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Abstract

How does risk tolerance vary with stake size? This important question cannot be
adequately answered if framing effects, nonlinear probability weighting, and heterogene-
ity of preference types are neglected. We show that, contrary to gains, no coherent
change in relative risk aversion is observed for losses. The increase in relative risk aver-
sion over gains cannot be captured by the curvature of the utility function. It is driven
predominantly by a change in probability weighting of a majority group of individuals
who exhibit more rational probability weighting at high stakes. These results not only
challenge expected utility theory, but also prospect theory.
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1 Introduction

Risk is a ubiquitous feature of social and economic life. Many of our decisions, such as

what trade to learn and where to live, involve risky consequences of great importance. Often

these choices entail substantial monetary costs and rewards. Therefore, risk taking behavior

under high stakes is a relevant area of economic research. The effect of high stakes on risk

tolerance has been debated since the early days of expected utility theory. In a seminal paper,

Markowitz (1952) argued that risk preferences are likely to reverse from risk seeking over very

small stakes to risk aversion over high stakes. While Markowitz did not test this conjecture

experimentally, there is evidence by now that relative risk aversion is indeed greater when

substantial amounts of money are at stake (Binswanger, 1981; Kachelmeier and Shehata,

1992; Holt and Laury, 2002), at least on average. Most economists would attribute this

change in relative risk aversion to the characteristics of the utility for money, and would

search for suitable functional forms that are able to accommodate this behavioral pattern.

Little is known about the underlying forces of the increase in relative risk aversion, however. In

particular, it is not clear whether this change is actually a consequence of the way people value

low versus high amounts of money, or whether some other component of lottery evaluation,

such as probability weighting, is the driving force. Moreover, results based on aggregate data

may gloss over potentially important differences in individual behavior.

In order to close this gap, we analyze comprehensive choice data stemming from an ex-

periment conducted in Beijing in 2005. The experimental subjects had to take decisions over

substantial real monetary stakes with maximum payoffs amounting to more than an average

subject’s monthly income. The lotteries presented to the subjects were framed as gains and

as losses in order to be able to investigate the effect of increasing stake size on relative risk

aversion in both decision domains. To disentangle the effects of stake size on the valuation

of monetary outcomes and probability weighting, we estimated the parameters of a flexible

sign- and rank-dependent decision model, which nests expected utility theory as a special

case. Furthermore, to account for the existence of heterogeneous preference types, we used a

finite mixture regression model, which assigns each individual to one of several distinct behav-
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ioral types and provides type-specific parameter estimates for the underlying decision model

(El-Gamal and Grether, 1995; Stahl and Wilson, 1995; Houser, Keane, and McCabe, 2004).

The following results emerge from our analysis. First, we find a strong and significant

framing effect in subjects’ evaluations of risky gains and losses. Whereas observed certainty

equivalents over rising gains exhibit significantly increasing relative risk aversion, there is

no coherent stake-dependent pattern in subject’s behavior over identical lotteries framed as

losses.

Second, contrary to many economists’ expectations, value function parameters remain

stable over increased stakes in both decision domains, implying that the observed increase in

average relative risk aversion over gains cannot be explained by changing attitudes towards

monetary outcomes. Rather, it can be predominantly attributed to a change in probability

weighting. The probability weighting function for high stakes deviates less strongly from ra-

tional linear weighting than the respective function for low stakes. This change is particularly

pronounced over the range of smaller probabilities, entailing less optimistic lottery evaluation

at high stakes and, thus, increasing relative risk aversion. In the loss domain, however, no

such change in probability weights can be inferred from the data.

Third, when allowing for heterogeneity of preference types, we find two distinct behavioral

groups: The majority of about 73% of the subjects exhibit an inverted S-shaped probability

weighting curve, whereas the minority can essentially be characterized as expected value

maximizers. Furthermore, we show that the observed increase in average relative risk aversion

over gains can exclusively be attributed to a change in behavior by the majority group of

decision makers, who evaluate high-stake prospects more cautiously by putting lower weights

on stated gain probabilities. In contrast, the minority type’s behavior is not affected by rising

stakes at all.

Our results entail material consequences for decision theory as well as applied economics.

The first two findings, the framing effect as well as the probability weighting function as

carrier of changing risk attitudes, effectively rule out expected utility theory as a candidate

for explaining increasing relative risk aversion at the aggregate level. Since it is the probability

weights which are responsible for the change in relative risk aversion, using more flexible utility
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functions cannot adequately solve the problem of modelling increasing risk aversion. While

the observed framing effect lends support to using sign-dependent decision models, such as

prospect theory, stake dependence of probability weights, however, calls theories based on

stake-invariant probability weighting into question. The third finding poses a challenge to

type-independent models of choice under risk, which might be prone to aggregation bias. We

show that the vast heterogeneity in individual risk taking behavior, typically found in choice

data (Hey and Orme, 1994), is substantive in the sense that a single preference model is unable

to adequately describe behavior. This heterogeneity may render policy recommendations

based on average parameter estimates inappropriate. Moreover, the mix of different types

may be decisive for aggregate outcomes, as the literature on the role of bounded rationality

under strategic complementarity and substitutability has shown (Haltiwanger and Waldman,

1985, 1989; Fehr and Tyran, 2005). The researcher will, therefore, need to deal with the

potential stake sensitivity of the pivotal group.

To the best of our knowledge, this is the first study that provides a systematic examination

of stake effects on probability weights for real substantial payoffs. Neither are we aware of any

other study that examines the relevance of framing and type heterogeneity for the impact of

stakes on risk tolerance. Previous studies have focused on gains, on hypothetical payoffs or

on quite limited payoff ranges, and have usually not addressed the issue of nonlinear proba-

bility weighting (Hogarth and Einhorn, 1990; Camerer, 1991; Bosch-Domenech and Silvestre,

1999; Kuehberger, Schulte-Mecklenbeck, and Perner, 1999; Etchart-Vincent, 2004; Weber and

Chapman, 2005). One exception is the experiment by Etchart-Vincent (2004), which inves-

tigates the probability weighting function under low and high hypothetical losses. As Holt

and Laury (2002, 2005) have convincingly demonstrated, however, it may make a difference

whether choices are hypothetical or for real money. They found that, contrary to real payoffs,

relative risk aversion does not change significantly with increasing hypothetical stakes.

One of the few previous experiments using substantial real monetary incentives, namely

the study by Kachelmeier and Shehata (1992), was also conducted in Beijing. Our work distin-

guishes itself from theirs in several important respects, however. First of all, our experimental

design is not confined to lotteries framed as gains. Second, observed certainty equivalents in
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our data set show a clearly defined fourfold pattern of risk attitudes for both low stakes and

high stakes, i.e. risk aversion for high-probability gains and low-probability losses, as well as

risk seeking for low-probability gains and high-probability losses, whereas Kachelmeier and

Shehata find practically no risk aversion in choices over low stakes. The authors attribute

this lack of risk aversion to the specifics of their elicitation procedure: Certainty equivalents

were elicited as minimum selling prices, which seems to have induced a kind of loss aversion in

subjects’ responses. This might have led otherwise risk averse subjects to reveal risk neutral

or risk seeking prices rather than lose their lottery endowment (Kachelmeier and Shehata

(1992), p. 1133). What Kachelmeier and Shehata do find in observed certainty equivalents,

however, is that stake size interacts significantly with probability level, which is in line with

our findings, but their data set is not sufficiently rich to draw any conclusions on relative

contributions of outcome valuation and probability weighting, nor do they address the issue

of heterogeneity.

The paper is structured as follows. Section 2 describes the experimental design and pro-

cedures. The decision model applied to the experimental data as well as the finite mixture

regression model are presented in Section 3. The results of the estimation procedure are

discussed in Section 4. Section 5 concludes the paper.

2 Experiment

In the following section, the experimental setup and procedures are described. The experiment

took place in Beijing in November 2005. The subjects were recruited by flier distributed at

the campusses of Peking University and Tsinhua University. Interested people had to register

by email for one of two sessions conducted on the same day. Participants were selected

to guarantee a balanced distribution of genders and fields of study. In total, 153 subjects’

responses were analyzed.

The experiment served to elicit certainty equivalents for 56 two-outcome lotteries1. Twenty-

eight lotteries offered low-stake outcomes ranging from 4 to 55 Chinese Yuan (CHN), another

1Instructions are available upon request.
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28 lotteries entailed high-stake outcomes from 65 to 950 CHN2. Average earnings per subject

amounted to approximately 323 CHN, including a show up fee of 20 CHN. Monetary incen-

tives were substantial given the participants’ average monthly disposable income of about 700

CHN. Besides, the low-stake outcomes were quite salient by themselves, as the expected payoff

over low-stake lotteries amounted to about 16 CHN, considerably more than the going hourly

wage rate. Probabilities of the lotteries’ higher gain or loss varied from 5% to 95%. One half

of the lotteries were framed as choices between risky and certain gains (“gain domain”); the

same decisions were also presented as choices between risky and certain losses (“loss domain”).

For each lottery in the loss domain, subjects were provided with a specific endowment which

served to cover their potential losses. These initial endowments rendered the expected payoff

for each loss lottery equal to the expected payoff of an equivalent gain lottery. The set of gain

lotteries is presented in Table 1.

Subjects were entitled to one random draw from their low-stake decisions and to one

random draw from their high-stake decisions. In order to preclude order effects, low-stake and

high-stake lotteries were intermixed and appeared in random order in a booklet containing

the decision sheets.

For each lottery, a decision sheet, such as presented in Figure 1, contained the specifics

of the lottery and a list of 20 equally spaced certain outcomes ranging from the lottery’s

maximum payoff to the lottery’s minimum payoff. Subjects had to indicate whether they

preferred the lottery or the certain payoff for each row of the decision sheet. The lottery’s

certainty equivalent was calculated as the arithmetic mean of the smallest certain amount

preferred to the lottery and the following certain amount on the list, when subjects had,

for the first time, reported preferring the lottery. For example, if a subject had decided as

indicated by the small circles in Figure 1, her certainty equivalent would amount to 13.5 CHN.

Before subjects were permitted to start working on the experimental decisions, they were

presented with two hypothetical choices to become familiar with the procedure. Subjects

could work at their own speed. The vast majority of them needed considerably less than 90

minutes to complete the experiment. At the end of the experiment, one of their low-stake

2At the time of the experiment one Chinese Yuan equalled about 0.12 U.S. Dollars.
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Table 1: Gain Lotteries (x1, p;x2)

p x1 x2 p x1 x2 p x1 x2

0.05 15 4 0.25 250 65 0.75 250 65

0.05 20 7 0.25 320 130 0.75 320 130

0.05 55 20 0.50 7 4 0.90 7 4

0.05 250 65 0.50 15 4 0.90 130 65

0.05 320 130 0.50 20 7 0.95 15 4

0.05 950 320 0.50 130 65 0.95 20 7

0.10 7 4 0.50 250 65 0.95 250 65

0.10 130 65 0.50 320 130 0.95 320 130

0.25 15 4 0.75 15 4

0.25 20 7 0.75 20 7

Outcomes x1 and x2 are denominated in Chinese Yuan.

p denotes the probability of the higher gain.

Figure 1: Design of the Decision Sheet
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choices and one of their high-stake choices were randomly selected for payment. Subjects were

paid in private afterward.

3 Econometric Model

This section discusses the specification of the finite mixture regression model, which allows

controlling for latent heterogeneity in risk taking behavior. Such an approach requires several

building blocks: first, specifying the basic decision model; second, allowing for potentially

different behaviors under low and high stakes; third, specifying the error term; and finally,

accounting for heterogeneity in behavior.

3.1 The Basic Decision Model

The underlying model of decision under risk should be able to accommodate a wide range

of different behaviors. Sign- and rank-dependent models, such as cumulative prospect theory

(CPT), capture two robust empirical phenomena: nonlinear probability weighting and loss

aversion (Starmer, 2000). Therefore, a flexible approach, such as proposed by CPT, lends

itself to describing risk taking behavior. According to CPT, an individual values any binary

gamble Gg = (x1g, pg;x2g), g ∈ {1, . . . , G}, where |x1g| > |x2g|, by

v (Gg) = v(x1g)w(pg) + v(x2g)(1− w(pg)).

The function v(x) describes how monetary outcomes x are valued, whereas the function w(p)

assigns a subjective weight to every outcome probability p. The gamble’s certainty equivalent

ĉeg can then be written as

ĉeg = v−1 [v(x1g)w(pg) + v(x2g)(1− w(pg))] .

In order to make CPT operational we have to assume specific functional forms for the

value function v(x) and the probability weighting function w(p). A natural candidate for v(x)
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is a sign-dependent power function

v(x) =

 xα if x ≥ 0

−(−x)β otherwise,

which can be conveniently interpreted and which has also turned out to be the best compromise

between parsimony and goodness of fit in the context of prospect theory (Stott, 2006). For

this specification of the value function, the existence of loss aversion can be inferred from

the difference in the domain-specific curvatures. According to Tversky and Kahneman, loss

aversion, in the sense that “losses loom larger than corresponding gains”, is present if v′(x) <

v′(−x) for x ≥ 0 (Tversky and Kahneman (1992), p. 303). This is the case if the estimated

β is significantly larger than α.

A variety of functions for modeling probability weights w(p) have been proposed in the

literature (Quiggin, 1982; Tversky and Kahneman, 1992; Prelec, 1998). We use the two-

parameter specification suggested by Goldstein and Einhorn (1987) as well as by Lattimore,

Baker, and Witte (1992):

w(p) =
δpγ

δpγ + (1− p)γ
, δ ≥ 0, γ ≥ 0.

We favor this specification because it has proven to account well for individual heterogeneity

(Wu, Zhang, and Gonzalez, 2004) and its parameters have an intuitively appealing interpreta-

tion:3 The parameter γ largely governs the slope of the curve, whereas the parameter δ largely

governs its elevation. The smaller the value of γ, the more strongly the probability weighting

function deviates from linear weighting. The larger the value of δ, the more elevated the

curve, ceteris paribus. Linear weighting is characterized by γ = δ = 1. In a sign-dependent

model, the parameters may take on different values for gains and for losses, yielding a total

of six behavioral parameters to be estimated.

3Moreover, the function generally fits equally well as the two-parameter functional developed by Prelec
(1998).
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3.2 Stake Dependence

In order to address our focal question of stake size effects, we introduce a dummy variable

HIGH into the basic decision model, such that HIGH = 1 if the lottery under consideration

contains high-stake payoffs amounting to at least 65 CHN, and HIGH = 0 otherwise. Each

one of the model parameters ω ∈ {α, β, γ′, δ′}, with γ′ and δ′ containing the domain-specific

parameters for the slope and the elevation of the probability weighting functions, is assumed

to depend linearly on HIGH in the following fashion:

ω = ω0 + ωHIGH ∗HIGH,

with ω0 representing the respective low-stake parameters. This step adds another six addi-

tional behavioral parameters to be estimated. If relative risk aversion indeed changes with

stake size, at least one of the coefficients of the high-stake dummy HIGH should turn out

to be significantly different from zero. In particular, if the valuation of monetary outcomes is

the driving force behind changing risk tolerance, the respective coefficients should be material

in size and statistically significant, since the power functional, used for estimation, cannot

account for changing relative risk aversion. If the estimates of αHIGH or βHIGH were indeed

significant, the present model would be mis-specified and an alternative specification of the

value function that can account for changing relative risk aversion would be called for.

3.3 Error Specification

We now turn to the next step of model specification. In the course of the experiment, risk

taking behavior of individual i ∈ {1, . . . , N} was measured by her certainty equivalents ceig

for a set of different lotteries. Since CPT explains deterministic choice, the predicted certainty

equivalents ĉeg are bound to deviate from the actual certainty equivalents ceig by an error εig,

i.e. ceig = ĉeg + εig. There may be different sources of error, such as carelessness, hurry or

inattentiveness, resulting in accidentally wrong answers (Hey and Orme, 1994). The Central

Limit Theorem supports the assumption that the errors are normally distributed and simply

add white noise.
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Furthermore, we allow for three different sources of heteroscedasticity in the error variance.

First, for each lottery subjects have to consider 20 certain outcomes, which are equally spaced

throughout the lottery’s range |x1g − x2g|. Since the observed certainty equivalent ceig is

calculated as the arithmetic mean of the smallest certain amount preferred to the lottery

and the following certain amount, where the lottery is preferred, the error is proportional to

the lottery range, which has to be taken account of by the estimation procedure. Second, as

subjects may be heterogeneous with respect to their previous knowledge, their ability of finding

the correct certainty equivalent as well as their attention span, we expect the error variance to

differ by individual. Third, lotteries in the gain domain may be evaluated differently from the

ones in the loss domain. Therefore, we allow for domain-specific variance in the error term.

This yields the form

σig = ξi|x1g − x2g|

for the standard deviation of the error term distribution, where ξi denotes an individual

domain-specific parameter. Note that the model allows to test for both individual-specific

and domain-specific heteroscedasticity by either imposing the restriction ξi = ξ, or by forcing

all the ξi to be equal in both decision domains. Both restrictions are rejected by their corre-

sponding likelihood ratio tests with p-values close to zero. Therefore, we control for all three

types of heteroscedasticity in the estimation procedure.

3.4 Accounting for Heterogeneity

A suitable estimation procedure, such as maximum likelihood, yields estimates for the average

values of the parameters θ = (α′, β′, γ′, δ′)′. If there is heterogeneity of a substantive kind, i.e.

if there are several distinct data generating processes, estimating a single set of parameters

is inappropriate and may render misleading results. For this reason, we estimate a finite

mixture model in order to account for heterogeneity. The basic idea of the mixture model

is assigning an individual’s risk-taking choices to one of C different types of behavior, each

characterized by a distinct vector of parameters θc = (α′c, β
′
c, γ
′
c, δ
′
c)
′, c ∈ {1, . . . , C}. The

estimation procedure yields estimates of the relative sizes of the different groups, the mixing
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proportions πc, as well as the group-specific parameters θc of the underlying behavioral model.

Given our assumptions on the distribution of the error term, the density of type c for the i-th

individual can be expressed as

f (cei,G; θc, ξi) =
G∏
g=1

1

σig
φ

(
ceig − ĉeg

σig

)
,

where φ(·) denotes the density of the standard normal distribution and ξi accounts for individual-

specific heteroscedasticity. Since we do not know a priori to which group a certain individual

belongs to, the relative group sizes πc are interpreted as probabilities of group membership.

Therefore, each individual density of type c has to be weighted by its respective mixing pro-

portion πc, which is unknown and has to be estimated as well. Taking the sum over the

weighted type-specific densities yields the individual’s contribution to the model’s likelihood

function L(Ψ; ce,G). The log likelihood of the finite mixture regression model is then given

by

lnL (Ψ; ce,G) =
N∑
i=1

ln
C∑
c=1

πc f (cei,G; θc, ξi),

where the vector Ψ = (θ′1, . . . , θ
′
C , π1, . . . , πC−1, ξ1, . . . , ξN)′ summarizes the parameters to be

estimated.

3.5 Estimation

In order to deal with the issues of non-linearity and multiple local maxima encountered when

maximizing the likelihood of a finite mixture regression model (McLachlan and Peel, 2000),

the iterative Expectation Maximization (EM) algorithm is applied (Dempster, Laird, and

Rubin, 1977). This algorithm also provides an additional feature: It calculates, by Bayesian

updating in each iteration, an individual’s posterior probability τic of belonging to group

c. These posterior probabilities τic represent a particularly valuable result of the estimation

procedure. Not only does the procedure endogenously assign each individual to a specific

group, but it also provides a method of judging classification quality. If all the τic of the final

iteration are either close to zero or one, all the individuals are unambiguously assigned to one
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specific group. The τic can be used to calculate a summary measure of ambiguity, such as the

Average Normalized Entropy (El-Gamal and Grether, 1995), in order to gauge the extent of

dubious assignments. If classification has been successful, a low measure of entropy should be

observed.

Furthermore, entropy measures allow the researcher to discriminate between models with

differing numbers of types. Since the finite mixture regression model is defined over a pre-

specified number of groups, a criterion for assessing the correct number of groups is called for.

In the context of mixture models, classical criteria, such as the Akaike Information Criterion

AIC or the Bayesian Information Criterion BIC, are not suited for this purpose (Celeux,

1996). Celeux proposes to use entropy criteria based on the posterior probabilities of group

assignment τic instead, which are shown to perform better than the classical criteria. For

example, if entropy increases when the number of different types is raised from two to three,

group assignment of the individuals is less reliable, and the model tends to overfit the data.

Therefore, the model with two types is to be preferred.

Various problems may be encountered when maximizing the likelihood function of a finite

mixture regression model and, therefore, a customized estimation procedure has to be used,

which can adequately deal with these problems. Details of the estimation procedure4 are

discussed in Bruhin, Fehr-Duda, and Epper (2007).

4 Results

In the following section we investigate the stake-size sensitivity of observed risk taking behavior

and present the estimates of the decision model assuming one homogeneous type of preferences.

Furthermore, we show that substantive heterogeneity is present in our data and discuss the

quality of the classification procedure and the number of heterogeneous behavioral types

identified in the data. Finally, we characterize these different types by their average behavioral

parameters and discuss the effect of stake size on each group’s behavior.

RESULT 1: On average, observed behavior exhibits the fourfold pattern of risk attitudes,

4 The procedure is written in the R environment (R Development Core Team, 2006).
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Figure 2: Median Relative Risk Premia by Stake Size
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predicted by prospect theory, for both low-stake and high-stake outcomes. Stake-specific be-

havior is subject to a strong framing effect, however: When gains are at stake, relative risk

aversion increases with stake size at almost all levels of probability. In the loss domain no

such clear picture emerges.

Support. In Figure 2, observed risk taking behavior is summarized by the median relative

risk premia RRP = (ev − ce)/|ev|, where ev denotes the expected value of a lottery’s payoff

and ce stands for its certainty equivalent. RRP > 0 indicates risk aversion, RRP < 0 risk

seeking, and RRP = 0 risk neutrality. The light gray bars in Figure 2 represent the observed

median RRP for low-stake lotteries, the ones in dark gray represent the respective high-stake

median RRP . The median relative risk premia RRP , sorted by the probability p of the

higher gain or loss, show a systematic relationship with p: For both low stakes and high

stakes, subjects’ choices display a fourfold pattern, i.e. they are risk averse for low-probability

losses and high-probability gains, and they are risk seeking for low-probability gains and high-

probability losses. Therefore, at first glance, average behavior is adequately described by a

model such as CPT.
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What the bar plots also reveal is that median relative risk premia differ substantially by

stake level: When subjects’ preferences exhibit increasing relative risk aversion, we should ob-

serve different low-stake and high-stake RRP , namely, high-stake choices should be relatively

less risk tolerant than low-stake choices. Inspection of Figure 2 confirms that, in the gain do-

main, median high-stake choices are considerably less risk seeking for small probabilities and

somewhat more risk averse for large probabilities than their median low-stake counterparts.

For losses, the evidence is not so clear-cut, however. At some levels of probability, low-stake

median RRP display relatively higher risk aversion than high-stake RRP , at some other levels

the reverse is true.

In order to judge whether the distributions of the stake-dependent RRP are significantly

different from each other, we performed a series of Wilcoxon signed-rank tests for each level

of probability, which yield the following results at conventional levels of significance: With

the exception of the probability of 95%, all the low-stake RRP over gains are significantly

smaller than the high-stake ones. We therefore conclude that there is a significant stake

effect in the data on choices over gains: On average, people are relatively more risk averse

for high gains than for low gains. In the loss domain, no consistent picture emerges: Low-

stake RRP are significantly smaller at three levels of probability (p ∈ {0.10, 0.75, 0.95}),

significantly larger at one level (p = 0.05), and insignificantly different at the remaining three

levels of probability (p ∈ {0.25, 0.50, 0.90}). Therefore, we conclude that there is no obvious

systematic relationship between stake-size effect and level of probability for loss lotteries.

Our data show behavior consistent with nonlinear probability weighting, but also a sub-

stantial framing effect. Relative risk aversion increases with stake size, albeit only for gains.

When subjects evaluate the same lotteries framed as losses rather than as gains, their relative

risk aversion does not systematically increase. In fact, no coherent pattern of stake-dependent

behavior under losses emerges. This sensitivity to framing, already visible at the level of

observed behavior, clearly excludes expected utility theory from the list of eligible models for

describing average risk taking behavior.

We now turn to one of our major concerns, namely, whether the change in relative risk

aversion over gains can be attributed to a specific component of lottery evaluation. First, we
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focus on the results for the average parameter estimates without accounting for heterogeneity.

RESULT 2: In the homogeneous preference model, the estimated curvatures of the value

functions do not significantly change with rising stakes.

Support. Table 2 contains the parameter estimates for the decision model discussed in

Section 3. For the time being, we focus on the average parameter estimates displayed in the

two columns labeled “Pooled”. The curvature parameters of the value functions over low stakes

are denoted by α0 for gains and β0 for losses. αHIGH and βHIGH represent the corresponding

estimated coefficients of the high-stake dummy HIGH, measuring the change in curvature

brought about by increased stake levels. For both domains, the estimates for αHIGH and

βHIGH are small in size, and the bootstrapped standard errors, reported in parentheses below

the respective point estimates, indicate that the coefficients are not significantly different

from zero. Furthermore, when a restricted model with stake-invariant curvature parameters is

estimated, the likelihood ratio test of the restricted model against the unrestricted one renders

a p-value of 0.911. This test result implies that the hypothesis of equal curvatures over both

ranges of outcomes cannot be rejected.

If the valuation of monetary outcomes were the carrier of increasing relative risk aversion

over gains, the estimates of αHIGH would have to be statistically significant and, presumably,

quite sizable, since the specification of the value function as a power function can only accom-

modate constant relative risk aversion. As the estimation results show, however, this is not

the case. Therefore, we conclude that changing attitudes towards monetary outcomes are not

responsible for the observed increase in relative risk aversion. This finding is also holds for

alternative specifications of the value function that are sufficiently flexible to capture changing

relative risk aversion, such as the expo-power function introduced by Saha (1993).

As the curvature of the value function is robust to stake size, the observed increase in

relative risk aversion over gains has to be driven by the other component of lottery evaluation,

probability weighting, as the next result confirms.

RESULT 3: For homogeneous preferences, low-gain probability weights deviate more strongly

from rational linear weighting than high-gain probability weights. No substantial change in

probability weights is observed for losses.
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Support. We first discuss the results for the gain domain. A first indication of probability

weights being the carrier of the observed stake effect for gains can already be found in the bar

plots in Figure 2. The differences in the stake-dependent observed RRP decrease markedly

with increasing probability level, suggesting a substantial interaction effect. Inspection of the

“Pooled”-column in the gains section of Table 2 indeed confirms that the estimated change

in the elevation of the curve, measured by δHIGH , is significantly negative and substantial

in size, implying a major decrease in elevation from 1.307 to 0.979, induced by substantially

less optimistic weighting of probabilities. Moreover, the change in the slope of the probability

weighting function γHIGH is significantly positive (0.056), implying a slightly less strongly

S-shaped curve for high stakes. The impact of these parameter changes on the shape of the

probability weighting function can be examined in Figure 3. The top panel of the figure shows,

for each decision domain, the estimated probability weighting curves for low stakes, defined

by HIGH = 0, plotted against the high-stake curves, defined by HIGH = 1. Evidently, the

low-gain function is much more elevated and slightly more strongly curved than the high-gain

function.

However, significant changes in single parameter estimates do not tell the whole story.

Since the probability weights are a nonlinear combination of two parameters, inference needs

to be based on γ and δ jointly. Therefore, the percentile bootstrap method (using 2,000

replications) was employed to construct the 95%-confidence bands for the difference in the

low-stake and the high-stake probability weighting curves. In order to judge the overall effect

of rising stakes on the shape of the probability weighting function, we inspect the bottom panel

of Figure 3, depicting the confidence bands for the stake-dependent differences in probability

weights. Whenever a confidence band includes the zero line, the hypothesis of stake-invariant

probability weights cannot be rejected. The graph on the right hand side for the gain domain,

however, shows that the difference between low-gain probability weights and high-gain proba-

bility weights is indeed statistically significant practically over the whole range of probabilities.

Therefore, we have conclusive evidence that the high-gain probability weighting curve departs

significantly and substantially from the low-gain curve.

These findings demonstrate that probability weights are the carrier of changing risk tol-
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erance, and suggest that prospect theory, and for that matter many other decision theories

which postulate stake-independent probability weighting, cannot adequately deal with risk

taking choices involving major changes in stake levels.

In the domain of losses, a totally different picture emerges. The left hand side of the top

panel of Figure 3 depicts practically overlapping low-loss and high-loss probability weight-

ing curves. The high-loss curve is slightly less strongly S-shaped, which is also reflected in

the significant parameter estimate for γHIGH , amounting to 0.045 (Table 2). However, this

immaterial difference in the stake-dependent slope parameters does not imply a significant

difference in the overall shape of the curves: The bottom panel of Figure 3 shows that the

95%-condidence band for the difference in the stake-dependent probability weighting curves in-

cludes the zero line practically for all levels of probability. This finding implies that, in choices

framed as losses, stake effects are negligible, in line with the lack of any stake-dependent pat-

tern diagnosed in the observed RRP .

So far we have only considered the evidence for the average decision maker. If there is

heterogeneity in the population, in the sense that a single preference theory cannot adequately

capture behavior, the parameter estimates of the pooled model may be misleading. For this

reason, the analysis is extended to account for latent heterogeneity by estimating a finite

mixture regression model.

The first question to be answered concerns the number of different types present in the

population. One way of dealing with this question is calculating a measure of entropy for

varying numbers of groups and choosing the model with the lowest entropy.

RESULT 4: There is substantive heterogeneity in individual risk preferences, which can

be captured by two distinct types of behavior. Assuming three distinct types yields an inferior

characterization of the underlying heterogeneity.

Support. The finite mixture regression model classifies individuals according to a given

number of types. In order to evaluate the quality of classification, we calculated the Average

Normalized Entropy ANE (El-Gamal and Grether, 1995) defined as

ANE = − 1

N

N∑
i=1

C∑
c=1

τic logC (τic) ,
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Table 2: Classification of Behavior: Parameter Estimates

Gains Losses

Pooled EUT Non-EUT Pooled EUT Non-EUT

π 0.266 0.734 π 0.266 0.734
(0.026) (0.026) (0.026) (0.026)

α0 0.467 0.996 0.430 β0 1.165 1.157 1.177
(0.109) (0.136) (0.116) (0.110) (0.136) (0.120)

αHIGH 0.047 -0.080 0.066 βHIGH -0.038 -0.137 -0.106
(0.158) (0.165) (0.167) (0.162) (0.178) (0.178)

γ0 0.316 0.863 0.225 γ0 0.383 0.802 0.284
(0.012) (0.067) (0.013) (0.012) (0.067) (0.012)

γHIGH 0.056 0.026 0.058 γHIGH 0.045 0.027 0.046
(0.012) (0.023) (0.012) (0.012) (0.024) (0.012)

δ0 1.304 0.952 1.265 δ0 0.913 0.912 0.917
(0.076) (0.094) (0.080) (0.052) (0.090) (0.058)

δHIGH -0.324 -0.040 -0.344 δHIGH 0.070 0.106 0.099
(0.095) (0.090) (0.098) (0.077) (0.091) (0.087)

lnL 31,536 32,580
Parameters 318 331
Observations 8,560 8,560

Standard errors in parentheses are based on the bootstrap with 2,000 replications.
Parameter vectors include estimates of ξ̂i for domain- and individual-specific error variances.
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Figure 3: Average Probability Weights by Stake Size
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for C groups and N individuals. Taking logC normalizes the entropy measure to lie within

[0, 1]. If all the probabilities of individual group membership τic are equal to zero or one,

ANE = 0. In this case, all the individuals can be perfectly assigned to one group. ANE =

1 reflects maximum entropy, i.e. all the τic are equal to 1/C. Such a result indicates that

group membership is totally ambiguous and that categorization has failed. For two groups,

we find an ANE-value of 1.8% of the maximum entropy. Given this extremely low degree

of ambiguity in our two-group classification, an improvement in entropy, when three groups

are assumed, seems hardly possible. If the classification procedure worked better for three

groups than for two groups, the average normalized entropy should be smaller for C = 3

than for C = 2. This is clearly not the case, as ANE amounts to 3.2% for the three-group

classification. So we can safely conclude that two types of behavior are sufficient to capture

the essential characteristics of individual heterogeneity in risk taking.

The low value of ANE in our analysis indicate that nearly all the individuals can be

unambiguously assigned to one of the two types. This clean segregation can also be inferred

from the distributions of the posterior probabilities of group assignment in Figure 4: τEUT

denotes the posterior probability of belonging to the first group, which can be characterized,

as we will demonstrate below, as expected utility maximizers (“EUT types”): The individuals’

posterior probabilities of being an expected utility maximizer are either close to one or close

to zero for practically all the individuals. The histogram also shows that the EUT group

encompasses a minority of the decision makers, whereas the other group represents a majority

of close to 75% of the subjects.

The subsequent group of results addresses the focal questions: How can these two different

types be characterized? And in which way do they react to rising stake levels?

RESULT 5: The minority type, constituting about 27% of the subjects, can essentially be

characterized by expected value maximization over both low- and high-outcome ranges.

Support. There are several pieces of evidence in support of RESULT 5. Let us first turn to

Table 2, which also contains the parameter estimates for the finite mixture regression model.

The estimates for the minority type are displayed in the columns labeled “EUT”. The relative

group size of the minority type is estimated to be 0.266, matching the size of the corresponding
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Figure 4:
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In order to be able to characterize decisions as consistent with expected value maximiza-

tion, both the value functions and the probability weighting functions are required to be linear.

Turning to outcome valuation, we observe that α0 and β0 are not statistically distinguishable

from one, as the standard errors in Table 2 reveal. Furthermore, the coefficients of the high-

stake dummy are insignificantly different from zero, indicating the robustness of the value

function curvatures to increasing stake size. Therefore, we conclude that the value functions

over both gains and losses are essentially linear and unresponsive to stake size.

Linearity of the second model component, probability weighting, holds if the parameter

estimates for both γ and δ are equal to one. In Table 2 the low-stake parameter estimates for

δ0 are not distinguishable from one, but the respective ones for γ0 are. However, inspection of

the probability weighting curves in Figure 5 confirms that departures from linear probability

weighting are insubstantial. Furthermore, for both gains and losses, no stake-size effect is

visible in slope nor elevation of the probability weighting curves, as both γHIGH and δHIGH are

insignificantly different from zero, and the 95%-confidence bands for the difference in the stake-

dependent probability weighting curves include the zero line, as confirmed by the bottom panel

of Figure 5. These findings suggest that the first type of decision makers behaves essentially

21



as expected value maximizers, and therefore consistently with EUT. These conclusions, based

on the estimation results, also bear out at the level of observed behavior. The EUT types’

median relative risk premia in the bottom panel of Figure 7 are close to zero, indicating near

risk neutrality for both low stakes and high stakes.

Obviously, this first group’s, the minority’s, behavior is robust over the whole outcome

range and can, therefore, not account for increasing relative risk aversion observed in the

aggregate data. As the next result shows, the second group of individuals, constituting ap-

proximately 73% of the subjects, exhibit a completely different set of behavioral parameter

values.

RESULT 6: The majority, Non-EUT types’, behavior is characterized by nonlinear prob-

ability weighting. Whereas value function parameters remain stable over the whole outcome

range in both decision domains, probability weights for gains do not. The low-gain probability

weighting curve is characterized by a significantly more optimistic weighting of probabilities

than the high-gain curve. No such effect is present in the probability weighting curves for

losses, however.

Support. The top panel of Figure 6 displays the stake-specific probability weighting curves

for the second group of individuals labeled “Non-EUT types”. For both gains and losses these

curves are inverted S-shaped, but there is a major domain-specific difference. In the loss

domain the stake-specific curves practically coincide, and their difference is not statistically

significant, as the left hand side of the bottom panel of Figure 6 confirms. In the gain domain,

however, we find the high-stake probability weighting curve to be substantially less elevated

than the low-stake one. This change is brought about by the significant stake sensitivity of

the elevation parameter over gains, reflected in the corresponding estimate for δHIGH , which

amounts to -0.344 (see the columns labeled “Non-EUT” in Table 2). The high-gain probability

weighting function is also slightly less curved than the low-gain one, as γHIGH is estimated to

be 0.058. The joint impact of these parameter changes is also statistically significant, as the

right hand side of the bottom panel of Figure 6 shows. Therefore, we conclude that increasing

relative risk aversion over gains is mainly attributable to the Non-EUT types’ behavior who

weight high-gain probabilities significantly and substantially less optimistically than low-gain
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ones. These effects can also be traced back in the pattern of observed choices: The top

panel of Figure 6 displays a substantial stake-dependent difference, particularly over smaller

probabilities, in the Non-EUT types’ median RRP , which is much more pronounced than the

respective difference in the pooled data shown in Figure 2.

The results of the finite mixture regression demonstrate that there is substantive hetero-

geneity in risk taking behavior, which may be glossed over when focusing on a single-preference

model. Only one distinct group of individuals is prone to changing risk tolerance when stakes

are increased. These Non-EUT types tend to evaluate low-gain prospects significantly more

optimistically than high-gain prospects. Thus, prospect theory, even though designed to ex-

plain non-EUT behavior, cannot account for this change in relative risk aversion.

23



Figure 5: Probability Weights by Stake Size: EUT Types
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Dashed lines: 95%-confidence bands based on the percentile bootstrap method.

The index LS denotes HIGH = 0, HS denotes HIGH = 1.
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Figure 6: Probability Weights by Stake Size: Non-EUT Types
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Dashed lines: 95%-confidence bands based on the percentile bootstrap method.

The index LS denotes HIGH = 0, HS denotes HIGH = 1.
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Figure 7: Type-Specific Median Relative Risk Premia by Stake Size
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5 Conclusions

This paper pursues three goals. First, it studies the effect of substantial real gains and losses

on risk taking. Second, the paper analyzes the influence of rising stakes on the components of

lottery evaluation, i.e. on the value and probability weighting functions. Third, it examines

heterogeneity in risk taking behavior over varying stake levels. The results of this investigation

can be summarized as follows: We find a significant and sizable increase in relative risk aversion

when gains are scaled up. In the domain of losses, however, no such clear effect is present in

the data. Since subjects evaluate lotteries differently depending on the lotteries being framed

as gains or as losses, expected utility theory is effectively ruled out as a valid description of

behavior.

Contrary to previous attempts at explaining the increase in relative risk aversion over gains

by changing attitudes toward monetary payoffs, the increase can be mainly attributed to a

move of the average probability weighting function towards rational linear weighting. As the

finite mixture regression analysis shows, this average effect is brought about by the behavior of

a majority of decision makers who tend to weight probabilities of low-stake gains considerably

more optimistically than probabilities of high-stake gains. Whereas these Non-EUT types’

behavior is sensitive to payoff levels, the minority group’s behavior, which is shown to be

largely consistent with expected value maximization, is not.

These results pose a number of potential problems to both theoretical and applied eco-

nomics. As most theories of decision under risk typically assume separability of probability

weights and outcome valuation, decision models may misrepresent risk preferences consider-

ably when probability weights interact with payoffs. Our results suggest that this interaction

effect is significant and substantial in the gain domain, which renders rank-dependent models,

such as prospect theory, questionable.

In the field of applied economics, one of the most important issues concerns the substan-

tive heterogeneity found in the population. This study has demonstrated that there are two

distinct behavioral types who either weight probabilities near linearly or nonlinearly. A sim-

ilar distribution of clearly segregated types was also found in two independent Swiss data
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sets (Bruhin, Fehr-Duda, and Epper, 2007) and, for choices over gains only, in a British

data set (Conte, Hey, and Moffat, 2007), which suggests that this mix of preference types

seems to be quite robust across times and cultures. This substantive kind of heterogeneity

has to be taken into account when predicting behavior, as average parameter estimates may

be quite misleading. Moreover, as the literature on the role of bounded rationality under

strategic complementarity and substitutability has shown, the mix of rational and irrational

actors may be crucial for aggregate outcomes (Haltiwanger and Waldman, 1985, 1989; Fehr

and Tyran, 2005). This literature demonstrates that, depending on the nature of strategic

interdependence, even a minority of players of a particular type may be decisive.

The researcher will, therefore, have to determine which one of the distinct behavioral

groups identified in the population will most likely dominate aggregate outcomes. If she can

safely conclude that the minority EUT type will dominate, stake dependence of risk preferences

is not an issue and expected value maximization may be the adequate model of decision

making. If, however, she regards the Non-EUT types as decisive for aggregate outcomes,

stake dependence might be a serious problem when gains are concerned. If actual stakes

are much larger than the ones used for model estimation, predicting behavior on the basis

of estimated model parameters might lead to a significant overestimation of risk tolerance.

In order to get a handle on choices under substantial stakes, research will probably have

to turn to field data to generate meaningful parameter estimates. Since our results suggest

that stake-sensitivity is largely due to a change in probability weights, using more flexible

specifications of utility functions, as proposed by Holt and Laury (2002), cannot adequately

solve the problem of modelling risk preferences.

The issue of stake sensitivity is an important one for choices over gains. When evaluating

potential losses, however, subjects seem to use different heuristics and decision rules than

when evaluating gains, which renders them rather insensitive to stake size. This stability of

behavior can be seen in both the EUT and the Non-EUT groups. While stake dependence is

not an issue here, the researcher will still have to worry about heterogeneity and the ensuing

type-dominance question. As Mason, Shogren, Settle, and List (2005) have pointed out, the

common assumption of linear probability weights may lead to problematic policy recommen-
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dations, if nonlinear probability weighting is the dominant pattern of behavior. The results

of this paper cast doubt on research strategies that do not take framing effects, nonlinear

probability weighting and the substantive heterogeneity of decision makers into account.
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