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Abstract 
This paper analyzes the process of stock market globalization on the basis of two different 
approaches: (i) the linear one, based on cointegration tests and vector error correction models 
(VECM); and (ii) the nonlinear approach, based on Singular Spectrum Analysis (SSA) and 
mutual information tests. While the cointegration tests are based on regression models and 
typically capture linearities in the data, mutual information and SSA are well suited for capturing 
global non-parametric relationships in the data without imposing any structure or restriction on 
the model. The data used in our empirical analysis were drawn from DataStream and comprise 
the natural logarithms of relative stock market indexes since 1973 for the G7 countries. The main 
results point to the conclusion that significant causal effects occur in this context and that mutual 
information and the global correlation coefficient actually provide more information on this 
process than VECM, but the direction of causality is difficult to distinguish in the former case. In 
this field, SSA shows some advantages, since it enabled us to capture the nonlinear causality in 
both directions. In all cases, however, there is evidence that stock markets are closely related in 
the long-run over the 36 years analyzed and, in this sense, one may say that they are globalized. 
 
 
Keywords 
Globalization, market integration, VECM, mutual information, SSA technique. 
 
 
1. Introduction 
 
Recent debates on economic globalization have triggered a substantial amount of research papers 
that try to determine its causes and explain the consequences of this phenomenon in terms of 
market performance and their ability to adjust globally to economic boosts and crises. This has 
been particularly relevant in the case of financial markets and even more so in the case of stock 
markets. Indeed, the process of globalization of international stock markets has been deeply 
studied and most of the times conclusions point to the evidence of globabization (Arshanapalli 
and Doukas, 1994; Chung and Liu, 1994; Kasa, 1992; Masih and Masih, 1997, 2002; Zhou and 
Sornette, 2003; Tavares, 2009, among others). However, many of these studies lack a theoretical 
background that supports their view of what is globalization and how it can be measured (Hamao 
et al., 1990; Drodz et al., 2001). 
 
Globalization, in its literal sense, is the process of transformation of local or regional phenomena 
into global ones and can be described as a process by which the world population is gradually 
more integrated into one sole society. That is, globalization implies uniformity in terms of tastes, 
behaviors, prices, goods accessibility, and much more. It is a process of interaction among the 
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economic and social agents (people, firms, etc) driven by international trade and investment and 
aided by information technology that reduced significantly the geographical distance barriers and 
communication difficulties between people living in different parts of the world. 
 
One important aspect of economic globalization is market integration. In the sense of Stigler 
(1969) and Sutton (1991) a market is “the area within which the price of an asset tends to 
uniformity after allowing for different transportation costs, differences in quality, marketing, etc”. 
On the other hand, market integration refers to proportionality of price movements over time for 
an asset or group of assets. The economic variable price is, therefore, a key element in the 
process of market globalization and provides a suitable framework for testing market integration 
by looking at the price relationship of assets over time. Strictly speaking we should look at 
proportionality of price movements over time for a given asset sold in geographically separated 
markets in order to show whether these markets are integrated or not. This is what we may call 
strong market integration1 but, in many cases, market integration only occurs in a weak or 
imperfect way. If this is so, one can expect nonlinearities and other types of price distortions to 
be present in the process of price transmission and a test of weak market integration can be 
performed on the basis of causality between prices, independently of whether they are 
proportional or not over time.  
 
This definition of market integration can be mathematically expressed as a dynamic model where 
the long-run and the short-run effects can be clearly separated, known as the error correction 
mechanism. This model is quite flexible and allows for different impacts of price and returns (or 
log price changes) movements across markets. For example, a change in the US market, usually 
considered as the dominant market, may be transmitted in quite different manners to the 
remaining markets, in which case it is difficult to conclude that markets tend to uniformity. This 
is not compatible with strong market integration but fits very well in the notion of weak market 
integration. Indeed, the process of market globalization is complex and the nonlinear 
transmission of price movements must be properly accommodated within the context of stock 
market globalization (Bonfiglioli and Favero, 2005; Kim et al., 2005; Savva, 2009; Corazza et 
al., 2010). 
 
One advantage of the error correction model is that it allows for historical prices and returns to 
affect simultaneously the behavior of current stock market prices over time. Using historical 
prices and returns in this context is preferable to using just stock returns since the former retain 
both the long-run and the short-run information contained in the data, while the latter only 
capture the short-run information. This statement is valid under the assumption that prices are 
cointegrated, an issue that was extensively analyzed elsewhere (Engle and Granger, 1987; Eun 
and Shim, 1989; Alexander, 2008). On this basis, one can construct statistical tests to verify 
whether the past (and present) information contained in prices and returns of, say, market A, help 
to explain the behavior of prices and returns of market B. This is what we mean by Granger 
causality and, under this hypothesis, one can say that knowing the behavior of prices in market A 
allows one to explain or even predict the behavior of prices in market B. 
 
Although there are some notable exceptions, time series models used for forecasting are often 
based on the restrictive assumptions of normality, stationarity and linearity. However, quite often 
financial and economic time series data are non-Gaussian and may be generated by processes 
that are nonstationary and/or nonlinear; hence, methods that do not depend on these assumptions 
                                            
1 If changes are proportional over time then the markets are said to be strongly integrated. 
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are likely to be useful for modelling and forecasting economic data. It is widely admitted that 
noçlinearity  is an intrinsic and fundamental feature of foreign exchanges rates and stock 
returns (see for instance Hsieh (1991), Ammermann and Patterson (2003), Beine et al. (2008)). 
 
Moreover, most existing models are also essentially parametric requiring the specification and 
estimation of models that are usually linear as the basis for analysis and forecasting. We depart 
from these assumptions and methods by constructing models based on Singular Spectrum 
Analysis (SSA), which does not embody the assumptions of normality, stationarity and linearity 
and is, therefore, a good candidate for modelling and forecasting these types of data. A general 
test based on the concept of mutual information may also, therefore, help to improve our 
knowledge of such co-movements. The mutual information has the advantage that it does not 
impose any structure or restriction to the model (Granger and Lin, 1994). 
 
 
In this paper VECM, Granger causality tests, mutual information based tests and SSA causality 
tests will be employed in order to investigate whether the stock markets of the G7 countries are, 
in some way, related in the long and short-run and react in a systematic way to shocks occurring 
in the global market. A concise description of these methods is presented in the next section. In 
Section 3 we present the data set used in our empirical analysis and the main results that were 
obtained. Finally, Section 4 presents the main conclusions and some ideas for future research. 
 
 
2. The econometric framework 
 
This Section describes the methods identified in the Introduction for analyzing weak market 
integration: VECM, Granger causality, mutual information and the SSA technique. 
 

2.1. VECM and Granger causality 
 
As noted above, one way to analyze the extent of market integration, and thus globalization, is 
by using Granger causality tests (Granger, 1969) which can be defined as follows: X2t Granger 
causes X1t if, ceteris paribus, the past values of X2t help to improve the current forecast of X1t, 
that is: 
 

( ) ( )1 1 1 1 2, 1
ˆ ˆ| | \t t t t tMSE X I MSE X I IX− − −< ,   (1) 

 
where MSE is the mean squared error, It−1 represents the set of all past and present information 
existing at moment t−1, IX2,t−1 represents the set of all past and present information existing on X2 

at moment t−1, i.e., IX2,t−1 = {X21, X22, …, X2t−1}, X1t is the value of X1 at the moment t (X1t ⊂ It) 
and 1

ˆ
tX  is a non biased predictor of X1t. On the other hand, X2t instantaneously causes X1t in the 

sense of Granger if, ceteris paribus, the past and present values of X2t help to improve the 
prediction of the current value of X1t, that is: 
 

( ) ( )1 1 1 2, 1
ˆ ˆ| \ | \ ,t t t t t t tMSE X I X MSE X I IX X< .  (2) 

 
Given these definitions, how can we empirically implement these tests? To see this, consider the 
following ADL(p, q) price relationship: 
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1 1, 2,
1 0

p q

t k t k j t j t
k j

X X X vθ ρ β− −
= =

= + + +∑ ∑ ,   (3) 

 
where Xit (i = 1, 2) denotes the relative prices (in natural logs) of asset i at time t, ρk captures the 
extent of autocorrelation in X1t, βj measures the relationship between prices (in levels and lags) 
and vt is a white noise perturbation. One can say that X2t causes X1t if the null hypothesis that all 
parameters βj are simultaneously zero is rejected. The relationship can be bidirectional and, in 
this case, we say that there is a feedback relationship. If there is just one unidirectional causal 
relationship, then one of the markets can effectively influence the other market prices, but the 
reverse is not true. If the null hypothesis is not rejected in both cases, then there is no causal 
relationship between the underlying prices and one can say that they do not belong to the same 
market space. In practice, however, the Granger causality test performed in statistical software 
postulates as the null hypothesis that “X2t does not Granger cause X1t”. 
 
In multivariate cointegrated systems the Granger causality test can be performed on the basis of a 
VECM of the type (Sargan, 1964; Alexander, 2008): 
 

1

1
1

p

t t k t k t
k

−

− −
=

′Δ = + Δ + +∑X αβ X Γ X μ ε ,   (4) 

 
where Xt−1 is an i-dimensional vector of cointegrated lagged endogenous variables representing, 
for instance, natural logarithms of relative asset prices (e.g., stock indexes) at time t−1. ΔXt and 
ΔXt−k denote returns at time t and t−k, respectively, where Δ is the operator of first difference. Γk 
denotes p−1 i-order matrices of short-run information parameters where each of them is 
associated with an i-dimensional vector of lagged returns up to order p−1. αβ´ is an i-order 
matrix of long-run information parameters, where α represents the adjustment speed to 
equilibrium and β contains the long-run or equilibrium coefficients. μ is an i-dimensional vector 
of constants and εt denotes an i-dimensional vector of residuals where εt ∼ iid(0, Ω). Note that 
the residuals εt are not serially correlated since the dynamic process linking the data is explicitly 
specified in the model, although they may be contemporaneously correlated. 
 
The VECM represented in equation (4) can be interpreted as a relationship between prices and 
returns in a given market. What it says is that the current returns are a linear function of previous 
returns and historical prices. Such historical prices form a long-run equilibrium relationship, 
where the involved variables co-move over time independently of the existence of stochastic 
trends in each of them, so that their difference is stable. The long-run residuals measure the 
distance of the system to equilibrium at each moment t, which may be due to the impossibility of 
the economic agents to adjust instantaneously to new information or to the short-run dynamics 
also present in the data. There is, therefore, a whole complex adjustment process involving 
short-run and long-run dynamics when the variables are cointegrated. 
 
Simple manipulation of the VECM leads to a reparameterized version where the vector μ is 
multiplied by the estimated long-run residuals and the matrices Ai (i = 1, …, m) contain the 
coefficients of the lagged returns for each variable separately. For a two cointegrated variable 
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system and p lags,2 and noting that 1 1
ˆˆt tu − −′= β X , one has: 

 
1 1, 2 2, 1ˆt t j t j t tu− − −Δ = Δ + Δ + +X A X A X μ ε ,   (5) 

 
where ΔXt represents returns or log price changes at time t and ΔXi,t−j (i = 1, 2; j = 1, …, p−1) 
denotes lagged returns up to p−1 of the ith variable. A1 and A2 are [2×(p−1)] matrices. μ and εt are 
(2×1) vectors and 1ˆtu −  denotes the long-run residuals, where ut ~ I(0). A Granger causality test 
can be carried out on the basis of the null hypothesis:  δi1 = … = δi,p−1 = μi = 0, where the δi 
coefficients correspond to the ith row of A2. The test then compares the mean squared error under 
the null and under the alternative hypotheses. 
 
 
 

2.2. Mutual information 
 
The mutual information of two continuous random variables X1 and X2 can be defined as: 
 

( ) ( )
( ) ( )1 2

1 2
1 2 1 2 2 1

1 2

,
( , ) , ln

X X

p x x
I X X p x x dx dx

p x p x
= ∫ ∫ ,  (6) 

 
where p(x1, x2) is the joint probability distribution function of X1 and X2 and p(x1) and p(x2) are, 
respectively, the marginal probability distribution functions of X1 and X2. In the discrete case, one 
just replaces the double integral by a definite double summation. Intuitively, mutual information 
measures the information that X1 and X2 share: it measures how much knowing one of these 
variables reduces our uncertainty about the other. Mutual information can be also expressed as: 
 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1 2 1 1 2

2 2 1

1 2 1 2

, |

|

,

I X X H X H X X

H X H X X

H X H X H X X

= −

= −

= + −

,  (7) 

 
where H(X1) and H(X2) are the marginal entropies, H(X1|X2) and H(X2|X1) are the conditional 
entropies and H(X1,X2) is the joint entropy of X1 and X2

3. 
 
Since H(X1) ≥ H(X1|X2), one has that I(X1,X2) ≥ 0 where the mutual information is zero if and only 
if X1 and X2 are statistically independent. Therefore, the mutual information between X1 and X2 can 
be regarded as a measure of dependence between these variables, or even better, a measure of the 
statistical correlation between X1 and X2. As noted by many authors, mutual information satisfies 
some of the desirable properties of a good measure of dependence (Granger and Lin, 1994; 
Dionisio et al. 2004) 
 
One of the main difficulties in estimating mutual information from empirical data lies in the fact 
that the relevant p.d.f. is unknown. Although one way to deal with this problem is to approximate 

                                            
2 Notice, however, that the number of lags can be different for each variable. 
3 For more information about Information Theory, please see Shannon, C. E. (1948). A Mathematical Theory of 
Communication, Bell Systems Tech., 27: 379-423, 623-656 
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the densities by means of histograms, an arbitrary histogram would not be the best choice because 
it can cause underestimation or overestimation of the empirical mutual information. In line with 
this, Darbellay and Wuertz (2000) used a method called marginal equiquantization and showed 
how to proceed to obtain a homogeneous partition. This method consists in dividing the space 
partition into equiprobable cells iteratively. The process of space partition stops when local 
independence between cells is found using a χ2 test. This is the method that will be used in this 
paper. 
 
Another difficulty of using mutual information as defined in equation (6) is that it takes values 
between 0 and infinity, turning the comparisons between different samples a problematic task. To 
overcome this problem several authors (namely Granger and Lin, 1994; Granger et al., 2004, 
Dionisio et al. 2004, 2006) propose and use empirically a standardized measure of mutual 
information, known in the literature as the global correlation coefficient, given by: 
 

( ){ }
1
2

1 21 exp 2 ,I X Xλ = − −⎡ ⎤⎣ ⎦ .   (8) 

 
Note that  λ captures the overall dependence, both linear and nonlinear, between X1 and X2. This 
measure varies between 0 and 1 being thus directly comparable to the linear correlation coefficient 
based on the relationship between the measures of information theory and the analysis of variance. 
According to the properties of mutual information one can construct an independence test based on 
the following hypotheses: 

( )
( )

0 1 2

1 1 2

: , 0

: , 0

H I X X

H I X X

=

>
.   (9) 

 
If p(x1, x2) = p(x1) p(x2) then H0 is not rejected and X1 and X2 are said to be independent. 
Otherwise, if p(x1, x2)  ≠ p(x1) p(x2) then H0 is rejected, that is, the null hypothesis of independence 
is rejected and the acceptance of H1 implies that X1 and X2 share some information, which enlarges 
as the value of I(X1,X2) raises. In the latter case, the higher is the value of I(X1,X2) the more 
knowing one of these variables reduces the uncertainty about the other, which is quite convenient 
for prediction analyses. 
 
In order to test for independence between variables (or vectors of variables) we need to calculate 
the critical values of the underlying distributions. In this paper, we have simulated critical values 
for the null distribution or percentile approach, i.e., the critical values were found through a 
simulation based upon a white noise for a number of sample sizes. Given that the distribution of 
mutual information is skewed, a percentile approach can be adopted to obtain the critical values 
(see the Appendix). 
 
Despite being a good measure for a general test of independence, mutual information (and the 
global correlation coefficient) does not satisfy the triangle inequality and, therefore, it is not a 
measure of distance. Kraskov et al. (1996) proposed a modified mutual information-based 
measure which is strictly a metric. According to these authors, this modification presents some 
difficulties when we deal with continuous random variables. One solution for this problem 
consists of dividing mutual information by the sum or by the maximum of dimensions of the 
continuous variables in study. 
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2.3. Singular Spectrum Analysis 
 
The SSA technique incorporates elements of classical time series analysis, multivariate statistics, 
multivariate geometry, dynamic systems and signal processing (Golyandina et al. (2001)). A 
thorough description of the theoretical and practical foundations of the SSA method, with many 
examples, can be found in Golyandina et al. (2001). For a comparison between SSA and other 
techniques for forecasting time series, see for example Hassani (2007), Hassani et al. (2009, 
2010a). It has been shown that the results obtained by the SSA method are more accurate than 
those obtained by ARIMA and GARCH models (Hassani et al., 2009). For the SSA based 
causality test see (Hassani et al., forthcoming). For a wide variety of applications across different 
types of economics and financial time series see Hassani and Thomakos (fortcomig). The SSA 
technique has also been used for filtering financial data and stock market data in Hassani et al. 
(2010b). 
 
It should be noted that compared to mutual information based test, the SSA based test enables us to 
capture the dependence between two variables in both directions (X to Y and also Y to X) , whilst 
this is not the case for the mutual information based test. Moreover, compared to Granger causality 
test that needs to an assessment of linearity and stationarity of the series, the SSA technique does 
not rely on these assumptions.  
 
To establish some notation, let the variable of interest (the ‘generic’ variable) be denoted y and let 

)(v
ty  be the v-th series (v = 1, L, m) of y for the period t. Each time series component of the 

multivariate system is viewed as the sum of unobservable components: the signal comprises 
components such as the trend, oscillations or periodic movements, and noise. The aim of MSSA is 
to extract the signal leaving the residual; more generally, the algorithm can also extract groups 
corresponding to components of the signal. The two stages to the process are decomposition and 
reconstruction, each of which comprises two steps. Finally, the MSSA algorithm provides 
forecasts via a linear recurrence formula.  
 
Stage 1: Decomposition: Embedding and Singular Value Decomposition (SVD) 
 
Step 1: Embedding 
Embedding is a mapping that translates a one-dimensional time series into a multi-dimensional 
series through the use of subsets of the original series. The key output in this stage is the trajectory 
matrix, generically referred to as X. This is a matrix that is formed by taking a window of 
observations of length L and moving this throughout the sample. Such a procedure will be familiar 
from time series analysis that focuses on calculating moving averages or recursive estimation with 
a moving window; here moving vectors of observations are created. 
 
To see how this works we take a window comprising the first vL  observations of )(vY , then drop 

the first observation and add the ( vL  + 1)-th observation to create another same length window 
(vector). This process is continued, with the data organised into a matrix, )(vX , of dimension 

vL ×
vK , where vK  = vT  – vL + 1. The resulting trajectory matrix )(vX  is: 
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     (10) 

 
In this set-up vT  and vL  are allowed to differ depending on v; thus, in general )(vX  is of 

dimension vL × vK  where vK  = vT – vL  + 1. In practice, a common vL  is chosen in the case 
that the trajectory matrices are stacked horizontally to obtain the system trajectory matrix. For 
simplicity of exposition, we also assume T = 1T = … = mT  implying 1K  = … = mK  = K; this 
assumption is relaxed below.  
  
The trajectory matrix for the system as a whole comprising )(vY , v = 1, …, m, is obtained by 
stacking the trajectory matrices horizontally to form the trajectory matrix of the multidimensional 
series. The resulting trajectory matrix X of dimension L×mK, is given by: 
 
X  = ( ))()()1( ;;;; mv XXX KK       (11)
  
= ( ))()(

1
)()(

1
)1()1(

1 ;;;; m
K

mv
K

v
K XXXXXX KKKKK    

 
Notice that each of the m blocks of K columns corresponds to the trajectory matrix for a particular 
vintage. X is the trajectory matrix for the system of data vintages given by Y  = 

),,,,( )()()1( mv YYY KK  which, in this simplified case, is a vector of dimension mT×1, where 
)(vY  = )',,( )()(

1
v

T
v yy K . The case where vT  and so vK  are not equal is easily accommodated; in 

that case because the individual trajectory matrices are stacked horizontally, they can be of 
different column dimensions. Thus, X is of dimension ∑ =

×
m

v vKL
1

 and Y is of dimension 

1
1

×∑ =

m

v vT . 
 
The trajectory matrix is an example of a Hankel matrix in which the diagonal elements are equal 
for all combinations where the sum of the row (i) and column (j) indices are equal to a constant; 
that is, ijX  = jiX  for ij = c. Visually, the diagonals are those on a line from the South-West to the 
North-East of the matrix, which are referred to as the Hankel diagonals. This is a characteristic that 
is used in the second stage in which the original series are reconstructed using the principal 
components obtained in the next step. 
 
Step 2: obtain the singular value decomposition, SVD, of the system trajectory matrix 
 
The second step in stage 1 is to construct the SVD of the trajectory matrix X and represent it as a 
sum of d ≤ L rank-one, mutually orthogonal elementary matrices. First define the matrix C = 'XX  
and denote by dλλ ,,1 K  the ordered non-negative eigenvalues of C, such that 1 0dλ λ≥ ≥ ≥K ; 

where d ≤ L, with d = L if all iλ  ≥ 0. The corresponding eigenvectors are 
d
iiU 1}{ = ; the factor 
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vectors are 
d
iiV 1}{ =  where iV  = iiUX λ/'  are of dimension mK×1. The principle component 

vectors are iiVλ  and the eigentriple that forms the basis of the SVD is ),,( iii VUλ .  
 
The trajectory matrix X is decomposed into the sum of d elementary matrices iX  = 'iii VUλ , 
such that: 
 
X  = ∑ =

d

i iX
1

        (12) 
 

The matrices iX  are referred to as elementary matrices, which have rank 1 and are, by 
construction, mutually orthogonal. The SVD given by equation (12) is optimal in the sense that 
among all the matrices of rank r < d, the matrix )(rX  = ∑ =

r

i iX
1

 provides the best approximation 

to the trajectory matrix X in the norm sense, such that |||| )(rXX −  is a minimum.  
 
The contribution of the component iX  to the expansion (11) is given by its eigenvalue iλ  as a 

share in the sum of the eigenvalues, that is ∑ =

d

j ji 1
/ λλ . The singular spectrum (hence the 

description singular spectrum analysis) refers to a graph of the ordered eigenvalues, 
1 0dλ λ≥ ≥ ≥K  and is useful in deciding which principal components to include in the 

reconstruction step of the SSA method. If none of the eigenvalues are negative, then the singular 
spectrum is a graph of the L ordered eigenvalues. 
 
Stage 2: Reconstruction, Hankelisation and Gouping 
 
Step 3: diagonal averaging (block Hankelisation)  
In the first stage of this step, the elementary matrices iX , corresponding to the i-th principal 
component in the SVD, are used to (re)construct series of the same length as the original series. 
Note that X is in m blocks, one for each vintage of data; thus each block is Hankelised and then the 
m resulting ×vT 1 vectors are stacked vertically into a 1

1
×∑ =

m

v vT  vector; if vT  = T then the 
resulting vector is ×mT 1. We briefly describe the Hankelisation procedure for one of these 
blocks. 
 
The Hankelisation procedure may be represented by first rearranging iX  so that the sum of each 
Hankel diagonal is one element in a T×1 vector, say '

,iHX  and then premultiplying by a diagonal 
matrix H = diag )( ih , with diagonal elements that are the inverse of the number of elements in the 
corresponding row of iHX , . That is: 
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where )(

,
i
kjx  is the (i,k)-th element of iX . Note that the sum of the subscripts in each row is the 

same; thus, the general element sums and then averages the Hankel diagonal elements for each row 
element. The result is a T× 1 vector of the time series components corresponding to the i-th 
principal component of the trajectory matrix. The T ×

vr  matrix X~  of all reconstructed 

components is defined with typical column vector iX~ , thus X~  = ]~,,~,~[ 21 vr
XXX K . 

 
Step 4: grouping 
Let r denote the trajectory dimension resulting from grouping in the multivariate case and let vr  
denote the dimension of the univariate trajectory space for the v-th vintage. Stepanov and 
Golyandina (2005) show that minr  ≤ r ≤ maxr , where minr  = max{ vr : v = 1, …, m} and maxr  = 

∑ =

m

v vr1
. Thus, the ceiling to the multivariate trajectory dimension is simply that obtained when 

there are, in a sense, no common or matched components amongst the m vintages; the presence of 
matching components reduces the dimension of the multivariate system and indicates that the 
system is interrelated, which should result in gains when forecasting the series. The selection of r < 

minr  leads to a loss of precision as parts of the signals in all series will be lost. From the other side, 
if r > maxr  then noise is included the reconstructed series. The selection of r ≅

minr  (keeping r > 

minr ) is a good choice for highly interrelated series sharing several common components. The 
selection of r ≅  maxr  is necessary when the series analysed have very little relation to each other.  
 
The result of the grouping step is the reconstructed series, or estimated signal in this case, for all m 
vintages; that is: 
 
Y~  = ∑ ∈Ii iX~          (14) 

 
So that Y~ is the estimation counterpart of the actual series Y and of dimension mT ×1 or, more 

generally, 1
1

×∑ =

m

v vT .  
 
 
3. Data and Results 
 
The data set used in our empirical analysis consists of five daily stock price series representing 
the G7 countries: US, Canada, Japan, UK, Germany, France and Italy. The data are the relative 
price indexes for these markets, where the base 100 was set at January, 1st 1973. The series were 
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collected in the Datastream database and cover the period from January, 1st 1973 to January, 21st 
2009, totalizing 9408 daily observations (five days per week). Figure 1 shows a graphic of the 
seven series in relative prices (panel a) and in the natural logarithms of relative prices (panel b). 
 
Figure 1a. Relative price indexes for the G7 countries 
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Figure 1b. Natural logarithms of relative price indexes for the G7 countries 

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1975 1980 1985 1990 1995 2000 2005

US Canada Japan
UK Germany France
Italy

 
Source: Datastream. Base 100: January, 1st 1973. 9408 data points. 
 
A well known problem with daily data across the world is that trading days vary across markets, 
as they operate in different time zones. Given this and in order to correct the bias we use the 
procedure proposed by Beine et al. (2008). Since the Japanese market is the first to close 
amongst the stock markets under study we applied one-day lagged causality from the other six 
markets towards the Japanese market to include some contemporaneous causality. The US 
markets is the last market to close, so one-day lagged causality from the US stock market 
towards the other six markets includes the contemporaneous causality among those. 
It is remarkable how similar the time-path pattern looks for these seven stock market indexes 
with market boosts and crises apparently synchronized for all the countries (panel a). Data 
dispersion increases substantially along time, especially after the oil crisis of the early eighties 
and, further on, since the end of the 20th century. Price volatility over the period was substantially 
higher for Italy, France and the UK than for Canada, the US, Germany and Japan. In addition, all 
price histograms that are shown in Figure 1a exhibit a right-hand side long tail. The series in logs 
(panel b) lessen volatility in the data, as expected, and the log price histograms appear flattened. 



12 
 

However, data dispersion does still increase over time. Some descriptive statistics of these series 
(in natural logarithms) are presented in Table 1: 
 
Table 1. Descriptive statistics of the natural logarithms of relative prices 
 US Canada Japan UK Germany France Italy 
Mean 5.706510 5.779643 5.604483 6.179921 5.545114 6.226555 6.516560 
Median 5.650874 5.662144 5.861683 6.434844 5.584004 6.474808 6.917948 
Maximum 7.267135 7.433217 6.645377 7.621871 6.917379 7.964677 8.161164 
Minimum 3.932218 4.297829 4.120337 3.446577 4.205439 4.070223 4.153556 
Std. Deviation 1.035847 0.895167 0.668453 1.113543 0.789030 1.150704 1.238936 
Skewness 0.025493 0.130726 -0.634781 -0.500333 0.009600 -0.228873 -0.592996 
Kurtosis 1.508327 1.842078 2.038909 1.929123 1.653605 1.686334 1.977588 
        
Jarque-Bera 873.2535 552.3834 993.9092 842.0589 710.7536 758.6182 961.1455 
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
        
Sum 53686.84 54374.88 52726.97 58140.69 52168.43 58579.43 61307.80 
Sum Sq. Dev. 10093.50 7538.058 4203.324 11664.46 5856.504 12455.99 14439.40 
        
N 9408 9408 9408 9408 9408 9408 9408 
 
Notice that all series are flatter than the Gaussian distribution and slightly skewed, therefore the 
J-B test statistic rejects the null hypothesis of normality for all of them. This is typical of stock 
market price series in the same manner as leptokurtosis and fat tails are typically observed in 
returns data. From this point onwards the analysis will only consider the natural logarithms data, 
that is, stock prices actually refer to the natural logarithms of the relative price indexes and stock 
returns or price changes denote the difference between log relative prices at two adjacent dates. 
 
Before proceeding to the analysis of market integration one should look at the (non)stationary 
nature of the G7 series. Unit root and stationarity tests in levels and in first differences for all the 
series are shown in Table 2: 
 
Table 2. Unit root and stationarity tests in levels and in first differences 
Variable ADFa, c, d  KPSSb, c, d  
USf -1.709328  0.960241 ** 
Canadae -2.806501  0.468607 ** 
Japanf -0.269712  2.549435 ** 
UKg -0.736909  2.320246 ** 
Germanye -1.722877  0.568883 ** 
Francee -1.050611  1.038102 ** 
Italyg -0.500341  1.661498 ** 
   
ΔUS -70.39091 ** 0.244395  
ΔCanada -88.91458 ** 0.075838  
ΔJapan -69.26301 ** 0.126957  
ΔUK -45.20940 ** 0.220531  
ΔGermany -92.36380 ** 0.130575  
ΔFrance -89.32861 ** 0.186063  
ΔItaly -44.66293 ** 0.302849  
Notes: a MacKinnon (1996) critical values: -3.43 (1%) and -2.86 (5%) for constant and -3.96 (1%) and -3.41 (5%) for 
constant and linear trend. b Kwiatkowski-Phillips-Schmidt-Shin (1992) critical values: 0.739 (1%) and 0.463 (5%) for 
constant and 0.216 (1%) and 0.146 (5%) for constant and linear trend. c exogenous terms in levels: constant and linear 
trend. d exogenous terms in 1st differences: constant (except for Japan in the KPSS test which is constant and linear 
trend). e 1 lag in levels for ADF. f 2 lags in levels for ADF. g 4 lags in levels for ADF. ** significant at 1%. 
 
The ADF and KPSS tests are designed to capture weak stationarity with opposite null hypotheses. 
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In the former case the null hypothesis of nonstationarity of the variables in levels is not rejected 
but it is rejected at 1% for the variables in first differences. In the latter case the null hypothesis 
of stationarity in levels is rejected at 1% but it is not rejected in first differences. The results are, 
therefore, consistent in both cases and lead to the conclusion that the price series under analysis 
are, in fact, integrated of first order. The number of lags selected in each test was set on the basis 
of the BIC information criterion. 
 
To examine the statistical existence of the structural breaks, we performed CUSUM and 
CUSUM-Q tests. We tested the stability of our time series by regressing it on a nonsignificant 
constant. The results indicate the presence of structural breaks for all the variables and some of 
those structural breaks seem to be related with the existence of stock market crashes and 
financial crisis, which reinforces the possibility of nonlinear behavior among the stock markets 
under study. 
 
Given that all variables are I(1), we considered the possibility of estimating a long-run 
relationship between all these variables. To test for cointegration between all those series, we 
used the Phillips tests suggested by Gregory and Hansen (1996) because the power of the 
Johansen's test may be reduced substantially when the series exhibits structural breaks. The 
Philips test statistics are presented in Table 3. 
 
Table 3. Phiplips cointegration tests 

 Statistics Breakpoint 
ADF*   
C -6.066** (0.3911) 
C/T -6.282** (0.3911) 
C/S -7.020** (0.3472) 
Z*   
C -6.155** (0.3912) 
C/T -6.379** (0.3912) 
C/S -7.061** (0.3473) 
Za*   
C -77.154** (0.3912) 
C/T -82.315** (0.3912) 
C/S -96.400** (0.3091) 
Notes: a Critical values can be found in Gregory and Hansen (1996). ** significant at 1%. 
 
3.1. Granger causality tests 
 
The results indicate that there is at least one cointegrating vector since the null hypothesis of no 
cointegration is rejected at 1%.  This means that the seven stock markets under analysis 
possibly belong to the same market space and there is a long-run equilibrium relationship linking 
price data along with the dynamic short-run terms denoting market returns. Altogether, these 
results outline the starting point for analyzing market integration on the basis of Granger 
causality. The Granger causality F-statistics are presented in Tables 4 to 6. 
 
Table 4. Granger Causality for the log prices 
Variable US  Canada  Japan  UK  Germany  France  Italy  
US -  142.898 ** 716.963 ** 475.981 ** 390.273 ** 470.843 ** 156.006 **
Canada 36.0065 ** -  361.477 ** 113.420 ** 73.5093 ** 117.433 ** 46.4521 **
Japan 14.3828 ** 4.86702 ** -  27.3334 ** 21.9847 ** 24.1686 ** 7.23094 **
UK 8.91317 ** 3.99597 * 233.251 ** -  7.33226 ** 6.02136 ** 3.54475 * 
Germany 6.03121 ** 2.29723  284.715 ** 1.13299  -  2.17821  0.32732  
France 9.72877 ** 1.51540  259.915 ** 6.42979 ** 1.54816  -  1.21910  
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Italy 1.93860  1.01208  107.911 ** 0.61978  1.42051  7.52491 ** -  
Notes: H0: Xit does not Granger cause Xjt (i ≠ j). 2 lags. 9406 observations in each series. ** significant at 1%. * 
significant at 5%. 
 
Table 4 presents the Granger causality tests for the variables in levels, that is, stock prices. Recall 
that the test is interpreted as follows: X2t Granger causes X1t if, ceteris paribus, the past values of 
X2t help to improve the current forecast of X1t, where X2t represents the variables in the first 
column and X1t represents the variables in the first row. One can say, therefore, that for the 
significant causal relationships the historical prices of the former market affect the current price 
of the latter, forming a dynamical long-run relationship in the global economy. As we can see, 
about 74% of the coefficients are statistically significant, which means that there is substantial 
long-run causal effects among these markets, of which many of them are feedback relationships. 
However, we found no causal relationship in any direction for the pairs Germany-France and 
Germany- Italy. 
 
Another important result is that, in the long-run, the US causes more than is caused by other 
markets. To see this, note that the F-statistics of the former (1st row) are substantially larger than 
the F-statistics of the latter (1st column). This is consistent with the idea that the US stock market, 
to a greater extent, ‘exports’ more than ‘imports’ boosts and crises, being therefore the engine of 
the global financial world. For example, a crisis with origin in the US can spread in a broader 
way to other markets (as it seems in the current crisis) than a crisis with origin in Japan or even 
any European country. Canada shows an overall picture very similar to the US, that is, in general 
it causes more other markets than is caused by them, except in what refers to the US. Canada, 
however, appears to be caused only by the US, Japan and, to a lesser extent, the UK. Conversely, 
Japan is the most endogenous of the G7 markets. The European countries do not show an overall 
systematic pattern of causality, though the UK appears to emerge like an attractor in the EU 
context (but not with France) and follows the North-American markets. This is surprising insofar 
we would expect Germany to be the leading European stock market, given its role as the head of 
the European Union economy, albeit one should recognize the very important role of the London 
Stock Exchange in the global financial world. 
 
Table 5 presents the Granger causality tests for the variables in first differences, that is, returns. 
The results show how much historical returns of one market affect the current returns of another 
market, making up therefore a dynamical short-run relationship in the system. Here, some 71% 
of the coefficients are statistically significant and we found no causal relationship in any 
direction only for the pair Germany-Italy (as in the long-run tests). Otherwise, the overall picture 
is the same as for the results in levels. 
 
In the short-run, the North-American markets cause more other markets than are caused by them 
and the US leads the Canadian market. The opposite occurs for Japan as in the long-run. Again, 
the UK emerges as an attractor in the European Union context (except with France) but follows 
the North-American markets. It seems, therefore, that market causality among the G7 countries 
is present both in the long-run and in the short-run, affecting co-movement prices and returns. 
 
Table 5. Granger Causality for returns 
Variable ΔUS  ΔCanada  ΔJapan  ΔUK  ΔGermany  ΔFrance  ΔItaly  
ΔUS -  138.970 ** 708.196 ** 491.025 ** 387.364 ** 476.872 ** 154.376 **
ΔCanada 30.8130 ** -  369.375 ** 123.680 ** 74.2408 ** 128.220 ** 47.4845 **
ΔJapan 7.60523 ** 3.61023 * -  25.5639 ** 17.2502 ** 19.6704 ** 5.39895 **
ΔUK 2.27861  3.71751 * 238.670 ** -  3.34280 * 0.07240  3.77099 * 
ΔGermany 3.37056 * 2.36538  277.860 ** 0.74040  -  3.50272 * 0.25046  
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ΔFrance 4.97310 ** 0.80771  263.282 ** 6.15885 ** 0.91485  -  1.14968  
ΔItaly 2.13516  2.54945  108.852 ** 1.06984  2.05813  7.76945 ** -  
Notes: H0: Xit does not Granger cause Xjt (i ≠ j). 2 lags. 9405 observations in each series. ** significant at 1%. * 
significant at 5%. 
 
Finally, Table 6 presents the Granger causality results for the variables in first differences but 
where X2t now represents the first lag of the underlying variable. The results can be interpreted in 
terms of a delayed effect of returns of one market onto the current returns of another market. It 
should be noted the size of the F-statistics in this Table, where all the coefficients are significant 
at much less than 1%. The overall picture is, however, the same as before. Historical delayed 
returns worldwide have a significant impact on current returns for all the cases. In our context, 
historical delayed returns were only computed for one lag while one can believe that smoother 
but significant effects may also occur for two or more lags, though one lag computations will 
suffice for our purposes. 
 
Table 6. Granger Causality for returns (lagged effects) 
Variable ΔUS  ΔCanada  ΔJapan  ΔUK  ΔGermany  ΔFrance  ΔItaly  
ΔUS(t−1) -  4403.8 ** 770.35 ** 1237.9 ** 1196.1 ** 1181.1 ** 420.91 **
ΔCanada(t−1) 4198.8 ** -  525.63 ** 961.60 ** 761.95 ** 851.67 ** 314.22 **
ΔJapan(t−1) 63.808 ** 160.49 ** -  327.92 ** 321.30 ** 307.39 ** 154.97 **
ΔUK(t−1) 690.58 ** 830.07 ** 542.91 ** -  1482.9 ** 2122.2 ** 755.22 **
ΔGermany(t−1) 751.19 ** 678.05 ** 599.03 ** 1480.6 ** -  2593.0 ** 1006.0 **
ΔFrance(t−1) 652.79 ** 715.79 ** 555.44 ** 2131.1 ** 2589.7 ** -  1048.5 **
ΔItaly(t−1) 260.01 ** 267.33 ** 260.49 ** 754.62 ** 1001.9 ** 1054.0 ** -  
Notes: H0: Xit does not Granger cause Xjt (i ≠ j). 9404 observations in each series. ** significant at 1%. 
 
Globally, the Granger causality results point to the existence of a single global stock market 
leaded by the US. The UK emerges as a regional leader within the European context. Japan, 
however, does not emerge as a leading market within the G7 countries but this is probably due to 
the long-lasting economic crisis that Japan has been facing. The great surprise (or perhaps not) is 
the dominant position of Canada relative to many other G7 countries. Canada may benefit from 
its proximity to the US where, surely, intense economic relationships, some similar economic 
policies and firm’s relationships turn up North-America as a unified financial block. The results 
are, overall, compatible with the definition of weak market integration introduced in this paper 
although do not capture nonlinearities in the data. At this point one can conclude that linear weak 
market integration occurs within the G7 over the period analyzed. 
 
3.2. Mutual Information tests and global correlation coefficient 
 
In order to deal with the problem of nonlinearities in the data and other complexities of stock 
market co-movements, we present in Table 7 the global correlation coefficient for the variables 
in levels, as described in Section 2. Recall that the global correlation coefficient (equation 8) is a 
standardized measure of mutual information taking on values between 0 and 1. The closer λ is to 
1 the more information X1 and X2 share, i.e., knowing one of them reduces uncertainty about the 
other. 
 
Table 7. Global Correlation Coefficient for log prices 
Variable US  Canada  Japan  UK  Germany  France  Italy  
US   0.9978 ** 0.9907 ** 0.9981 ** 0.9956 ** 0.9967 ** 0.9948 **
Canada     0.9899 ** 0.9977 ** 0.9948 ** 0.9972 ** 0.9940 **
Japan      0.9935 ** 0.9870 ** 0.9916 ** 0.9766 **
UK       0.9971 ** 0.9981 ** 0.9960 **
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Germany        0.9961 ** 0.9927 **
France          0.9950 **
Notes: H0: I(X1,X2) = 0. Critical values for N(0,1) I data, n ≥ 2500 (see the Appendix). ** I(X1,X2) significant at 1%. 
 
The major finding is that all coefficients are statistically significant, which means that substantial 
interaction, both linear and nonlinear, exists among the seven markets under analysis. There are 
very strong long-run relationships between all markets as can be seen from Table 7, where all the 
coefficients are higher than 0.97. However, unlike Granger causality, the global correlation tests 
do not provide any information about the direction of causality between the underlying variables. 
For the moment and until a formal test of causality based on the global correlation coefficient is 
available, we shall assess the direction of causality only on the basis of Granger causality tests. 
 
Table 8. Global Correlation Coefficient for returns 
Variable ΔUS  ΔCanada  ΔJapan  ΔUK  ΔGermany  ΔFrance  ΔItaly  
ΔUS   0.7133 ** 0.1448 ** 0.4650 ** 0.4361 ** 0.4254 ** 0.3464 **
ΔCanada     0.2135 ** 0.4168 ** 0.4422 ** 0.4386 ** 0.3531 **
ΔJapan      0.2486 ** 0.3052 ** 0.2858 ** 0.1966 **
ΔUK       0.5817 ** 0.6370 ** 0.4872 **
ΔGermany        0.6914 ** 0.5717 **
ΔFrance          0.5836 **
Notes: H0: I(X1,X2) = 0. Critical values for N(0,1) I data, n ≥ 2500 (see the Appendix). ** I(X1,X2) significant at 1%. 
 
Table 8 shows the global correlation coefficient for the variables in first differences, i.e., returns. 
It can be noted that, for returns, there are relatively strong relationships within the European and 
North-American blocks, where all the coefficients are higher than 0.5 except for ΔUK-ΔItaly. 
The global correlation between the European returns and the North-American returns is slightly 
lower (0.3−0.5) and the global correlation between Japan and the rest of the G7 countries is even 
lower (0.1−0.3 approximately) although in general higher with the European countries than with 
the North-American countries. Overall, when compared with the global correlation coefficient of 
the price variables, the figures in Table 8 are smaller but still statistically significant at 1%. 
 
Table 9. Global Correlation Coefficient for returns (lagged effects) 
Variable ΔUS  ΔCanada  ΔJapan  ΔUK  ΔGermany  ΔFrance  ΔItaly  
ΔUS(t−1) -  0.2452 ** 0.3476 ** 0.3469 ** 0.3363 ** 0.3585 ** 0.2066 **
ΔCanada(t−1) 0.1007 **   0.2799 ** 0.2436 ** 0.2217 ** 0.2378 ** 0.1559 **
ΔJapan(t−1) 0.1608 ** 0.0847 **  0.1017 ** 0.2014 ** 0.1092 ** 0.0469 **
ΔUK(t−1) 0.1691 ** 0.1196 ** 0.2429 **  0.1488 ** 0.1313 ** 0.0977 **
ΔGermany(t−1) 0.1916 ** 0.2346 ** 0.3126 ** 0.2965 **  0.2467 ** 0.2346 **
ΔFrance(t−1) 0.1421 ** 0.0760 ** 0.2535 ** 0.2182 ** 0.2116 **   0.1834 **
ΔItaly(t−1) 0.0881 ** 0.0893 ** 0.1656 ** 0.2301 ** 0.1775 ** 0.2019 ** -  
Notes: H0: I(X1,X2) = 0. Critical values for N(0,1) I data, n ≥ 2500 (see the Appendix). ** I(X1,X2) significant at 1%. 
 
Finally, Table 9 presents the global correlation coefficient for lagged returns. While significant at 
1%, all these coefficients are even smaller than those for non-lagged returns. The US historical 
returns present a higher global correlation with the current returns of all other markets than the 
historical returns of all other markets onto the current returns of the US. A similar picture occurs 
for Canada except in the relationship with the US and, to some extent, Germany, and conversely 
for Japan. The leadership within the European Union countries is now held by Germany. In fact, 
the global correlation of the German historical (or lagged) returns with the current returns of all 
other European countries is higher than the global correlation of the historical returns of all other 
European countries with the current German returns, and likewise regarding Canada and Japan. 
Germany, however, follows the US market. It seems, therefore, that the global correlation results 
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are more in accordance with what would be expected from the general economic strength of each 
G7 country. 
 
3.2. SSA technique  
 
According to the results presented in Table 10 for the SSA based causality test, almost 83% of 
the coefficients are less than one (of which 72% are statistically significant), which means that 
there is a long-run causal effects among these markets. These results also indicate that there are 
many feedback relationships (see, for example, UK and US). Moreover, the results in the first 
row indicate that, in the long-run, the US causes more than is caused by other markets 
confirming the results obtained by Granger causality. There is also a feedback relationship 
between US and other countries except for Italy that the coefficient is close to one, and is not 
significant.  
 
 Table 10. SSA based causality test for log prices 
Variable US  Canada  Japan  UK  Germany  France  Italy  
US   0.82 ** 0.79 ** 0.83 ** 0.89 ** 0.82 ** 0.82 **
Canada 0.92    0.95 ** 0.97  0.84 ** 0.96  1.02  
Japan 0.83 ** 0.85 **   0.90 ** 0.91 ** 0.99  0.91 **
UK 0.87 ** 0.89 ** 0.84 **   0.91 ** 0.78 ** 0.92 **
Germany 0.85 ** 0.99  1.02  0.84 **   0.85 ** 0.92 **
France 0.95  0.91 ** 1.05  0.82 ** 0.84    0.81 **
Italy  0.99  1.03  0.99  0.98  0.97  0.94 **   
 
Table 11 shows the SSA based causality test for the variables in first differences, that is, returns. 
The overall conclusion for the results in this table is that the dependence structure between 
markets is reduced using differencing as we saw in previous tests. Here we see some casual 
relationship as well, but the magnitude has been reduced.  
 
Table 11. SSA based causality test for returns 
Variable ΔUS  ΔCanada  ΔJapan  ΔUK  ΔGermany  ΔFrance  ΔItaly  
ΔUS   0.87 ** 0.89 ** 0.84 ** 0.92 ** 0.89 ** 0.92 **
ΔCanada 0.95 **   0.98  0.96  0.92 ** 1.02  0.98  
ΔJapan 0.94 **    0.94 **   1.10  1.08  1.02  0.98  
ΔUK 0.95  0.88 ** 0.97    0.93 ** 0.89 ** 0.90 **
ΔGermany 0.87 ** 1.08  1.07  0.89 **   0.87 ** 0.91 **
ΔFrance    0.89 ** 0.86 ** 1.11  0.93 ** 0.91 **   0.90 **
ΔItaly  1.13  1.01  1.03  1.12  0.97  1.02    
 
Finally, Table 12 presents the SSA based causality test for the variables in first differences but 
where X2t now represents the first lag of the underlying variable. The overall conclusion is the 
same as the results obtained by previous methods; historical delayed returns worldwide have a 
significant impact on current returns. However, here we only consider one lag.  
 
Table 12. SSA based causality test for returns (lagged effects) 
Variable ΔUS  ΔCanada  ΔJapan  ΔUK  ΔGermany  ΔFrance  ΔItaly  
ΔUS(t−1)   0.85 ** 0.84 ** 0.78 ** 0.95  0.86  0.91 **
ΔCanada(t−1) 0.94 **   0.93 ** 0.92 ** 0.95  0.98  0.94 **

ΔJapan(t−1) 0.93 **    0.92 **   1.02  1.01  0.97 
  0.96  

ΔUK(t−1) 0.85 ** 0.84 ** 0.94 **   0.77 ** 0.80 ** 0.85 **
ΔGermany(t−1) 0.83 ** 0.95 ** 0.99  0.79 **   0.86 ** 0.93 **
ΔFrance(t−1)    0.91 ** 0.94 ** 1.05  0.88 ** 0.87 **   0.91 **
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ΔItaly(t−1) 1.02  0.98  0.98  1.10  0.96  1.03    
 
 
 
In general, the results obtained by all methodologies are consistent with the idea of weak market 
integration when dealing with stock exchange data and there is a single global market leaded by 
the US. In Europe, the UK (or Germany depending on the methodology) emerges as a regional 
leader. Japan however, appears to be the weakest market, in causal terms, within the G7. The 
mutual information and SSA based test results appear to be stronger than Granger causality 
where capture global relationships between stock markets without imposing any structure or 
constraint to the model.  
 
Interestingly, the global correlation among stock markets is very high in levels and much smaller 
in first differences and in lagged first differences. Stock market prices, consequently, are more 
correlated than stock market returns and the latter are more correlated than lagged returns. On the 
basis of these results is it possible to conclude that the long-run relationship between prices 
incorporates more nonlinear dependencies and, probably, other complexities in the data than the 
short-run relationships between log price changes? It appears so. Conversely, with regard to the 
Granger causality results, the statistical tests for returns appear to be stronger than those for 
prices in levels, and even more so for lagged stock market returns. One should note that the 
mutual information and the SSA technique enable us to capture, in a quite global way, the total 
dependence and relationships between variables, being almost free from restrictions and 
assumptions about structure, probability distributions or errors behavior. In this context, we 
believe these two techniques promote more robust information than linear Granger causality tests 
in time series statistical relationships. 
 
 
4. Conclusions 
 
This paper analyzes stock market integration in the context of the global economy for the G7 
countries. The theoretical background is rooted on a new concept of weak market integration 
which is defined as the causality that occurs in price transmission independently of whether this 
process is proportional or not over time. This allows for nonlinearities and other types of price 
distortions to be present in the overall process. Under proportionality of price transmission we 
say that strong market integration occurs. The empirical modeling of market integration based on 
price data is complicated by the nonstationary nature of these data sets. In order to acknowledge 
the nonstationarity problem, tests for unit roots and cointegration were performed prior to the 
empirical analysis of market integration based on Granger causality, mutual information and the 
SSA based tests. The unit root results are consistent with nonsationarity, and cointegration is 
present for the G7 stock markets over the 36-year period under analysis. It is therefore consistent 
to say that these markets belong to the same space, i.e., they actually form a single global stock 
market with one long-run or equilibrium relationship linking the data. 
 
The cointegration results obtained assure that we are not facing spurious relationships between 
the seven markets under analysis. Thus, market integration can be tested using the methods 
discussed in this paper. The results in both cases are consistent with the notion of pairwise weak 
market integration, since there are substantial causal effects, possibly linear and/or nonlinear, 
between pairs of variables. These effects occur both for prices and returns. They are also present 
for lagged returns relationships. Overall, the SSA based causality test results and the mutual 
information results appear to be more robust than the Granger causality ones. Since these 
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technique capture global dependence relationships without imposing any assumption about the 
structure of the model, while the Granger causality test is deeply rooted on parametric linear 
regression estimation, the SSA based test and the mutual information results can be seen as a 
‘general case’ of Granger causality, that is, the former results incorporate the latter ones. In this 
sense, one can say that these techniques provide more information on the process of market 
integration than linear Granger causality tests. It should be noted that the SSA based test enabled 
us to capture the causality in both directions, whilst we can not capture this using mutual 
information based test.  Future work will look into the possibility of using a modified mutual 
information test that allows for separate causality effects between X1 and X2, and X2 and X1, in 
order to ascertaining whether causality is just one-way or, otherwise, is a feedback effect. This is 
important insofar endogeneity and exogeneity are central concepts for modeling market relations 
and the process of price/returns co-movements. In addition, we shall also look into the nature of 
the nonlinear relationships between stock markets, in particular with respect to the distinction 
between stochastic and deterministic effects and provide a robust basis to make prediction in the 
context of market integration. 
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Appendix 
 
This Appendix lists the 90th, 95th and 99th percentiles of the empirical distribution of the mutual 
information for the process Yt = εt with εt ~ N(0,1), on the basis of 5000 simulations for each 
critical value. This methodology was used as proposed by Granger, Maasoumi and Racine (2004). 
According to these authors, the critical values can be used as the base to test for time series serial 
independence. DF denotes the degrees of freedom for the mutual information, which corresponds 
to the dimension (d) of the analyzed vectors. 
 
N = 100 

DF Percentiles 
90 95 99 

2 0.0185 0.0323 0.0679 
3 0.1029 0.1232 0.1933 
4 0.1059 0.1260 0.1722 
5 0.2290 0.2580 0.3261 
6 0.6639 0.7528 0.9663 
7 0.8996 0.9731 1.1586 
8 1.3384 1.3839 1.5024 
9 1.9030 1.9352 2.0142 

10 2.5266 2.5571 2.6181 
 
N = 1000 

DF Percentiles 
90 95 99 

2 0.0019 0.0041 0.0071 
3 0.0133 0.0191 0.0311 
4 0.0340 0.0399 0.0568 
5 0.0708 0.0865 0.1128 
6 0.2119 0.2430 0.3046 



22 
 

7 0.3635 0.3954 0.4688 
8 0.4041 0.4414 0.5252 
9 0.3865 04114 0.4640 

10 0.6418 0.6585 0.6942 
 
N ≥ 2500 

DF Percentiles 
90 95 99 

2 0.0008 0.0015 0.0030 
3 0.0054 0.0078 0.0129 
4 0.0134 0.0171 0.0251 
5 0.0556 0.0648 0.0797 
6 0.1203 0.1376 0.1738 
7 0.2181 0.2418 0.2884 
8 0.3938 0.4217 0.4719 
9 0.3175 0.3409 0.4024 

10 0.2931 0.3124 0.3477 
 




