, as argued above. Moreover, since effort is chosen optimally as
captured by (26), the Pareto comparison extends to ex ante utilities including effort cost.

47While the first effect exists even if types are exogenous, the second relies on the reaction of d̂ to the
contracts. The first effect alone is thus not sufficient to generate multiple solutions.
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Denote the nonempty set of solutions to FC by ΩFC . Also, for any δ ≥ 0, let Ω∗(δ) be
the set of SPE outcomes of ΓFC when the withdrawal cost parameter is δ. We then have the
following result on robust equilibrium outcomes:

Proposition 5. (i) For all δ > 0, Ω∗(δ) ⊆ ΩFC ⊆ Ω∗(0).
(ii) For each V FC ∈ ΩFC there exists a δ > 0 such that V FC ∈ Ω∗(δ) for all δ < δ.

The set of equilibrium outcomes Ω∗(δ) expands towards ΩFC as δ converges to zero.
Thus, in the framework with full commitment, our market model again produces Miyazaki-
Wilson type contracts as the robust equilibrium outcomes, with the additional twist that
effort types are endogenous. The proof is similar to the proof of Proposition 2, and can be
found in Appendix B.2.

We can now use our results in order to compare robust equilibrium outcomes with and
without commitment in our economy. Do equilibria without commitment lead to lower-
powered incentive contracts and induce less effort, as one may expect intuitively? The
following theorem provides conditions for this to be the case.

Theorem 4. Assume that condition (14) is satisfied, so that d̂NC is unique.
(i) Suppose there exists a robust full commitment outcome V ∗ ∈ ΩFC in which (25) binds.
Then V ∗ = V GE(d̂NC), i.e. it is also the robust ENC outcome in which good types exist.
(ii) For any V ∗ ∈ ΩFC in which (25) does not bind, it holds that

d̂∗ > d̂NC and u∗g,h − u∗g,l > uGE
g,h (d̂NC)− uGE

g,l (d̂NC).

Proof. See Appendix A.5.

The first result in Theorem 4 may be particularly surprising: If the equilibrium contracts
under full commitment break even individually, they are also the unique outcome without
commitment in which both types exist.48 In that sense, for an entire class of economies,
there is in fact no commitment problem at all when markets are competitive: Equilibrium
contracts and incentives for effort with and without commitment fall together. The intuition
is that, if the full commitment equilibrium leads to zero cross-subsidization (and hence the
Rothschild-Stiglitz contracts), the composition of the population is irrelevant for firms to
assess the profitability of their contract offers. In this sense, they already act as if taking
the share of both types as given in the full commitment equilibrium. Then, if firms were

48It actually follows as a corollary from the theorem that, if there is a full commitment equilibrium outcome
V ∗ ∈ ΩFC without cross-subsidization, it must be unique. Otherwise, if there was an additional outcome
with (25) slack, this would entail less effort as argued before, and thus a strictly smaller critical value for
effort choice than V ∗ and V GE(d̂NC), contradicting statement (ii) in the theorem.
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suddenly allowed to modify their contracts after effort choice, when these shares are actually
fixed, their original contracts remained optimal, so that the Rothschild-Stiglitz outcome also
constitutes an equilibrium without commitment.

The second result in Theorem 4 shows that the initially expected comparison between
full commitment and no commitment equilibria applies if the full commitment contracts
involve cross-subsidization: Aggregate effort without commitment is strictly lower, because
contracts for good types are strictly lower-powered than in the full commitment outcome.49

Yet, as we know from Section 4, even in this case the commitment problem never leads to
zero effort being the unique equilibrium outcome.

6 Conclusion

We have analyzed the time-inconsistency problem with incentive contracts in a model where
profit maximizing principals are competing. We have first pursued an axiomatic approach,
based on weak properties that ex post market outcomes should satisfy to be considered
competitive. We have shown that such outcomes Pareto dominate the allocation that a
utilitarian planner can achieve, whenever they are able to sustain some incentives for effort
provision. We have then provided a first example for a potentially reasonable market outcome
that satisfies these requirements.

In the second part of the paper, we have provided a game-theoretic justification for the
preceding results. Our game structure reflects the assumption of two-sided lack of com-
mitment and involves a withdrawal phase to ensure equilibrium existence. Performing a
robustness test based on withdrawal costs, we were able to identify robust sequential equi-
libria and show that they induce Miyazaki-Wilson contracts. Incentives for effort provision
are preserved in these equilibria, and our general Pareto result applies. Intuitively, the mar-
ket replicates a social planner who cares only about high effort agents and thus sustains
maximal incentives for effort provision.

The Pareto dominance result is robust to the possibility of ex post market shutdown by
the government, and also generalizes to a large class of more universal social planners. Our
further results identify the level of cross-subsidization between ex post types in the market
as an important property to assess outcomes. First, the comparison between market and
planner becomes a strong Pareto dominance result whenever the market equilibrium entails
cross-subsidization (Theorem 2). Second, even if the Pareto comparison is not applicable,
because the planner does not belong to the above-mentioned class, we can still compare

49If there are multiple equilibrium outcomes under full commitment, this holds for all of them, because all
of them must involve cross-subsidization from the argument in footnote 48.
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the aggregate equilibrium effort between market and planner if the market cross-subsidizes.
In that case, the market performs better in terms of incentives for effort (Theorem 3).
Finally, in the comparison between markets with and without commitment, a particulary
strong result can be proven for the case in which the full commitment outcome involves no
cross-subsidization. The market then solves the commitment problem entirely, in the sense
that equilibria with and without commitment coincide (Theorem 4). Altogether, our results
suggest that competitive markets are an institution that is able to deal with the commitment
problem very effectively, even in a model which excludes any reputational mechanisms.

Our model provides a transparent framework in which a benevolent planner cannot repli-
cate the outcome achieved by a market. This result is not due to exogenously assumed
differences in technologies, commitment constraints, policy instruments or information, but
is solely based on the different objectives that the two institutions pursue (implicitly, in case
of the market). The application of this insight is not restricted to the examples that we have
discussed throughout the paper (education and labor markets, insurance markets), but may
be applied to banking and credit markets or even competition among rating agencies, for
example. We predict that decentralized economies achieve allocations that can be Pareto
superior to the outcomes under centralization, and, under even broader circumstances, will
exhibit more incentive pay jobs, fewer credit defaults, and a larger per-capita social product
in general.

To transparently expose the effect of competition on the commitment problem, we have
ruled out reputational effects in our analysis. Future research on how competition and
reputation interact may produce further interesting insights.
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A Appendix

A.1 Proof of Lemma 1

(i) We first show that the statement about the constraints has to be true and that the bad types’
utility will not be output-dependent in any solution V SP (d̂) to the problem, if it exists. We then
prove that the problem has a unique solution. In the following, we suppress dependency on d̂ for
notational convenience.

Constraint (5). Assume that V = (ub,h, ub,l, ug,h, ug,l) ∈ V satisfies all constraints, and (5) with
slack. Consider Ṽ = (ub,h + ε1, ub,l + ε2, ug,h + ε3, ug,l + ε4) with εi, i = 1, ..., 4, such that

1− pg

pg
(ε2 − ε4) ≤ ε3 − ε1 ≤ 1− pb

pb
(ε2 − ε4),

ε1 ≥ ε2 > 0 and ε3 ≥ ε4 > 0. By the assumptions on εi, i = 1, ..., 4, Ṽ ∈ V, Ṽ satisfies (3) and (4)
and Ṽ leads to a strictly increased value of (2). To see that a set of εi, i = 1, ..., 4, with the required
properties always exists, start by fixing any ∆24 ∈ R+ and note that since pg > pb, there exists a
∆31 ∈ R+ such that

1− pg

pg
∆24 ≤ ∆31 ≤ 1− pb

pb
∆24.

Next, fix any ε2, ε4 > 0 such that ε2 − ε4 = ∆24. Clearly, it is then always possible to find ε1, ε3 > 0

such that ε1 ≥ ε2, ε3 ≥ ε4 and ε3 − ε1 = ∆31, which proves the claim. Finally, continuity of Φ(.)

implies that (5) is still satisfied for εi sufficiently small, so that V was not a solution to SP(d̂).
Output-independent utilities for bad types. Assume that V = (ub,h, ub,l, ug,h, ug,l) ∈ V with

ub,h > ub,l satisfies all constraints, and (5) with equality. Define ũ = pbub,h+(1−pb)ub,l and consider
Ṽ = (ũ, ũ, ug,h, ug,l) ∈ V. By construction, Ṽ satisfies (3), and the value of (2) is the same under V

and Ṽ . Since pg > pb and ub,h > ub,l, it follows that pgub,h + (1 − pg)ub,l > pbub,h + (1 − pb)ub,l =

ũ = pgũ+(1−pg)ũ, so that Ṽ satisfies (4) as well, given that it is satisfied by V . Strict convexity of
Φ implies that pbΦ(ub,h)+(1−pb)Φ(ub,l) > Φ(pbub,h +(1−pb)ub,l) = Φ(ũ) = pbΦ(ũ)+(1−pb)Φ(ũ),
so that Ṽ satisfies (5) with slack given G(d̂) ∈ (0, 1). From the previous argument, the value of the
objective can then be increased above its value for Ṽ and V , so that V was not a solution to SP(d̂).

Constraint (4). Let V = (ub, ub, ug,h, ug,l) ∈ V satisfy all constraints, and (5) with equality.
(3) and (4) together imply ug,h ≥ ub ≥ ug,l. Assume (4) is slack, which implies ug,h > ug,l.
Consider Ṽ (ε) = (ub, ub, ug,h − ε, ug,l + ε

pg

1−pg
), ε ≥ 0, which is an element of V for ε small enough,

and which satisfies Ṽ (0) = V . By construction, Ṽ (ε) satisfies (3), and the value of (2) is the
same under V and Ṽ (ε), for any ε ≥ 0. (4) is also satisfied by Ṽ (ε) for ε small enough. Let
Eg(ε) ≡ pgΦ(ug,h− ε) + (1− pg)Φ(ug,l + ε

pg

1−pg
) denote the per capita expenditure for good types in

Ṽ (ε). Straightforward calculations reveal that dEg(ε)/dε < 0 if 0 ≤ ε < (1−pg)(ug,h−ug,l), so that
for ε > 0 small enough, Ṽ (ε) satisfies (5) with slack given G(d̂) ∈ (0, 1). With the above argument,
V cannot be a solution to SP(d̂).
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Existence and Uniqueness. The previous results show that any solution to SP(d̂) must be of
the form V = (ub, ub, ug,h, ug,l), and that (4) becomes ub = pbug,h + (1 − pb)ug,l, or equivalently
ug,l = (ub−pbug,h)/(1−pb). Since V ∈ V, ug,h ≥ ug,l and pg > pb then imply that (3) is automatically
satisfied. Moreover, the condition ug,h ≥ ug,l in the definition of V can be reformulated as ug,h ≥ ub,
or (ug,h, ub) ∈ I. We can therefore state the following modified problem SP’(d̂), which has the same
solution as SP(d̂):

max
(ug,h,ub)∈I

Ψ(d̂)
[(

1− pg

1− pb

)
ub +

(
pg − pb

1− pb

)
ug,h

]
+ (1−Ψ(d̂))ub (27)

subject to the binding resource constraint

G(d̂)
[
pgΦ(ug,h) + (1− pg)Φ

(
ub − pbug,h

1− pb

)]
+ (1−G(d̂))Φ(ub) = E[ỹ|d̂]. (28)

Denote the LHS of (28) by E(ug,h, ub). E is continuously differentiable on R2, and straight-
forward calculations reveal that it is strictly increasing in ug,h on I (including its boundary),
with limug,h→∞E(ug,h, ub) = ∞ due to convexity. E is strictly increasing in ub globally, with
limub→−∞ = −∞.

We first claim that umax ≡ U(E[ỹ|d̂]) represents the largest possible choice of ub. Consider
the tuple (umax, umax) ∈ I, which satisfies (28) by construction. Any tuple (ũg,h, ũb) ∈ I with
ũb > umax and thus ũg,h > umax can be reached from (umax, umax) by first increasing ug,h from
umax to ũg,h and then increasing ub from umax to ũb. Both moves strictly increase E(ug,h, ub), so
that (ũg,h, ũb) violates (28), which proves the claim.

Now fix any ub ≤ umax. It follows that E(umax, ub) ≤ E(umax, umax) = E[ỹ|d̂], with strict
inequality whenever ub < umax. Since E(ug,h, ub) is strictly increasing in ug,h in the set I,
with limug,h→∞E(ug,h, ub) = ∞, it follows that there exists a unique value H(ub) such that
E(H(ub), ub) = E[ỹ|d̂], where H(ub) ≥ umax ≥ ub. The resulting function H : (−∞, umax] →
[umax,∞) is continuously differentiable and thus continuous by the implicit function theorem.

We can now reduce SP’(d̂) to the one-dimensional problem

max
ub≤umax

(
1−Ψ(d̂)

pg − pb

1− pb

)
ub + Ψ(d̂)

pg − pb

1− pb
H(ub). (29)

We first claim that H(ub) is strictly concave. Let (u′g,h, u′b), (u
′′
g,h, u′′b ) ∈ I satisfy E(u′g,h, u′b) =

E(u′′g,h, u′′b ) = E[ỹ|d̂] and (u′g,h, u′b) 6= (u′′g,h, u′′b ). Define u′′′g,h = λu′g,h + (1 − λ)u′′g,h and u′′′b =

λu′b +(1−λ)u′′b for λ ∈ (0, 1). Strict convexity of Φ then implies that E(u′′′g,h, u′′′b ) < E[ỹ|d̂], which in
turn implies that H(u′′′b ) = H(λu′b+(1−λ)u′′b ) > u′′′g,h = λu′g,h+(1−λ)u′′g,h = λH(u′b)+(1−λ)H(u′′b ),
which proves the claim. Second, implicit differentiation of (28) reveals that H is strictly decreasing
with slope
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H ′(ub) =
G(d̂)(1− pg)Φ′(ug,l) + (1−G(d̂))(1− pb)Φ′(ub)

G(d̂)(1− pg)pbΦ′(ug,l)−G(d̂)(1− pb)pgΦ′(ug,h)
, (30)

where ug,h = H(ub) and ug,l has been re-substituted for (ub − pbug,h)/(1 − pb). Observe that
limub→−∞H ′(ub) = 0. As ub decreases, ug,h = H(ub) increases and ug,l decreases. Therefore,
both terms in the numerator and the first term in the denominator of (30) are decreasing as
ub is decreasing (but they remain positive). Since limub→−∞E(ug,h, ub) = −∞, it follows that
limub→−∞H(ub) = ∞ and thus the second term in the denominator of (30) grows without bound
as ub → −∞, due to the Inada condition limu→∞Φ′(u) = ∞. Hence limub→−∞H ′(ub) = 0 holds.

Strict concavity of H(ub) implies that the objective in (29) is strictly concave whenever Ψ(d̂) > 0

and strictly increasing in ub otherwise. Together with the fact that the objective must be strictly
increasing in ub for sufficiently small values of ub, due to limub→−∞H ′(ub) = 0 and 1−Ψ(d̂)(pg −
pb)/(1− pb) > 0, this implies existence and uniqueness of a solution.

(ii) We prove the claim by showing that the slope of the objective (29) evaluated at ub = umax

is weakly positive if 0 < Ψ(d̂) ≤ G(d̂). For that case, the result then follows from strict concavity
of H(ub) and H(umax) = umax. The condition is

1−Ψ(d̂)
pg − pb

1− pb
+ Ψ(d̂)

pg − pb

1− pb
H ′(umax) ≥ 0, (31)

and after using H(umax) = umax in (30) and some rearrangements it follows that

H ′(umax) =
G(d̂)(pg − pb)− (1− pb)

G(d̂)(pg − pb)
.

After subsituting this in (31), cancelling terms and using pg > pb, we obtain that (31) is equivalent
to Ψ(d̂) ≤ G(d̂), which is what we assumed to start with. If Ψ(d̂) = 0, then the objective (29) is
strictly increasing in ub and the claim follows immediately.

A.2 Proof of Lemma 2

For simplicity, we again suppress the dependency on d̂. The argument that constraints (10) and
(11) must be binding and bad types must obtain an output-independent contract is analogous to
the proof of Lemma 1 (i) and therefore not repeated here.50

Constraint (9). Let V = (ub, ub, ug,h, ug,l) ∈ V satisfy all constraints, and (9) – (11) with
equality. This implies that ug,h = ug,l = ub, and (11) simplifies to Φ(ub) = E[ỹ|d̂]. Consider
Ṽ (ε) = (ub, ub, ub + ε, ub − ε pb

1−pb
) ∈ V for ε ≥ 0, which satisfies Ṽ (0) = V . By construction and the

fact that pb < pg, Ṽ (ε) satisfies (9) and (10), and the value of (8) is higher under Ṽ (ε) than under V

for any ε > 0. (12) is also satisfied by Ṽ (ε). Let E(ε) = G(d̂)[pgΦ(ub + ε)+ (1− pg)Φ(ub− ε pb
1−pb

)]+

(1 − G(d̂))Φ(ub) denote the average per capita expenditure in Ṽ (ε). Straightforward calculations

50None of the arguments in the proof of Lemma 1 is affected by the additional constraint (12).
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reveal that dE(ε)/dε < 0 at ε = 0 for d̂ ∈ (0,∞) and thus G(d̂) > 0, so that Ṽ (ε) satisfies (11) with
slack for ε > 0 small enough. Hence V cannot be a solution to GE(d̂).

The proof of existence and uniqueness of the solution to GE(d̂) proceeds exactly as for Lemma
1 (i) to obtain a simplified optimization problem. For the special case of Ψ(d̂) = 1 and under the
additional constraint (12), which can be formulated as ub ≥ U(pbyh + (1− pb)yl) ≡ umin, we obtain
analogously to (29),

uGE
b (d̂) = arg max

ub∈[umin,umax]
(1− pg)ub + (pg − pb)H(ub). (32)

Existence and uniqueness now follows as for Lemma 1, with the additional simplification of a lower
bound on the choice of ub.

To show that V GE satisfies conditions (C1) to (C3), consider the Rothschild-Stiglitz contracts
V RS = (uRS

b,h , uRS
b,l , uRS

g,h , uRS
g,l ), which solve

max
(ub,h,ub,l,ug,h,ug,l)∈V

pg ug,h + (1− pg)ug,l

subject to the constraints

pkuk,h + (1− pk)uk,l ≥ pkuk′,h + (1− pk)uk′,l ∀k, k′ ∈ {g, b},

G(d̂) [pgΦ(ug,h) + (1− pg)Φ(ug,l)] + (1−G(d̂)) [pbΦ(ub,h) + (1− pb)Φ(ub,l)] ≤ E[ỹ|d̂],

Φ(pkuk,h + (1− pk)uk,l) = pkyh + (1− pk)yl ∀k, k′ ∈ {g, b}.

Comparing with GE(d̂), this program involves the same objective function, but a strictly smaller
constraint set, implying

pg uGE
g,h + (1− pg)uGE

g,l ≥ pg uRS
g,h + (1− pg)uRS

g,l .

Moreover, constraint (12) in GE(d̂) implies

pb uGE
b,h + (1− pb)uGE

b,l ≥ U(pbyh + (1− pb)yl) = pb uRS
b,h + (1− pb)uRS

b,l .

Therefore, V GE weakly Pareto-dominates V RS . The result then follows from Lemma 4 in Rothschild
(2007).

A.3 Proof of Proposition 2

We prove the proposition in two steps. First, we show that if δ > 0, the outcome of any SPE of Γd̂

must be a solution to GE(d̂). This establishes Ω∗(δ, d̂) ⊆ {V GE(d̂)} for all δ > 0, the first part of
statement (i). We then show that there exists a critical value δ > 0 such that V GE(d̂) ∈ Ω∗(δ, d̂)
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for all δ < δ, including δ = 0. This establishes statement (ii), and also {V GE(d̂)} ⊆ Ω∗(0, d̂), the
second part of statement (i).

Throughout the proof, we adopt the following notation. First, we omit the asterisk indicating
equilibrium strategies, for notational simplicity. Second, although σ formally is a profile of mixed
strategies, we write e.g. σ2

j (s
1) = NW or σ1

j = ∅ to indicate a lottery placing probability 1 on a
pure action. Finally, we write σ = (σj , σ−j), σ2(s1) = (σ2

j (s
1), σ2

−j(s
1)) and so on. Dependence on

d̂ is suppressed for notational convenience whenever appropriate.

Step 1. Fix a value of withdrawal cost δ > 0 and consider an SPE σ with outcome V ∗. Observe
first that σ2

j (s
1) = NW ∀j ∈ J , where s1 is the history induced by σ, i.e. the profile of stage 2a

offers. Otherwise, Πj(σ) = −δ < 0 for some j ∈ J , and deviating to σ̃1
j = ∅ would be profitable.

Observe also that Πj(σ) = 0 for at least one j ∈ J \{0}. Otherwise, if Πj(σ) > 0 ∀j ∈ J \{0}, any
one of them, say i, could deviate to offering the contracts (u∗b,h + ε, u∗b,l + ε) and (u∗g,h + ε, u∗g,l + ε)

in stage 1, for small ε > 0, and remain active after the deviation. Since σ2
j (s

1) = NW ∀j ∈ J , the
contracts available in addition to (u∗b,h + ε, u∗b,l + ε) and (u∗g,h + ε, u∗g,l + ε), at the end of stage 2b
after the deviation, are at most those available in the SPE,51 and all agents will choose one of the
deviation contracts. Also, the deviation contracts are incentive compatible, so that, for sufficiently
small ε, the deviator could earn profits arbitrarily close to

∑
j∈J Πj(σ) > Πi(σ), a contradiction.

We now show that the outcome V ∗ must satisfy the constraints of GE(d̂), and that it must
maximize the objective (8).

Constraints (9) and (10). Incentive-compatibility is satisfied by definition of V ∗.
Constraint (11). Assume to the contrary that V ∗ violates (11). Then there must be at least

one firm j ∈ J \ {0} with σ2
j (s

1) = NW and Πj(σ) < 0.52 σ̃1
j = ∅ would be a profitable deviation,

which contradicts that V ∗ is an SPE outcome.
Constraint (12). Assume to the contrary that V ∗ violates (12), i.e. Φ(pbu

∗
b,h + (1 − pb)u∗b,l) <

pbyh + (1 − pb)yl. Let ũ = pbu
∗
b,h + (1 − pb)u∗b,l + ε, ε > 0, with ε sufficiently small to guarantee

Φ(ũ) < pbyh+(1−pb)yl. The contract (ũ, ũ) ∈ I then satisfies πk(ũ, ũ) = pkyh+(1−pk)yl−Φ(ũ) > 0,
i.e. it earns strictly positive profits if a positive mass of agents chooses it. Consider a firm i ∈ J for
which Πi(σ) = 0, which exists as shown above, and assume it deviates to σ̃1

i = {(ũ, ũ)} and remains
active thereafter. Since σ2

j (s
1) = NW ∀j ∈ J , the contracts that are available in addition to (ũ, ũ)

at the end of stage 2b after the deviation are at most those available in the SPE. Hence the bad
types will choose (ũ, ũ) and make the deviation strictly profitable, which contradicts that V ∗ is an
SPE outcome.

Maximization of (8). Assume that V ∗ satisfies all constraints of GE(d̂), but, to the contrary,
V ∗ 6= V GE . Then pgu

GE
g,h +(1−pg)uGE

g,l > pgu
∗
g,h +(1−pg)u∗g,l. For ε > 0 small enough, the contract

(uGE
g,h − ε, uGE

g,l − ε) ∈ I then still satisfies pg(uGE
g,h − ε) + (1− pg)(uGE

g,l − ε) > pgu
∗
g,h + (1− pg)u∗g,l.

51If some non-deviating firms randomize in the stage 2b subgame reached after the deviation, this statement
holds true for each possible outcome of the randomization.

52Clearly, Π0(σ) = 0 always holds.
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Suppose a firm i ∈ J for which Πi(σ) = 0 deviates to σ̃1
i = {(uGE

g,h − ε, uGE
g,l − ε), (uGE

b − ε, uGE
b − ε)},

with ε small enough as discussed, and remains active thereafter. The contracts that are additionally
available at the end of stage 2b after the deviation are at most those available in the SPE, and thus
the good types will choose (uGE

g,h − ε, uGE
g,l − ε), given that (u∗g,h, u∗g,l) was optimal before. Bad types

weakly prefer (uGE
b − ε, uGE

b − ε) over (uGE
g,h − ε, uGE

g,l − ε), since V GE satisfies (10). Therefore, all
bad types either choose (uGE

b − ε, uGE
b − ε) or a contract offered by some other firm j 6= i.

We claim that the deviation is strictly profitable.53 Even if all bad types choose the contract
(uGE

b − ε, uGE
b − ε) in this outcome, the deviating firm i earns strictly positive profits.54 If the bad

types choose some other contract, firm i obtains only the good types and earns strictly positive
profits as well.

Step 2. We now construct an SPE with outcome V GE , which exists for sufficiently small values of
δ, including δ = 0.

In addition to the contracts in V GE , consider the contract (ub, ub) that pays the expected output
of bad types irrespective of actual output, so that ub = U(pbyh + (1− pb)yl). Clearly, this contract
is identical to (uGE

b , uGE
b ) if constraint (12) is binding in V GE , but the latter is strictly preferred

by bad types to (ub, ub) otherwise. We now construct an SPE σ of Γd̂ in which σ1
j = {(ub, ub)}

for j = 1, 2, σ1
j = {(uGE

b , uGE
b ), (uGE

g,h , uGE
g,l )} for j = 3, 4, and σ1

j = ∅ ∀j ≥ 5. Denote the induced
history by s1, and set σ2

j (s
1) = NW ∀j ∈ J . Whenever V GE satisfies (12) with slack, all agents

will then spread equally among firms j = 3, 4, which implies Πj(σ2(s1)|s1) = 0 ∀j ∈ J . If (12) is
satisfied with equality, bad types spread equally among firms j = 1, ..., 4, while good types spread
among firms 3 and 4 only. The fact that there is no cross-subsidization in V GE again implies
Πj(σ2(s1)|s1) = 0 ∀j ∈ J . σ2

j (s
1) = NW is thus actually a best response for every firm in subgame

Γd̂(s1), for any value of δ ≥ 0, and the outcome of the SPE candidate is V GE . Any potentially
profitable deviation has to take place at stage 2a.

Fix a value of δ ≥ 0. The companies’ strategies must form Nash equilibria in all off-equilibrium
path subgames Γd̂(s̃1), s̃1 ∈ S1, s̃1 6= s1. The fact that each subgame Γd̂(s̃1) is a finite normal form
game implies that a Nash equilibrium does exist in each of them, possibly in mixed strategies. For
each s̃1 ∈ S1, s̃1 6= s1, let σ2(s̃1) be such an equilibrium.55 Now consider those stage 2b subgames
Γd̂(s̃1) that can be reached after a profitable unilateral deviation, i.e. for which there exists a firm
i ∈ J such that s1 and s̃1 differ in the ith coordinate only, and where Πi(σ2(s̃1)|s̃1) > 0. Let S̃1

be the set of all histories that correspond to such subgames (suppressing the dependency on the
chosen stage 2b equilibria σ2(s̃1)).

53Again, if there is randomization after the deviation, the following arguments apply to each outcome that
occurs with positive probability.

54The contract (uGE
b − ε, uGE

b − ε) might have been offered by non-deviators as well, in which case not all
bad types choose firm i, but the deviation is still profitable.

55If there is more than one equilibrium in a subgame Γd̂(s̃1), σ2(s̃1) is just an arbitrary one of them.
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Lemma 6. For each s̃1 ∈ S̃1, there exists a pure-strategy Nash equilibrium σ̃2(s̃1) in Γd̂(s̃1).
If Πi(σ̃2(s̃1)|s̃1) > 0, i.e. the deviation is still profitable under σ̃2(s̃1), then σ̃2(s̃1) satisfies that
(i) each non-deviator j 6= i, j ∈ {1, 2} plays σ̃2

j (s̃
1) = NW , and

(ii) each non-deviator j 6= i, j ∈ {3, 4} plays σ̃2
j (s̃

1) = NW in case of indifference, i.e. if
Πj(NW, σ̃2

−j(s̃
1)|s̃1) = Πj(W, σ̃2

−j(s̃
1)|s̃1).

Proof. We prove the lemma by constructing the equilibrium σ̃2(s̃1) from σ2(s̃1).
Consider first the case where δ > 0. In the given equilibrium σ2(s̃1), both the deviator i and

all non-deviators j 6= i, j ∈ {1, 2} remain active (with probability one). For the deviator, this is
because Πi(σ2(s̃1)|s̃1) > 0 by assumption. Given that the contract (ub, ub) always earns non-negative
profits, for non-deviators among j ∈ {1, 2} remaining active even dominates withdrawal strictly. The
same holds for firms j 6= i, j ∈ {3, 4} if (12) is satisfied with equality in V GE , because incentive
compatibility and lack of cross-subsidization in V GE then always implies zero profits when remaining
active. Hence in that case σ2(s̃1) is already in pure strategies, satisfies property (i), and (ii) is empty,
so we have σ̃2(s̃1) = σ2(s̃1). If (12) is slack in V GE , but Πj(NW,σ2

−j(s̃
1)|s̃1) 6= Πj(W,σ2

−j(s̃
1)|s̃1)

for each non-deviator j 6= i, j ∈ {3, 4}, property (ii) is also empty and σ2(s̃1) is in pure strategies,
such that we also have σ̃2(s̃1) = σ2(s̃1).

Consider then the case that (12) is slack in V GE and Πj(NW,σ2
−j(s̃

1)|s̃1) = Πj(W,σ2
−j(s̃

1)|s̃1)

for at least one j 6= i, j ∈ {3, 4}. Assume first that i /∈ {3, 4} in s̃1. Let β1 be the (non-random)
payoff that one of firms j ∈ {3, 4} would obtain if it remained active while the other did not remain
active, and all other firms’ strategies were as in σ2(s̃1), hence pure. Let β2 be the analogous payoff
if both j ∈ {3, 4} remained active, again keeping all other strategies from σ2(s̃1). Indifference of
(at least) one firm j ∈ {3, 4} in σ2(s̃1) implies that −δ = qβ1 + (1 − q)β2, where q ∈ [0, 1] is the
probability in σ2(s̃1) that the other one withdraws. It must therefore be the case that either β1 < 0

or β2 < 0 or both. This happens if and only if the active firm(s) among 3 and 4 obtain bad types in
(uGE

b , uGE
b ), which requires subsidization, but not enough good types in (uGE

g,h , uGE
g,l ) to break even.

Also, since (uGE
b , uGE

b ) is strictly preferred to (ub, ub) by bad types in the present case, firms 1 and
2 do not obtain agents whenever at least one of firms 3 and 4 is active. Hence losses for active firms
j ∈ {3, 4} occur only if the deviator has offered a contract which is chosen by (some) good types,
in the presence of (uGE

g,h , uGE
g,l ), while (uGE

b , uGE
b ) is still the best contract for bad types.

We can now distinguish two cases: first, the deviator i’s best contract for good types in s̃1

could be (uGE
g,h , uGE

g,l ). In this case, the deviator did not also offer (uGE
b , uGE

b ) in s̃1, because this
would imply Πi(σ2(s̃1)|s̃1) = 0 (irrespective of σ2

j (s̃
1), j = 3, 4). Hence whenever one or both firms

j ∈ {3, 4} are active, all bad types move only to them,56 while all good types spread equally between
them and the deviator. The number of good types that active firms j ∈ {3, 4} obtain is not large
enough to break even, irrespective of whether one or both of them are active, which implies β1 < 0

and β2 < 0. It is also straightforward to show that β1 < β2, i.e. the individual losses are smaller

56Even if the deviator has offered an output-dependent incentive contract that leaves bad types indifferent
to (uGE

b , uGE
b ), no bad type will choose it due to our tie-breaking assumptions.
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if both j = 3, 4 are active and share the losses. The second possible case is that the deviator i

has offered a contract in s̃1 which is strictly preferred to (uGE
g,h , uGE

g,l ) by good types.57 The active
firm(s) j ∈ {3, 4} then obtain only the bad types and earn strictly negative profits, irrespective
of whether one or both of them are active. The losses are again smaller if they are shared, also
implying β1 < β2 < 0.

With these results, we can construct σ̃2(s̃1) from σ2(s̃1), under the assumption that Πj(NW,

σ2
−j(s̃

1)| s̃1) =Πj(W,σ2
−j(s̃

1)|s̃1) for at least one j 6= i, j ∈ {3, 4}. If i ∈ {3, 4}, set σ̃2
j (s̃

1) = NW ,
and σ̃2

k(s̃
1) = σ2

k(s̃
1) ∀k ∈ J , k 6= j. This simply amounts to choosing an alternative best response

for the indifferent player, keeping the strategies of all others. If i /∈ {3, 4}, set σ̃2
j (s̃

1) = NW

for both j = 3, 4, and again σ̃2
k(s̃

1) = σ2
k(s̃

1) ∀k ∈ J , k /∈ {3, 4}. The fact that β1 < β2 < 0

always holds, as shown above, together with −δ = qβ1 + (1 − q)β2 for a given q ∈ [0, 1] implies
β2 ≥ −δ. The individual profits of firms j = 3, 4 when jointly remaining active (β2), still given
all other players’ strategies from σ2(s̃1), are weakly larger than −δ, making it indeed a best reply
to remain active. If σ̃2

i (s̃
1) = NW is now still a best response for the deviator, we have arrived

at the desired equilibrium, because σ̃2(s̃1) is a pure strategy Nash equilibrium in which all firms
j 6= i, j ∈ {1, ..., 4} remain active. If i’s unique best response is now withdrawal, set σ̃2

i (s̃
1) = W

to arrive at the final σ̃2(s̃1). It is a Nash equilibrium because σ̃2
j (s̃

1) = NW , as constructed above,
is the unique best response for firms j 6= i, j ∈ {1, ..., 4} if the deviator withdraws. It is in pure
strategies by construction, and properties (i) and (ii) are empty due to Πi(σ̃2(s̃1)|s̃1) = −δ < 0.

Assume now that δ = 0. Construct σ̃2(s̃1) from σ2(s̃1) by first assuming that all j 6= i, j ∈ {1, 2}
play σ̃2

j (s̃
1) = NW , which is always a best response for them, and initially keep all other players’

strategies as in σ2(s̃1). Even if this constitutes a change of strategy from σ2(s̃1), the optimal behavior
of non-deviators j 6= i, j ∈ {3, 4} is clearly unaffected. If Πj(NW,σ2

−j(s̃
1)|s̃1) 6= Πj(W,σ2

−j(s̃
1)|s̃1)

for all j 6= i, j ∈ {3, 4}, indeed keep σ̃2
j (s̃

1) = σ2
j (s̃

1) for them. Otherwise, if Πj(NW,σ2
−j(s̃

1)|s̃1) =

Πj(W,σ2
−j(s̃

1)|s̃1) for at least one j 6= i, j ∈ {3, 4}, set σ̃2
j (s̃

1) = NW ∀j 6= i, j ∈ {3, 4}. A
similar argument as for the case δ > 0 implies that they then give best responses against the profile
constructed so far. If σ̃2

i (s̃
1) = NW is still a best response of the deviator, we have arrived at the

desired equilibrium. Clearly, σ̃2(s̃1) is in pure strategies, it has firms j 6= i, j ∈ {1, 2} remaining
active, and for any firm j 6= i, j ∈ {3, 4} we can have σ̃2(s̃1) = W only if Πj(NW, σ̃2

−j(s̃
1)|s̃1) <

Πj(W, σ̃2
−j(s̃

1)|s̃1), i.e. if there is no indifference. If, on the other hand, withdrawal is now the
unique best-response of the deviator, setting σ̃2

i (s̃
1) = W yields the desired equilibrium, because if

the deviator withdraws and δ = 0, all firms j 6= i, j ∈ {1, ..., 4} are indifferent between withdrawing
and remaining active, making the above constructed pure strategies best responses. Furthermore,
the fact that Πi(σ̃2(s̃1)|s̃1) = −δ = 0 implies that (i) and (ii) are empty.

For each s̃1 ∈ S̃1, replace the original Nash equilibrium σ2(s̃1) with the pure-strategy equilibrium

57Any contract which leaves the good types indifferent to (uGE
g,h , uGE

g,l ) but is still chosen in the presence of
(uGE

g,h , uGE
g,l ), must be less high-powered and would violate incentive compatibility, given that (uGE

b , uGE
b ) is

still the best contract for bad types by assumption.
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σ̃2(s̃1).58 In some of the corresponding subgames, using σ̃2(s̃1) might already make the deviation
unprofitable, i.e. Πi(σ̃2(s̃1)|s̃1) ≤ 0. In fact, we show in the following that this is true in all Γd̂(s̃1),
s̃1 ∈ S̃1, if δ is sufficiently small. To prove this claim, we assume to the contrary that there are
still profitable deviations. The stage 2b equilibria reached after these deviations do then satisfy
the properties (i) and (ii) of Lemma 6. To save on notation, relabel the newly constructed stage
2b equilibria back to σ2(s̃1), for all s̃1 ∈ S1, and, as before, let S̃1 be the set of histories that still
correspond to profitable unilateral deviations from s1 by some firm i ∈ J . For each s̃1 ∈ S̃1, denote
by Ṽ (s̃1) the corresponding outcome in subgame Γd̂(s̃1), i.e. the quadruple representing the two
ex post types’ choices among the available contracts at the end of stage 2. Ṽ (s̃1) is well-defined
because σ2(s̃1) is in pure strategies.

Lemma 7. There exists a value δ > 0 such that, if 0 ≤ δ < δ, all outcomes Ṽ (s̃1), s̃1 ∈ S̃1, satisfy
the constraints of GE(d̂).

Proof. Consider any s̃1 ∈ S̃1. By definition of Ṽ (s̃1) as being the outcome in Γd̂(s̃1) under σ2(s̃1),
it satisfies constraints (9) and (10). (12) must also be satisfied, because the offer (ub, ub) remains
active by construction of σ2(s̃1).

Concerning (11), assume to the contrary that for some s̃1 ∈ S̃1, Ṽ (s̃1) violates (11), and let
Ŝ1 ⊆ S̃1 be the set of all such histories. As argued before, this implies losses for at least one active
firm in Γd̂(s̃1). Then, for each s̃1 ∈ Ŝ1, let π(s̃1) be the (negative) profits of the active firm with the
largest losses in Γd̂(s̃1). We are going to show that there exists a value δ > 0 such that π(s̃1) ≤ −δ

for all s̃1 ∈ Ŝ1, i.e. these losses are strictly bounded away from zero across all the histories s̃1 ∈ Ŝ1.
Consider any s̃1 ∈ Ŝ1. By assumption, Πi(σ2(s̃1)|s̃1) > 0, and the non-deviators j 6= i, j ∈ {1, 2}

choose σ2
j (s̃

1) = NW and earn Πj(σ2(s̃1)|s̃1) = 0. Thus it must hold that V GE satisfies (12) with
slack and for at least one j 6= i, j ∈ {3, 4}, σ2

j (s̃
1) = NW and Πj(σ2(s̃1)|s̃1) < 0 must hold. As

shown in the proof of Lemma 6, there are two cases in which this can happen. First, the deviator
i’s best contract for good types in s̃1 could be (uGE

g,h , uGE
g,l ) and he does not offer a contract that is

chosen by bad types in the presence of (uGE
b , uGE

b ). Denote by Ŝ1
1 ⊂ Ŝ1 the set of deviation histories

with this property. Second, the deviator’s best contract for good types could be strictly preferred
to (uGE

g,h , uGE
g,l ) by good types. Let Ŝ1

2 ⊂ Ŝ1 be the set of histories in which this is the case. Hence
Ŝ1

1 and Ŝ1
2 form a partition of Ŝ1.

Consider first a history s̃1 ∈ Ŝ1
1 . As we have shown in the proof of Lemma 6, the profits of an

active non-deviator j 6= i, j ∈ {3, 4} are then either β1 or β2, depending on whether one or both of
them are active non-deviators, with β1 < β2 < 0. Hence we know that π(s̃1) ≤ max{β1, β2} = β2 <

0 for all s̃1 ∈ Ŝ1
1 . Consider next a history s̃1 ∈ Ŝ1

2 after which active non-deviators j 6= i, j ∈ {3, 4}
obtain only bad types. They earn πh(uGE

b , uGE
b ) < 0 with each unit mass of bad types agents that

they obtain. Given that all bad types spread equally among at most three (and thus finitely many)

58If there are several equilibria that all satisfy the properties in Lemma 6 in a subgame Γd̂(s̃1) for s̃1 ∈ S̃1,
σ̃2(s̃1) is just an arbitrary one of them.
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firms, the losses π(s̃1) are strictly bounded away from zero across all s̃1 ∈ Ŝ1
2 . Hence there exists a

value β3 < 0 such that π(s̃1) ≤ β3 for all s̃1 ∈ Ŝ1
2 .

Putting the previous results together, we obtain that π(s̃1) ≤ −δ := max{β2, β3} < 0 for all
s̃1 ∈ Ŝ1, i.e. whenever the outcome after a profitable deviation violates (11), a firm earns losses
larger or equal to δ in the corresponding stage 2b Nash equilibrium. But this is a contradiction if
0 ≤ δ < δ, because the firm would strictly prefer to withdraw, which implies our claim.

Hence if withdrawal costs are sufficiently small, the outcome after any profitable deviation must
satisfy the constraints of GE(d̂). We next show that the outcome cannot be a solution to GE(d̂).

Lemma 8. If 0 ≤ δ < δ, it holds that Ṽ (s̃1) 6= V GE for all s̃1 ∈ S̃1.

Proof. Assume to the contrary Ṽ (s̃1) = V GE for some s̃1 ∈ S̃1. If Πi(σ2(s̃1)|s̃1) > 0, it must be true
that V GE satisfies (12) with slack, the deviator i has offered (uGE

g,h , uGE
g,l ) but no contract chosen by

bad types in the presence of (uGE
b , uGE

b ), and σ2
j (s̃

1) = NW for at least one j 6= i, j ∈ {3, 4}. But
then Πj(σ2(s̃1)|s̃1) ≤ −δ, as shown in the proof of Lemma 7, which cannot occur in equilibrium if
δ < δ.

We thus know that, if 0 ≤ δ < δ, after any profitable deviation history s̃1 ∈ S̃1 the outcome
Ṽ (s̃1) in Γd̂(s̃1) under σ2(s̃1) must satisfy the constraints of GE(d̂) but is not a solution to GE(d̂).
Hence good types are strictly worse off in Ṽ (s̃1) than in V GE , which requires that σ2

j (s̃
1) = W

∀j 6= i, j ∈ {3, 4}. But if some firm j 6= i, j ∈ {3, 4} remained active instead, it would earn
non-negative profits Πj(NW,σ2

−j(s̃
1)|s̃1) ≥ 0. First, it would always obtain the good types. Then,

even if it obtained all bad types (in contract (uGE
b , uGE

b )), this ensures Πj(NW,σ2
−j(s̃

1)|s̃1) ≥ 0.
Hence remaining active is a best response (even unique if δ > 0), contradicting that σ2

j (s̃
1) = W ,

by construction of σ2(s̃1). This final contradiction shows that there cannot be profitable deviations
if 0 ≤ δ < δ.

A.4 Proof of Lemma 3

Property (i). We will show that the solution V GE(d̂) to GE(d̂) is continuous in d̂ on (0,∞). It then
follows that D(d̂) is continuous as well. From the proof of Lemma 2 we know that the solution to
GE(d̂) for d̂ ∈ (0,∞) can be found by solving the simplified problem (32):

uGE
b (d̂) = arg max

ub∈[umin,umax(d̂)]
(1− pg)ub + (pg − pb)H(ub, d̂), (33)

where umax(d̂) = U(E[ỹ|d̂]), and for given d̂, the function H is continuously differentiable, strictly
decreasing and strictly concave in ub on [umin, umax(d̂)].59 Let F = (0,∞), U = [umin, U(pgyh+(1−

59The dependency of umax(d̂) and H(ub, d̂) on d̂ has been suppressed in earlier proofs.
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pg)yl)], and C(d̂) = [umin, umax(d̂)] ⊂ U . Clearly, the correspondence C : F ⇒ U is compact-valued
and continuous. Define Z : U × F → R by

Z(ub, d̂) =

{
H(ub, d̂) if ub ≤ umax(d̂),

umax(d̂) if ub > umax(d̂).
(34)

The function Z is continuous on U × F , because H is continuous in d̂ and in ub ∈ [umin, umax(d̂)],
H(umax(d̂), d̂) = umax(d̂) holds, and umax(d̂) is continuous in d̂. We can now rewrite the maximiza-
tion problem as

uGE
b (d̂) = arg max

ub∈C(d̂)
(1− pg)ub + (pg − pb)Z(ub, d̂), (35)

and Berge’s maximum principle implies that uGE
b (d̂) is continuous. Then, uGE

g,h (d̂) = Z(uGE
b (d̂), d̂)

and uGE
g,h (d̂) = (uGE

b (d̂)− pbu
GE
g,h (d̂))/(1− pb) are continuous as well.

Property (ii) Consider first the case where d̂ → 0. We will show that, as d̂ → 0, constraint (12)
must eventually become binding in V GE(d̂), i.e. uGE

b (d̂) = umin for d̂ small enough. Consider the
slope of the objective in (33), evaluated at ub = umin. Using the derivative of H with respect to ub,
given in (30), the condition that the objective is weakly decreasing already in ub = umin (which is
then the solution to (33) due to strict concavity), can be rearranged to

(1−G(d̂))(pg−pb)Φ′(umin) ≥ G(d̂)(1−pg)pg

[
Φ′(H(umin, d̂))− Φ′

(
umin − pbH(umin, d̂)

1− pb

)]
. (36)

Fixing ub = umin, the budget constraint (11) can be simplified to

pgΦ(H(umin, d̂)) + (1− pg)Φ

(
umin − pbH(umin, d̂)

1− pb

)
= pgyh + (1− pg)yl,

which implies that H(umin, d̂) is independent of d̂ and satisfies H(umin, d̂) > umin. Hence the LHS of
(36) converges to a strictly positive value as d̂ → 0, while the RHS converges to zero. Hence (12) must
eventually become binding, so that limd̂→0 uGE

g,h (d̂) = H(umin, d̂) > umin, and limd̂→0 uGE
g,l (d̂) < umin

(the latter by incentive compatibility). Hence we have limd̂→0(u
GE
g,h (d̂)−uGE

g,l (d̂)) > 0, which implies
that limd̂→0 D(d̂) > 0.

Consider now the case where d̂ → ∞. From the same arguments as above it follows that (12)
must become slack for sufficiently large value of d̂, because (36) will eventually be violated. Observe
also that ub = umax(d̂) can never be a solution to (33), for any d̂ ∈ (0,∞), as this would imply
ug,h = H(umax(d̂), d̂) = umax(d̂) = ub and ug,l = ub, contradicting that V GE(d̂) satisfies (9) with
slack according to Lemma 2. Hence (33) must have an interior solution for large enough d̂. Again
using the derivative of H with respect to ub from (30), the necessary and sufficient first order
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condition for (33) can then be rearranged to

G(d̂)

1−G(d̂)
=

Φ′(uGE
b (d̂))

Φ′(uGE
g,h (d̂))− Φ′(uGE

g,l (d̂))

pg − pb

pg(1− pg)
. (37)

Clearly, uGE
b (d̂) is bounded below by umin and above by umax(d̂) = U(E[ỹ|d̂]). Since umax(d̂) itself is

bounded above by U(pgyh+(1−pg)yl), it must be that uGE
b (d̂) ∈ [U(pbyh+(1−pb)yl), U(pgyh+(1−

pg)yl)] for all d̂ ∈ (0,∞). Since limd̂→∞(G(d̂)/(1−G(d̂))) = ∞ while Φ′(uGE
b (d̂)) ∈ [Φ′(U(pbyh+(1−

pb)yl)),Φ′(U(pgyh+(1−pg)yl))] for all d̂ ∈ (0,∞), we must have limd̂→∞
(
Φ′(uGE

g,h (d̂))− Φ′(uGE
g,l (d̂))

)
=

0, since otherwise the first-order condition (37) would be violated for large d̂. Assume limd̂→∞ uGE
g,h (d̂) =

+∞ (−∞). Then, incentive compatibility (10) requires limd̂→∞ uGE
g,l (d̂) = −∞ (+∞), and the de-

nominator on the RHS of (37) does not go to zero. Therefore, limd̂→∞(uGE
g,h (d̂)−uGE

g,l (d̂)) = 0 has to
hold (because Φ′ is strictly increasing), i.e. the good types’ contract converges towards full coverage.
This implies limd̂→∞D(d̂) = 0.

Property (iii). Assume that condition (14) (d (Φ′′(u)/Φ′(u)) /du ≥ 0) is satisfied. Observe that
this implies convexity of Φ′. We will now proceed in several steps.

First, we will show that under convexity of Φ′ (and thus under (14)), both pgu
GE
g,h (d̂) + (1 −

pg)uGE
g,l (d̂) and uGE

b (d̂) are weakly increasing in d̂, and strictly so if (12) is slack. As for pgu
GE
g,h (d̂)+

(1− pg)uGE
g,l (d̂), this holds even without convexity of Φ′. Fix a value d̂0 ∈ (0,∞) and let d̂ = d̂0 + δ

for any δ > 0. In GE(d̂), only the resource constraint (11) is affected. Straightforward calculations,
using the fact that V GE(d̂0) satisfies (11) for d̂0 with equality, reveal that V GE(d̂0) is still feasible
under d̂ iff

(pg − pb)(yh − yl)−
[
pgΦ(uGE

g,h (d̂0)) + (1− pg)Φ(uGE
g,l (d̂0))− Φ(uGE

b (d̂0))
]
≥ 0, (38)

and satisfies the budget constraint with slack iff the inequality is strict. But the binding constraint
(11) can be rearranged to

G(d̂0)
[
pgΦ(uGE

g,h (d̂0)) + (1− pg)Φ(uGE
g,l (d̂0))− Φ(uGE

b (d̂0))− (pg − pb)(yh − yl)
]

+ Φ(uGE
b (d̂0)) =

pbyh + (1− pb)yl,

which together with the fact that Φ(uGE
b (d̂0)) ≥ pbyh + (1 − pb)yl from (12) implies that (38) is

always satisfied, and as a strict inequality whenever Φ(uGE
b (d̂0)) > pbyh + (1− pb)yl. In this latter

case, the optimal value of the objective under d̂ must be strictly larger than under d̂0, as argued in
the proof of Lemma 1. Otherwise, given that the old contracts V GE(d̂0) are still feasible under d̂, the
optimal value of the objective cannot decrease. Now consider the bad type’s utility uGE

b (d̂). If (12)
is binding, it is given by uGE

b (d̂) = U(pbyh + (1− pb)yl) and is independent of d̂. Assume then that
(12) is slack, such that uGE

b (d̂) satisfies the first-order condition (37). To arrive at a contradiction,
suppose we increase d̂ and uGE

b (d̂) decreases weakly. The binding self-selection constraint (10) can
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be rearranged to

pgu
GE
g,h (d̂) + (1− pg)uGE

g,l (d̂)− uGE
b (d̂) = (pg − pb)(uGE

g,h (d̂)− uGE
g,l (d̂)).

Given that pgu
GE
g,h (d̂) + (1 − pg)uGE

g,l (d̂) strictly increases in d̂, as shown above, the term uGE
g,h (d̂) −

uGE
g,l (d̂) must also be strictly increasing. If Φ′ is convex, this implies that

Φ′(uGE
g,h (d̂))− Φ′(uGE

g,l (d̂))

is increasing in d̂, given that uGE
g,h (d̂) and uGE

g,l (d̂) cannot both decrease. Collecting results, we have
that, by assumption, uGE

b (d̂) and hence Φ′(uGE
b (d̂)) weakly decreases, while Φ′(uGE

g,h (d̂))−Φ′(uGE
g,l (d̂))

strictly increases. But this is a contradiction to (37), as it implies that the LHS of (37) strictly
increases but the RHS strictly decreases. Hence uGE

b (d̂) is strictly increasing in d̂ whenever (12) is
slack.

Second, if (12) is slack and uGE
b (d̂) is strictly increasing at some level of d̂, the same clearly holds

for all d̂′ > d̂. Together with the previous result that (12) must be binding in V GE(d̂) for sufficiently
small and slack for sufficiently large values of d̂, it follows that there exists a value d̃ ∈ (0,∞) such
that for all d̂ ≤ d̃, constraint (12) will be binding in V GE(d̂) and neither V GE(d̂) nor D(d̂) change
in d̂, while for all d̂ > d̃, (12) is slack and uGE

b (d̂) is strictly increasing in d̂.
Third, and finally, we are going to show that, for d̂ > d̃, uGE

g,h (d̂) − uGE
g,h (d̂) and thus D(d̂) are

strictly decreasing in d̂. As d̂ > d̃ grows, the LHS of the first order condition (37) grows, and so
must the RHS. The condition that the derivative of the RHS of (37) with respect to d̂ is strictly
positive can be rearranged to

Φ′′(ub)
Φ′(ub)

>
Φ′′(ug,h)

u′g,h

u′b
− Φ′′(ug,l)

u′g,l

u′b
Φ′(ug,h)− Φ′(ug,l)

,

where both the dependency on d̂ and the superscript GE have been suppressed for notational
convenience, and primes denote partial derivatives of utilities with respect to d̂.60 To obtain a
contradiction, suppose that u′g,h ≥ u′g,l. We want to find a condition under which the above
inequality must be violated, that is, under which

Φ′′(ub)
Φ′(ub)

≤
Φ′′(ug,h)

u′g,h

u′b
− Φ′′(ug,l)

u′g,l

u′b
Φ′(ug,h)− Φ′(ug,l)

. (39)

Since u′b = pbu
′
g,h + (1 − pb)u′g,l, we must have u′g,h/u′b ≥ 1 and u′g,l/u′b ≤ 1 given the assumption

60It is straightforward to show that uGE
b (d̂), uGE

g,h (d̂) and uGE
g,l (d̂) are continuously differentiable if d̂ > d̃,

given the properties of the function H(ub, d̂) used in (33), and the first order condition (37) for an interior
solution. The derivation of the inequality makes use of the result that u′b > 0.
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u′g,h ≥ u′g,l. Hence (39) is implied if

Φ′′(ub)
Φ′(ub)

≤ Φ′′(ug,h)− Φ′′(ug,l)
Φ′(ug,h)− Φ′(ug,l)

. (40)

This can be rearranged to

Φ′(ug,h)Φ′(ub)
[
Φ′′(ub)
Φ′(ub)

− Φ′′(ug,h)
Φ′(ug,h)

]
+ Φ′(ug,l)Φ′(ub)

[
Φ′′(ug,l)
Φ′(ug,l)

− Φ′′(ub)
Φ′(ub)

]
≤ 0.

Since ug,l < ub < ug,h, this is always satisfied under condition (14), which yields the desired
contradiction. This shows that, if (14) is satisfied, D(d̂) must be strictly decreasing in d̂ for d̂ > d̃.

A.5 Proof of Theorem 4

Since any full commitment outcome V ∗ ∈ ΩFC is a solution to FC, it must solve the corresponding
necessary first-order condition. Using Lemma 5 and omitting lengthy but straightforward algebraic
manipulations, we obtain

G(d̂∗)
1−G(d̂∗)

=
pg − pb

pg(1− pg)

[
Φ′(u∗b)

Φ′(u∗g,h)− Φ′(u∗g,l)

+
g(d̂∗)

1−G(d̂∗)

Ψ(u∗b , u
∗
g,h, u∗g,l)(1 + µ∗Φ′(u∗b))

Φ′(u∗g,h)− Φ′(u∗g,l)

− G(d̂∗)
1−G(d̂∗)

µ∗Φ′(u∗b)
pg − pb

pg(1− pb)Φ′(u∗g,h)− (1− pg)pbΦ′(u∗g,l)
Φ′(u∗g,h)− Φ′(u∗g,l)

]
, (41)

where Ψ(u∗b , u
∗
g,h, u∗g,l) ≡ (pg − pb)(yh − yl)− [pgΦ(u∗g,h) + (1− pg)Φ(u∗g,l)− Φ(u∗b)] ≥ 0 is the cross-

subsidization from good to bad types, µ∗ ≥ 0 is the Lagrange multiplier on constraint (25) and

d̂∗ = (pg − pb)(u∗g,h − u∗g,l). (42)

Note also that u∗b = pbu
∗
g,h + (1− pb)u∗g,l by constraint (23) and Lemma 5.

As shown in the proof of Lemma 3, for any given d̂ ∈ (0,∞), V GE(d̂) follows from the solution
of the simple strictly convex maximization problem (32). We obtain the necessary and sufficient
first-order condition

G(d̂)

1−G(d̂)
=

pg − pb

pg(1− pg)

[
Φ′(uGE

b (d̂))

Φ′(uGE
g,h (d̂))− Φ′(uGE

g,l (d̂))

− G(d̂)

1−G(d̂)

µ(d̂)Φ′(uGE
b (d̂))

pg − pb

pg(1− pb)Φ′(uGE
g,h (d̂))− (1− pg)pbΦ′(uGE

g,l (d̂))

Φ′(uGE
g,h (d̂))− Φ′(uGE

g,l (d̂))

]
(43)

with µ(d̂) ≥ 0 as Lagrange multiplier on constraint (12). In particular, this holds for the solution

53



V GE(d̂NC) for the interior fixed point d̂NC > 0.
(i). If V ∗ is such that (25) binds, then Ψ(u∗b , u

∗
g,h, u∗g,l) = 0. A comparison of (41) and (43) then

reveals that d̂∗, (u∗b , u
∗
g,h, u∗g,l) and µ∗ also solve (43), so V ∗ = V GE(d̂∗). Then, d̂∗ > 0 is a fixed

point of D by (42), so that d̂∗ = d̂NC and the equilibrium outcomes with and without commitment
fall together.

(ii). If V ∗ is such that (25) does not bind, we have µ∗ = 0 and Ψ(u∗b , u
∗
g,h, u∗g,l) > 0. (41) then

implies that d̂∗ and (u∗b , u
∗
g,h, u∗g,l) are such that

G(d̂∗)
1−G(d̂∗)

>
pg − pb

pg(1− pg)
Φ′(u∗b)

Φ′(u∗g,h)− Φ′(u∗g,l)
(44)

and d̂∗ is given by (42). On the other hand, (43) and µ(d̂) ≥ 0 imply that, for any d̂ ∈ (0,∞),

G(d̂)

1−G(d̂)
≤ pg − pb

pg(1− pg)
Φ′(uGE

b (d̂))

Φ′(uGE
g,h (d̂))− Φ′(uGE

g,l (d̂))
(45)

and, for the fixed point d̂NC > 0,

d̂NC = (pg − pb)(uGE
g,h (d̂NC)− uGE

g,l (d̂NC)). (46)

Fix d such that
(pg − pb)(uGE

g,h (d)− uGE
g,l (d)) = d̂∗. (47)

We first show that such a value d ∈ (0,∞) exists by demonstrating that

(pg − pb)(uGE
g,h (d̃)− uGE

g,l (d̃)) > d̂∗, (48)

where d̃ is the critical value defined in Lemma 3. Note that uGE
g,h (d̃) > uGE

g,l (d̃),

pgu
∗
g,h + (1− pg)u∗g,l ≥ pgu

GE
g,h (d̃) + (1− pg)uGE

g,l (d̃) (49)

by Lemma 5 and

pgΦ(u∗g,h) + (1− pg)Φ(u∗g,l) < pgΦ(uGE
g,h (d̃)) + (1− pg)Φ(uGE

g,l (d̃)), (50)

since (25) does not bind in V ∗. Note first that (49) and (50) rule out the two cases u∗g,h ≥ uGE
g,h (d̃) ∧

u∗g,l ≥ uGE
g,l (d̃) and u∗g,h ≤ uGE

g,h (d̃) ∧ u∗g,l ≤ uGE
g,l (d̃). Next, let us show that the case

u∗g,h > uGE
g,h (d̃) ∧ u∗g,l < uGE

g,l (d̃) (51)
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is also impossible. Consider all contracts (u∗g,h, u∗g,l) that satisfy (51) and

pgu
∗
g,h + (1− pg)u∗g,l = pgu

GE
g,h (d̃) + (1− pg)uGE

g,l (d̃).

Hence, we can write u∗g,h = uGE
g,h (d̃) + ε and u∗g,l = uGE

g,l (d̃) − εpg/(1 − pg) with ε > 0. Then the
average cost of these contracts is

El(ε) = pgΦ
(
uGE

g,h (d̃) + ε
)

+ (1− pg)Φ
(

uGE
g,l (d̃)− ε

pg

1− pg

)

with E′
l(ε) > 0 for all ε > 0 since uGE

g,h (d̃) > uGE
g,l (d̃). Thus (50) must be violated for all contracts

that satisfy (49) and (51). The only remaining case therefore is u∗g,h < uGE
g,h (d̃) ∧ u∗g,l > uGE

g,l (d̃),
which implies u∗g,h − u∗g,l < uGE

g,h (d̃) − uGE
g,l (d̃) and thus (42) as claimed. Then, by Lemma 3, there

exists a unique value of d > d̃ such that (47) holds.
It is straightforward to see that (47) implies u∗b = uGE

b (d), u∗g,h = uGE
g,h (d) and u∗g,l = uGE

g,l (d).
This follows from the fact that (u∗b , u

∗
g,h, u∗g,l) and (uGE

b (d), uGE
g,h (d), uGE

g,l (d)) solve the identical
resource constraint given d̂∗, both satisfy (23) with equality and are such that u∗g,h − u∗g,l =

uGE
g,h (d)− uGE

g,l (d) by (42) and (47). Then inequalities (44) and (45) imply

G(d)
1−G(d)

≤ pg − pb

pg(1− pg)
Φ′(uGE

b (d))
Φ′(uGE

g,h (d))− Φ′(uGE
g,l (d))

=
pg − pb

pg(1− pg)
Φ′(u∗b)

Φ′(u∗g,h)− Φ′(u∗g,l)
<

G(d̂∗)
1−G(d̂∗)

and therefore d < d̂∗. To obtain a contradiction, suppose d̂∗ ≤ d̂NC . Then we have

d̂∗ = (pg − pb)(uGE
g,h (d)− uGE

g,l (d))

> (pg − pb)(uGE
g,h (d̂∗)− uGE

g,l (d̂∗))

≥ (pg − pb)(uGE
g,h (d̂NC)− uGE

g,l (d̂NC)) = d̂NC ,

where the first equality follows from (47), the first inequality follows from d̃ < d < d̂∗ and the fact
that (pg−pb)(uGE

g,h (d̂)−uGE
g,l (d̂))) is strictly decreasing in d̂ > d̃ by Lemma 3 if d[Φ′′(u)/Φ′(u)]/du ≥ 0,

the second inequality follows from the assumption that d̂∗ ≤ d̂NC and again Lemma 3, and the last
equality follows from the fixed point condition (46). This establishes the desired contradiction, and
hence d̂∗ > d̂NC . The result that u∗g,h − u∗g,l > uGE

g,h (d̂NC) − uGE
g,l (d̂NC) immediately follows from

d̂∗ > d̂NC and equations (42) and (46).
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B Appendix (Not for Print)

B.1 Proof of Lemma 5

We first show that the statement about the constraints has to be true, that there must exist a strictly
positive mass of both ex post types, and that the bad types’ utility will not be output-dependent
in any solution V FC = (uFC

b,h , uFC
b,l , uFC

g,h , uFC
g,l ) to the problem, if it exists. We then prove that the

problem does have a solution.
Constraint (24). Assume that V = (ub,h, ub,l, ug,h, ug,l) ∈ V satisfies all constraints, and (24)

with slack. Consider Ṽ = (ub,h + ε1, ub,l + ε2, ug,h + ε3, ug,l + ε4) with εi, i = 1, ..., 4, such that

1− pg

pg
(ε2 − ε4) ≤ ε3 − ε1 ≤ 1− pb

pb
(ε2 − ε4),

ε1 ≥ ε2 > 0 and ε3 ≥ ε4 > 0. By the assumptions on εi, i = 1, ..., 4, Ṽ ∈ V, Ṽ satisfies (22), (23)
and (25) and Ṽ leads to a strictly increased value of (21). To see that a set of εi, i = 1, ..., 4, with
the required properties always exists, start by fixing any ∆24 ∈ R+ and note that since pg > pb,
there exists a ∆31 ∈ R+ such that

1− pg

pg
∆24 ≤ ∆31 ≤ 1− pb

pb
∆24.

Next, fix any ε2, ε4 > 0 such that ε2 − ε4 = ∆24. Clearly, it is then always possible to find ε1, ε3 > 0

such that ε1 ≥ ε2, ε3 ≥ ε4 and ε3 − ε1 = ∆31, which proves the claim. Finally, continuity of G(.)

and Φ(.) implies that (24) is still satisfied for εi sufficiently small, so that V was not a solution to
FC.

d̂FC ∈ (0,∞). The fact that d̂FC < ∞ in any solution immediately follows from constraints
(24), (25) and our assumption that g(d) > 0 for all d ≥ 0, which implies that there exist agents
with arbitrarily high effort cost. Next, we show that d̂FC > 0 in any solution. Assume the contrary,
i.e. suppose we have a solution V = (ub,h, ub,l, ug,h, ug,l) ∈ V such that d̂ ≤ 0. By the definition of
d̂, this implies

pgug,h + (1− pg)ug,l ≤ pbub,h + (1− pb)ub,l. (52)

Combining this with constraint (22) yields pgub,h + (1 − pg)ub,l ≤ pbub,h + (1 − pb)ub,l and, after
cancelling and rearranging terms, pb(ub,h−ub,l) ≥ pg(ub,h−ub,l). Since pb < pg and ub,h ≥ ub,l, this
can only be satisfied if ub,h = ub,l = ub for some ub. Hence, whenever we have a solution with d̂ ≤ 0,
the bad types must obtain full insurance. Substituting this in (52) and combining with constraint
(22) yields pgug,h +(1−pg)ug,l = ub, i.e. constraint (22) must be binding. Since (24) is also binding
by the above result, any solution V with d̂ ≤ 0 must therefore be such that Φ(ub) = pbyh+(1−pb)yl.
If V = (ub, ub, ug,h, ug,l) is such that ug,h > ug,l, consider first Ṽ = (ub, ub, ub, ub) ∈ V (otherwise,
we must have ug,h = ug,l and thus V = Ṽ due to the binding constraint (22)). Ṽ leaves the
objective (21) unchanged compared to V since (22) is binding in V , it trivially satisfies the incentive
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constraints, it satisfies constraint (25) given that V satisfies it, and it leaves (24) unaffected compared
to V since Ṽ still implies d̂ = 0. Now consider Ṽ (ε) = (ub, ub, ub + ε, ub − ε pb

1−pb
) ∈ V for ε ≥ 0,

which satisfies Ṽ (0) = Ṽ . By construction and the fact that pb < pg, Ṽ (ε) satisfies (22) and (23),
and the value of (21) is increased under Ṽ (ε) compared to Ṽ (and hence V ) for any ε > 0. (25) is
also satisfied by Ṽ (ε). Note that, under Ṽ (ε), d̂ is given by

d̂(ε) = pgε− 1− pg

1− pb
pbε.

Observe that E[ỹ|d̂] = yh − (1− pb)(yh − yl) + G(d̂)(pg − pb)(yh − yl) and let

E(ε) ≡ G(d̂(ε))
[
pgΦ(ub + ε) + (1− pg)Φ

(
ub − ε

pb

1− pb

)]

+(1−G(d̂(ε)))Φ(ub)− E[ỹ|d̂]

denote the average per capita expenditure minus resources in Ṽ (ε). Straightforward calculations
reveal that

dE(ε)
dε

∣∣∣∣
ε=0

= −g(0)(pg − pb)
(

pg − 1− pg

1− pb
pb

)
(yh − yl) < 0

by our assumption g(0) > 0 and pb < pg. Hence Ṽ (ε) satisfies (24) with slack for ε > 0 small enough
and V cannot be a solution to FC.

Output-independent utilities for bad types. Assume that V = (ub,h, ub,l, ug,h, ug,l) ∈ V with
ub,h > ub,l satisfies all constraints, and (24) with equality. Define ũ = pbub,h + (1 − pb)ub,l and
consider Ṽ = (ũ, ũ, ug,h, ug,l) ∈ V. By construction, Ṽ satisfies (23) and (25), and the value of (21)
is the same under V and Ṽ . Since pg > pb and ub,h > ub,l, it follows that pgub,h + (1 − pg)ub,l >

pbub,h + (1− pb)ub,l = ũ = pgũ + (1− pg)ũ, so that Ṽ satisfies (22) as well, given that it is satisfied
by V . Moreover, by (26), Ṽ implies the same value for d̂ as V . Strict convexity of Φ implies that
pbΦ(ub,h) + (1 − pb)Φ(ub,l) > Φ(pbub,h + (1 − pb)ub,l) = Φ(ũ) = pbΦ(ũ) + (1 − pb)Φ(ũ), so that Ṽ

satisfies (24) with slack given d̂ ∈ (0,∞). From the previous argument, the value of the objective
can then be increased above its value for Ṽ and V , so that V was not a solution to FC.

Constraint (23). Let V = (ub, ub, ug,h, ug,l) ∈ V satisfy all constraints, and (24) with equality.
(22) and (23) together imply ug,h ≥ ub ≥ ug,l. Assume (23) is slack, which implies ug,h > ug,l.
Consider Ṽ (ε) = (ub, ub, ug,h − ε, ug,l + ε

pg

1−pg
), ε ≥ 0, which is an element of V for ε small enough,

and which satisfies Ṽ (0) = V . By construction, Ṽ (ε) satisfies (22) and (25), and the value of (21)
is the same under V and Ṽ (ε), for any ε ≥ 0. (23) is also satisfied by Ṽ (ε) for ε small enough. Let
Eg(ε) ≡ pgΦ(ug,h− ε) + (1− pg)Φ(ug,l + ε

pg

1−pg
) denote the per capita expenditure for good types in

Ṽ (ε). Straightforward calculations reveal that dEg(ε)/dε < 0 if 0 ≤ ε < (1− pg)(ug,h − ug,l). Note
that, for any ε ≥ 0, Ṽ (ε) implies the same d̂ as V by (26), so that for ε > 0 small enough, Ṽ (ε)

satisfies (24) with slack given d̂ ∈ (0,∞). With the above argument, V cannot be a solution to FC.
Constraint (22). Let V = (ub, ub, ug,h, ug,l) ∈ V satisfy all constraints, and (22) – (24) with
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equality. This implies that ug,h = ug,l = ub, and (26) implies d̂ = 0. The fact that this cannot be a
solution to FC then follows from the above proof that d̂ > 0 in any solution.

Existence. The previous results show that any solution to FC must be of the form V =

(ub, ub, ug,h, ug,l), and that (22) and (23) can be replaced by ub = pbug,h+(1−pb)ug,l, or equivalently
ug,l = (ub − pbug,h)/(1 − pb). Using this equation, the condition ug,h ≥ ug,l in the definition of V
can be reformulated as ug,h ≥ ub, or (ug,h, ub) ∈ I. We can therefore state the following modified
problem (FC’), which has the same solution as FC:

max
(ug,h,ub)∈I

(
1− pg

1− pb

)
ub +

(
pg − pb

1− pb

)
ug,h (53)

subject to the constraints

G(d̂)
[
pgΦ(ug,h) + (1− pg)Φ

(
ub − pbug,h

1− pb

)]
+ (1−G(d̂))Φ(ub)

−G(d̂)(pg − pb)(yh − yl) = yh − (1− pb)(yh − yl), (54)

ub ≥ U (pbyh + (1− pb)yl) , (55)

where (54) is the binding resource constraint, (55) the cross-subsidization constraint, and d̂ is given
by

d̂ =
pg − pb

1− pb
(ug,h − ub). (56)

We prove existence by verifying the conditions of the Weierstrass theorem. Clearly, the objective
function in (53) is continuous. Denote the constraint set by S, i.e. let S be the set of pairs (ug,h, ub)

such that (ug,h, ub) ∈ I and the constraints (54) to (56) are satisfied. S is closed by continuity of Φ

and G and the fact that the constraints in the definition of I and (55) are weak inequalities.
We next prove boundedness of S. S is obviously bounded below in terms of both ug,h and ub by

(55) and the constraint ug,h ≥ ub from (ug,h, ub) ∈ I. Hence, all that remains to be proven is the
fact that S is bounded above with respect to both ug,h and ub. Let us start with fixing an arbitrary
ug,h ≥ U (pbyh + (1− pb)yl). Then the set of values of ub such that (ug,h, ub) ∈ S is bounded above
since ub ≤ ug,h from (ug,h, ub) ∈ I. Next, fix some ub ≥ U (pbyh + (1− pb)yl). The set of values of
ug,h such that (ug,h, ub) ∈ S is bounded above since (54) must be violated for sufficiently high ug,h.
To see this, denote the square-bracketed term on the LHS of (54) by Λ(ug,h, ub). Using the fact that
pb < pg, it is straightforward to show that Λ(ug,h, ub) is strictly increasing and strictly convex in ug,h

for all ug,h ≥ ub. Since d̂ is non-decreasing in ug,h by (56), it must be that the LHS of (54) grows
without bound as ug,h →∞ for any given ub. Since the RHS of (54) is fixed and finite, (54) must be
violated for sufficiently high values of ug,h. Finally, let both ug,h →∞ and ub →∞ with ug,h ≥ ub.
First, we have Φ(ub) → ∞ for ub → ∞. Moreover, since pb < pg, it is straightforward to show
that Λ(ug,h, ub) is strictly increasing and strictly convex in both ug,h and ub for all (ug,h, ub) ∈ I.
We therefore must have Λ(ug,h, ub) → ∞ as ug,h → ∞ and ub → ∞ with ug,h ≥ ub. Together
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with G(d̂) ∈ [0, 1] for all (ug,h, ub), this shows that the LHS of (54) grows without bound as we
let ug,h → ∞ and ub → ∞ with ug,h ≥ ub. Since the RHS of (54) is fixed and finite, (54) must
be violated for sufficiently high ug,h and ub such that (ug,h, ub) ∈ I. This completes the proof of
boundedness of S, and hence existence of a solution follows from the Weierstrass theorem.

B.2 Proof of Proposition 5

As for Proposition 2, we proceed in two steps. First, we show that if δ > 0, the outcome of any
SPE of ΓFC must be a solution to FC. This establishes Ω∗(δ) ⊆ ΩFC for all δ > 0, the first part of
statement (i). We then show that, for any V FC ∈ ΩFC , there exists a critical value δ > 0 such that
V FC ∈ Ω∗(δ) for all δ < δ, including δ = 0. This establishes statement (ii), and also ΩFC ⊆ Ω∗(0),
the second part of statement (i).

Step 1. Fix a value of withdrawal cost δ > 0 and consider an SPE σ with outcome V ∗. Observe
first that σ2

j (s
1) = NW ∀j ∈ J , where s1 is the history induced by σ, i.e. the profile of stage 1a

offers. Otherwise, Πj(σ) = −δ < 0 for some j ∈ J , and deviating to σ̃1
j = ∅ would be profitable.

Observe also Πj(σ) = 0 for at least one j ∈ J \ {0}. Otherwise, if Πj(σ) > 0 ∀j ∈ J \ {0}, any one
of them, say i, could deviate to offering the contracts (u∗b,h + ε, u∗b,l + ε) and (u∗g,h + ε, u∗g,l + ε) in
stage 1a, for small ε > 0, and remain active after the deviation. Since σ2

j (s
1) = NW ∀j ∈ J , the

contracts available in addition to (u∗b,h + ε, u∗b,l + ε) and (u∗g,h + ε, u∗g,l + ε), at the end of stage 1b
after the deviation, are at most those available in the SPE,61 and all agents will choose one of the
deviation contracts. Also, the deviation contracts are incentive compatible, and induce the same
critical value d̂∗ as in V ∗, so that, for sufficiently small ε, the deviator could earn profits arbitrarily
close to

∑
j∈J Πj(σ) > Πi(σ), a contradiction.

We now show that the outcome V ∗ must satisfy the constraints of FC, and that it must maximize
the objective (21).

Constraints (22) and (23). Incentive-compatibility is satisfied by definition of V ∗.
Constraint (24). Assume to the contrary that V ∗ violates (24). The equilibrium critical value

d̂∗ is identical to the one given by (26) and used in (24), so that there must be at least one firm
j ∈ J \ {0} with σ2

j (s
1) = NW and Πj(σ) < 0.62 σ̃1

j = ∅ would be a profitable deviation, which
contradicts that V ∗ is an SPE outcome.

Constraint (25). Assume to the contrary that V ∗ violates (25), i.e. Φ(pbu
∗
b,h + (1 − pb)u∗b,l) <

pbyh + (1 − pb)yl. Let ũ = pbu
∗
b,h + (1 − pb)u∗b,l + ε, ε > 0, with ε sufficiently small to guarantee

Φ(ũ) < pbyh+(1−pb)yl. The contract (ũ, ũ) ∈ I then satisfies πb(ũ, ũ) = pbyh+(1−pb)yl−Φ(ũ) > 0,
i.e. it earns strictly positive profits if a positive mass of agents (who would become bad types) chooses
it. Consider a firm i ∈ J for which Πi(σ) = 0, which exists as shown above, and assume it deviates

61If some non-deviating firms randomize in the stage 1b subgame reached after the deviation, this statement
holds true for each possible outcome of the randomization.

62Clearly, Π0(σ) = 0 always holds.
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to σ̃1
i = {(ũ, ũ)} and remains active thereafter. Since σ2

j (s
1) = NW ∀j ∈ J , the contracts that are

available in addition to (ũ, ũ) at the end of stage 1b after the deviation are at most those available
in the SPE. Hence if some agents decide to become bad types after the deviation, they will choose
(ũ, ũ) and make the deviation strictly profitable. But there are always bad types as argued in the
proof of Lemma 5, which contradicts that V ∗ is an SPE outcome.

Maximization of (21). Assume that V ∗ satisfies all constraints of FC, but, to the contrary,
V ∗ /∈ ΩFC . Fix an arbitrary solution V FC ∈ ΩFC . Then pgu

FC
g,h + (1 − pg)uFC

g,l > pgu
∗
g,h +

(1 − pg)u∗g,l. For ε > 0 small enough, the contract (uFC
g,h − ε, uFC

g,l − ε) ∈ I then still satisfies
pg(uFC

g,h − ε) + (1− pg)(uFC
g,l − ε) > pgu

∗
g,h + (1− pg)u∗g,l. Suppose a firm i ∈ J for which Πi(σ) = 0

deviates to σ̃1
i = {(uFC

g,h − ε, uFC
g,l − ε), (uFC

b,h − ε, uFC
b,l − ε)}, with ε small enough as discussed, and

remains active thereafter. The contracts that are additionally available at the end of stage 1b after
the deviation are at most those available in the SPE, and thus if some agents decide to become
good types they will choose (uFC

g,h − ε, uFC
g,l − ε), given that (u∗g,h, u∗g,l) was optimal before. Bad types

weakly prefer (uFC
b,h − ε, uFC

b,l − ε) over (uFC
g,h − ε, uFC

g,l − ε), since V FC satisfies (23). Therefore, all
bad types either choose (uFC

b,h − ε, uFC
b,l − ε) or a contract offered by some other firm j 6= i.

We claim that the deviation is strictly profitable if there is a positive mass of good types in the
outcome after the deviation.63 Even if all bad types choose the contract (uFC

b,h − ε, uFC
b,l − ε) in this

outcome, then by construction the critical value d̂ is equal to d̂FC , the critical value in V FC , which
implies that the deviating firm i earns strictly positive profits.64 If the bad types choose some other
contract, firm i obtains only the good types and earns strictly positive profits as well. We finally
show that there must actually be a positive mass of good types in the deviation outcome. First, if the
bad types’ optimal contract after the deviation is (uFC

b,h −ε, uFC
b,l −ε), the critical value for effort choice

is equal to d̂FC > 0 by Lemma 5. Otherwise, the bad types’ optimal contract was already available
in the SPE, so they cannot be better off than in V ∗. On the other hand, potential good types are
strictly better off after the deviation. Note that d̂∗ = pgu

∗
g,h +(1− pg)u∗g,l− pbu

∗
b,h− (1− pb)u∗b,l ≥ 0

by incentive compatibility of V ∗, pg > pb, and u∗b,h ≥ u∗b,l. But if the good types’ utility strictly
increases while the bad types’ utility does not increase, the critical value d̂ after the deviation and
hence the share of good types must be strictly positive.

Step 2. For each V FC ∈ ΩFC , we construct an SPE with outcome V FC , which exists for sufficiently
small values of δ, including δ = 0.

In addition to the contracts in V FC , consider the contract (ub, ub) that pays the expected output
of bad types irrespective of actual output, so that ub = U(pbyh + (1− pb)yl). Clearly, this contract
is identical to (uFC

b,h , uFC
b,l ) if constraint (25) is binding in V FC , but the latter is strictly preferred

by bad types to (ub, ub) otherwise. We now construct an SPE σ of ΓFC in which σ1
j = {(ub, ub)}

63Again, if there is randomization after the deviation, the following arguments apply to each outcome that
occurs with positive probability.

64The contract (uFC
b,h − ε, uFC

b,l − ε) might have been offered by non-deviators as well, in which case not all
bad types choose firm i, but the statement about the critical value d̂ and the positive profits is still true.
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for j = 1, 2, σ1
j = {(uFC

b,h , uFC
b,l ), (uFC

g,h , uFC
g,l )} for j = 3, 4, and σ1

j = ∅ ∀j ≥ 5. Denote the induced
history by s1, and set σ2

j (s
1) = NW ∀j ∈ J . Whenever V FC satisfies (25) with slack, all agents will

then spread equally among firms j = 3, 4, which implies the critical value d̂FC and Πj(σ2(s1)|s1) = 0

∀j ∈ J . If (25) is satisfied with equality, the critical value is still d̂FC , bad types spread equally
among firms j = 1, ..., 4, while good types spread among firms 3 and 4 only. The fact that there
is no cross-subsidization in V FC again implies Πj(σ2(s1)|s1) = 0 ∀j ∈ J . σ2

j (s
1) = NW is thus

actually a best response for every firm in subgame ΓFC(s1), for any value of δ ≥ 0, and the outcome
of the SPE candidate is V FC . Any potentially profitable deviation has to take place at stage 1a.

Fix a value of δ ≥ 0. The companies’ strategies must form Nash equilibria in all off-equilibrium
path subgames ΓFC(s̃1), s̃1 ∈ S1, s̃1 6= s1. The fact that each subgame ΓFC(s̃1) is a finite normal
form game implies that a Nash equilibrium does exist in each of them, possibly in mixed strategies.
For each s̃1 ∈ S1, s̃1 6= s1, let σ2(s̃1) be such an equilibrium.65 Now consider those stage 1b subgames
ΓFC(s̃1) that can be reached after a profitable unilateral deviation, i.e. for which there exists a firm
i ∈ J such that s1 and s̃1 differ in the ith coordinate only, and where Πi(σ2(s̃1)|s̃1) > 0. Let S̃1

be the set of all histories that correspond to such subgames (suppressing the dependency on the
chosen stage 1b equilibria σ2(s̃1)).

Lemma 9. For each s̃1 ∈ S̃1, there exists a pure-strategy Nash equilibrium σ̃2(s̃1) in ΓFC(s̃1).
If Πi(σ̃2(s̃1)|s̃1) > 0, i.e. the deviation is still profitable under σ̃2(s̃1), then σ̃2(s̃1) satisfies that
(i) each non-deviator j 6= i, j ∈ {1, 2} plays σ̃2

j (s̃
1) = NW , and

(ii) each non-deviator j 6= i, j ∈ {3, 4} plays σ̃2
j (s̃

1) = NW in case of indifference, i.e. if
Πj(NW, σ̃2

−j(s̃
1)|s̃1) = Πj(W, σ̃2

−j(s̃
1)|s̃1).

Proof. We prove the lemma by constructing the equilibrium σ̃2(s̃1) from σ2(s̃1).
Consider first the case where δ > 0. In the given equilibrium σ2(s̃1), both the deviator i and

all non-deviators j 6= i, j ∈ {1, 2} remain active (with probability one). For the deviator, this is
because Πi(σ2(s̃1)|s̃1) > 0 by assumption. Given that the contract (ub, ub) always earns zero profits
(agents who choose it become bad types), for non-deviators among j ∈ {1, 2} remaining active even
dominates withdrawal strictly. The same holds for firms j 6= i, j ∈ {3, 4} if (25) is satisfied with
equality in V FC , because incentive compatibility and lack of cross-subsidization in V FC then always
implies zero profits when remaining active. Hence in that case σ2(s̃1) is already in pure strategies,
satisfies property (i), and (ii) is empty, so we have σ̃2(s̃1) = σ2(s̃1). If (25) is slack in V FC , but
Πj(NW,σ2

−j(s̃
1)|s̃1) 6= Πj(W,σ2

−j(s̃
1)|s̃1) for each non-deviator j 6= i, j ∈ {3, 4}, property (ii) is

also empty and σ2(s̃1) is in pure strategies, such that we also have σ̃2(s̃1) = σ2(s̃1).
Consider then the case that (25) is slack in V FC and Πj(NW,σ2

−j(s̃
1)|s̃1) = Πj(W,σ2

−j(s̃
1)|s̃1)

for at least one j 6= i, j ∈ {3, 4}. Assume first that i /∈ {3, 4} in s̃1. Let β1 be the (non-random)
payoff that one of firms j ∈ {3, 4} would obtain if it remained active while the other did not remain
active, and all other firms’ strategies were as in σ2(s̃1), hence pure. Let β2 be the analogous payoff

65If there is more than one equilibrium in a subgame ΓFC(s̃1), σ2(s̃1) is just an arbitrary one of them.
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if both j ∈ {3, 4} remained active, again keeping all other strategies from σ2(s̃1). Indifference of
(at least) one firm j ∈ {3, 4} in σ2(s̃1) implies that −δ = qβ1 + (1 − q)β2, where q ∈ [0, 1] is the
probability in σ2(s̃1) that the other one withdraws. It must therefore be the case that either β1 < 0

or β2 < 0 or both. This happens if and only if the active firm(s) among 3 and 4 obtain bad types
in (uFC

b,h , uFC
b,l ), which requires subsidization, but not enough good types in (uFC

g,h , uFC
g,l ) to break

even. Observe that the induced critical value d̂ is the same irrespective of whether one or both of
firms 3 and 4 remain active. Also, since (uFC

b,h , uFC
b,l ) is strictly preferred to (ub, ub) by bad types

in the present case, firms 1 and 2 do not obtain agents whenever at least one of firms 3 and 4 is
active. Hence losses for active firms j ∈ {3, 4} occur only if the deviator has offered a contract
which is chosen by (some) good types, in the presence of (uFC

g,h , uFC
g,l ), while (uFC

b,h , uFC
b,l ) is still the

best contract for bad types.
We can now distinguish two cases: first, the deviator i’s best contract for good types in s̃1 could

be (uFC
g,h , uFC

g,l ). In this case, the deviator did not also offer (uFC
b,h , uFC

b,l ) in s̃1, because this would
imply a critical value d̂FC and Πi(σ2(s̃1)|s̃1) = 0 (irrespective of σ2

j (s̃
1), j = 3, 4). Hence whenever

one or both firms j ∈ {3, 4} are active, all bad types move only to them,66 while all good types
spread equally between them and the deviator. The induced critical value is d̂FC , and the number
of good types that active firms j ∈ {3, 4} obtain is not large enough to break even, irrespective of
whether one or both of them are active, which implies β1 < 0 and β2 < 0. It is also straightforward
to show that β1 < β2, i.e. the individual losses are smaller if both j = 3, 4 are active and share
the losses. The second possible case is that the deviator i has offered a contract in s̃1 which is
strictly preferred to (uFC

g,h , uFC
g,l ) by good types.67 The active firm(s) j ∈ {3, 4} then obtain only

bad types (which always exist as argued before) and earn strictly negative profits, irrespective of
whether one or both of them are active. The losses are again smaller if they are shared, also implying
β1 < β2 < 0.

With these results, we can construct σ̃2(s̃1) from σ2(s̃1), under the assumption that Πj(NW,

σ2
−j(s̃

1)| s̃1) =Πj(W,σ2
−j(s̃

1)|s̃1) for at least one j 6= i, j ∈ {3, 4}. If i ∈ {3, 4}, set σ̃2
j (s̃

1) = NW ,
and σ̃2

k(s̃
1) = σ2

k(s̃
1) ∀k ∈ J , k 6= j. This simply amounts to choosing an alternative best response

for the indifferent player, keeping the strategies of all others. If i /∈ {3, 4}, set σ̃2
j (s̃

1) = NW for
both j = 3, 4, and again σ̃2

k(s̃
1) = σ2

k(s̃
1) ∀k ∈ J , k /∈ {3, 4}. The fact that β1 < β2 < 0 always

holds, as shown above, together with −δ = qβ1 + (1 − q)β2 for a given q ∈ [0, 1] implies β2 ≥ −δ.
The individual profits of firms j = 3, 4 when jointly remaining active (β2), still given all other
players’ strategies from σ2(s̃1), are weakly larger than −δ, making it indeed a best reply to remain
active. If σ̃2

i (s̃
1) = NW is now still a best response for the deviator, we have arrived at the desired

equilibrium, because σ̃2(s̃1) is a pure strategy Nash equilibrium in which all firms j 6= i, j ∈ {1, ..., 4}
66Even if the deviator has offered an output-dependent incentive contract that leaves bad types indifferent

to (uFC
b,h , uFC

b,l ), no bad type will choose it due to our tie-breaking assumptions.
67Any contract which leaves the good types indifferent to (uFC

g,h , uFC
g,l ) but is still chosen in the presence of

(uFC
g,h , uFC

g,l ), must be less high-powered and would violate incentive compatibility, given that (uFC
b,h , uFC

b,l ) is
still the best contract for bad types by assumption.
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remain active. If i’s unique best response is now withdrawal, set σ̃2
i (s̃

1) = W to arrive at the final
σ̃2(s̃1). It is a Nash equilibrium because σ̃2

j (s̃
1) = NW , as constructed above, is the unique best

response for firms j 6= i, j ∈ {3, 4} if the deviator withdraws. It is in pure strategies by construction,
and properties (i) and (ii) are empty due to Πi(σ̃2(s̃1)|s̃1) = −δ < 0.

Assume now that δ = 0. Construct σ̃2(s̃1) from σ2(s̃1) by first assuming that all j 6= i, j ∈ {1, 2}
play σ̃2

j (s̃
1) = NW , which is always a best response for them, and initially keep all other players’

strategies as in σ2(s̃1). Even if this constitutes a change of strategy from σ2(s̃1), the optimal behavior
of non-deviators j 6= i, j ∈ {3, 4} is clearly unaffected. If Πj(NW,σ2

−j(s̃
1)|s̃1) 6= Πj(W,σ2

−j(s̃
1)|s̃1)

for all j 6= i, j ∈ {3, 4}, indeed keep σ̃2
j (s̃

1) = σ2
j (s̃

1) for them. Otherwise, if Πj(NW,σ2
−j(s̃

1)|s̃1) =

Πj(W,σ2
−j(s̃

1)|s̃1) for at least one j 6= i, j ∈ {3, 4}, set σ̃2
j (s̃

1) = NW ∀j 6= i, j ∈ {3, 4}. A
similar argument as for the case δ > 0 implies that they then give best responses against the profile
constructed so far. If σ̃2

i (s̃
1) = NW is still a best response of the deviator, we have arrived at the

desired equilibrium. Clearly, σ̃2(s̃1) is in pure strategies, it has firms j 6= i, j ∈ {1, 2} remaining
active, and for any firm j 6= i, j ∈ {3, 4} we can have σ̃2(s̃1) = W only if Πj(NW, σ̃2

−j(s̃
1)|s̃1) <

Πj(W, σ̃2
−j(s̃

1)|s̃1), i.e. if there is no indifference. If, on the other hand, withdrawal is now the
unique best-response of the deviator, setting σ̃2

i (s̃
1) = W yields the desired equilibrium, because if

the deviator withdraws and δ = 0, all firms j 6= i, j ∈ {1, ..., 4} are indifferent between withdrawing
and remaining active, making the above constructed pure strategies best responses. Furthermore,
the fact that Πi(σ̃2(s̃1)|s̃1) = −δ < 0 implies that (i) and (ii) are empty.

For each s̃1 ∈ S̃1, replace the original Nash equilibrium σ2(s̃1) with the pure-strategy equilibrium
σ̃2(s̃1).68 In some of the corresponding subgames, using σ̃2(s̃1) might already make the deviation
unprofitable, i.e. Πi(σ̃2(s̃1)|s̃1) ≤ 0. In fact, we show in the following that this is true in all ΓFC(s̃1),
s̃1 ∈ S̃1, if δ is sufficiently small. To prove this claim, we assume to the contrary that there are
still profitable deviations. The stage 1b equilibria reached after these deviations do then satisfy
the properties (i) and (ii) of Lemma 9. To save on notation, relabel the newly constructed stage
1b equilibria back to σ2(s̃1), for all s̃1 ∈ S1, and, as before, let S̃1 be the set of histories that still
correspond to profitable unilateral deviations from s1 by some firm i ∈ J . For each s̃1 ∈ S̃1, denote
by Ṽ (s̃1) the corresponding outcome in subgame ΓFC(s̃1), i.e. the quadruple representing the two
ex post types’ choices among the available contracts at the end of stage 1b, and let d̃(s̃1) be the
induced critical value for effort choice. Ṽ (s̃1) and d̃(s̃1) are well-defined because σ2(s̃1) is in pure
strategies.

Lemma 10. There exists a value δ > 0 such that, if 0 ≤ δ < δ, all outcomes Ṽ (s̃1), s̃1 ∈ S̃1, satisfy
the constraints of FC.

Proof. Consider any s̃1 ∈ S̃1. By definition of Ṽ (s̃1) as being the outcome in ΓFC(s̃1) under σ2(s̃1),
it satisfies constraints (22) and (23). (25) must also be satisfied, because the offer (ub, ub) remains

68If there are several equilibria that all satisfy the properties in Lemma 9 in a subgame ΓFC(s̃1) for s̃1 ∈ S̃1,
σ̃2(s̃1) is just an arbitrary one of them.
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active by construction of σ2(s̃1).
Concerning (24), assume to the contrary that for some s̃1 ∈ S̃1, Ṽ (s̃1) violates (24), and let

Ŝ1 ⊆ S̃1 be the set of all such histories. As argued before, this implies losses for at least one active
firm in ΓFC(s̃1). Then, for each s̃1 ∈ Ŝ1, let π(s̃1) be the (negative) profits of the active firm
with the largest losses in ΓFC(s̃1). We are going to show that there exists a value δ > 0 such that
π(s̃1) ≤ −δ for all s̃1 ∈ Ŝ1, i.e. these losses are strictly bounded away from zero across all the
histories s̃1 ∈ Ŝ1.

Consider any s̃1 ∈ Ŝ1. By assumption, Πi(σ2(s̃1)|s̃1) > 0, and the non-deviators j 6= i, j ∈ {1, 2}
choose σ2

j (s̃
1) = NW and earn Πj(σ2(s̃1)|s̃1) = 0. Thus it must hold that V FC satisfies (25) with

slack, and for at least one j 6= i, j ∈ {3, 4} it must be true that σ2
j (s̃

1) = NW and Πj(σ2(s̃1)|s̃1) < 0.
As shown in the proof of Lemma 9, there are two cases in which this can happen. First, the deviator
i’s best contract for good types in s̃1 could be (uFC

g,h , uFC
g,l ) and he does not offer a contract that is

chosen by bad types in the presence of (uFC
b,h , uFC

b,l ). Denote by Ŝ1
1 ⊂ Ŝ1 the set of deviation histories

with this property. Second, the deviator i’s best contract for good types could be strictly preferred
to (uFC

g,h , uFC
g,l ) by good types. Let Ŝ1

2 ⊂ Ŝ1 be the set of histories in which this is the case. Hence
Ŝ1

1 and Ŝ1
2 form a partition of Ŝ1.

Consider first a history s̃1 ∈ Ŝ1
1 . As we have shown in the proof of Lemma 9, the profits of an

active non-deviator j 6= i, j ∈ {3, 4} are then either β1 or β2, depending on whether one or both of
them are active non-deviators, with β1 < β2 < 0. Hence we know that π(s̃1) ≤ max{β1, β2} = β2 <

0 for all s̃1 ∈ Ŝ1
1 . Consider next a history s̃1 ∈ Ŝ1

2 after which active non-deviators j 6= i, j ∈ {3, 4}
obtain only bad types. They earn πb(uFC

b,h , uFC
b,l ) < 0 with each unit mass of bad types agents that

they obtain. Given that all bad types spread equally among at most three (and thus finitely many)
firms, the losses π(s̃1) are strictly bounded away from zero across all s̃1 ∈ Ŝ1

2 whenever the share of
bad types 1−G(d̃(s̃1)) is strictly bounded away from zero. But this is the case, because the good
types’ utility must be bounded above across profitable deviation histories s̃1 ∈ Ŝ1

2 , which implies
that their share G(d̃(s̃1)) must be strictly bounded away from one. Hence there exists a value β3 < 0

such that π(s̃1) ≤ β3 for all s̃1 ∈ Ŝ1
2 .

Putting the previous results together, we obtain that π(s̃1) ≤ −δ := max{β2, β3} < 0 for all
s̃1 ∈ Ŝ1, i.e. whenever the outcome after a profitable deviation violates (24), a firm earns losses
larger or equal to δ in the corresponding stage 1b Nash equilibrium. But this is a contradiction to
subgame perfection if 0 ≤ δ < δ, because the firm would strictly prefer to withdraw, which implies
our claim.

Hence if withdrawal costs are sufficiently small, the outcome after any profitable deviation must
satisfy the constraints of FC. We next show that the outcome cannot be a solution to FC.

Lemma 11. If 0 ≤ δ < δ, it holds that Ṽ (s̃1) /∈ ΩFC for all s̃1 ∈ S̃1.

Proof. Assume to the contrary Ṽ (s̃1) ∈ ΩFC for some s̃1 ∈ S̃1. Given that solutions to FC can be
Pareto ranked as discussed in Section 5.3, there are three possible cases. If Ṽ (s̃1) is considered worse
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than V FC by both ex post types, having Ṽ (s̃1) as outcome after the deviation requires σ2
j (s̃

1) = W

∀j 6= i, j ∈ {3, 4}. Remaining active is, however, always a best-response for them in the presence of
outcome Ṽ (s̃1), which implies that they actually choose σ2

j (s̃
1) = NW in σ2(s̃1) by construction.

If, second, Ṽ (s̃1) = V FC , and Πi(σ2(s̃1)|s̃1) > 0, it must be true that V FC satisfies (25) with
slack, the deviator i has offered (uFC

g,h , uFC
g,l ) but no contract chosen by bad types in the presence

of (uFC
b,h , uFC

b,l ), and σ2
j (s̃

1) = NW for at least one j 6= i, j ∈ {3, 4}. But then Πj(σ2(s̃1)|s̃1) ≤ −δ,
as shown in the proof of Lemma 10, which cannot occur in equilibrium if δ < δ. Finally, if Ṽ (s̃1)

is preferred to V FC by all ex post types, it must have been offered by the deviator i, implying
Πi(σ2(s̃1)|s̃1) = 0.

We thus know that, if 0 ≤ δ < δ, after any profitable deviation history s̃1 ∈ S̃1 the outcome Ṽ (s̃1)

in ΓFC(s̃1) under σ2(s̃1) must satisfy the constraints of FC but is not a solution to FC. Hence good
types are strictly worse off in Ṽ (s̃1) than in V FC , which requires that σ2

j (s̃
1) = W ∀j 6= i, j ∈ {3, 4}.

But if some firm j 6= i, j ∈ {3, 4} remained active instead, it would earn non-negative profits
Πj(NW,σ2

−j(s̃
1)|s̃1) ≥ 0. First, if it obtained bad types (in contract (uFC

b,h , uFC
b,l )), the overall share

of good types would be G(d̂FC), and all good types would choose (uFC
g,h , uFC

g,l ). Even if firm j obtained
all bad types, this ensures Πj(NW,σ2

−j(s̃
1)|s̃1) ≥ 0. Otherwise, firm j obtains only the good types

(or no agents, if all agents decide to become bad types), also earning Πj(NW,σ2
−j(s̃

1)|s̃1) ≥ 0.
Hence remaining active is a best response (even unique if δ > 0), contradicting that σ2

j (s̃
1) = W ,

by construction of σ2(s̃1). This final contradiction shows that there cannot be profitable deviations
if 0 ≤ δ < δ.
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