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Abstract

As previously argued, the correlation between included and omitted regressors generally

causes inconsistency of standard estimators for count data models. Using a specific residual

function and suitable instruments, a consistent generalized method of moments estimator can

be obtained under conditional moment restrictions. This approach is extended here by fully

exploiting the model assumptions and thereby improving efficiency of the resulting estimator.

Empirical likelihood estimation in particular has favorable properties in this setting compared

to the two-step GMM procedure, which is demonstrated in a Monte Carlo experiment. The

proposed method is applied to the estimation of a cigarette demand function.
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1 Introduction

Regression models for count data have become a standard tool in empirical analyses with appli-

cations in all fields of economics. Examples include the number of patents applied for by a firm

(Hausman et al. 1984), the number of doctor visits (Pohlmeier and Ulrich 1995), the number of

children borne to a woman (Winkelmann and Zimmermann 1995), and the number of days a

worker is absent from his job (Delgado and Kniesner 1997).

Count data models should, in some way, incorporate the special feature of the dependent

variable y being a nonnegative integer. One possibility is to specify a conditional probability

model of y given a vector of observed explanatory variables x, such as in the Poisson regression

model. The Poisson model, although very popular in applied work, presumes that the researcher

is able to account for the full amount of individual heterogeneity just by including x. Additional

unobserved heterogeneity is not allowed for, unlike for example in the linear regression model,

where an additive error term captures such unobservable factors.

Various generalizations of the Poisson model have been proposed that account for unob-

served heterogeneity. Standard approaches employ mixture distributions, either parametrically

by introducing for example Gamma distributed unobservables (the negative binomial models),

or semiparametrically by leaving the mixing distribution unspecified (e.g., Gurmu et al. 1998).

Winkelmann (2003: Ch. 4.2) gives an overview. Mullahy (1997) extends the discussion to the

important case when statistical independence between observed and unobserved heterogeneity

fails. He focuses on the conditional expectation function, formally E(y|x, v), specified as the

exponential of a linear predictor x′β, with multiplicative unobserved heterogeneity v. Mullahy

(1997) points out that, given nonzero correlation between x and v, standard estimators like

Poisson pseudo maximum likelihood or non-linear least squares will generally be inconsistent

for β because the usual residual function will not be orthogonal to x. Also, a non-linear instru-

mental variables (IV) strategy based on this residual function will be inconsistent due to the

non-separability of the observable and the unobservable factors.

Fortunately, a simple transformation of the model yields a residual function, say ρ(y, x;β),

that is additively separable in the parametric structural part and the problematic unobservables,
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and the assumption of mean independence between the latter and instruments z can be used

to construct conditional moment restrictions of the form E[ρ(y, x;β)|z] = 0. As proposed by

Mullahy (1997), estimation can be based on the generalized method of moments (GMM) using

moment functions g(y, x, z;β) = a(z)ρ(y, x;β) for some function a(z), and the GMM estimator

will be consistent for β and asymptotically normally distributed. The resulting estimator is not

necessarily efficient, though, because the asymptotic variance depends on a(z).

The aim of this paper is to extend Mullahy’s (1997) approach using optimal instruments

a∗(z) that fully utilize the information given by the conditional moment restrictions. In this,

I follow Donald et al. (2003) who approximate conditional moment restrictions by a series of

unconditional moments using a general vector of approximating functions. From a theoretical

point of view, semiparametric efficiency is achieved as linear combinations of these functions may

well approximate the optimal instrument matrix of Chamberlain (1987) and as the dimension

of the vector is increased with the sample size. As a practical matter, I select the number of

unconditional moments according to the mean squared error criteria in Donald et al. (2005).

Clearly, the idea of using functions of the conditioning variables as additional instruments is

not new; for a non-technical discussion see Wooldridge (2001). In fact, one motivation of GMM

is that all possible information — as it is given by the conditional moment restrictions — can

be used in an efficient manner by choosing the “right” weighting matrix. A general vector of

approximating functions like the one employed here has the advantage of systematically using

the information at hand. If cautiously implemented, this will in general improve the efficiency

of the resulting estimator compared to a baseline where a(z) = z, or compared to any other

vague choice of a(z). On the downside, many approximating functions, and thus unconditional

moment conditions, may be needed to obtain the optimal estimator in practice.

Recent work on the finite-sample properties of GMM, however, emphasizes the poor per-

formance of the two-step procedure with increasing number of moment conditions, and several

alternatives have been proposed, for example the empirical likelihood (EL) estimator of Owen

(1988), Qin and Lawless (1994) and Imbens (1997). Other moment estimators exist as well (e.g.,

Hansen et al. 1996, Kitamura and Stutzer 1997, Imbens et al. 1998). Smith (1997) introduces
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the class of generalized empirical likelihood (GEL) estimators that include the forementioned

estimators as special cases, and asymptotic equality of GEL and GMM was shown. Further

studies by Newey and Smith (2004) and Imbens and Spady (2006) examine the higher order

properties of GEL and GMM estimators and evidence the relative advantage of EL compared to

two-step GMM in terms of higher order asymptotic bias and higher order efficiency (after bias

correction) in the case of increasing degree of overidentification.

The novelty of this paper is the application of the approximating functions to an inherently

non-linear IV model, first in a generated data experiment and then with real data in a model

for cigarette demand. The model and moment conditions will be laid out in the next section.

Section 3 briefly discusses EL and GMM estimation, and the moment selection criteria. Section 4

compares the properties of the estimators in a simulated data environment. The results indicate

that the EL estimator has indeed favorable properties in terms of bias and efficiency, as it was to

be expected from earlier theoretical results. Section 5 applies the method to estimate a cigarette

demand function similar to Mullahy (1997). Fully exploiting the model assumptions considerably

improves the efficiency of the estimators. For example, just by including the optimal vector of

approximating functions for one instrument, the t-statistic for the parameter of interest is more

than doubled compared to the baseline IV estimator. Section 6 concludes.

2 Count Data Models with Unobserved Heterogeneity

Let y denote a random variable with support being the non-negative integers, let x denote a

k × 1 vector of explanatory variables (including a constant), and let z denote a q × 1 vector of

instruments (q ≥ k) with properties to be defined below. Assume that n observations of (y, x, z)

form a random sample of the population, and suppose that the main objective is to estimate

the effect of elements of x on y.

The paper focuses on the relationship between y and x as summarized in the conditional

expectation function (CEF). Specifically, assume that the data-generating process is consistent

with the CEF

E(y|x, v;β) = exp(x′β)v (1)
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where β is the k × 1 vector of unknown parameters, and v = exp(u) > 0 is unobservable

to the researcher. Without loss of generality the normalization E(v) = 1 can be invoked as a

constant term is included in x. Note that observable and unobservable characteristics are treated

symmetrically in (1) because the CEF is log-linear in both x and u. The specific functional form

of the CEF might appear restrictive at first, but there is no a priori reason for x and u to enter

the CEF asymmetrically. Moreover, the linear index x′β is sufficiently flexible to approximate

any non-linear function in the regressors arbitrarily close, and the exponential function ensures

(1) to be positive, as required for a count dependent variable. Strictly speaking, it is not

necessary for (1) to be fulfilled that y is a count. What follows is equally relevant to any other

data-generating process consistent with such an exponential CEF.

The specification of the CEF in (1) implies the nonlinear regression model

y = exp(x′β)v + ε (2)

where the regression error ε has property E(ε|x, v) = 0, by construction. Windmeijer and

Santos Silva (1997) consider estimation of models like (2) in situations where some of the re-

gressors may be simultaneously determined with the dependent count. In this case, there is a

crucial distinction between additive and multiplicative (for that matter structural) errors, the

two otherwise being observationally equivalent (Wooldridge 1992). Grogger (1990) discusses the

additive approach and testing for exogeneity of the regressors using a Hausman-type test.

In the given context, it is natural to maintain the notation in (2) to distinguish between

regression error and unobservable characteristics, the latter not being accounted for in the

regression and potentially correlated with x. Mullahy (1997) gives conditions for consistent

estimation of β in such a model. In a nutshell, if v and x are mean independent, then pseudo

maximum likelihood (PML) estimation of the Poisson model is consistent for β (see Gourieroux

et al. 1984, Wooldridge 1997). Contrary to that, if mean independence fails, then PML will

generally be inconsistent, and estimation with instrumental variables based on appropriately

defined residuals is suggested alternatively. Mullahy (1997) imposes two key assumptions on

the instrument vector z. The first assumption is an independence condition that v and z must

be mean independent, formally E(v|z) = E(v). The second assumption imposes the restriction
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E(y|x, v, z) = E(y|x, v) which implies for the regression error that E(ε|x, z, v) = 0.

Let w = (y, x) to simplify notation. With the assumptions on z, conditional moment restric-

tions can be constructed via the residual function ρ(w;β) = y exp(−x′β)− 1 since

E[ρ(w;β)|z] = E[y exp(−x′β)− 1|z] = 0 (3)

by iterated expectations. As noted by Mullahy (1997), the crucial step in deriving such a residual

function is that v needs to be additively separable from x which can be achieved by dividing both

sides of equation (2) by exp(x′β). The conditional moment restriction is assumed to uniquely

identify the true parameter value β. Now let a(z) denote a matrix-valued function of z. It is

common practice to derive unconditional (population) moment restrictions from (3) as

E [a(z)ρ(w;β)] = 0

and the estimator of β is obtained as the solution to sample counterparts
∑

i a(zi)ρ(wi; β̂) = 0,

as it is applied for example in GMM or nonlinear IV estimation. Such a procedure, however,

is suboptimal for at least two reasons. First, the conditional moment restriction is stronger

than the unconditional one implying that an estimator based on the latter does not fully exploit

the available information. Second, the procedure is only valid under the presumption that a(z)

identifies β, which must not necessarily be so; see Dominguez and Lobato (2004).

A recent paper by Donald, Imbens, and Newey (2003) overcomes both problems considering

an approach directly based on the conditional moment restriction. Given the information in (3),

Chamberlain (1987) shows that an estimator with optimal instruments

a∗(z) = E[∂ρ(w;β)/∂β|z]{E[ρ(w;β)2|z]}−1

would achieve the semiparametric efficiency bound. In general, the estimator using optimal

instruments is not feasible as both expectations forming a∗(z) are unknown. Furthermore,

even if the functional form of the expectations were known, identification of β via a∗(z) may

fail, see Dominguez and Lobato (2004) for an example. Donald et al. (2003) use a series of

functions of z to form unconditional moment restrictions, and let the dimension K of the vector
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of approximating functions grow with the sample size. Let qK(z) denote such a vector. Under

certain regularity conditions, the sequence of unconditional moment restrictions

E[qK(z)ρ(w;β)] = 0 (4)

is equivalent to the conditional moment restriction in (3). Efficiency is established if linear

combinations of qK(z) can approximate a∗(z), with approximation error diminishing as K grows,

since the asymptotic variance of the optimal GMM estimator with instruments a∗(z) reaches

the semiparametric efficiency bound (Newey 1993).

Donald et al. (2003) suggest using splines as approximating functions. If z is univariate, the

s-th order spline with knots t1, . . . , tK−s−1 is given by

qK(z) = (1, z, . . . , zs, [1(z > t1)z]s, . . . , [1(z > tK−s−1)z]s)′ (5)

with indicator function 1(·). Common choice is s = 3 for cubic splines. For z multivariate, the

approximating functions may be generated by products of univariate splines for each element of

z. Under the assumption that z is continuously distributed with compact support and density

bounded away from zero, Donald et al. (2003) derive limits on the growth rate of K to obtain

asymptotic efficiency. The method can be easily implemented in existing procedures that utilize

unconditional moment restrictions, a potential advantage over alternative approaches such as

Kitamura et al. (2004) and Dominguez and Lobato (2004).

3 Estimation Methods and Moment Selection

3.1 Generalized Method of Moments

The GMM principle has become a well-established estimation technique for moment conditions

such as (4) since Hansen (1982); see also Hall (2005). To describe it, let gi(β) = qK(zi)ρ(wi;β)

and ĝn(β) =
∑n

i=1 gi(β)/n. The GMM estimator β̂gmm minimizes the weighted squared distance

of sample and population moments, algebraically

β̂gmm = arg min
β

ĝn(β)′Wĝn(β) (6)
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where W is a K ×K weighting matrix. For optimal GMM, the weighting matrix is chosen such

that W = Ω̂n(β̃)−1 with Ω̂n(β) =
∑n

i=1 gi(β)gi(β)′/n and preliminary consistent estimator β̃.

Under mild regularity conditions the resulting estimator β̂gmm is consistent and the stabilizing

transformation
√

n(β̂gmm − β) is asymptotically normal with zero expectation and estimated

covariance matrix

Σ̂gmm =
[
Ĝn(β̂gmm)′Ω̂n(β̂gmm)−1Ĝn(β̂gmm)

]−1

where Gi(β) = ∂gi(β)/∂β′ and Ĝn(β) =
∑n

i=1 Gi(β)/n.

Accumulating empirical evidence and recent theoretical work on the properties of two-step

GMM, however, reveals that point estimates and inference based on the asymptotic normal

distribution may be highly unreliable in finite samples (Hansen et al. 1996 and Hall 2005, among

others). Newey and Smith (2004) discuss higher order asymptotic properties of GMM as possible

explanation for the finite sample behavior. In particular, note that the optimization problem

for two-step GMM implies first order conditions

Ĝn(β̂gmm)′Ω̂n(β̃)−1ĝn(β̂gmm) = 0

and thus, in the optimum, a linear combination of sample equivalents to (4) must equal zero. It

is shown, inter alia, that asymptotic (higher order) bias of the two-step GMM estimator arises

from estimating the Jacobian matrix (left term) and the matrix of second moments (middle term)

by sample averages, and the weighting matrix depending on a first step (inefficient) estimator.

As the asymptotic bias formulae are known, an analytical bias correction of β̂gmm becomes

available. The bias arising from estimation of the Jacobian matrix is particularly important,

and a bias corrected GMM estimator can be obtained as

β̂bcgmm = β̂gmm + Σ̂gmm

n∑
i=1

ĜiP̂ ĝi/n (7)

where ĝi = gi(β̂gmm), Ĝi = Gi(β̂gmm), and P̂ = Ω̂−1 − Ω̂−1ĜΣ̂gmmĜ′Ω̂−1 with Ĝ = Ĝn(β̂gmm),

Ω̂ = Ω̂n(β̂gmm); see Newey and Smith (2004) and Donald et al. (2005) for details.

In comparison to two-step GMM, other moment estimators imply first order conditions in

which the Jacobian and second moment matrix are estimated more efficiently. Among the
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alternatives, the empirical likelihood estimator received considerable attention and was found to

possess some desirable higher order properties. In particular, it was shown that the asymptotic

bias of GMM grows with the number of overidentifying restrictions, whereas the bias of EL is

bounded. I will therefore discuss EL estimation of β next.

3.2 Empirical Likelihood

Empirical likelihood estimation was first introduced in the biostatistics literature, see Owen

(1988, 1991) and Qin and Lawless (1994, 1995) for details on EL and its application to moment

condition models; see also Owen (2001) for a monograph on empirical likelihood. More recent

surveys by Imbens (2002) and Kitamura (2006) point out the richness of the EL approach, in

particular as an alternative to the two-step GMM procedure.

Let pi denote an unknown probability weight assigned to the sample outcome (yi, xi, zi) of one

observation i with 0 < pi < 1 ∀i, impose the normalization
∑

i pi = 1, and let p = (p1, . . . , pn)′.

A nonparametric likelihood estimator of p is obtained by maximizing the nonparametric log-

likelihood function, algebraically

p̂ = arg max
p

n∑
i=1

ln pi s.t.
n∑

i=1

pi = 1 (8)

Without further restrictions, optimal probability weights are given by p̂i = 1/n. In order to

incorporate special features of the data-generating process, one may impose empirical moments

as additional restrictions, which can be specified from (4) as
∑

i pigi(β) = 0. Following Kitamura

(2006), the optimization problem yields the Lagrangian function

L =
n∑

i=1

ln pi + η

(
1−

n∑
i=1

pi

)
− nλ′

n∑
i=1

pigi(β) (9)

where λ and η denote Lagrangian multipliers. It can be shown that the first order conditions

are solved by η̂ = n,

p̂i(β) =
1

n
[
1 + λ̂(β)′gi(β)

]
λ̂(β) = arg min

λ
−

n∑
i=1

ln
[
1 + λ′gi(β)

]
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Optimal probability weights p̂i and optimal Langrangian multipliers λ̂ both depend on the

unknown parameter vector β. Plugging the optimality conditions into the objective function in

(8) yields the empirical log-likelihood function for β

lnLel(β) = min
λ

−
n∑

i=1

ln
[
1 + λ′gi(β)

]
− n lnn

and the EL estimator is defined as

β̂el = arg max
β

lnLel(β) = arg max
β

min
λ

−
n∑

i=1

ln
[
1 + λ′gi(β)

]
(10)

Since maximization of (10) does not have a simple closed form solution, numerical methods have

to be applied to obtain the value of β̂el. Owen (2001) and Kitamura (2006) provide details on

computational algorithms that have stable convergence properties in the above problem.

Under similar regularity conditions as in the GMM framework, Qin and Lawless (1994)

show consistency of the empirical likelihood estimator and prove asymptotic normality of the

stabilizing transformation
√

n(β̂el − β) with zero expectation and estimated covariance matrix

Σ̂el = [Ĝp(β̂el)′Ω̂p(β̂el)−1Ĝp(β̂el)]−1

where Ĝp(β) =
∑n

i=1 p̂i(β)∂gi(β)/∂β′ and Ω̂p(β) =
∑n

i=1 p̂i(β)gi(β)gi(β)′. Note that the terms

in the EL covariance matrix are estimated using probability weights p̂i(β̂el) obtained from an

empirical likelihood optimization, whereas the terms in the GMM variance are estimated using

sample weights 1/n.

It can be shown that optimal probability weights p̂i and Langrangian multipliers λ̂, both

evaluated at the EL estimator, imply first order conditions

Ĝp(β̂el)′Ω̂p(β̂el)−1ĝn(β̂el) = 0

As with two-step GMM, a linear combination of sample moments must equal zero. EL uses

empirical moments for the Jacobian term and the matrix of second moments, and probability

weights pi are chosen efficiently. Moreover, the EL estimator does not depend on a preliminary,

possibly inefficient estimator β̃. Based on these properties, Newey and Smith (2004) show that

the EL estimator is preferable to the GMM estimator in terms of higher order asymptotic bias,

and higher order efficiency after bias correction.
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3.3 Moment Selection Criteria

To describe the moment selection criteria of Donald et al. (2005), some further notation needs

to be introduced. Let β̂K denote any of the three estimators — GMM, bias corrected GMM,

or EL — given that the vector of approximating functions has dimension K. Let t′β̂K denote a

linear combination of β̂K for some linear combination coefficients t. Let

ρ̂ = ρ(wi; β̂K), Ĝ = Ĝn(β̂K), Ω̂ = Ω̂n(β̂K), Σ̂ = [Ĝ′Ω̂−1Ĝ]−1, τ̂ = Σ̂t

d̂i = Ĝ′

 n∑
j=1

qK(zj)qK(zj)′/n

−1

qK(zi), η̂i = ∂ρ̂/∂β − d̂i

ξ̂i = qK(zi)′Ω̂qK(zi)/n, Λ̂(K) =
n∑

i=1

(τ̂ ′η̂i)2ξ̂i, Π̂(K) =
n∑

i=1

(τ̂ ′η̂i)ξ̂iρ̂

Φ̂(K) = Λ̂(K)− τ̂ ′Σ̂−1τ̂ , Q̂ =
n∑

i=1

qK(zi)ρ̂(τ̂ ′η̂i)qK(zi)′

Π̂b(K) = tr(Ω̂−1/2Q̂Ω̂−1Q̂Ω̂−1/2), D̂i = Ĝ′Ω̂−1qK(zi)

Ξ̂(K) =
n∑

i=1

{5(τ̂ ′d̂i)2 − ρ̂4(τ̂ ′D̂i)2}ξ̂i

Ξ̂el(K) =
n∑

i=1

{3(τ̂ ′d̂i)2 − ρ̂4(τ̂ ′D̂i)2}ξ̂i

The selection criteria are

Sgmm(K) = Π̂(K)2/n + Φ̂(K)

Sbcgmm(K) = [Λ̂(K) + Π̂b(K) + Ξ̂(K)]/n + Φ̂(K) (11)

Sel(K) = [Λ̂(K)− Π̂b(K) + Ξ̂(K)− 2 Ξ̂el(K)]/n + Φ̂(K)

The optimal dimension K∗ of the vector of approximating functions is chosen such that S(K) is

minimal, i.e., K∗ = arg minK S(K), which is shown to minimize the higher-order mean squared

error (MSE) of each estimator. The terms in each criterion contain second and higher order

moments, for details on the interpretation see Newey and Smith (2004) and Donald et al. (2005).
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4 Monte Carlo Evidence

In this section, I compare the finite sample behavior of EL and GMM in a generated count data

experiment with correlated unobserved heterogeneity. The model imposes a conditional moment

restriction as the one introduced in the discussion above, and I investigate the performance of

the proposed estimators with increasing dimension of the vector of approximating functions.

The sampling process is based on the Poisson model with Gamma distributed heterogeneity.

The model is non-standard compared to the well-known negative binomial models in that the

heterogeneity term is correlated with the single observed regressor x. Specifically, consider the

following data-generating process

(r, s) ∼ BV N(0, 0, 1, 1, 0), w = r + γs− (1 + γ2)/2

z ∼ N(0, 1) or z ∼ LN(0, 1)

x = (1, αz + s)′, µ = exp(x′β), v|w ∼ Gamma[1, exp(w)]

y|x, v ∼ Poisson(µv)

where BV N(·) stands for the bivariate normal distribution with zero means, unit variances, and

zero correlation, N(0, 1) stands for the standard normal, and LN(0, 1) for the standard log-

normal distribution. It is assumed that only (y, x, z) are observed. The conditional distribution

of v|w is normalized such that E(v|w) = exp(w) and V ar(v|w) = exp(2w). The location

normalization of w implies that E(v) = E[E(v|w)] = E[exp(w)] = 1. For α fixed, the parameter

γ determines the correlation between x and w. If γ equals zero, the unobserved heterogeneity is

independent of the regressor and PML consistently estimates β. For nonzero γ, the conditional

expectation E(v|x) is non-constant in x, and PML estimation will generally be inconsistent.

Since v and z are statistically independent, an assumption somewhat stronger than required,

and α 6= 0, moment estimation as outlined above using the instrument z can be applied.

The parameter vector β is fixed at (0, 1)′, and γ is set to 0.5. In order to vary the correlation

between instrument and regressor, two different values of α are chosen — 0.3 and 0.7. Two

different sample sizes are considered — n = 500 and n = 2000 — and samples are drawn for
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all variables in each of 1000 Monte Carlo replications. Since γ 6= 0, PML estimation will be

inconsistent for β in each of the settings. The experiment shows that, depending on the variation

in x, the median bias in the estimated slope β̂1,pml varies between 0.264 and 0.381 in the normal

case, and between 0.377 and 0.446 in the log-normal case. These numbers need to be compared

with the results for the other estimators, that are displayed in Tables 1–4.

Consider Tables 1 and 2 with n = 500 observations first. The columns in Table 1 correspond

to the median of the estimated standard error of β̂1 (Med.SE) and the rejection rate for an

overidentifying test (in the case of K > 2) with 5% significance level. Table 2 shows the

median bias (Med.Bias) and the median absolute deviation (MAD) from the true value, and the

probabilities of β̂1 deviating from 1 by more than 0.1 and 0.2, respectively. Robust measures of

central tendency and dispersion are presented as the existence of (finite-sample) moments might

be an issue (e.g., Kunitomo and Matsushita 2003, Guggenberger 2005, Guggenberger and Hahn

2005, Davidson and MacKinnon 2006). Five different specifications of qK(z) are presented. The

first, as a benchmark, is basic IV with instrument z, i.e., the vector of approximating functions

is simply q2(z) = (1, z)′. The next three rows give the results with augmented instrument vector

having dimensions K = 4, 8, 16, and optimal K∗. The approximating functions are chosen such

that they form a basis for the set of cubic splines, i.e., s = 3, and the knots t1, . . . , tK−4 are

set equal to the quantiles of the empirical z-distribution. For the selection criteria, the linear

combination coefficients pick the slope as parameter of interest.

The results in Table 1 indicate that there are considerable efficiency gains by increasing the

dimension of the vector of approximating functions. These gains are higher with a low value of

α and for the EL estimator more than for the GMM estimators. If z is normally distributed,

EL seems to perform better than GMM, if z follows a log-normal distribution the differences

between the three estimators are less clear. In all cases, the optimal K∗ yields the lowest median

standard error. Due to the variation in K∗, it is suggestive to choose the dimension of qK(z)

according to the MSE criteria, as opposed to a rule-of-thumb fixed choice of K. The rejection

rate for the overidentifying restrictions test is always close to the nominal level.

Despite the efficiency gains, it is important to note that the estimators behave quite differ-
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ently when looking at the summary statistics of β̂1 in Table 2. In all cases, the basic IV estimator

produces consistent results, which is reflected in almost zero median bias. As it was expected

from previous theoretical results, the GMM estimator exhibits significant bias if K and thus

the number of overidentifying restrictions grows, and even under the optimal choice K∗ the bias

remains. Bias correction helps to improve upon the standard two-step GMM procedure, but in

all settings the EL estimator has lowest bias. With respect to the median absolute deviation

and the deviation probabilities, there are only minor differences between the three estimators.

Tables 3 and 4 report the simulation results for n = 2000 observations. In this case, GMM

and EL perform similarly, which was to be expected as they are all first order asymptotically

equivalent. It is noteworthy that even with 2000 observations, the two-step GMM estimator with

large degree of overidentification exhibits bias that does not occur with bias corrected GMM

and EL. The efficiency gains from augmenting the vector of approximating functions, however,

are much smaller in the large sample than they are in the small sample experiment.

5 Cigarette Demand and Smoking Habits

As a final exercise, I apply the proposed methods to the estimation of a cigarette demand

function. Cigarette demand is measured as the number of cigarettes smoked per day, and thus

y has the character of a count dependent variable. Mullahy (1985) studies the dynamic link

between today’s demand for cigarettes and an individual’s smoking habits amassed over lifetime.

If included in a regression model, such habits can be interpreted as a lagged dependent variable,

and there is good reason to believe that unobserved smoking determinants are also dynamically

linked. One would thus suspect that, given a positive correlation between unobservables over

time, the smoking habit dynamics may be overestimated in a simple Poisson regression model,

and IV estimation as outlined above may help to avoid such problems.

The analysis is based on a subsample of n = 1140 male observations of the data used in

Mullahy (1997); see also Mullahy (1985) for a description. The data stem from the Smoking

Supplement of the 1979 US National Health Interview Survey and contain information on the

respondent’s socioeconomic characteristics as well as information on various health topics and
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smoking behavior. For the regressions, the dependent variable has been scaled to the number of

cigarette packs smoked per day (number of cigarettes divided by 20). Mullahy (1985) constructs

the smoking habit measure from the total time smoked and the number of cigarettes consumed.

This measure is zero for non-smokers, and positive for smokers, the exact value depending on

the discount rate (here 10 percent) and not having direct unit interpretation. Apart from the

smoking habit measure as the key variable of interest, the estimated models control for age (in

years), the years of schooling, a dummy variable indicating race, family income (in thousand

US Dollars), household size, average state-level cigarette price (in US Dollars per pack in 1979),

and an indicator whether smoking in restaurants had been restricted (in 1979).

The excluded instruments are the cigarette price in 1978 and the total number of years smok-

ing in restaurants had been restricted (before and with 1979). The rationale for the instruments

is that both should affect smoking habits, i.e., smoking behavior in 1978 and before, but they

should not have a direct effect on current cigarette demand. The latter exclusion restriction is

plausible, since cigarette prices and indicators of smoking restrictions in 1979, i.e., at the time

current cigarette demand is recorded, are explicitly controlled for, and thus there is no reason

to believe why the instruments should have an effect on y other than the habits channel. Com-

pared to the data in Mullahy (1997), I restrict the sample to individuals aged younger than 25,

as those are the most responsive to changes in the instruments.

Table 5 displays the results for the smoking habit coefficient. The columns correspond

to the Poisson pseudo maximum likelihood (PML) estimator, the two-step and bias-corrected

GMM estimators, and the EL estimator. For the ease of exposition, the estimated parameters

and standard errors have been multiplied by 1000. The PML estimate shows a value of 12.53

with estimated standard error 0.81. This value indicates that the expected number of packages

smoked per day increases by 100[exp(12.53/1000) − 1] = 1.26 percent for an unit increase in

the smoking habit measure. Multiplied by the average value of the smoking habits (35.65), this

gives an elasticity of 0.45, i.e., if the smoking habit measure increases by 1 percent, then the

expected number of cigarettes smoked per day (measured in packs) increases by 0.45 percent.

The elasticity may of course be evaluated at other values than the average smoking habits.
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Using the basic IV setting with instruments all regressors except the smoking habits plus the

cigarette price in 1978 and the number of years the smoking restrictions had been in place, the

estimated parameters drop by around 5 to 10 percent with much larger standard error. The IV

point estimates confirm the expectation that PML might overestimate the true smoking habit

effect. On the downside, from a statistical point of view, smoking habits do not significantly affect

current smoking behavior, which contradicts the perspective of smoking habits entering cigarette

demand as a psychological and/or physiological addiction. Note that the overidentifying test

statistic is sufficiently small as to not reject the null hypothesis of valid instruments. Note

too that the basic setting does not fully exploit the model assumptions and, given that the

instruments fulfill mean independence, an improvement over these results might be possible.

The remaining of Table 5 shows the estimation results for various specifications of the vector

of approximating functions. Among the many options to specify this vector, a reasonable working

guess is to first find the optimal dimension, say K∗
l for the l-th element of the instrument vector,

given basic specification for all other instruments, and then gradually combine the optimal K∗
l

including interactions if suitable. The table first reports the results for the optimal specification

of the excluded instruments, i.e., the number of years smoking restrictions had been in place

and the cigarette price in 1978, respectively. In curly brackets is the number of additional

approximating functions, e.g., for the cigarette price in 1978 its square has been additionally

included. This number plus one are the degrees of freedom for the overidentifying restrictions

test with test statistic reported in square brackets.

The point estimates of the smoking habit coefficient drop compared to PML and basic IV.

Using the square of cigarette prices in 1978 as additional instrument even turns the sign of the

coefficient negative for bias-corrected GMM and EL. Although the overidentifying restrictions

are not rejected, there is only a minor gain in the value of the moment selection criteria in this

case. For the restaurant smoking restrictions, the overidentifying restrictions are not rejected

either, but there is a considerable drop in the value of the selection criteria, indicating higher

potential efficiency gains by adding the approximating functions. Note that in both cases the

null hypothesis of a zero coefficient cannot be rejected. Clearly, the element-wise optimization
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may be done for the included instruments as well.

Next, I combine the optimal approximating functions for each excluded instrument to fur-

ther explore the model assumptions. It turns out that the optimal number of approximating

functions K∗
l for each instrument can be simply combined to obtain the optimal number of ap-

proximating functions when both instruments are considered simultaneously. Presumably, this

result is specific to the data and does not hold in general, but in any case, such a strategy might

be a good starting point to explore the validity of mean independence. Using the additional

approximating functions and including interactions does not change the point estimates by much

but the standard errors become smaller due the additional information that is used.

Finally, combining the optimal dimension K∗
l for excluded and included instruments and

adding interactions if indicated the optimal vector of approximating functions for GMM has five

additional terms for restaurant smoking restrictions, household size and the cigarette price in

1979, two additional terms for family income, and the square of cigarette price in 1978. For the

EL estimator, the interaction between smoking restrictions and cigarette prices in 1978 and an

additional term for family income has been included. The results show point estimates of 8.86

for two-step GMM, 7.61 for bias corrected GMM, and 7.08 for EL. In terms of elasticities, a one

percent increase in the smoking habit measure leads to an increase in the expected number of

cigarette packs consumed per day by about 0.32 percent for the GMM estimator, 0.27 percent

for the bias corrected GMM estimator, and 0.25 percent for the EL estimator, respectively. In

all cases, the estimated coefficients are statistically different from zero at the 5 percent level.

6 Concluding Remarks

This paper extends Mullahy’s (1997) IV approach for the estimation of count data models with

correlated unobserved heterogeneity. Based on transformed residuals and a mean independence

assumption, the model implies conditional moment restrictions that can be estimated by common

moment estimators. As the asymptotic variance typically depends on the choice of instruments,

the paper proposes the use of a general vector of approximating functions, opting ideas of Donald

et al. (2003), to improve efficiency of the resulting estimator.
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A small Monte Carlo experiment points out the benefits of the method and outlines the

relative advantage of EL compared to two-step GMM. Finally, the approach is applied to estimate

the effect of smoking habits on cigarette demand. Compared to the standard Poisson PML

estimator, the estimated elasticities of cigarette demand with respect to smoking habits change

from 0.45 to 0.32 (GMM) and 0.25 (EL), respectively, a drop that is conformable to previous

findings. Importantly, since the methods applied here fully exploit the model assumptions, the

parameters have been estimated with much higher precision than before.
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Tables

Table 1: Simulation Results for se(β̂1) and χ2-test; n = 500

GMM BCGMM EL
Med.SE Overid. Med.SE Overid. Med.SE Overid.

z ∼ N(0, 1), α = .3
K = 2 .359 — .359 — .359 —
K = 4 .287 .058 .285 .051 .289 .063
K = 8 .246 .051 .246 .048 .243 .046
K = 16 .206 .063 .201 .052 .198 .058
K = K∗ .187 .053 .186 .061 .179 .059

z ∼ N(0, 1), α = .7
K = 2 .158 — .158 — .158 —
K = 4 .141 .062 .141 .051 .140 .064
K = 8 .146 .065 .145 .049 .143 .060
K = 16 .146 .048 .139 .058 .137 .052
K = K∗ .125 .052 .125 .052 .125 .053

z ∼ LN(0, 1), α = .3
K = 2 .141 — .141 — .141 —
K = 4 .107 .056 .106 .049 .104 .058
K = 8 .117 .054 .118 .051 .114 .062
K = 16 .116 .043 .114 .044 .108 .047
K = K∗ .069 .052 .070 .051 .073 .051

z ∼ LN(0, 1), α = .7
K = 2 .061 — .061 — .061 —
K = 4 .045 .052 .045 .052 .043 .055
K = 8 .054 .053 .054 .046 .049 .054
K = 16 .053 .049 .052 .053 .048 .046
K = K∗ .032 .052 .032 .049 .031 .053

Notes: Med.SE is the median of the estimated standard error of β̂1, Overid. is the

rejection rate for an overidentifying restrictions test with 5% nominal level. K = 2 is

the basic IV setting, i.e., only the instrument z is included. Values K > 2 specify the

fixed number of elements in the qK(z) vector, K∗ is the optimal number of elements

(which may vary draw by draw).
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Table 3: Simulation Results for se(β̂1) and χ2-test; n = 2000

GMM BCGMM EL
Med.SE Overid. Med.SE Overid. Med.SE Overid.

z ∼ N(0, 1), α = .3
K = 2 .172 — .172 — .171 —
K = 4 .167 .051 .168 .052 .169 .051
K = 8 .166 .050 .166 .055 .163 .047
K = 16 .157 .049 .157 .048 .155 .052
K = K∗ .143 .051 .143 .049 .145 .048

z ∼ N(0, 1), α = .7
K = 2 .092 — .091 — .091 —
K = 4 .079 .050 .079 .049 .078 .052
K = 8 .084 .053 .083 .048 .083 .051
K = 16 .091 .051 .091 .051 .089 .051
K = K∗ .074 .048 .074 .047 .074 .053

Notes: See the notes of Table 1.
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Table 5: The Effect of Smoking Habits on Cigarette Demand

Poisson ML GMM BCGMM EL
12.53
(0.81)

Basic instruments 11.33 12.04 11.63
(14.35) (14.98) (14.97)

[0.59] [0.58] [0.58]
Optimized over
(a) rest. smoking restrictions {5} 8.05 7.23 7.17

(6.13) (5.89) (5.90)
[2.04] [2.05] [1.95]

(b) cigarette price in 1978 {1} 1.42 -0.57 -0.98
(7.27) (6.87) (6.90)
[2.28] [2.04] [2.04]

(a) and (b) {6} 7.04 5.82 5.58
(5.80) (5.49) (5.35)
[7.70] [7.52] [7.92]

(a) and (b) plus interaction {7} 6.34 4.47 7.09
(5.50) (5.11) (5.40)
[7.69] [7.73] [8.18]

all variables 8.86 7.61 7.08
{GMM, BCGMM: 19; EL: 21} (4.04) (3.85) (3.51)

[26.91] [24.25] [24.88]

Notes: All models control for age, years of schooling, two dummy variables indicating race and

whether smoking restrictions had been in place in 1979, cigarette price in 1979, household income,

and household size. The first value is the estimated coefficient; the second value (in round

brackets) is the estimated asymptotic standard error; the third value (in square brackets) is the

overidentifying test statistic with degrees of freedom the number in curly brackets plus one.

Excluded instruments: Cigarette price in 1978; number of years restaurant restrictions had been

in place. In curly brackets is the number of additional elements, compared to the basic set of

instruments, according to the specification of the qK(z) vector. Optimization over all variables

adds functions of the included instruments and interactions.
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