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GARCH-Copula Model1  
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Simon H Babbs 

THE OPTIONS CLEARING CORPORATION 
(email: sbabbs@theocc.com) 

 

Abstract We introduce a multivariate GARCH-Copula model to describe joint dynamics of overnight and daytime 
returns for multiple assets. The conditional mean and variance of individual overnight and daytime returns depend 
on their previous realizations through a variant of GARCH specification, and two Student’s t copulas describe joint 
distributions of both returns respectively. We employ both constant and time-varying correlation matrices for the t 
copulas and with the time-varying case the dependence structure of both returns depends on their previous 
dependence structures through a DCC specification. We estimate the model by a two-step procedure, where 
marginal distributions are estimated in the first step and copulas in the second. We apply our model to overnight and 
daytime returns of SPDR ETFs of nine major sectors and briefly illustrate its use in risk management and asset 
allocation. Our empirical results show higher mean, lower variance, fatter tails and lower correlations for overnight 
returns than daytime returns. Daytime returns are significantly negatively correlated with previous overnight returns. 
Moreover, daytime returns depend on previous overnight returns in both conditional variance and correlation matrix 
(through a DCC specification). Most of our empirical findings are consistent with the asymmetric information 
argument in the market microstructure literature. With respect to econometric modelling, our results show a DCC 
specification for correlation matrices of t copulas significantly improves the fit of data and enables the model to 
account for time-varying dependence structure.  

JEL classification: C32, G12, G14. 

Key words: Overnight and daytime returns, GARCH-Copula models. 

1. Introduction 

Modeling the dynamics of overnight and daytime returns is important in at least two aspects. 
First, a good description of overnight and daytime returns can help to test alternative theories on 
different features of market microstructure during the day and night. Second, from a 
practitioner’s point of view, many financial instruments (such as index options) are based on the 
opening prices of underlying assets. Thus, it is necessary to distinguish between overnight and 
daytime returns for risk management or asset allocation purposes. There is plenty of work 
documenting different empirical properties of overnight and daytime returns. Some show that 

                                                 
1 Views expressed in this paper are those of the authors and not necessarily those of any organization to which the 
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overnight returns are statistically higher than daytime returns, while others show higher returns 
over trading periods than non-trading periods (see Cliff et al. (2008) and Keim & Stambaugh 
(1984)). Some show that daytime returns are statistically negatively correlated with previous 
overnight returns, while others show that the two returns are largely independent (see Gallo et al. 
(2001), Branch & Ma (2006) and Oldfield & Rogalski (1980)). The variance of daytime returns 
is significantly higher than that of overnight returns (see French & Roll (1986) and Lockwood & 
Linn (1990)). Overnight returns are more leptokurtic than daytime returns2 (see Masulis & Ng 
(1995)). Those empirical patterns also generate interest in proposing theoretical models to 
explain them (see Admati & Pfleiderer (1988, 1989) and Hong & Wang (2000)). 

To the best of our knowledge, current literature on this topic only deals with the univariate case 
and there is no work on modeling the joint dynamics of multiple assets. Our work attempts to fill 
this gap. First, we introduce a comprehensive model which can reasonably well capture key 
empirical aspects of both returns and can be easily implemented by practitioners. Second, by 
applying the model to the data, we expect to find some different features of the dependence 
structure between both returns. Moreover, we illustrate how the model can be effectively used 
for risk management or asset allocation purposes. 

With a GARCH-Copula framework, we can more flexibly construct the joint distribution of 
multiple returns. The dynamics of overnight and daytime returns for each asset are described by 
a GARCH process, where the conditional mean and variance depend on the previous realizations 
of both returns and innovations are described by Student’s t distributions. Then we use two 
Student’s t copulas to link overnight and daytime returns of multiple assets respectively. The 
constant correlation matrices in Student’s t copulas are assumed and estimated first, and then to 
describe the time-varying feature of dependence structure we implement a DCC (Dynamic 
Conditional Correlation) specification for Student’s t copulas. We estimate the model by a two-
step procedure, where the marginal distributions are estimated in the first step and the copulas in 
the second. 

We apply our model to the overnight and daytime returns of SPDR ETFs of nine major sectors 
between March 11, 2003 and July 19, 2007. At the individual level, overnight returns have 
statistically significant positive average returns while daytime returns depend on previous 
overnight returns negatively. The conditional variance of daytime returns is consistently higher 
than that of overnight returns. Almost all the ETFs have lower DoF parameters for overnight 
returns than for daytime returns, which is consistent with the observed higher kurtosis of 
overnight returns. In addition to their own lags, the conditional variances of overnight (daytime) 
returns has some degree of dependence on previous daytime (overnight) returns.  

With constant Student’s t copulas, overnight returns have lower values of correlation matrix and 
DoF parameters than daytime returns. Time-varying t copulas yield similar results. Overnight 
returns tend to be less dependent on each other than daytime returns. Tail dependence patterns 
are mixed for both returns. Moreover, time-varying copula models show that daytime returns 
depend on previous overnight returns. This adds to observed non-linear dependence between 

                                                 
2 See Kang & Babbs (2010b) for a comprehensive empirical investigation. 
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daytime and previous overnight returns. We believe most of our empirical findings are consistent 
with the asymmetric information argument in theoretical models such as Admati & Pfleiderer 
(1988, 1989). Moreover, our results show that a DCC specification for correlation matrices of t 
copulas significantly improves fit of data and enables the model to account for time-varying 
dependence structure.  

The rest of the paper is organized as follows. Section 2 introduces the multivariate GARCH-
Copula model and its estimation and simulation procedures. Section 3 applies the model to the 
overnight and daytime returns of SPDR ETFs of nine sectors. Section 4 briefly illustrates the 
application of the model for risk management and asset allocation purposes. Section 5 concludes. 

2. A multivariate GARCH-Copula model 

2.1. Individual returns 

We model individual returns using a variant of GARCH specification. Let , , , , ,[ ]i t i n t i d tR r r ′=  be 

overnight and daytime returns for asset i observed at the open and close respectively on day t. 
The individual returns for asset i are  

, ,0 , ,0 , , 1 , , 1 , , , , , , , ,, ,..., , , , ,... , .i n i d i n t i d t i n t i d t i n T i d Tr r r r r r r r− −  

We specify the conditional mean as 

 , , ,0 ,1 , , 1 ,2 , , 1 , , ,i n t i i i d t i i n t i n tr r rα α α η− −= + + +  (1) 

 , , ,0 ,1 , , ,2 , , 1 , , .i d t i i i n t i i d t i d tr r rβ β β η−= + + +  (2) 

where , ,i n tr  depends on previous daytime return , , 1i d tr −  and previous overnight return , , 1i n tr − , and 

similarly , ,i d tr  depends on , ,i n tr  and , , 1i d tr − . We specify residuals as 

 , , , , , , ,i n t i n t i n thη ε=  (3) 

 , , , , , , ,i d t i d t i d thη ε=  (4) 

where , ,i n tε  and , ,i d tε  are i.i.d. innovations with zero mean and unitary variance respectively and 

are independent between each other at all times, and , ,i n th and , ,i d th are conditional variance 
described by the following equations. 

  2 2
, , ,0 ,1 , , 1 ,2 , , 1 ,3 , , 1,i n t i i i d t i i n t i i n th hθ θ η θ η θ− − −= + + +  (5) 

 2 2
, , ,0 ,1 , , ,2 , , 1 ,3 , , 1.i d t i i i n t i i d t i i d th hδ δ η δ η δ− −= + + +  (6) 
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where , 0i jθ >  and , 0i jδ >  for 0,...,3j = , ,2 ,3 1i iθ θ+ <  and ,2 ,3 1i iδ δ+ < . Those parameter 
restrictions guarantee conditional variances are always non-negative and squared residuals are 
stationary3. We assume that the innovations , ,i n tε  and , ,i d tε  have standardized Student’s t 
distribution as 

, , ,(0,1, )i n t i nSTε ν� , , , ,(0,1, )i d t i dSTε ν� , 

where ,i nν  and ,i dν  are degree-of-freedom (DoF) parameters and we have , ,, 2i n i dν ν >  to ensure 
the existence of second movements. 

It is worth noting that we can use a more sophisticated specification for marginal distributions of 
individual returns. For instance, we can include more explanatory variables in equations (1) and 
(2) to possibly better describe the conditional mean, include a GJR specification (see Glosten et 
al (1993)) in equations (5) and (6) to account for the asymmetric effect of stock returns on the 
conditional variance and specify a distribution with time-varying high-moment parameters (e.g. 
time-varying Hansen’s (1994) skewed t  distribution) for residual innovations. Nevertheless, we 
will focus more on modelling joint distributions here. As we believe the current setup describes 
the data reasonably well, we will leave those options for further research. 

2.2. Copulas 

After specifying marginal distributions of returns, we need two copula functions to link 
overnight and daytime returns respectively across all assets. To formulate the joint distribution of 
returns for N assets, we are facing the following multiple time series, 

 1,0 ,0 1, 1 , 1 1, , 1, ,,..., ,..., ,..., , ,..., ,..., , ..., .N t N t t N t T N TR R R R R R R R− −  

Let tF , ,d tF  and ,n tF  be the conditional cumulative distribution function (c.d.f.) for 1, ,, ...,t N tR R , 

1, , , ,, ...,d t N d tr r , and 1, , , ,,...,n t N n tr r .  At each time t , the conditional distribution of 1, ,, ...,t N tR R  is 
given as 

 1, , 1, 1 , 1 1,0 ,0 , 1, , , , , 1 , 1, , , , , 1( ,..., | ,..., , ..., ,..., ) ( ,..., | ) ( ,..., ),t t N t t N t N d t d t N d t d t n t n t N n t n tF R R R R R R F r r F r r− − − −= Ω Ω (7) 

where , 1 1, , , , 1, , 1 , , 1 1, ,0 , ,0 1, ,0 , ,0{ ,..., , ,..., ,..., ,..., , ,..., }d t n t N n t d t N d t d N d n N nr r r r r r r r− − −Ω =  and , 1 1, , 1{ ,...,n t d tr− −Ω =  

, , 1 1, , 1 , , 1 1, ,0 , ,0 1, ,0 , ,0, ,..., ,..., , ..., , , ..., }N d t n t N n t d N d n N nr r r r r r r− − − . Let , ,i d tF  and , ,i n tF , for 1,..., ,i N=  be the 

conditional c.d.f.’s for , ,i d tr  and , ,i n tr . Then the conditional joint distributions 

, 1, , , , , 1( ,..., | )d t d t N d t d tF r r −Ω  and , 1, , , , , 1( ,..., )n t n t N n t n tF r r −Ω  can be modelled using two copulas as, 

                                                 
3 A more general VARMA model for the vector of squared overnight and daytime returns can be proposed. The 
parameter restrictions will depend on the stationartiy and identification of the corresponding VARMA process. See 
Kang & Babbs (2010a). 
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 1, , , , , 1 1, , , 1 , , , 1 , 1( ,..., ) ( ( ),..., ( ) ),d t N d t d t d d t d t N d t d t d tF r r C F r F r− − − −Ω = Ω Ω Ω  

 1, , , , , 1 1, , , 1 , , , 1 , 1( ,..., ) ( ( ),..., ( ) ),n t N n t n t n n t n t N n t n t n tF r r C F r F r− − − −Ω = Ω Ω Ω  

where nC  and dC are the two copula c.d.f.’s. It is worth noting that the copula function and 
marginal distributions are all conditional on the previous information set.  

There are many choices of copula functions for modelling the dependence structure of multiple 
variables. We use Student’s t copula in this paper. The c.d.f. of Student’s t copula is given by 

 1 1
1 , 1( ,..., ) ( ( ),..., ( )),N R v v NC u u T T u T uν

− −=  (8) 

where ,RT ν is the N -dimensional Student’s t distribution with correlation matrix R  and DoF 

parameter ν , and 1( )vT − ⋅ is the inverse of univariate standard Student’s t distribution4. The 
probability density function (p.d.f.) of Student’s t copula is  

1 1
, 1

1
1

1

( ( ),..., ( ))
( ,..., ) ,

( ( ))

R v v N
N N

v i
i

t T u T u
c u u

t T u

ν

ν

− −

−

=

=
∏

 

where , ( )Rt ν ⋅  is the density function of ,RT ν  and ( )tν ⋅ is the density of Tν , the standard Student’s t 
distribution. 

When using Student’s t copulas for both returns, we can assign constant or time-varying 
correlation matrices for both t copulas. As for the time-varying t copulas, we borrow the idea of 
DCC-GARCH models to make the two sets of correlation matrices depend on past realizations.  

Let ( )1 1
, 1, , , ,( ),..., ( )

cn cncn t v n t v N n tT u T uς − − ′=  and ( )1 1
, 1, , , ,( ),..., ( )

cd cdcd t v d t v N d tT u T uς − − ′= according to (8) and 

,n tQ  and ,d tQ be the conditional covariance matrices of ,cn tς  and ,cd tς  respectively. The time-

varying correlation matrices ,cn tR  and ,cd tR of t copulas are governed by the dynamics of ,n tQ  and 

,d tQ as  

 , 0 1 , 1 , 1 2 , 1 , 1 3 , 1 4 , 1( ) ( ) ,n t cd t cd t cn t cn t d t n tQ Q Qπ ς ς π ς ς π π− − − − − −′ ′= Π + + + +  (9) 

 , 0 1 , , 2 , 1 , 1 3 , 4 , 1( ) ( ) ,d t cn t cn t cd t cd t n t d tQ Q Qψ ς ς ψ ς ς ψ ψ− − −′ ′= Ψ + + + +  (10) 

where 0iπ ≥  and 0iψ ≥ for 1,..., 4,i = and 2 4 1π π+ < and 2 4 1ψ ψ+ < to ensure the system of (9) 
and (10) is valid and stationary. With stationarity, it can be shown that  

                                                 
4 In contrast to the previous standardized Student’s t distribution, the standard Student’s t distribution here has 

variance as ( 2)ν ν − . 
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 0 2 4 1 3(1 ( )) ( ) ,n dS Sπ π π πΠ = − + − +  (11) 

 0 2 4 1 3(1 ( )) ( ) ,d nS Sψ ψ ψ ψΨ = − + − +  (12) 

where nS  and dS  are the unconditional covariance of ,cn tς  and ,cd tς 5. Let , , ,i j n tq  and , , ,i j d tq  be the 

,i j -element of ,n tQ  and ,d tQ respectively, then the ,i j -elements of ,cn tR  and ,cd tR are given as 

 , , ,
, , ,

, , , , , ,

,i j n t
i j n t

i i n t j j n t

q

q q
ρ =  (13) 

 , , ,
, , ,

, , , , , ,

.i j d t
i j d t

i i d t j j d t

q

q q
ρ =  (14) 

With ,0n nQ S=  and ,0d dQ S= , the equations (9) to (14) completely govern the dynamics of the 

correlations matrices ,cn tR  and ,cd tR . For the correlation matrices to be positive definite, we have 
the following sufficient conditions. 

Proposition 1 In equations (9) to (14), if 

a) 0iπ ≥  and 0iψ ≥ for 1,..., 4,i =  

b) 2 4 1π π+ < and 2 4 1,ψ ψ+ <  

c) all eigenvalues of nS  and dS are strictly positive, 

d) all eigenvalues of 0Π  and 0Ψ are strictly positive, 

then the correlations matrices ,cn tR  and ,cd tR  are positive definite. 

Proof: First, a) and b) guarantee the system is stationary and nS  and dS exist. c) guarantees ,0nQ  

and ,0dQ are positive definite. With a) and d), ,n tQ  and ,d tQ  are the sum of positive semi-definite 
and positive definite matrices with non-negative coefficients and therefore are positive definite 
for all t . Based on the proposition 1 in Engle & Sheppard (2001), we prove that ,cn tR  and ,cd tR  
are positive definite. 

2.3. Estimation 

We estimate the whole density function by ML estimation procedures. Let F  and 0F  be the 
c.d.f.’s for 1,0 ,0 1, ,,..., ,..., ,...,N T N TR R R R  and 1,0 ,0, ..., NR R . Using Bayes’ Theorem, the whole joint 
distribution of returns can be written as 

                                                 
5 See Appendix for derivation details. 
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1,0 ,0 1, , 0 1,0 ,0 1, , 1, , , 1 , , , , , 1 , 1
1

1, , 1, , , 1 , , , , , 1 , 1

( ,..., ,..., ,..., ) ( ,..., ) ( ( ( | ),..., ( | ) | )

( ( ),..., ( ) )).

T

N T N T N d d t d t d t N d t N d t d t d t
t

n n t n t n t N n t N n t n t n t

F R R R R F R R C F r F r

C F r F r

− − −
=

− − −

= Ω Ω Ω

⋅ Ω Ω Ω

∏

 

Correspondingly, the joint density of returns can be written as 

 
1,0 ,0 1, , 0 1,0 ,0 1, , 1, , , , , , , , , ,

1 1

1, , 1, , , , , , , , 1, ,
1

( ,..., ,..., ,..., ) ( ,..., ) ( ( ( ),..., ( )) ( )

( ( ),..., ( )) ( )),

T N

N T N T N d d t d t N d t N d t i d t i d t
t i

N

n n t n t N n t N n t i n t n t
i

f R R R R f R R c F r F r f r

c F r F r f r

= =

=

=

⋅

∏ ∏

∏
(15)  

where , 1d t −Ω and , 1n t−Ω  are suppressed for notation convenience, 0f , , ,i d tf  and , ,i n tf  are the 

densities for 0F , , ,i d tF  and , ,i n tF ,  and nc  and dc  are the two copula densities for overnight and 
daytime returns respectively. From equation (15), we can continue to write the density as 

 

1, , , , , ,

1, , , , , ,

1,0 ,0 1, , 0 1,0 ,0 1, , , , , ,
1 1 , ,

1, , , , , ,
1 , ,

1
( ,..., ,..., ,..., ) ( ,..., ) ( ( ( ),..., ( )) ( )

1
( ( ),..., ( )) ( ) ),

d t N d t i d t

n t N n t i n t

T N

N T N T N d d t N d t i d t
t i i d t

N

n n t N n t i n t
i i n t

f R R R R f R R c F F f
h

c F F f
h

ε ε ε

ε ε ε

ε ε ε

ε ε ε

= =

=

= ∏ ∏

∏
 (16) 

where 
, ,i d t

Fε and 
, ,i n t

Fε  are the c.d.f.’s for , ,i d tε  and , ,i n tε , and 
, ,i d t

fε  and 
, ,i n t

fε  are corresponding 

densities. 

Let 1{ , , ,..., }cn cd Nθ θ θ θΘ = be a set of parameters for the two copula densities nc  and dc , and ,i tR  

for 1,...,i N=  respectively. Omitting the first term 0 1,0 ,0( ,..., )Nf R R , we can write the log-
likelihood as 

 
1, , , , 1, , , ,

, , , ,

1, , , , 1, , , ,
1 1

, , , ,
1 1 1 1, , , ,

( ) log ( ( ),..., ( )) log ( ( ),..., ( ))

1 1
log ( ) log ( ) .

d t N d t n t N n t

i d t i n t

T T

d d t N d t n n t N n t
t t

N T N T

i d t i n t
i t i ti d t i n t

L c F F c F F

f f
h h

ε ε ε ε

ε ε

ε ε ε ε

ε ε

= =

= = = =

Θ = +

+ +

� �

�� ��
 (17) 

To estimate all the parameters simultaneously often leads to convergence problem of maximizing 
(17). Therefore, we maximize the whole log-likehihood by a two-step procedure. First, we 
estimate the marginal distribution of each asset. For asset i , the log-likelihood is 

 
, , , ,, , , ,

1 1, , , ,

1 1
( ) log ( ) log ( ) .

i d t i n t

T T

i i d t i n t
t ti d t i n t

L f f
h hε εθ ε ε

= =

= +� �  (18) 
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To further facilitate the estimation, we first estimate the conditional mean in equations (1) and 
(2) by ordinary least squares (OLS). Then with estimated OLS residuals, we can estimate the 
variance equations (5) and (6) by maximizing (18). The specific log-likehood becomes 

, , ,0 ,1 , , 1 ,2 , , 1 , , ,0 ,1 , , ,2 , , 1
, ,

1 1, , , ,

1 1, , , ,

ˆ ˆ ˆˆ ˆ ˆ
log ( | ) log ( | )

1 1
log log ,

T T
i n t i i i d t i i n t i d t i i i n t i i d t

ST i n ST i d
t ti n t i d t

T T

t ti n t i d t

r r r r r r
L f f

h h

h h

α α α β β β
ν ν− − −

= =

= =

− − − − − −
= +

+ +

� �

� �

where STf  denotes the density of standardized Student’s t distribution. With all the marginal 
distributions being estimated, the only component left out in (17) is the copula part. With 
estimated marginal distribution parameters, we can estimate the two copulas by maximizing 

 1, , , , 1, , , ,
1 1

ˆ ˆ ˆ ˆ( , ) log ( ( ),..., ( )) log ( ( ),..., ( )),
T T

cn cd d d t N d t n n t N n t
t t

L c F F c F Fθ θ ε ε ε ε
= =

= +� �  (19) 

where ˆ ( )F ⋅ is the estimated c.d.f. for each innovation. Whether the maximization of (19) is easy 
or not depends on the specific copula functions. With normal copulas, we can derive analytical 
ML estimates very easily. With Student’s t copulas, however, the parameters cnθ  and cdθ  consist 
of correlation matrices cnR  and cdR , and the DoF parameters cnν  and cdν , and there is no easy 
analytical solution for  maximizing (19). To smoothly solve this maximization problem, with 

( )1 1
, 1, , , ,( ),..., ( )

cn cncn t v n t v N n tT u T uς − − ′=  and ( )1 1
, 1, , , ,( ),..., ( )

cd cdcd t v d t v N d tT u T uς − − ′= , we assign ˆ
cnR  and ˆ

cdR  as 

the sample correlation matrices of ,cn tς  and ,cd tς . ˆ
cnR  and ˆ

cdR  are functions of DoF parameters 

cnν  and cdν . Therefore, we can plug ˆ
cnR  and ˆ

cdR  into (19) and solve the maximization problem 
in terms of cnν  and cdν . Furthermore, as parameters for the two copulas are separate, we can 
maximize the two components in (19) separately to solve for cnν  and cdν respectively. 

To estimate the time-varying t copula, we still maximize the log-likelihood as in (19) except that 
the time-varying t copulas are used. To reduce the number of parameters to directly estimate, we 
express the time-varying correlation matrices ,cn tR  and ,cd tR  as functions of DoF parameters cnν  

and cdν as in the above constant copula case.  Specifically, with given cnν  and cdν , we have the 

estimated unconditional covariance of ,cn tς  and ,cd tς  as ˆ
nS  and ˆ

dS , and we set the initial ,0nQ  

and ,0dQ equal to ˆ
nS  and ˆ

dS  respectively. Equations (9) to (14) completely describes the 

dynamics of the correlation matrices ,cn tR  and ,cd tR . Then all the parameters to estimate are iπ , 

iω  for 1,..., 4,i = cnν  and cdν , and the maximization is conducted with the corresponding 
restrictions. 

Generally, this two-step estimation procedure is called inference for the margins (IFM) method. 
Joe (1997) shows that under regular conditions the IFM estimator is consistent and has the 
property of asymptotic normality and Patton (2006) also shows that this two-step method yields 
asymptotically efficient and normal parameter estimates. 
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2.4. Density forecast and simulations 

With parameter estimates, we can forecast the joint density and then simulate future overnight 
and daytime returns. Specifically, with estimated parameters Θ̂  and , 1n t−Ω , we can sequentially 

forecast 1, , , , , 1( ,..., )n t N n t n tf r r −Ω , 1, , , , , 1( ,..., | )d t N d t d tf r r −Ω  and then 1, , , , 1, , , ,( ,..., , , ...,d t N d t n t N n tf r r r r

, 1)n t −Ω . Accordingly, we can sequentially simulate 1, , , ,{ ,..., }n t N n tr r and 1, , , ,{ ,..., }d t N d tr r . With ĉnθ , 

we first simulate the copula nC  to get a simulated vector 1{ ,..., }nu u� � . Using estimated GARCH 

parameters 1̂
ˆ,..., Nθ θ ,  and equations (1), (3) and (5), we can back out 1, , , ,{ ,..., }n t N n tr r� � .  Finally, we 

can use ĉdθ to simulate copula dC  and then back out 1, , , ,{ ,..., }d t N d tr r� � . 

3. An empirical investigation 

3.1. Data 

We apply our model to returns of SPDR ETFs of nine sectors. The nine symbols are XLY, XLP, 
XLE, XLF, XLV, XLI, XLB, XLK, and XLU representing the sectors of Consumer 
Discretionary, Consumer Staples, Energy, Financial, Healthcare, Industrial, Materials, 
Technology and Utilities. Figure 1 plots the daily log returns of nine sector SPDR ETFs between 
from December 22, 1998 to November 17, 2008. The period from December 22, 1998 to March 
10, 2003 features a high volatility due to burst internet bubbles and terrorist attacks, the second 
from March 11, 2003 to July 19, 2007 is of low volatility and the last one from July 20, 2007 to 
November 19, 2008 features an unprecedented high volatility due to the financial crisis. We 
choose the second period for our analysis. The open and close prices and dividend payments are 
directly downloaded from http://finance.yahoo.com/. We calculate log overnight and daytime 
returns based on the open and close prices and dividend payments. 

Table 1 reports the descriptive statistics (mean, standard deviation, Skewness and Kurtosis) for 
overnight and daytime returns of the SPDR ETFs of nine sectors between March 11, 2003 and 
July 19, 2007. We find overnight returns are all positive and consistently higher than daytime 
returns. Daytime returns have significantly higher standard deviations than overnight returns. 
Skewness for both returns has mixed signs, kurtosis is greater than three for both returns and 
overnight returns tend to have higher kurtosis. 

<Insert Figure 1 and Table1 here.> 

3.2. Empirical results 

Table 2 reports the OLS estimates for the conditional mean equations for each asset. The values 
in italics are standard errors. Estimates in bold are statistically significant at a 5% confidence 
level. Interestingly, the constant terms are all statistically significant and positive. Not many 
overnight returns significantly depend on previous daytime and overnight returns. For significant 
ones, the signs are mixed. In contrast, most constant terms for daytime returns are not 
statistically significant. Almost all daytime returns statistically depend on previous overnight 
returns negatively. Few of them depend on their own lag values.  
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Table 3 reports the GARCH estimates of marginal distributions for individual assets. Almost all 
GARCH terms and DoF parameters are statistically significant, while ARCH terms have mixed 
statistical significance. Except XLI, we find all the other ETFs have lower DoF parameters for 
overnight returns than for daytime returns, which is consistent with the observed higher Kurtosis 
of overnight returns. Figure 2 plots the estimated conditional variance for the nine ETFs. The 
conditional variance of daytime returns is consistently higher than that of overnight returns. 

Table 4 reports the estimates for the two constant Student’s t copulas governing the dependence 
structure of overnight and daytime returns respectively. Overnight returns have lower values of 
correlation matrix and DoF parameters than daytime returns. The higher correlation matrix of the 
t copulas for daytime returns generally indicate that daytime returns are more correlated than 
overnight returns, even though correlation matrix in t copulas seldom exactly equals to 
correlation matrix of underlying returns6. The lower value of DoF of t copulas for overnight 
returns does not necessarily suggest fatter joint tails than daytime returns as overnight returns 
have larger correlation matrix. Similarly, the tail dependence coefficient (TDC) depends on both 
correlation matrix and DoF parameter of t copulas. 

Table 5 reports the estimates for the two time-varying Student’s t copulas. We first observe that 
the time-varying t copula yields significantly higher log-likelihood than its constant case, 
indicating a better fit of data. Estimates of the parameters in equations (9) and (10) suggest the 
dependence structure of overnight returns has significant influence on that of the following 
daytime returns while the dependence of overnight returns appears to be mainly determined by 
its previous dependence structure. This observation adds to higher moment dependence between 
daytime and previous overnight returns in a multivariate setting. Similar with the constant 
copulas, overnight returns have lower DoF than daytime returns. Figure 3 plots time-varying 
conditional correlation parameters of the t copulas for four selected ETF pairs. Correlation 
parameters for daytime returns consistently fluctuate above those for overnight returns. Figure 4 
plots the conditional TDC for four selected pairs, where the comparison patterns are mixed. 

In summary, our empirical results show that overnight returns have higher mean, lower variance 
and higher kurtosis than daytime returns. In terms of dependence structure, overnight returns 
generally have lower correlations than daytime returns. Moreover, daytime returns significantly 
depend on previous overnight returns in first and second univariate moments and dependence 
structure. We believe that most of our observations are consistent with the asymmetric 
information argument in theoretical work such as Admati & Pfleiderer (1988, 1989).    

<Insert Tables 2, 3, 4 and 5, and Figures 2, 3 and 4 here.> 

                                                 
6 They are equal when DoF parameter of the marginal distribution of each asset equals to that of the copulas. 
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4. Applications 

4.1. Risk management 

Facing overnight and daytime returns, risk managers monitor portfolios whose returns depend on 
both overnight and daytime returns of underlying assets. Specifically, at time 1t −  and with an 
information set , 1n t−Ω , risk managers are concerned with the return distribution of a portfolio at 

the end of time t . Let 1, , , , 1, , , ,( ,..., , , ..., )t t n t N n t d t N d tP g r r r r= be the portfolio return at end of time t , 

which is a function of both overnight and daytime returns of underlying assets at time t .  From 
section 2.4, we can forecast 1, , , , 1, , , , , 1( ,..., , ,..., )d t N d t n t N n t n tf r r r r −Ω . Accordingly, the value-at-risk 

(VaR) and expected shortfall (ES) can be calculated. 

4.2. Asset allocation 

As a simple example of asset allocation, investors solve a one-period investment problem, 
allocate their wealth among risk-free and risky assets at the beginning of each time period and 
maximize their expected utility. Let 1, , , , 1, , , ,( ,..., , ,..., )t t n t N n t d t N d tW w r r r r= be the wealth at time t  

and with an information set , 1n t−Ω , investors allocate their wealth to maximize their expected 
utility as 

 1, , , , 1, , , , , 1 1, , , ,... ( ) ( ,..., , ,..., ) ... ,t d t N d t n t N n t n t d t N n tU W f r r r r dr dr−Ω� �  

where ( )U ⋅  is a certain utility function. Usually, the maximization problem is based on the 
numerical simulations of the expected utility. 

5. Conclusion 

We introduce a multivariate GARCH-Copula model to describe joint dynamics of both overnight 
and daytime returns of multiple assets. The conditional mean and variance of individual returns 
depend on their previous realizations, and two (constant and time-varying) Student’s t copulas 
link both returns respectively. We apply the model to SPDR ETFs of nine sectors and illustrate 
its use in risk management and asset allocation. 

There are several possibilities for extensions. First, we can include more explanatory economic 
variables or factors in the system to better predict joint density. Second, we can investigate how 
to estimate the model by a Bayesian approach. Finally, we can test the model’s performance in 
an out-of-sample manner with more financial applications. We leave those possibilities for future 
research. 
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Appendix 
 
Let , 1 , 1 , 1d t d t d tς ς− − −′Ε =  and , 1 , 1 , 1n t n t n tς ς− − −′Ε = , we can write equations (9) and (10) as 

 , 0 1 3 , 1 2 4 , 1 , 3 , 1 4 , 1( ) ( ) ,n t d t n t n t d t n tV V Vπ π π π π π− − − −Ε = Π + + Ε + + Ε + − −  (20) 

 , 0 1 3 , 2 4 , 1 , 3 , 4 , 1( ) ( ) ,d t n t d t d t n t d tV V Vψ ψ ψ ψ ψ ψ− −Ε = Ψ + + Ε + + Ε + − −  (21) 
where 

 , , ,E ,n t n t n tV Q= −  (22) 

 , , ,E .d t d t d tV Q= −  (23) 
We can write equations (20) and (21) in block matrices as 

 

, , 1 ,0 2 4 1 3

, , 1 ,1 3 0 32 4

, 14 3

, 14

1 0 1 0
( ) 1 10

.
0

n t n t n t

d t d t d t

n t

d t

V

V

V

V

π π π π
ψ ψ ψψ ψ

π π
ψ

−

−

−

−

Ε ΕΠ + +� � � � � �� � � � � �� �
= + +� � � � � �� � � � � �� �Ε Ε− + Ψ −+� �� � � � � �� � � � � �

− − � �� �
+ � �� �−� �� �

 (24) 

Accordingly, we have 

 

, , 10 1 3 0 2 4 1 3 1 3 2 4

, , 10 2 4

, , 13 1 3 1 3 4 3 4 1 3

, , 13 4

( ) ( ) ( )( )
0

1 ( ) ( )
.

1 0

n t n t

d t d t

n t n t

d t d t

V V

V V

ψ ψ π π π π ψ ψ ψ ψ
ψ ψ

ψ ψ ψ ψ ψ π π ψ ψ ψ
ψ ψ

−

−

−

−

Ε ΕΠ + + Ψ + + + + +� � � �� � � �
= +� � � �� � � �Ε ΕΨ +� �� �� � � �

− + + − − − +� � � �� � � �
+ +� � � �� � � �− −� �� �� � � �

 (25) 

The above system is a VARMA(1,1) process and we require 2 4| | 1π π+ <  and 2 4| | 1ψ ψ+ <  for 
stationarity. Under stationarity, we can take expectations on both sides of (24) and with 

,( )n tE V = 0  and ,( )d tE V = 0 ,  we have 

 0 2 4 1 3(1 ( )) ( ) ,n dS Sπ π π πΠ = − + − +   

 0 2 4 1 3(1 ( )) ( ) ,d nS Sψ ψ ψ ψΨ = − + − +   
where nS  and dS  are the unconditional covariance of ,cn tς  and ,cd tς . 
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Figures and Tables 

 

Figure 1 This figure plots the daily log returns of nine sector SPDR ETFs between from December 22, 1998 to 
November 17, 2008. The period from December 22, 1998 to March 10, 2003 features a high volatility due to burst 
internet bubbles and terrorist attacks, the second from March 11, 2003 to July 19, 2007 is of low volatility and the 
last one from July 20, 2007 to November 19, 2008 features an unprecedented high volatility due to the current 
financial crisis. In this paper, we choose the second period for applying our copula model to overnight and daytime 
returns. 

 

    XLY XLP XLE XLF XLV XLI XLB XLK XLU 

Overnight Mean 0.0004 0.0004 0.0010 0.0009 0.0011 0.0007 0.0007 0.0004 0.0014 

Std. Dev. 0.005 0.004 0.006 0.005 0.005 0.005 0.005 0.007 0.005 

Skewness 0.675 -0.350 -0.056 0.506 1.318 -0.214 0.046 0.084 0.428 

  Kurtosis 9.810 5.533 4.051 7.589 29.841 6.229 7.421 7.191 7.712 

Daytime Mean 0.0002 0.00004 0.0002 -0.0002 -0.0007 0.0001 0.0002 0.0002 -0.0005 

Std. Dev. 0.008 0.006 0.012 0.008 0.008 0.009 0.010 0.010 0.009 

Skewness 0.064 0.268 -0.270 -0.032 0.035 0.081 -0.183 -0.093 -0.206 

  Kurtosis 4.900 4.189 3.340 4.690 5.080 4.523 3.650 4.523 3.940 

Table 1 This table reports the descriptive statistics (mean, standard deviation, Skewness and Kurtosis) for overnight 
and daytime returns of the SPDR ETFs of nine sectors between March 11, 2003 and July 19, 2007. We find 
overnight returns are all positive and consistently higher than daytime returns. Daytime returns have significantly 
higher standard deviations than overnight returns. Skewness for both returns has mixed signs and Kurtosis is greater 
than three for both returns and overnight returns tend to have higher Kurtosis. XLY, XLP, XLE, XLF, XLV, XLI, 
XLB, XLK, and XLU represent the sectors of Consumer Discretionary, Consumer Staples, Energy, Financial, 
Healthcare, Industrial, Materials, Technology and Utilities.   
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  XLY XLP XLE XLF XLV XLI XLB XLK XLU 

  
Overnight ,0iα  0.0004 0.0004 0.0011 0.0008 0.0010 0.0007 0.0007 0.0004 0.0013 

  0.0001 0.0001 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 

 ,1iα  -0.03 -0.05 0.07 -0.01 -0.02 0.04 0.01 -0.02 0.01 

  0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 

 ,2iα  -0.01 0.0001 -0.11 0.01 0.02 0.08 -0.01 -0.05 0.11 

  0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

           
Daytime ,0iβ  0.0003 0.0002 0.0002 0.0001 -0.0001 0.0005 0.0003 0.0004 0.0004 

  0.0002 0.0002 0.0004 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 

 ,1iβ  -0.30 -0.50 -0.01 -0.40 -0.55 -0.59 -0.14 -0.33 -0.66 

  0.05 0.05 0.06 0.05 0.05 0.04 0.06 0.04 0.05 

 ,2iβ  -0.01 -0.10 -0.05 -0.08 -0.04 -0.04 0.0003 -0.03 -0.02 

  0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

  

Table 2 This table reports the OLS estimates of conditional mean parameters for each ETF. The values in italics are 
standard errors. Estimates in bold are statistically significant at a 5% confidence level. Interestingly, the constant 
terms are all statistically significant and positive. Not many overnight returns significantly depend on previous 
daytime and overnight returns. For significant ones, the signs are mixed. In contrast, most constant terms for 
daytime returns are not statistically significant. Almost all daytime returns statistically depend on previous overnight 
returns negatively. Few of them depend on their own lag values.  
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 XLY XLP XLE XLF XLV XLI XLB XLK XLU 

Overnight ,0iθ  1.36E-07 7.01E-07 4.66E-08 3.69E-07 7.43E-07 1.78E-07 1.69E-06 1.15E-06 2.72E-06 

 2.76E-07 2.37E-07 4.58E-08 3.35E-07 3.32E-07 2.95E-07 9.86E-07 9.90E-07 2.05E-06 

,1iθ  0.024 0.026 0.004 0.017 0.026 0.025 0.008 0.032 0.008 

 0.009 0.010 0.003 0.007 0.015 0.014 0.008 0.012 0.007 

,2iθ  0.004 0.010 0.032 0.040 2.79E-09 0.029 0.043 0.026 0.058 

 0.010 0.011 0.015 0.015 6.28E-07 0.015 0.019 0.027 0.044 

,3iθ  0.922 0.883 0.947 0.904 0.905 0.910 0.863 0.879 0.813 

 0.027 0.022 0.023 0.030 0.024 0.041 0.060 0.055 0.111 

,i nν  4.397 9.027 27.145 4.220 3.333 16.430 4.197 4.504 4.890 

 0.402 1.958 15.470 0.368 0.164 7.360 0.343 0.432 0.488 

          
Daytime ,0iδ  7.21E-06 2.08E-06 2.44E-06 5.05E-06 1.99E-06 1.91E-06 3.33E-05 9.21E-07 5.69E-06 

 4.12E-06 1.05E-06 1.66E-06 3.83E-06 2.52E-06 1.59E-06 2.31E-05 1.36E-06 3.87E-06 

,1iδ  0.187 0.132 0.095 0.169 0.047 0.027 0.370 0.053 0.027 

 0.101 0.070 0.045 0.133 0.085 0.032 0.201 0.058 0.027 

,2iδ  0.055 0.040 0.033 0.036 0.053 0.041 0.019 0.027 0.099 

 0.021 0.023 0.015 0.018 0.037 0.021 0.019 0.019 0.041 

,3iδ  0.764 0.841 0.928 0.815 0.889 0.914 0.528 0.936 0.805 

 0.099 0.062 0.028 0.098 0.112 0.053 0.274 0.056 0.097 

,i dν  11.259 14.232 76.314 7.388 8.699 12.600 14.936 17.693 11.009 

 3.384 5.592 44.370 1.477 1.888 4.441 5.320 8.732 2.926 

Table 3 This table reports the GARCH estimates of marginal distributions for individual assets. The values in italics 
are robust standard errors. All GARCH terms and DoF parameters are statistically significant, while ARCH terms 
have mixed statistical significance and signs.Estimates in bold are statistically significant at a 5% confidence level. 
Except XLI, we find all the other ETFs have lower DoF parameters for overnight returns than for daytime returns, 
which is consistent with the observed higher Kurtosis of overnight returns.  
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Figure 2 This figure plots the estimated conditional variance of overnight and daytime returns for each ETF returns. 
We find that the daytime returns have consistently higher conditional volatility than overnight returns.  

 

 

 

 

 

 

 

 

03 04 05 06 07 08
0

1

2

3

4
x 10

-4 XLY

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

x 10
-4 XLP

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

2

3

4
x 10

-4 XLE

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

2

3

4
x 10

-4 XLF

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

2

3

4
x 10

-4 XLV

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

x 10
-4 XLI

Date
C

on
di

tio
na

l V
ar

ia
nc

e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

2

4

6
x 10

-4 XLB

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

2

3

4
x 10

-4 XLK

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime

03 04 05 06 07 08
0

1

2

3

4
x 10

-4 XLU

Date

C
on

di
tio

na
l V

ar
ia

nc
e

 

 
Overnight
Daytime



                                                                                    

19 
 

 

 

 
Overnight          

cnR  XLY XLP XLE XLF XLV XLI XLB XLK XLU 

 
XLY          
XLP 0.44         

XLE 0.18 0.18        

XLF 0.57 0.42 0.22       

XLV 0.47 0.40 0.15 0.48      

XLI 0.48 0.34 0.18 0.45 0.33     

XLB 0.47 0.37 0.25 0.48 0.35 0.40    

XLK 0.55 0.37 0.18 0.54 0.40 0.44 0.48   

XLU 0.28 0.29 0.19 0.29 0.25 0.26 0.29 0.25  

           
cnν  15.52         

        
          

Daytime          

cdR  XLY XLP XLE XLF XLV XLI XLB XLK XLU 

XLY          
XLP 0.68         
XLE 0.37 0.28        
XLF 0.77 0.67 0.38       
XLV 0.64 0.63 0.32 0.65      
XLI 0.77 0.64 0.43 0.73 0.62     

XLB 0.67 0.52 0.52 0.65 0.52 0.73    
XLK 0.71 0.58 0.33 0.68 0.57 0.70 0.61   
XLU 0.46 0.45 0.45 0.52 0.41 0.48 0.49 0.41  

           
cdν  24.01         

          Log-likelihood 4786.96         
        

Table 4 This table reports the estimates for the two Student’s t copulas governing the dependence structure of 
overnight and daytime returns. We find that overnight returns have lower values of correlation matrix and DoF 
parameters than daytime returns. We also report the log-likelihood for the copula components. 
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 Estimate SE 

1π  0.011 0.003 

2π  0.005 0.002 

3π  0.043 0.022 

4π  0.920 0.027 

1ψ  0.023 0.004 

2ψ  0.009 0.008 

3ψ  0.217 0.166 

4ψ  0.290 0.232 

cnν  15.177 1.898 

cdν  25.071 3.835 

   
Log-likelihood 4863.84  

Table 5 This table shows the ML estimates for the time-varying t copula. Consistent with the constant case, the 
copula DoF parameter of daytime returns is higher than that of overnight returns. We also report the log-likelihood 
of the copula component. Compared with constant t copula, we have significantly higher log-likelihood by making 
correlation matrices time-varying. 
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Figure 3  This figure plots the time-varying conditional correlation parameters of the t copulas for four pairs of the 
returns. We observe that the correlation parameter of daytime returns is consistently higher than that of overnight 
returns. 

 

 

 
Figure 4  This figure plots the time-varying conditional tail dependence coefficient (TDC) for the four pairs of 
returns. We observe mixed patterns.  
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