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Abstract

This paper theoretically and empirically analyzes backtesting portfolio VaR with estimation risk in
an intrinsically multivariate framework. For the first time in the literature, it takes into account the
estimation of portfolio weights in forecasting portfolio VaR and its impact on backtesting. It shows that
the estimation risk from estimating the portfolio weights as well as that from estimating the multivariate
dynamic model of asset returns make the existing methods in a univariate framework inapplicable. And
it proposes a general theory to quantify estimation risk applicable to the present problem and suggests
practitioners a simple but effective way to carry out valid inference to overcome the effect of estimation
risk in backtesting portfolio VaR. A simulation exercise illustrates our theoretical findings. In application,
a portfolio of three stocks is considered.
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1 Introduction

The literature on financial risk management primarily focuses on the context of given or hypothetical port-

folios, e.g. Giot and Laurent (2003), Ferreira and Lopez (2005)1, and little attention has been paid to the

fact that portfolio weights are unknown and estimated in practice using some portfolio optimization theory,

therefore, the extra uncertainty from estimating portfolio weights has been neglected in inference problems

on portfolios such as backtesting portfolio Value-at-Risk (VaR). The objective of this paper is to study the

impact of estimation risk on backtesting portfolio VaR with the consideration of portfolio choice and to

suggest a practical way to carry out valid inference in backtesting portfolio VaR free of estimation risk.

VaR has become the standard risk measure used in financial institutions, since adopted by the Basel

Accord (1996a). It is defined as the maximum expected loss on an investment over a specified horizon at

a given confidence level, see Jorion (2001). Required as part of capital-adequacy framework, backtesting,

which is a statistical framework to evaluate the out-of-sample forecast accuracy of the portfolio VaR model

recommended by the Basel Accord (1996b), has become an important issue in practice.

This paper tackles backtesting portfolio VaR with estimation risk in a complete multivariate setting, since

backtesting portfolio VaR is intrinsically a multivariate inference problem. As argued in Giot and Laurent

(2003) and Bauwens et. al. (2006), whenever portfolio of assets are involved, a multivariate dynamic model

of the component asset returns would be needed for determining portfolio weights as well as forecasting asset

returns. Unlike univariate modeling, the multivariate models capture time-varying correlations between the

component asset returns and are also more flexible for obtaining the implied distribution of any portfolio. In

forecasting portfolio VaRs, portfolio returns are unobservable but can be directly computed from forecasted

asset returns and estimated asset weights.

Consequently, there are two sources of estimation risk in backtesting portfolio VaR, one from estimating

the multivariate dynamic model of asset returns and one from estimating portfolio weights. Without con-

sidering the impact of estimation risk in the standard backtesting procedure, wrong critical values may be

used to assess market risk, see Escanciano and Olmo (2009). But the complication in our context makes the

existing methods in the univariate framework inapplicable. Thus, we provide a general theory to quantify

the two sources of estimation risk in the multivariate framework of backtesting portfolio VaR. As far as we

2



are concerned this is the first work to incorporate extra uncertainty about estimating portfolio weights into

the backtesting procedure in a complete multivariate setting.

In fact, the estimation risk issue has not been paid much attention in risk management literature. It

has been either neglected or overcome by means of complicated methods. For example, the effect of esti-

mation risk on optimal portfolio choice first discussed in Klein and Bawa (1976) is mainly examined using

the Bayesian predictive approach, e.g. Kandel and Stambaugh (1996) and Barberis (2000). Jorion (1996)

and Dowd (2000) study the estimation risk issues on VaR, but just for the i.i.d. return case. Christoffersen

and Gonçalves (2005) examines the issue in the generalized autoregressive conditional heteroscedasticity

(GARCH) models using a bootstrap method, but their method is time-consuming and only valid for i.i.d.

standardized innovations. Furthermore, Gao and Song (2008) provides an analytical method to deal with

estimation risk in GARCH VaR and expected shortfall estimates, and Escanciano and Olmo (2009) quan-

tifies the estimation risk in backtesting VaR. However, all the above works are restricted to the univariate

framework. The theory to be presented in this paper is applicable in the multivariate framework, especially

with the consideration of portfolio choice.

One of the theoretical findings of this paper is that the effect of estimation risk on backtesting portfolio

VaR tends to vanish as the ratio of the out-of-sample size relative to the in-sample size goes to zero. We

design a series of simulation experiments to illustrate our theoretical findings. The simulation results turn

out to support our theoretical findings. We conclude that a simple but effective way to carry out valid

inferences in backtesting procedures is to consider a small ratio of the out-of-sample size to the in-sample

size.

Although the general theory to be presented in this paper does not require any particular distributional

assumptions for asset returns and any particular method of portfolio choice, we consider these two problems

in detail in our application. In modeling asset returns, we focus on the parametric multivariate generalized

autoregressive conditional heteroscedasticity models (MGARCH), which is the most popular modelling to

capture the salient empirical features of volatility clustering and time-varying correlations from financial time

series. There is a large body of literature on MGARCH, see two recent surveys of Bauwens et. al. (2006) and

Silvennoinen and Terasvirta (2008) for a review. Meanwhile, it is crucial to make the distributional assump-

tion of the innovations. We will use the the general hyperbolic (GH) distribution. As analyzed in Mencia and
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Sentana (2005), the GH distribution is adequate to model positive excess kurtosis and negative skewness of

financial asset returns in conditionally heteroscedastic dynamic regression models, and it is a rather flexible

distribution that contains many well-known subclasses, including the most important distributions already

used in the literature such as the Normal and the skew-Student. Additionally, the GH distribution is closed

under linear transformations, which will have important implication for the use of the model in applications

such as portfolio allocation and portfolio VaR calculation.

In allocating assets, we use the so-called mean-variance-skewness (MVS) analysis other than the widely

used mean-variance (MV) analysis. Firstly because the effect of higher order moments on asset allocation

cannot be neglected considering the asymmetries of asset returns being modeled. Secondly, under our model

setup asset returns will jointly follow a GH distribution, which can be expressed as a location-scale mixture

of normals. Mencia and Sentana (2009) shows that the distribution of any portfolio whose components

jointly follow a location-scale mixture of normals will be uniquely characterized by its mean, variance and

skewness. Most attractively, the closed form solution for the optimal portfolio weights could be explicitly

obtained under our model setup by this MVS method.

The remaining of this paper is structured as follows. Section 2 provides the general theory that quantifies

estimation risk in backtesting optimal portfolio VaR without any particular distributional assumption for

asset returns and any particular method of optimal portfolio choice, and proposes a way to overcome the

effect of estimation risk on backtesting. Section 3 applies the general procedures to a multivariate parametric

setting in which asset returns are model by a MGARCH model with standardized GH innovations and

the optimal portfolio weights are chosen by MVS method. A series of simulation exercises is designed

to illustrate our theoretical findings. Section 4 considers an application to a portfolio of three stocks and

compares differences in the inferences by different ways of backtesting optimal portfolio VaR. Finally, section

5 concludes.
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2 Backtesting portfolio VaR robust to estimation risk: A general

theory

The essence of backtesting is the out-of-sample comparison of actual trading results with model-generated

risk measures. In backtesting portfolio VaR, both asset returns and asset allocation needs to be considered.

In order to examine the effects of estimation risk on backtesting portfolio VaR, we need to elaborate on the

forecast evaluation problem first.

2.1 Forecast evaluation problem

Let us consider a portfolio of d assets. Let rt = (r1t, r2t, ..., rdt)
′ denote the d-dimensional vector of stationary

asset returns combined in the portfolio. Assume that at time t − 1 the investor’s information set is given

by It−1, which may contain past values of rt and other relevant economic and financial variables zt, i.e.

It−1 = (r′t−1, z
′
t−1, r

′
t−2, z

′
t−2...)

′, while the portfolio weights, wt = (w1t, w2t, ..., wdt)
′, where wt ∈ Rd and

Σdi=1wit = 1, are unknown and need to be estimated at time t conditioning on the information available up

to time t − 1 by using any portfolio choice method. To make this explicitly, we write wt ≡ w(It−1), where

wt ∈ Ft−1. Obviously, wt can be treated as a constant at time t, once we condition on the information set

at time t − 1. Notice that no particular portfolio choice method is specified here so that the theory to be

presented covers all existing methods in the literature. Thus the unobserved portfolio return at time t can

be calculated by the linear projection, Yt(wt) ≡ w
′

trt. Assuming that the conditional distribution of the

unobserved portfolio return Yt given It−1 is continuous, the conditional portfolio VaR at a given confidence

level 1−α given It−1, mα(wt, θ0, It−1), is defined as the αth quantile of the distribution of Yt|It−1 satisfying

the equation

P (Yt ≤ mα(wt, θ0, It−1)|It−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀ t ∈ Z. (1)

for some parameter θ0 belonging to Θ, with Θ a compact set in an Euclidean space Rp.

It is important to examine the accuracy of the portfolio VaR model, mα(wt, θ0, It−1), since market risk

capital requirements are directly linked to both the estimated level of portfolio VaR as well as the portfolio
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VaR model’s performance on backtests as laid out by the Basel Committee for Banking Supervision. One

of the implications of definition (1) given by Christoffersen (1998) has been taken as the criterion for the

out-of-sample evaluation of portflio VaR forecasts,

{ht,α(θ0)} are iid Ber(α) random variables for some θ0, (2)

where ht,α(θ0) := 1 (Yt ≤ mα(wt, θ0, It−1)) and 1(A) is the indicator function, i.e. 1(A) = 1 if the event A

occurs and 0 otherwise, the variables {ht,α(θ0)} are the so-called “hits” or “exceedances”, and Ber(α) stands

for a Bernoulli random variable with parameter α. The problem of evaluating the accuracy of portfolio VaR

forecasts can be reduced to the problem of examining the unconditional coverage and independence properties

of the hit sequence {ht,α(θ0)}. Based on such statistical properties of the hit sequence, the literature has

proposed several tests, such as those in Kupiec (1995), Christoffersen (1998) and Engle and Manganelli

(2004).

These testing problems are carried out in an out-of-sample forecast exercise. The forecast environ-

ment can be described as follows. Suppose we have a sample {r′t, z′t}nt=1 of size n ≥ 1 that is used

to evaluate portfolio VaR forecasts. For simplicity we only consider one-step-ahead forecasts. As it is

known, portfolio choice methods use the estimating and forecasting results from the multivariate dynamic

model of asset returns, so we could assume that θ0 are the unknown parameters only from the multivari-

ate dynamic model of asset returns without loss of generality, and the portfolio weights wt will depend

on both θ0 and It−1, i.e. wt ≡ wt(θ0) = w(θ0, It−1). Assume that the first R observations are used to

estimate θ̂R and ŵR+1 in the first forecast, and then we will have P = n − R predictions to be evalu-

ated. The first VaR forecasts is V aRR+1,1(θ̂R, ŵR+1) = mα(wR+1(θ̂R), θ̂R, IR) and the further forecasts are

V aRt+1,1(θ̂t, ŵt+1) = mα(wt+1(θ̂t), θ̂t, It), R ≤ t ≤ n−1, where θ̂t and ŵt+1 are estimated using observations

s = 1, ..., t. For simplicity, we will only focus on studying the unconditional backtesting procedure, but the

similar methodology could be applied to the independence tests.
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2.2 Unconditional backtesting robust to estimation risks

The most popular unconditional backtest proposed by Kupiec (1995) is based on the absolute value of the

standardized sample mean

KP ≡ K(P,R) :=
1√
P

n∑
t=R+1

(ht,α(θ0)− α) =
1√
P

n∑
t=R+1

[1 (Yt ≤ mα(wt, θ0 , It−1))− α]. (3)

Under proper regularity conditions, (α (1− α))
− 1

2 KP converges to a standard normal random variable. The

standard backtests are implemented under the unrealistic assumptions of θ0 and wt being known and the

portfolio return Yt being observable, and using the critical values from the standard normal distribution. In

practice, however, both the true parameters θ0 and the portfolio weights wt are not known and have to be

estimated, and hence the portfolio return Yt is unobservable. Thus the test statistic becomes

SP ≡ S(P,R) :=
1√
P

n∑
t=R+1

[
1
(
Ŷt ≤ mα(ŵt, θ̂t−1, It−1)

)
− α

]
(4)

where ŵt = wt(θ̂t−1) and Ŷt = Yt(wt(θ̂t−1)) = (wt(θ̂t−1))
′
rt.

Without considering the impact of estimation risk, the standard backtesting procedure may use wrong

critical values, so we must implement backtesting procedures with estimation risk. In order to quantify

estimation risk in the present framework, we must consider two estimators, θ̂t−1 and ŵt. In different words,

the estimation risk in the multivariate VaR model comes from two sources: one is the estimation of unknown

parameters in the multivariate dynamic model of asset returns, and the other is the estimation of the unknown

portfolio weights.

From the expression of the test statistic in (4), it seems that portfolio VaR can be treated as a univariate

parametric VaR model, however, there is an important difference that the portfolio weights wt are not

observable and must be estimated. As a result, the portfolio return Yt is unobservable as well and turns

out to be an explicit function of θ0, i.e. Yt ≡ Yt(wt(θ0)). This subtle difference has important implications

for our testing problem and marks departures from the existing literature. First, it shows that a purely

univariate approach to portfolio VaR is in general not possible. Second, this difference makes the results

for the univariate case in the literature not applicable to our present framework. As this paper will show
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that not only the estimated parameter θ0 but also the estimated wt add extra terms in the estimation effect

on portfolio backtesting. More concretely, we show that both components, θ̂t−1 and wt(θ̂t−1), respectively,

introduce asymptotically an extra term in the, still normal, limiting distribution, changing the resulting

asymptotic variance of SP .

Denote the univariate conditional distributions of Yt(wt(θ0)) given It−1 as FYt(wt(θ0))(·, wt(θ0), θ0, It−1),

which can be derived from the multivariate conditional distribution of rt given It−1, and the derivative of

mα(wt, θ, It−1) as gα(wt, θ, It−1). We also need some assumptions which are similar to those in Escanciano

and Olmo (2009).

Assumption 1: {r′t, z′t}t∈Z is strictly stationary and ergodic.

Assumption 2: The family of distribution functions {Fx(·), x ∈ R∞} has Lebesgue densities {fx(y), x ∈

R∞} that are uniformly bounded sup
x∈R∞,y∈R

|fx(·)| ≤ C and equicontinuous: for every ε > 0 there exists a

δ > 0 such that sup
x∈R∞,|y−z|≤δ

|fx(y)− fx(z)| ≤ ε.

Assumption 3: The model mα(wt, θ, It−1) is continuously differentiable in θ and wt (a.s.), and wt(θ) is also

continuously differentiable in θ (a.s.), such that for its derivative gα(wt, θ, It−1), E[supθ∈Θ0
|gα(wt, θ, It−1)|2] <

C, for a neighborhood Θ0 of θ0.

Assumption 4: The parameter space Θ is compact in Rp. The true parameter θ0 belongs to the interior

of Θ. The estimator θ̂t satisfies the asymptotic expansion θ̂t − θ0 = H(t) + oP (1), where H(t) is a p × 1

vector such that H(t) = t−1
∑t
s=1 l(rs, Is−1,θ0), R−1

∑t
s=t−R+1 l(rs, Is−1,θ0) and R−1

∑R
s=1 l(rs, Is−1,θ0) for

recursive, rolling and fixed schemes, respectively. We assume that E [l(rt, It−1,θ0)|It−1] = 0 a.s. and positive

definite V := E
[
l(rt, It−1,θ0)l

′
(rt, It−1,θ0)

]
exists. Moreover, l(rt, It−1,θ0) is continuous (a.s.) in θ in Θ0

and E
[
supθ∈Θ0

|l(rt, It−1,θ0)|2
]
≤ C, where Θ0 is a small neighborhood around θ0.

Assumption 5: R, P →∞, and lim
n→∞

P
R = π, 0 ≤ π <∞.

With these assumptions we are ready to establish the first important result of this paper.
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Theorem 1: Under Assumption A1-A5,

SP =
1√
P

n∑
t=R+1

[
ht,α(θ0)− FYt(wt(θ0))(mα(wt(θ0), θ0, It−1))

]
+E[

∂FYt(wt(θ0))(mα(wt(θ0), θ0, It−1))

∂θ
′
0

]
1√
P

n∑
t=R+1

H(t− 1)︸ ︷︷ ︸
Estimation Risk

+
1√
P

n∑
t=R+1

[
FYt(wt(θ0))(mα(wt(θ0), θ0, It−1))− α

]
︸ ︷︷ ︸

Model Risk

+ oP (1)

where the score component in the estimation risk, say A = E[
∂FYt(wt(θ0))(mα(wt(θ0),θ0,It−1))

∂θ
′
0

], can be partitioned

into two components from the chain rule,

A = E

∂FYt(wt(θ0))(mα(wt(θ0), θ, It−1))

∂θ′︸ ︷︷ ︸
Due to estimation of dynamics

+
∂FYt(wt(θ))(mα(wt(θ), θ0, It−1))

∂θ′︸ ︷︷ ︸
Due to estimation of portfolio weights

 |θ=θ0 .
Notice that in the first component of A we only consider variation in θ with wt held fixed. As the score

component A will be evaluated at θ = θ0, in wt we are entitled to replace θ with θ0 before we differentiate,

therefore the first component in A is just due to estimation of dynamics. In an analogous manner, the second

component of A is obtained by letting wt vary and holding all other θ outside of wt as fixed, which is only

due to estimation of portfolio weights.

Theorem 1 quantifies both estimation risk and model risk in the unconditional backtests. In this paper

we assume the multivariate VaR model is correctly specified, i.e. FYt(wt(θ0))( mα(wt, θ0, It−1)) = α, then

model risk vanishes, but we still have the estimation risk to deal with. Notice that there are two sources

of estimation risk under the multivariate VaR model, one from estimating parameters in the multivariate

model for asset returns, one from estimating the portfolio weights. Without accounting for any of those

components, we may make wrong inference in the unconditional backtesting procedures. In addition, the

theory can be applied to either optimal or suboptimal portfolios, as long as portfolios are estimated. However,

the magnitude of the estimation risk due to the estimation of portfolio weights will depend on the property

of the objective function in the portfolio optimization problem. It has been known in statistical literature
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that, when the objective function is linear or symmetric, loss from estimation error tends to be small if

the estimates are unbiased, so the magnitude of the estimation risk from estimating portfolio weights is not

expected to be big enough to have influential effect on backtesting result. But when the objective function

is highly non-linear and asymmetric, the estimation risk due to the estimation of portfolio weights tends to

be moderate, see Im, Lim and Choi (2007). This will be examined in our simulation exercise.

Corollary 1: Under Assumptions A1-A5 and (1),

SP
d→ N(0, σ2

u)

where

σ2
u = α(1− α) + 2λhlAρ+ λllAV A

′

with ρ = E[(ht,α(θ0)− α)l(rt, It−1, θ0)], and where

Forecast Scheme λhl λll

recursive scheme 1 − π−1 ln (1 + π) 2 [1 − π−1
ln (1 + π)]

rolling scheme with π ≤ 1 π/2 π − π2/3

rolling scheme with 1 < π <∞ 1 − (2π)
−1

1 − (3π)
−1

fixed scheme 0 π

Corollary 1 presents the asymptotic distribution of SP with estimation risk, which suggests a way to

carry out valid inference for unconditional backtests free of estimation risk. However, it is a difficult task

to implement such backtesting procedure. First, the analytical formula for σ2
u is too complex to estimate

straightforwardly by conventional methods; Secondly, there exist computational complexities in deriving the

score component A in the estimation risk in the multivariate VaR model.

From Corollary 1, it is obvious that the standard unconditional backtesting procedure is not reliable

unless the asymptotic variance σ2
u goes to α(1− α), the asymptotic variance of KP . Fortunately, Corollary

1 also suggests a solution to this problem. According to the formulas of the coefficients λhl and λll, as the

parameter π = P/R goes to zero, both coefficients go to zero under all the three forecast schemes, which

implies σ2
u goes to α(1−α) as the ratio of the out-of-sample size to the in-sample size goes to zero. In other
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words, the effect of estimation risk on the standard unconditional backtesting tends to vanish as the ratio

of the out-of-sample size relative to the in-sample size goes to zero. Therefore, to overcome the effect of

estimation risk on the unconditional backtesting, we recommend financial institutions to use small ratios of

the out-of-sample size to the in-sample size ratio, such that valid inference could be carried out. This will

be confirmed in the simulation exercise.

3 An application under particular distributional assumptions

The theoretical findings presented above are very general, since they do not require any particular distribu-

tional assumptions for asset returns and any particular method of portfolio choice, and they do not require

the constructed portfolio to be optimal as well. In this section, we will consider several particular settings.

In order to illustrate our theoretical findings, we also carry out a series of Monte Carlo simulation experi-

ments by using the models from the simplest to the most realistic, since all the above theoretical findings

are asymptotic, and we need to find out how they behave in finite samples.

3.1 Multivariate dynamic model for asset returns

We want to set up a multivariate parametric dynamic model with specified innovations satisfying the follow-

ing properties: it not only takes into account the empirical features of volatility clustering and time-varying

correlations but also the stylized facts of positive excess kurtosis and negative skewness from financial time

series; Additionally, the specified multivariate distribution of asset returns is closed under linear transforma-

tions such that the distribution of returns of any portfolio whose components are modeled in such a framework

is still in the same class, which will have important implication for the use of the model in applications such

as portfolio allocation and portfolio VaR calculation. The most popular proposal for multivariate volatil-

ity modelling belongs to the family of multivariate generalized autoregressive conditional heteroscedasticity

models (MGARCH). One type is to model the conditional covariance matrix directly, which includes the

VEC model of Bollerslev, Engle and Wooldridge (1988) and BEKK model defined in Engle and Kroner

(1995). Another type is to model the conditional variances and correlations instead of directly modelling the

conditional covariance matrix, and the simplest one is the Constant Conditional Correlation (CCC)-GARCH
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model of Bollerslev (1990), which is attractive to the practitioner due to its interpretable parameters and

easy estimation. A major problem with most MGARCH model is that the number of parameters tends to

explode with the dimension of the model. Therefore, factor models are motivated for parsimony, which either

assume that asset returns are generated by underlying conditionally heteroscedastic factors, see Diebold and

Nerlove (1989) and King, et al. (1994), or assume there is a time varying factor structure in the covariance

matrix of returns, see Engle, Ng and Rothschild (1990). Both specifications are very appealing in finance

because of their important implications for both the Arbitrage Pricing Theory and the Capital Asset Pricing

Model. As for the distributional assumption of the innovations, there are several multivariate distributions

in the literature that could be used in a multivariate dynamic model, for example, Bauwens and Laurent

(2004) applies the multivariate skew-Student density to a dynamic conditional correlation (DCC) model,

Mencia and Sentana (2005) analyses the general hyperbolic (GH) distribution in the multivariate dynamic

regression model and Cajigas and Urga (2006) uses asymmetric multivariate Laplace (AML) innovations in

the DCC model.

For illustrative purpose, this paper considers a multivariate conditionally heteroscedastic single factor

model, since the single factor models just have exactly the same pricing ability as the multiple factor models,

see Cochrane (2001). The model takes the form

rt = µ+ cft + vt

where ft is the common latent factor with conditional mean E[ft|It−1] = 0 and time-varying conditional

variance V (ft|It−1) = λt, v
′

t = (v1t, v2t, ..., vdt) is the d−dimensional vector of idiosyncratic risks satisfying

E[vt|It−1] = 0 and V (vt|It−1) = Γ = diag(γ1, γ2, ..., γd) with nonnegative diagonal elements, vt is assume to

be conditionally orthogonal to ft, µ is the d−dimensional vector of mean returns, and c
′

= (c1, c2, ..., cd) is

the d−dimensional vector of factor loadings. These assumptions imply that the distribution of rt conditional

on It−1 has mean µ, and time varying covariance matrix Σt = cc
′
λt + Γ. Therefore, the data generating

process of rt can be expressed as rt = µ + Σ
1/2
t εt. We will assume that the conditional distribution of the

innovations εt on It−1 is the standardized d−dimentional GH distribution with parameters (η, ψ, b), where

η and ψ allow for flexible tail modeling and the vector b′ = (b1, b2, ..., bd) introduces skewness, see Appendix
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C for the detailed parameterization of this distribution. In particular, we suppose the conditional variances

of the common factor follows the generalized quadratic autoregressive conditionally heteroscedastic model,

GQARCH(1,1), given by

λt = β0 + ωft−1 + β1f
2
t−1 + β2λt−1,

where β0, β1, β2 > 0 and ω2 ≤ 4β1β0 to ensure the conditional variances to be positive. The GQARCH

model originally proposed by Sentana (1995) has the advantage of capturing both an asymmetric effect on

the conditional variance and higher excess kurtosis, compared with the standard GARCH model. Notice

λt depends on past values of ft−1 and f2
t−1, whose true values do not necessarily belong to the available

information set It−1, but can be evaluated on the observables via the Kalman filter, see Harvey et al.

(1992). Taking the common factor as the state, it is easy to derive the updating equations: ft|t = E[ft|It] =

ωt−1|t−1c
′
Γ−1rt−1 and ωt|t = V [ft|It] = (λt−1 + c

′
Γ−1c), and then the QGARCH model will be modified as

λt = β0 + ωft−1|t−1 + β1(f2
t−1|t−1 + ωt−1|t−1) + β2λt−1,

where f2
t−1|t−1 + ωt−1|t−1 = E[f2

t−1|It−1] and ωt−1|t−1 plays the role of correction error in the factor esti-

mates. Such specifications are appealing in the following aspects: first, the factor model provides a relatively

parsimonious representation, which has much less number of parameters involved than the other model spec-

ifications such as DCC and BEKK, which makes it feasible in large systems; Second, it is able to capture all

the stylized facts of financial time series; Third, a positive (semi-)definite conditional covariance matrix for

rt is automatically guaranteed once we ensure that the conditional variances of the factors are non-negative.

But due to the complexity of the GH distribution, the estimation of this model is still computationally

demanding.

3.2 Portfolio selection

The estimating and forecasting results from the above model will be as the inputs to the portfolio selection

problem. Under our model setup, asset returns jointly follow a GH distribution, which can be expressed

as a location-scale mixture of normals and the skewness of asset returns is also considered. Therefore, we

follow the MVS analysis of Mencia and Sentata (2009) who show that the distribution of any portfolio whose

13



components jointly follow a location-scale mixture of normals will be uniquely characterized by its mean,

variance and skewness, and also derives the closed-form solution for the optimal portfolio weights, which can

be expressed as a linear combination of the skewness-variance efficient portfolio b and the mean-variance

efficient portfolio Σ−1
t ι, where ι is a (d×1) vector of ones. To save space, we provide the formula in Appendix

B, see Mencia and Sentana (2009) for the details.

It is worthwhile mentioning that there are few papers in the literature considering the selection of portfolio

weights in the forecasts of portfolio VaRs and no papers even considering the impact of estimation risk from

estimating portfolio weights on backtesting portfolio VaR. One work that evaluates portfolio VaR with the

estimated optimal portfolio weights is Rombouts and Verbeek (2004) which determines portfolio weights

taking into account a VaR constraint. To the best of our knowledge, our paper is the first work to account

for the estimation of portfolio weights and its influences on backtesting portfolio VaR.

For the simulation, we assume that µ = 0. Hence, the portfolio VaR would take the form

mα(wt, θ0, It−1) =
√
w
′
tΣtwtG

−1(α),

whereG−1(α) is the α−th quantile of the univariate standardized GH distribution of ε∗t = w
′

tΣ
1
2
t εt�

√
(wtΣ

1
2
t )′Σ

1
2
t wt.

3.3 Backtesting portfolio VaR

Theorem 1 allows us to quantify estimation risk for the unconditional backtests such that we could carry

out valid inferences. For simplicity, we only consider the fixed forecasting scheme. The estimation risk term

for the unconditional test with fixed forecasting scheme in the current setting takes the form

ERu = E

∂FYt(wt(θ0))(mα(wt(θ0), θ, It−1))

∂θ′︸ ︷︷ ︸
Due to estimation of dynamics

+
∂FYt(wt(θ))(mα(wt(θ), θ0, It−1))

∂θ′︸ ︷︷ ︸
Due to estimation of portfolio weights

 |θ=θ0√π√R(θ̂R − θ0

)
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3.4 Simulation exercise

The purpose of this section is to illustrate our theoretical findings. We show that the standard backtesting

procedure without considering the effect of the estimation risk could be misleading, and the estimate of

portfolio weights and the choice of different in-sample size to out-of-sample size ratio have important impli-

cations in backtesting. For illustrative purpose, we implement the same set of experiments by using three

different models. The simplest one is a bivariate constant location-scale model with standardized Student-t

innovations, which can be expressed as rt = Σ
1
2
0 εt, where εt follow a bivariate Student-t distribution with

degrees of freedom v. The second one is a bivariate first-order BEKK model, which takes the form

rt = Σ
1
2
t εt

Σt = C
′

0C0 + C
′

1rt−1r
′

t−1C1 +D
′
Σt−1D,

where C0, C1 and D are in R2×2, C0 is an upper triangular matrix and εt follow a bivariate Student-t

distribution with degrees of freedom ν conditional on information set It−1. The third one, as the most

realistic and complicated one, is a trivariate model of the conditionally heteroscedastic single factor model as

described in the previous section. In allocating assets, we apply the MV method to the two simpler models

and the MVS method to the third one.

As for the parameter values, we have chosen for the BEKK model that

C0 = 10−3

 1.15 .31

0 076

 , C1 =

 .282 −.050

−.057 .293

 , D =

 .939 .028

.025 .939

 and ν = 5,

which are taken from the estimation results in Hardle, Kleinow and Stahl (2002), and for the simplest model

that Σ0 is set to be the unconditional covariance matrix of the specified BEKK model. For the third model,

we have set the model parameters c
′

= (1, 1, 1), Γ = diag(1, 1, 1), β1 = 0.1, β2 = 0.6, ω = −0.2771 and

β0 = 1− β1 − β2 and the distribution parameters η = 0.5, ψ = 0.1 and b
′

= (−0.1,−0.1,−0.1).

We implement a series of simulation experiments based on the uncorrected standard unconditional back-

testing test statistics SP . For the purpose of comparison, we design four cases. Case I is the experiment with
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both the true parameter values and the true portfolio weights, case II is the one with both the estimated

parameters and the estimated portfolio weights, case III is the one with the estimated parameters but the

true portfolio weights, and case IV is the one with the true parameter values but the estimated portfolio

weights. In each case, we also consider four different pairs of the in-sample and out-of-sample size and three

different levels of the nominal sizes. We calculate SP for 1000 Monte Carlo simulations in each case, and

then compare the size performance.

We carry out the designed simulation experiments using the three models with three different forecasting

schemes, which are the fixed scheme, the recursive scheme and the rolling scheme, and for α = 0.05 and

α = 0.01, respectively. For the sake of space, we just report the results with the fixed forecasting scheme in

Table 1, Table 2 and Table 3. Other results are available upon request.

There are five main conclusions from our simulation results. First, the standard unconditional backtesting

only performs well when the true parameter values are known. As it is shown in case I, the empirical sizes

are closer to the nominal sizes across all the experiments. Unsurprisingly, the estimation risk does have

significant effect on the backtesting results when the estimated parameters are used. As the results of case

II show, the empirical sizes are far away from the nominal sizes across all the experiments, especially for

π = 1, the case usually being used in practice. For example, at the nominal size of 10%, the empirical size

of backtesting the BEKK model forecasted portfolio VaR at α = 0.05 is as high as 42%. There exists a huge

size distortion when the true parameter values are not known and have to be estimated, which will be the

case in practice. Thus the standard backtesting procedure without considering the effect of the estimation

risk could be misleading.

Second, as predicted by the theory, the empirical sizes of the unconditional test are closer to the nominal

sizes as the ratio of the out-of-sample to in-sample size, π, goes to zero (See the results of Case II as π goes

from 1 to 0.125. ). As the ratio of the out-of-sample to in-sample size gets smaller, the results improve at

all levels of nominal sizes. In other words, the effect of estimation risk on backtesting portfolio VaR tends

to vanish as the ratio of the out-of-sample size relative to the in-sample size goes to zero. Therefore, we

recommend to use small values of the out-of-sample relative to the in-sample size to financial institutions,

in order to make valid inference for unconditional backtests.

Third, estimation risk tends to be more important when the number of parameters gets larger. Among
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the three models used, the BEKK model has the most parameters and the constant location-scale model

has the least. Comparing the results of case II across the tables, we found the empirical sizes of the BEKK

model are the highest and those of the constant location-scale model are the lowest. This result somewhat

confirms the conjecture by Christoffersen and Goncalves (2005) that the estimation risk issue is probably

even more important in multivariate modeling where the number of parameters is large.

Fourth, the only difference between case I and case IV and that between case II and case III is whether

the portfolio weights are estimated. Comparing the results, the backtesting results in Table 1 and Table 2

are not very sensitive to whether the portfolio weights are estimated, but the results in Table 3 are, just as

expected. This is due to the symmetric objective function used in the MV analysis and asymmetric one used

in the MSV analysis.

Fifth, the asymptotic distribution of SP does not provide an accurate approximation for small VaR values

such as α = 0.01. In such a case we need a different asymptotic theory based on α→ 0, which is beyond the

scope of this paper.

4 Application

As we have seen above, the findings in this paper suggest a simple but effective way to overcome the

effect of estimation risk on unconditional backtests for financial institutions, such that they can make more

reliable inference in backtesting portfolio VaR, which is to implement the standard unconditional backtesting

procedure by using a small value of the out-of-sample size relative to the in-sample size and taking VaR level

to be 5%.

As an example, we apply the proposed method to a portfolio of three US stocks of the Dow Jones

Index: the Alcoa stock (AA), the MacDonald stock (MCD) and Merck stock (MRK). The data originally

used in Giot and Laurent (2003) range from January 1990 to May 2002 (3000 daily observations). Daily

returns are constructed as the first difference of logarithmic prices multiplied by 100. The main features of

all returns series include fat tails, skewness, the excess of positive kurtosis and volatility clustering. Given

these characteristics, we fit a trivariate conditionally heteroscedastic single factor model and choose the MSV

method to obtain the portfolio weights as specified previously in the paper. We take the last 250 observations
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as the out-of-sample period, i.e. P=250, and the in-sample period of R=2750 observations. For the purpose

of comparison, we also choose several different in-sample sizes: R=250, 500, 1000 and 2000, and implement

the backtesting procedure at 1% VaR as well. The in-sample period is then used to estimate the model,

calculate the portfolio weights, and make forecasts over the out-of-sample period. For simplicity, we only

consider the fixed forecast scheme.

Table 4 reports the backtesting results, which include the number of violations, the unconditional back-

testing test statistic (SP ) and the multiplication factor2 (mft) for risk-based capital requirements under the

VaR levels, 5% and 1%, respectively. The results show that the portfolio VaR model is rejected at 5% signif-

icance level for α = 0.05 and R = 2750, and for α = 0.01 and R = 2000 and 2750, but not for the other cases

with smaller values of the in-sample size. Since the out-of-sample period is fixed, the larger the in-sample size

is, the smaller the ratio, π, is. Based on our theory, the effect of estimation risk on the unconditional back-

testing results declines with the value of π, therefore, the results from using a larger in-sample size are more

reliable. We find that the backtesting results are substantially different between using the large in-sample

size and the small one. With the small value of R, there are less number of violations of the model forecasted

portfolio VaR, which implies the model provides a sufficient coverage of trading risk, however, with large

value of R, the number of violations turns out to be larger, which implies the existence of excessive trading

risk not covered by the portfolio VaR model. For example, for π = 1, the number of violations of the model

forecasted 5% VaRs is just 9 out of 250, but for π = 0.0909, we have 20 violations of the model forecasted

5% VaRs out of 250. Most importantly, as laid out by the Basle Committee on Banking Supervision, the

forecasted portfolio VaR and the backtesting result are directly related to the determination of risk-based

capital requirement, in which the multiplication factor plays a role of the penalty for the backtest. The

multiplication factor varies with backtesting results. As is shown in Table 4, the multiplication factor is 3.3

for π = 0.0909, which is slightly larger than those of the other cases with relatively larger π. This is because

a forecasted VaR that is violated more frequently results in a larger multiplication factor and accordingly a

larger risk based capital requirement. Therefore, if financial institutions implement backtests using a large

value of π, estimation risk will have an influential effect on their backtesting results, so they may make the

wrong inference, compute the inappropriate multiplication factor and accordingly determine the insufficient

risk capital requirement. As this paper suggests, we should backtest portfolio VaR using a small value of π
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in order to overcome the effect of estimation risk on backtests. As for the current application, we shall use

multiplication factor equal to at least 3.3 in determination of risk capital requirement.

5 Conclusion

This paper proposes the general unconditional backtesting procedure robust to estimation risk for portfolio

VaR with consideration of portfolio weights estimation. It extends the theory of quantifying estimation risk

in backtesting procedures from the univariate case to a multivariate case, which is intrinsically the framework

for backtesting portfolio VaR. We also apply the general theory to a particular setting in which asset returns

are modeled by a multivariate location-scale dynamic model with standardized GH innovations and use the

MVS analysis to obtain the portfolio allocation. The simulation exercise in the paper supports the theoretical

findings. In order to overcome the effect of estimation risk on backtesting portfolio VaR, we suggest a simple,

practical but effective way, which is to implement the standard unconditional backtesting procedure by using

a small ratio of the out-of-sample to the in-sample size and the 5% VaR level. Our proposed method is of

great importance in practice, and helps practitioners to set aside more accurate risk capital requirement.

The findings in this paper suggest that inferences on portfolios are subject to estimation risk. Although we

only study the impact of estimation risk on backtesting portfolio VaR, our methodology can be applied to

other out-of-sample problems involving estimated portfolios.
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Notes

1Giot and Laurant (2003) uses a hypothetical portfolio of three US stocks in order to fully test their method. Ferreira

and Lopez (2005) considers an equally weighted portfolio of short-term fixed income positions in the U.S. dollar, German

deutschemark, and Japanese yen.

2The multiplication factors determined by classifying the number of VaR violations in the previous 250 days, N, into three

zones.

For a true coverage level of 99%,

mft =


3.0,

3 + 0.2(N − 4),

4.0,

if N ≤ 4, the green zone.

if 5 ≤ N ≤ 9, the yellow zone.

if N ≤ 4, the red zone.

For a true coverage of 95%,

mft =


3.0,

3 + 0.1(N − 17),

4.0,

if N ≤ 17, the green zone.

if 18 ≤ N ≤ 27, the yellow zone.

if N ≥ 28, the red zone.

According to Basle Committee on Banking Supervision (1996b), the yellow zone begins at the point such that the probability of

obtaining that number or fewer violations equals or exceed 95%, and the red zone begins at the point such that the probability

of obtaining that number or fewer violations equal or exceeds 99.99%.
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Table 1: Empirical test sizes in % at α = 0.05 (The constant location-scale model)

α = 0.05 α = 0.01

π
Nominal

size

Case

I

Case

II

Case

III

Case

IV

Case

I

Case

II

Case

III

Case

IV

1

10%

5%

1%

9.0

4.7

1.4

19.0

12.8

5.3

17.0

11.2

4.3

8.9

5.1

1.3

9.1

5.0

1.2

42.0

35.8

25.8

39.2

33.4

22.2

9.6

5.2

1.5

0.5

10%

5%

1%

8.6

4.9

1.2

12.5

7.9

2.0

12.6

7.2

2.4

8.5

4.9

1.3

8.8

4.3

0.6

30.6

24.3

16.9

30.6

24.3

15.5

8.3

4.4

0.6

0.25

10%

5%

1%

9.0

4.9

1.6

10.9

6.9

2.2

10.1

6.4

2.1

8.9

4.7

1.3

9.3

4.7

0.8

19.6

12.6

6.8

19.3

12.4

5.8

9.2

4.8

0.7

0.125

10%

5%

1%

8.8

4.4

1.0

9.0

4.4

1.7

9.0

4.2

1.5

8.5

4.2

1.2

9.3

4.4

1.0

14.3

7.7

3.1

13.6

7.7

2.8

9.0

4.2

0.9
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Table 2: Empirical test sizes in % at the VaR level α = 0.05 (BEKK Model)

α = 0.05 α = 0.01

π
Nominal

size

Case

I

Case

II

Case

III

Case

IV

Case

I

Case

II

Case

III

Case

IV

1

10%

5%

1%

9.1

5.0

1.2

42.0

35.8

25.8

39.2

33.4

22.2

9.6

5.2

1.5

2.3

2.3

0.4

33.0

33.0

26.5

26.6

26.6

19.9

2.0

2.0

0.3

0.5

10%

5%

1%

8.8

4.3

0.6

30.6

24.3

16.9

30.6

24.3

15.5

8.3

4.4

0.6

2.3

2.3

0.6

22.9

22.9

16.8

20.9

20.9

14.3

2.5

2.5

0.6

0.25

10%

5%

1%

9.3

4.7

0.8

19.6

12.6

6.8

19.3

12.4

5.8

9.2

4.8

0.7

1.6

1.6

0.6

17.5

17.5

9.1

16.1

16.1

8.0

1.7

1.7

0.5

0.125

10%

5%

1%

9.3

4.4

1.0

14.3

7.7

3.1

13.6

7.7

2.8

9.0

4.2

0.9

1.7

1.7

0.5

12.6

12.6

6.2

11.9

11.9

6.2

1.7

1.7

0.5
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Table 3: Empirical test sizes in % at the VaR level α = 0.05 (The factor model)

α = 0.05 α = 0.01

π
Nominal

size

Case

I

Case

II

Case

III

Case

IV

Case

I

Case

II

Case

III

Case

IV

1

10%

5%

1%

9.9

5.9

1.2

20.6

16.2

11.4

15.3

10.3

4.2

15.3

13.1

9.7

5.1

5.1

2.2

6.1

6.1

2.6

13.0

13.0

7.1

5.1

5.1

2.3

0.5

10%

5%

1%

8.5

4.6

1.0

17.8

12.8

8.7

12.5

7.7

3.4

15.2

10.7

7.9

5.7

5.7

1.6

4.4

4.4

2.6

9.0

9.0

5.0

5.4

5.4

2.2

0.25

10%

5%

1%

7.9

4.3

0.9

13.7

8.5

5.3

9.1

5.4

1.7

11.8

7.4

5.0

4.2

4.2

1.2

4.5

4.5

1.6

6.1

6.1

2.8

4.5

4.5

1.5

0.125

10%

5%

1%

9.2

4.5

1.0

9.7

5.9

2.6

9.5

6.1

1.9

9.4

4.9

2.2

5.6

5.5

1.9

5.4

5.3

2.3

8.3

8.2

3.2

5.4

5.4

2.2
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Table 4: Application Results

α = 0.05 α = 0.01

R π # of violation SP mft # of violation SP mft

2750 0.0909 20 2.1764 3.3 6 2.2247 3.4

2000 0.1250 17 1.3059 3.0 6 2.2247 3.4

1000 0.2500 12 0.1451 3.0 3 0.3178 3.0

500 0.5000 10 0.7255 3.0 3 0.3178 3.0

250 1.0000 9 0.4353 3.0 4 0.9535 3.0
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Appendix A: Mathematical Proofs

First of all, we show how to get the conditional distribution of Yt given It−1 from the linear transformation

Yt = w
′

trt and the multivariate conditional distribution of rt given It−1. Note that wt is treated as a constant

at time t. Construct a one-to-one mapping between rt and a constructed vector Zt with the first element

being Yt = w
′

trt,

Zt =



Yt

r2t

...

rdt


=



w
′

trt

r2t

...

rdt


=



w1t w2t · · · wdt

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


︸ ︷︷ ︸

J(θ0)



r1t

r2t

...

rdt


= J(θ0)rt,

where J(θ0) is the constructed positive definite d× d matrix known at time t, so rt = J−1(θ0)Zt, where

J−1(θ0) =



1
w1t

−w2t

w1t
· · · −wdtw1t

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


.

and wit 6= 0, i = 1, ..., d. Since the conditional distribution of rt given It−1 is specified as rt|It−1 ∼

Frt(·, θ0, It−1), then the multivariate conditional distribution of Zt|It−1 can be obtained as follows

Pr{Zt ≤ z|It−1} = Pr{J(θ0)rt ≤ z|It−1} = Pr{rt ≤ J−1(θ0)z|It−1} = Frt(J
−1(θ0)z, θ0, It−1)

i.e. FZt(Zt , θ0, It−1) = Frt(J
−1(θ0)Zt , θ0, It−1). And its density is

fZt(Zt , θ0, It−1) =
∂FZt(Zt , θ0, It−1)

∂Zt
= J−1(θ0)frt(J

−1(θ0)Zt , θ0, It−1).
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We are only interested in the first element of Zt, then the marginal density of Yt can be derived by integrating

out all the other elements:

fYt(Yt, θ0, It−1) =

∫
· · ·
∫
fZt(z)dz2t · · · dzdt =

∫
· · ·
∫
frt(J

−1(θ0)z, θ0, It−1)J−1(θ0)dz2t · · · dzdt.

Notice that Yt = w
′

trt can be explicitly written as a function of θ0 and It−1, i.e. Yt ≡ Yt(θ0) = Y (θ0, It−1),

since wt depends on θ0 and It−1, wt ≡ w(θ0) = w(θ0, It−1).

Next, we prove Theorem 1 using empirical processes theory and a small variation of a weak convergence

theorem in Delgado and Escanciano (2006). For simplicity, we write FYt(θ0)(θ0) = FYt(θ0)(mα(wt, θ0, It−1))

and fYt(θ0)(θ0) = fYt(θ0)(mα(wt, θ0, It−1)).

Define the process

Kn(c) :=
1√
P

n∑
t=R+1

[
ht,α(θ0 + c(t− 1)−1/2)− FYt(θ0)(θ0 + c(t− 1)−1/2)

]

indexed by c ∈ CK , where CK = {c ∈ Rp : |c| ≤ K}, and K > 0 is an arbitrary but fixed constant.

Lemma A1: Under Assumption A1-A5, the process Kn(c) is asymptotically tight with respect to c ∈ CK .

The proof of Lemma A1 can be found in EO.

Proof of Theorem 1: Simple but tedious algebra shows that for each c ∈ CK ,

E
[
|Kn(c)−Kn(0)|2

]
= o(1).

The last display and the asymptotically tightness of Kn(c) imply that if ĉ is bounded in probability, ĉ =

OP (1), then

|Kn(ĉ)−Kn(0)| = oP (1). (5)

Now, we will apply this argument with ĉ := max
R≤t≤n

√
t(θ̂t − θ0), with R denoting the in-sample sample size.

Thus, we should prove that under our three forecasting schemes

max
R≤t≤n

√
t(θ̂t − θ0) = OP (1) (6)
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holds.

(i) Recursive: Our assumptions imply that
√
tSt =

∑t
s=1 l(rs, Is−1, θ0) is a martingale with respect to Ft−1,

where St is implicitly defined. Hence, by Corollary 2.1 in Hall and Heyde (1980) and A5

P

(∣∣∣∣ max
R≤t≤n

St

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ max
R≤t≤n

√
tSt

∣∣∣∣ > √Rε)
≤ 1

Rε2
E
[∣∣√nSn∣∣2]

≤ C
n

Rε2
,

which can be made arbitrarily small by choosing ε sufficiently large, since n/R→ (1 + π) as n→∞.

(ii) Rolling: same proof as for the recursive. Details are omitted.

(iii) Fixed:

∣∣∣∣ max
R≤t≤n

(
√
t/R)

∑R
s=1 l(rs, Is−1, θ0)

∣∣∣∣ ≤ ∣∣∣(1/√R)
∑R
s=1 l(rs, Is−1, θ0)

∣∣∣ = OP (1).

Then, (5) holds for ĉ = max
R≤t≤n

√
t(θ̂t − θ0), and hence

∣∣∣∣∣ 1√
P

n∑
t=R+1

[
ht,α(θ̂t−1)− FYt(θ̂t−1)(θ̂t−1)

]
− 1√

P

n∑
t=R+1

[
ht,α(θ0)− FYt(θ0)(θ0)

]∣∣∣∣∣ = oP (1),

which implies the decomposition

1√
P

n∑
t=R+1

(ht,α(θ̂t−1)− α) =
1√
P

n∑
t=R+1

[
ht,α(θ0)− FYt(θ0)(θ0)

]
(7)

+
1√
P

n∑
t=R+1

[
FYt(θ̂t−1)(θ̂t−1)− FYt(θ0)(θ0)

]
+

1√
P

n∑
t=R+1

[
FYt(θ0)(θ0)− α

]
+ oP (1).
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Now, by the Mean Value Theorem and since we can interchange expectation and differentiation,

A1n :=
1√
P

n∑
t=R+1

[
FYt(θ̂t−1)(θ̂t−1)− E[FYt(θ̂t−1)(θ̂t−1)]− FYt(θ0)(θ0) + E[FYt(θ0)(θ0)]

]

=
1√
P

n∑
t=R+1

(
∂FYt(θ̃t−1)(θ̃t−1)

∂θ̃
′
t−1

− E

[
∂FYt(θ̃t−1)(θ̃t−1)

∂θ̃
′
t−1

])
(θ̂t−1 − θ0),

where θ̃t−1 is between θ̂t−1 and θ0.

Note that A2 and A3 imply that E
[
supθ∈Θ0

∣∣∣∂FYt(θ)(θ)
∂θ′

∣∣∣] < C. Hence, by the uniform law of large numbers

(ULLN) of Jennrich (1969, Theorem 2) and (6), then A1n = oP (1) holds. Similarly,

1√
P

n∑
t=R+1

[
E[FYt(θ̂t−1)(θ̂t−1)]− E[FYt(θ0)(θ0)]

]
=

1√
P

n∑
t=R+1

E[
∂FYt(θ0)(θ0)

∂θ
′
0

](θ̂t−1 − θ0) +

+
1√
P

n∑
t=R+1

[
E[
∂FYt(θ̃t−1)(θ̃t−1)

∂θ̃
′
t−1

]− E[
∂FYt(θ0)(θ0)

∂θ
′
0

]

]
(θ̂t−1 − θ0)

: = B1n +B2n.

Now, by the ULLN and (6), then B2n = oP (1) holds. Hence,

∣∣∣∣∣ 1√
P

n∑
t=R+1

[
FYt(θ̂t−1)(θ̂t−1)− FYt(θ0)(θ0)

]
− E[

∂FYt(θ0)(θ0)

∂θ
′
0

]
1√
P

n∑
t=R+1

H(t− 1)

∣∣∣∣∣ = oP (1).

The theorem follows from (7) and the last display. �

Proof of Corollary 1: Once Theorem 1 has been established, the proof follows the same arguments as

in McCracken (2000, Theorem 2.3.1). Details are omitted to save space. �

Appendix B: The Efficient Mean-Variance-Skewness Portfolios
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The efficient mean-variance-skewness portfolios yield the maximum asymmetry for every feasible combination

of mean and variance. The problem can be expressed as follows:

max
wt∈Rd

ϕt(θ, η, ψ, b) s.t.

 w
′

tµt(θ) = µ0t

w
′

tΣt(θ)wt = σ2
0t

where ϕt(θ, η, ψ, b) is the skewness and for a given expected return µ0t, the target variance σ2
0t must be

greater than or equal to that of the mean-variance frontier, that is σ2
0t ≥ µ2

0t/(µ
′

t(θ)Σ
−1
t (θ)µt(θ)). Following

Mencia and Sentana (2009), we have the following proposition:

Proposition B1: The efficient mean-variance-skewness portfolios that solve the above problem can be

expressed as either

w1t =
µ0t + ∆−1

t µ
′

t(θ)b

µ
′
t(θ)Σ

−1
t (θ)µt(θ)

Σ−1
t (θ)µt(θ)−

1

∆t
b

or

w2t =
µ0t −∆−1

t µ
′

t(θ)b

µ
′
t(θ)Σ

−1
t (θ)µt(θ)

Σ−1
t (θ)µt(θ) +

1

∆t
b

where

∆t =

√
(b′Σt(θ)b)(µ

′
t(θ)Σ

−1
t (θ)µt(θ))− (µ

′
t(θ)b)

2

σ2
0t(µ

′
t(θ)Σ

−1
t (θ)µt(θ))− µ2

0t

.

Appendix C: The General Hyperbolic Distribution

Following McNeil, Frey and Embrechts (2005), the GH distribution can be introduced as a normal mean-

variance mixture, in which the mixing variable is Generalized Inverse Gaussian (GIG) distributed.

Definition C1: The random vector X = (X1, ..., Xd)
′ is said to follow a d-dimensional GH distribution

with parameters λ, χ, ϕ, α, β and Υ, in short X ∼ GHd(λ, χ, ϕ, α, β,Υ), if

X
d
= α+ ξΥβ + ξ

1
2 Υ

1
2Z,
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where α, β ∈ Rd, and Υ is a positive definite matrix of order d, Z ∼ Nd(0, Id) follows a d-dimensional

normal distribution, ξ ∼ GIG(λ, χ, ϕ) is a positive, scalar random variable independent of Z.

The conditional distribution of X given ξ is normal with conditional mean α + ξΥβ and covariance

matrix ξΥ, i.e. X|ξ ∼ N(α + ξΥβ, ξΥ), which explains the so-called normal mean-variance mixture. Thus

the mixing variable ξ could be interpreted as a stochastic volatility factor. The parameters of the mixing

variable distribution, λ, χ, and ϕ, allow for flexible tail modeling; α and Υ play the roles of location vector

and dispersion matrix; and the vector β introduces skewness into this distribution. We could reparametrize

the GH distribution to get the standardized GH distribution with zero mean vector and identity covariance

matrix.

Definition C2: The random vector X∗ = (X∗1 , ..., X
∗
d )′ ∼ GHd(λ, χ, ϕ, α, β,Υ) is said to follow a

d-dimensional standardized GH distribution, if

χ = 1, α = −c(β, λ, ϕ)β,and Υ =
ψ

Rλ(ϕ)
[Id +

c(β, λ, ϕ)− 1

β′β
ββ′]

where Rλ(ϕ) = Kλ+1(ϕ)
Kλ(ϕ) , Dλ+1(ϕ) = Kλ+2(ϕ)Kλ(ϕ)

K2
λ+1(ϕ)

and c(β, λ, ϕ) =
−1+
√

1+4[Dλ+1(ϕ)−1]β′β

2[Dλ+1(ϕ)−1]β′β .

The parameters are reduced to be λ, ϕ and β after the standardization. For analytical convenience, λ

and ϕ are always replaced by η and ψ, where η = −0.5λ−1 and ψ = (1 + ϕ)−1.
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