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Abstract

Goodness of fit tests based on sup-norm statistics of empirical processes have nonstandard limit-

ing distributions when the null hypothesis is composite — that is, when parameters of the null model

are estimated. Several solutions to this problem have been suggested, including the calculation of

adjusted critical values for these nonstandard distributions and the transformation of the empirical

process such that statistics based on the transformed process are asymptotically distribution-free.

The approximation methods proposed by Durbin (1985) can be applied to compute appropriate

critical values for tests based on sup-norm statistics. The resulting tests have quite accurate size, a

fact which has gone unrecognized in the econometrics literature. Some justification for this accuracy

lies in the similar features that Durbin’s approximation methods share with the theory of extrema

for Gaussian random fields and for Gauss-Markov processes. These adjustment techniques are also

related to the transformation methodology proposed by Khmaladze (1981) through the score func-

tion of the parametric model. Monte Carlo experiments suggest that these two testing strategies are

roughly comparable to one another and more powerful than a simple bootstrap procedure.

Keywords: Goodness of fit test, Estimated parameters, Gaussian process, Gauss-Markov process,

Boundary crossing probability, Martingale transformation

JEL Classification Code: C12, C14, C46

1 Introduction

Empirical processes are central to the theory of Kolmogorov-Smirnov-type specification tests, and it is

a standard result that for simple null hypotheses, the empirical process
p

n(Fn − F0) converges weakly

to the Brownian bridge and the Kolmogorov-Smirnov statistic is distribution-free. General study of the

convergence of empirical processes with estimated parameters was first conducted by Durbin (1973a)

and Neuhaus (1976). The limiting distributions of these processes were found to be significantly more

complex than the limiting distribution of the process for simple null hypotheses. As a result, the evalu-

ation of sup-norm test statistics based on these processes has been an enduring problem.
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The calculation of the null distribution or critical values for a statistic based on an empirical process

with estimated parameters is accomplished quite often via simulation techniques. There are, however,

alternatives. One solution to the problem of testing goodness of fit with estimated parameters is the

martingale transform method proposed by Khmaladze (1981). This approach has received attention

in the statistics and econometrics literature recently, notably in Koenker and Xiao (2002); Bai (2003);

Khmaladze and Koul (2004); Delgado and Stute (2008) and Khmaladze and Koul (2009). The mar-

tingale transform method employs a Doob-Meyer decomposition to transform the empirical process so

that it is asymptotically distribution-free, a property that test statistics, as functionals of the process,

inherit. This method may be applied quite generally: see for example Song (2010) for its application

to semiparametric models, or Li (2009), who analyzes this method as a technique of projection onto a

series of orthogonal polynomials, drawing on the work of Bickel et al. (1993) and Cabaña and Cabaña

(1997).

Another solution to this problem for Kolmogorov-Smirnov-type tests (parallel to techniques devised

for example by Durbin et al. (1975) for Cramér-von Mises-type tests,) is to calculate appropriate distri-

butionally dependent critical values for each test. For Kolmogorov-Smirnov-type tests, Durbin (1973b,

1975, 1985), explored a number of approaches to the calculation of critical values for tests based on

processes with estimated parameters. These methods involve varying amounts of computational effort

and deserve greater recognition as an alternative methodology. In particular, one result of this work is

a collection of simple approximations that are accurate, generalizable, and involve only modest compu-

tation. The approximate boundary crossing probabilities first derived in Durbin (1985) are presented in

Section 3, with particular focus on two approximations to the distribution of the Kolmogorov-Smirnov

statistic when parameters are estimated. It will be shown that one of these approximations is identical

to results derived using the theory of extrema of Gaussian fields and the other can be interpreted as

a Gauss-Markov-process approximation to the distribution of the sup-norm statistic. The present work

is then, in some sense, a continuation of Durbin’s research in goodness of fit testing — even though

a goodness of fit problem was the primary applied example of Durbin (1985), his boundary crossing

results are used almost exclusively in other applications. The connections that Durbin’s approximations

have to these other well-developed fields of probability simultaneously provide justification for their

great accuracy and offer a means of generalization perhaps not apparent in Durbin’s original work.

Durbin’s approximate boundary crossing probabilities are also compared with Khmaladze’s martin-

gale transform in a few simple situations. The essentials of each technique are presented and applied

to the context of one-sample tests of normality and exponentiality, drawing some connections and elab-

orating upon the example given in Durbin (1985, p. 117). Finally, simulation experiments investigate

the empirical size and power of a one-sided test of exponentiality. The adjusted critical values result

in tests of approximately the same size and power as tests using a transformed process, although the

experiments suggest differential power performance over the space of alternatives.
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2 Parametric models

Consider a sample of size n from a random variable with distribution function F . A goodness-of-fit test

is defined as a test of the hypothesis that F is a member of a parametric model; that is, H0 : F ∈ F :=

{F(x ,θ); x ∈ X,θ ∈ Θ}, with X ⊆ R and Θ ⊆ Rp. It is assumed that all members of F are absolutely

continuous and mutually absolutely continuous. Process-based specification tests for F are typically

based on one of the following empirical processes: the uniform empirical process

Vn(x) =
p

n(Fn(x)− F(x ,θ0)), x ∈ X (1)

for simple null hypotheses, or the parametric empirical process

V̂n(x) =
p

n(Fn(x)− F(x , θ̂)) x ∈ X (2)

for composite null hypotheses, where θ̂ is some estimate of θ0 and Fn is the empirical distribution

function.

The uniform empirical process is convenient because under the above assumptions on F an inverse

function F−1 is well defined and we can make the time transformation t = F(x ,θ0), which (with some

abuse of notation, let Fn(t) =
1
n

∑

i I(F(X i ,θ0)≤ t)) makes process (1) equivalent to

vn(t) =
p

n(Fn(t)− t), t ∈ [0,1]. (3)

That is, process (1) is equivalent to a process based on n iid realizations of a uniform random variable.

Donsker’s theorem implies that vn converges weakly to a Brownian bridge on [0,1]— in other words,

Vn converges weakly to B ◦ F , a time-changed Brownian bridge.

In many cases of practical interest the investigator is interested in the parametric model F but

reluctant to specify θ0. It may be hoped that similar calculations would work for both the uniform

empirical process and the parametric empirical process. However, this is unfortunately not the case.

To explore this further, we make the following two assumptions:

A1 The model F satisfies the following condition (cf. Durbin (1973a)): that the function

g(t,θ) =∇θ F(x ,θ)
�

�

x=F−1(t,θ0)
(4)

is almost everywhere finite and continuous in its arguments for all (t,θ) ∈ [0,1]× ν , where ν is

a closed neighborhood of θ0 in Θ.

A2 There exists an estimator of the parameters θ̂n that satisfies

p
n(θ̂n− θ) = Op(1) (5)

Because the (uniform)
p

n rate of convergence of Fn to F is the same as the rate of convergence
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of the estimator θ̂n to θ0, the effect of parameter estimation is not asymptotically negligible. When

considering the convergence of V̂n(t) to its limit, it was shown in Durbin (1973a) (and re-derived many

times thereafter) that under the above assumptions the following informal analysis of the parametric

empirical process is justified:

V̂n(x) =
p

n(Fn(x)− F(x , θ̂n))

=
p

n(Fn(x)− F(x ,θ0))−
p

n(F(x , θ̂n)− F(x ,θ0))

= Vn(x)−
p

n(θ̂n− θ0)∇θ F(x ,θ0) + op(1) (6)

where the op(1) term is uniform in x ∈ X. From (6) it is apparent that in general the distribution of V̂n

depends on the value of the parameter θ0 and the asymptotic distribution of
p

n(θ̂n − θ0). Because of

this, expression (6) can be very complicated, but in the limit it can be simplified if one assumes more

about the estimator θ̂n
1.

The most common simplifying assumption is that θ̂n is asymptotically efficient; that is, that it has

an asymptotically linear (or Bahadur) representation:

p
n(θ̂n− θ0) =

1
p

n

n
∑

i=1

ψ(X i ,θ0) + op(1) (7)

where ψ is such that

∫

ψ(x ,θ0)dF(x ,θ0) = 0,

∫

ψ(x ,θ0)ψ
>(x ,θ0)dF(x ,θ0) = J (8)

and J is a finite p× p positive definite matrix. Many estimators satisfy this condition; see for example

Khmaladze (1979, pp. 289-290). Under these conditions, it can be shown using (6) that (under the

time change t = F(x ,θ0)) the parametric empirical process converges weakly to a mean zero Gaussian

process on [0,1] with covariance function

ρ(s, t) = s ∧ t − st − g(s,θ0)
>
∫ t

0

H(r)dr − g(t,θ0)
>
∫ s

0

H(r)dr + g(s,θ0)
>J g(t,θ0) (9)

where H(t) = ψ(x ,θ0)
�

�

x=F−1(t,θ0)
. See for example the clever proof of Durbin (1973a, Lemma 3), or

del Barrio (2007, Section 4.2) for an elegant derivation. As was shown in Durbin (1973a), when a

maximum likelihood estimator exists and the model has a finite Fisher information matrix I(θ) (which

requires more regularity conditions on F and its density f that will be discussed below,) we have

ψ(x ,θ0) = I−1(θ0)∇θ log f (x ,θ0),
∫ t

0
H(r)dr = I−1(θ0)g(t,θ0) and J = I−1(θ0). Then the covariance

function of the limiting Gaussian process is reduced to

ρ(s, t) = s ∧ t − st − g>(s,θ0)I
−1(θ0)g(t,θ0). (10)

1It should be noted that for the purposes of hypothesis testing it is not strictly necessary that this relationship be known, if
one employs the transformation technique of Khmaladze (1981) discussed in Section 4.
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The above result (that is, the additional terms in expressions (9) and (10) as compared to the covariance

function of the Brownian bridge,) is the source of what has been called the Durbin problem (Koenker

and Xiao, 2002, p. 1589). In the of case the examples discussed in Section 5, a maximum likelihood

estimator exists and so the covariance function takes the form of (10).

2.1 Location-scale and scale-shape models

Two classes of commonly used parametric models will be represented in the examples below, because

when the hypothesized distribution is a member of one of these classes, the parametric empirical pro-

cess does not depend on specific parameter values.

The first of these is the well-known class of location-scale models. Models in this class have distri-

bution functions that take the form

F(x ,θ) = F0

�

x − θ1

θ2

�

; x ∈ X⊆ R, θ ∈ R× (0,∞) (11)

for a fixed function F0. Process-based goodness-of-fit tests for location models have analogs based on

regression residuals. The earliest example of such tests is Loynes (1980). For a more recent treatment,

see Koul (2002, Chapter 6), Koul (2006) or Khmaladze and Koul (2004).

The second class may be called scale-shape models: these models have distribution functions of the

form

F(x ,θ) = F0

�

�

x

θ1

�θ2
�

; x ∈ X⊆ [0,∞), θ ∈ (0,∞)× (0,∞). (12)

Scale-shape models include the Weibull, Pareto and exponential models. These models have a natural

connection to duration models — see, for example Hong and Liu (2007), Hong and Liu (2009) and the

references cited therein. This invariance for scale-shape models was noted, with some examples, by

Martynov (2009). See Appendix B for more on both model classes.

The null hypotheses considered in the examples will be that F is a certain location-scale or scale-

shape model. It will be assumed that maximum likelihood estimators exist and the Fisher information

matrix is finite. For these families, that is equivalent to the condition that F0 has an absolutely con-

tinuous density f0 that is positive on its support and has a derivative ḟ0 almost everywhere, and such

that

sup
x∈R
|x | f0(x)<∞ and

∫

( ḟ0/ f0))
2(x) + (1+ x( ḟ0/ f0)(x))

2dF0(x)<∞ (13)

for location-scale families (cf. Koul (2006, eq. (1.6))) or

sup
x∈X

x log x f0(x)<∞ and

∫

(1+ x( ḟ0/ f0)(x))
2+ (1+ log x + x log x( ḟ0/ f0)(x))

2dF0(x) (14)

for scale-shape families2 This simplifies the presentation while still including a large number of com-

2One might also consider a model in which a transformation of x is nested in a location-scale or scale-shape model, such
as the lognormal model. As long as the transformation does not depend on parameters of the model in which it is nested, this
invariance continues to hold.
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monly specified parametric models; however, see Rabinovitz (1993) for examples in which the para-

metric empirical process depends on estimated quantities.

Kulinskaya (1995, Theorem 3) shows that the above model classes have this invariance essentially

because the score function of the model can be decomposed into a part that is a function of θ and a

second part that is a function of x . This decomposability leads to cancellation when constructing the

covariance function (9).

3 Approximate boundary crossing probabilities

Asymptotic critical values for Kolmogorov-Smirnov-type tests are derived from boundary crossing prob-

abilities for the weak (Gaussian) limit of the empirical process used in the construction of the test

statistic. For example, letting v be the weak limit of vn from equation (1), the standard one-sided

Kolmogorov-Smirnov test relies on critical values derived from the distribution of D+ = supt∈[0,1] v(t),

or the probability that v crosses some horizontal boundary for t between 0 and 1. However, even for

one-dimensional Gaussian processes, exact boundary crossing probabilities have analytic expressions

for only a few special cases beyond Brownian motion and the Brownian bridge. The presence of the

extra terms in (9) and (10) (compared to the covariance function of the Brownian bridge) implies that

the weak limit of the parametric empirical process depends in general on the hypothesized parametric

model and the asymptotic distribution of
p

n(θ̂n−θ0). These complicated covariance functions also im-

ply that the limiting processes are non-Markovian and nonstationary. Faced with this challenge, Durbin

(1985) proposed approximate boundary-crossing probabilities for Gaussian processes under very weak

conditions and applied these results to the limits of parametric empirical processes.

Let y be a continuous mean-zero Gaussian process on [0, 1] starting at the origin. Assume y has a

differentiable covariance function ρ(s, t), let a > 0, and define τa = inf{t : y(t) = a} — i.e., the first

time y reaches the boundary a(t)≡ a. In order to find the boundary crossing probability P defined by

P(a) = P

¨

sup
t∈[0,1]
{y(t)} ≥ a

«

, (15)

Durbin showed that P(a) can be characterized by the integral of a boundary crossing density p(t, a):

P(a) =

∫ 1

0

p(t, a)dt =

∫ 1

0

b(t, a) f (t, a)dt (16)

where

b(t, a) = lim
s→t

E
�

I(s < τa)
�

a− y(s)
�

|y(t) = a
�

t − s
(17)
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and

f (t, a) =
1

p

2πρ(t, t)
exp

¨

−a2

2ρ(t, t)

«

. (18)

However, the function b is almost always intractable; this complication motivated three approximate

boundary crossing probabilities.

3.1 The first approximation P1

Durbin’s first approximation, achieved simply through the removal of the indicator function from (17),

was justified by the fact that the approximation holds exactly in the special case of Brownian motion and

more generally by the fact that any Gaussian process satisfying Durbin’s (mild) conditions “. . . behaves

locally like Brownian motion and the boundary is locally linear3” (Durbin, 1985, p. 110-111). That is,

approximation P1 starts with the following approximation to the function b:

b1(t, a) =
ρ1(t, t)
ρ(t, t)

a (19)

where ρ1(t, t) := ∂ ρ(s,t)
∂ s

�

�

s=t . This approximation to b owes its simple form to a hypothetical regression

argument and the definition of a derivative4. Approximations to the first passage density for y and the

boundary crossing probability are respectively

p1(t, a) = b1(t, a) f (t, a) (21)

and

P1(a) =

∫ 1

0

p1(t, a)dt. (22)

Given ρ and ρ1, P1(a) is easy to compute for simple parametric models. Since the difference between

b and b1 becomes smaller as a→∞, P1 is a better approximation of P for small α.

3.2 The global approximation Pg and large deviations for Gaussian processes

Durbin also derived a “rough estimate” of P1 that obviates the final integration step between p1 and

P1 above. His “rough estimate” is remarkably accurate in most cases for quantiles of practical interest.

3Durbin (1985) considered differentiable boundaries, not just constant boundaries.
4After removing the indicator function from b, we have

b1(t, a) = lim
s↗t

a− E
�

y(s)|y(t) = a
�

t − s
. (20)

Imagine a hypothetical regression of y(s) on y(t), without an intercept. Then we would have E
�

y(s)|y(t) = a
�

= ρ(s,t)
ρ(t,t)

a.
The rest is the definition of a derivative.

7



Interestingly, a separate branch of research on extrema of Gaussian processes and fields can be used

to show that this estimate is identical to a crossing probability that becomes exact as the boundary

diverges. The work of Tyurin (1985) was perhaps the first such derivation, but the focus here will be on

the work of Fatalov (1992, 1993) and Piterbarg (1996). The reason for this is that the theory underlying

the result is quite general and has roots that are more clearly probabilistic — the work of Tyurin relies

on the solution to boundary value problems and can usually only be applied in the same situations

as Durbin’s Pg , while Fatalov’s work allows one to compute probabilities not available via Durbin’s or

Tyurin’s formulation of the solution. Fatalov’s results are based on the theory of large deviations for

Gaussian processes; all the relevant results can be found in self-contained form in Piterbarg (1996).

Let the variance function of the process be defined as σ2(t) := ρ(t, t) and the point of maximal

variance t0 := argmaxt σ
2(t). Durbin’s global approximation Pg is

Pg(a) =
ρ1(t0, t0)
σ2(t0)







−2σ2(t0)
d2σ2(t)

dt2 |t=t0







1/2

exp

¨

−a2

2σ2(t0)

«

. (23)

This is achieved by starting with equation (21), evaluating all the non-exponential parts at t0, and

replacing the exponential part with a rough expansion to evaluate it. This formula is easily inverted for

the purposes of calculating approximate critical values.

Some other important features of Durbin’s Pg are contained in the following theorem.

Theorem 1. Suppose the parametric family F is such that d2

dxdθ
f (x ,θ) is finite for all (x ,θ). Let y be

the weak limit of the parametric empirical process for F, with covariance function ρ and variance function

σ2(t) = ρ(t, t), and let t0 = argmaxt∈[0,1]σ
2(t). Then the approximate probability that y crosses the

horizontal boundary a is

Pg(a) =
exp
n

−a2

2σ2(t0)

o

2
p

−σ2(t0)
�

ρ11(t0, t0) +ρ12(t0, t0)
�

. (24)

Proof. Durbin’s approximation Pg in (23) requires that d2

d2 t
σ2(t) be finite. This is implied by the con-

dition that d2

dxdθ
f (x ,θ) is finite: the derivatives of the covariance function for the parametric empirical

process are (letting s ≤ t and suppressing dependence on θ as an argument in the functions g and I)

ρ1(s, t) = 1− t − ġ>(s)I−1
θ g(t), ρ2(s, t) =−s− g>(s)I−1

θ ġ(t) (25)

and the second derivatives are

ρ11(s, t) =− g̈>(s)I−1
θ g(t), ρ12(s, t) =− ġ>(s)I−1

θ ġ(t) ρ22(s, t) =−g>(s)I−1
θ g̈(t). (26)

When evaluated at s = t, we find that ρ11(t, t) = ρ22(t, t), and their existence is implied by the

existence of g̈, which in turn is implied by the above assumption on the density of the model, because
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the second derivative of g involves derivative terms up to ∂ 3F(x ,θ)
∂ x2∂ θ

�

�

x=F−1(t,θ).

By the definition of t0,

d

dt
σ2(t)

�

�

t=t0
= ρ1(t0, t0) +ρ2(t0, t0) = 0. (27)

We also have, from (25),

ρ1(t, t)−ρ2(t, t) = 1 (28)

for all t. Putting these two equations together we find that at t0,

ρ1(t0, t0) =−ρ2(t0, t0) = 1/2. (29)

Inserting (29) and (26) into (23), we have the result.

A drawback to the use of Pg is that if d2σ2(t0)
dt2

�

�

t=t0
= 0 (which occurs, e.g., when testing N(µ,σ2)

with µ unspecified,) Pg does not exist. Some more explicit calculations of Pg for the normal and ex-

ponential distributions are presented in Appendix A. Furthermore, there is only a rough understanding

that Pg becomes more accurate as the boundary diverges. Both of these issues are addressed formally

in the following theorem, due originally to Fatalov (1992, 1993). Note that an attractive feature of

Theorem 2 is that convergence to the true boundary crossing probability is at a relatively quick rate as

the boundary diverges: in Durbin (1985, p. 113), it could only be estimated that Pg approaches P1 at

a polynomial rate.

Theorem 2. Let y be the weak limit of the parametric empirical process, with variance function σ2.

Assume that σ2 has a derivative of some order 2k (k ∈ 1,2, . . .) that is nonzero (negative) at t0 =

argmaxt∈[0,1]σ
2(t). Then the probability that the parametric empirical process crosses level a in [0,1] is

P

¨

sup
t∈[0,1]

X (t)> a

«

= H(A, C , k)
�

a

σ(t0)

�1−1/k

φ

�

a

σ(t0)

�

(1+ o(1)), a→∞ (30)

where φ is the standard normal density,

H(A, C , k) =
C

kA
Γ
�

1

2k

�

(31)

and

A=









�

�

�

d(2k)

dt(2k)σ
2(t0)

�

�

�

2(2k)!σ2(t0)









1/(2k)

, C =
1

2σ2(t0)
. (32)

Proof. Because the third term of σ2 is the quadratic form g>(t)I−1 g(t), the first nonzero derivative

at t0 will be of even order 2k. A Taylor expansion around t0 shows that the standard deviation of y

9



locally about t0 is

σ(t0) = σ(t) +
1

2(2k)!σ(t0)
d(2k)

dt(2k)
σ2(t)

�

�

�

t=t0

|t − t0|(2k)(1+ o(1)), t → t0 (33)

because all derivatives of order lower than 2k are zero. By Lemma 1, the correlation of y locally about

t0 is

r(s, t) = 1−
1

2σ2(t0)
|t − s|(1+ o(1)), s, t → t0. (34)

These results, combined with Theorem 8.2 of Piterbarg (1996) imply the result. Specifically, the fact

that the order of the first term in the expansion of the correlation is 1 and for the standard deviation

the order is 2k > 1 implies that case (i) of the theorem applies. Specialized to this context, we have

P

¨

sup
t∈[0,1]

y(t)> a

«

= H(A, C , k)
�

a

σ(t0)

�2−1/k

Ψ
�

a

σ(t0)

�

(1+ o(1)), a→∞ (35)

where

H(A, C , k) = H1

∫

R
e−
�

A
C t
�2k

dt. (36)

The value H1 is a constant special to this literature and is known to equal 1. Using the substitution

x = t2k, one finds

H(A, C , k) =

∫

R
e−
�

A
C t
�2k

dt = 2

∫

[0,∞)
e−
�

A
C t
�2k

dt =
C

kA
Γ
�

1

2k

�

(37)

Finally use the relation

aΨ(a) = φ(a)(1+ o(1)) (38)

in (35) to establish the result.

Lemma 1. Let y be the weak limit of the parametric empirical process with differentiable covariance

function ρ. Then

r(s, t) = 1−
1

2σ2(t0)
|t − s|(1+ o(1)), s, t → t0 (39)

where r(s, t) = ρ(s, t)/
p

σ2(s)σ2(t) is the correlation function of the process.

Proof. Expanding the squared covariance function ρ2(s, t) in s around t results in

ρ2(s, t) = ρ2(t, t) + 2ρ(t, t)ρ1(t, t)(s− t)(1+ o(1)), s→ t, (40)
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while an expansion of ρ(s, s) in s around t implies

ρ(s, s) = ρ(t, t) + [ρ1(t, t) +ρ2(t, t)](s− t)(1+ o(1)), s→ t. (41)

This implies that

ρ2(s, t)−ρ(s, s)ρ(t, t) = ρ2(t, t) + 2ρ(t, t)ρ1(t, t)(s− t)

−ρ2(t, t)−ρ(t, t)[ρ1(t, t)−ρ2(t, t)](s− t) + o(s− t), s→ t

= ρ(t, t)[ρ1(t, t)−ρ2(t, t)](s− t) + o(s− t)

= ρ(t, t)(s− t)(1+ o(1)), s→ t, (42)

this last equality occuring because ρ1(t, t)−ρ2(t, t) = 1 for all t. The Cauchy-Schwarz inequality and

the fact that ρ(t, t) = ρ(t0, t0) + o(1) imply we can rewrite the above as

=−σ2(t0)|t − s|(1+ o(1)), s, t → t0. (43)

Then, using the definition of correlation and the expansion
p

1− x = 1− 1
2

x(1+ o(1)), x → 0 we have

that

r(s, t) =

È

1−
σ2(t0)

σ2(s)σ2(t)
|t − s|(1+ o(1))

= 1−
1

2σ2(t0)
|t − s|(1+ o(1)), s, t → t0. (44)

Unfortunately, it is difficult to see how the steps Durbin took to arrive at Pg are at all related to the

techniques developed in Piterbarg (1996). However, in the light of this other work one recognizes a

few details that make Durbin’s approximation a good one. First, Durbin conjectures that the point of

maximal variance is the only point needed to compute his approximation, because for boundaries that

are high enough, the probability that a crossing will occur anywhere else becomes extremely small5.

This is formally justifiable; see for example Piterbarg (1996, “Stage 2”, p. 21 or the corresponding part

of Theorem 8.1, p. 120-121). Second, the assumption that the variance function is twice differentiable

is satisfied in a great number of parametric models, so this is not a strong assumption. This is also

assumed in the work of Tyurin (1985), and although not a formal assumption in the general theory of

Piterbarg (1996), this differentiability is implicitly used in the calculation of the constants necessary for

the asymptotic results given there.

5Tyurin and Fatalov both point out that the maximal variance need not occur at a single point — the variance of the process
used to test the Cauchy distribution has two points of maximum, for example.
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3.3 The Gauss-Markov approximation P2

As noted above, the limit of the parametric empirical process is generally a non-Markovian, nonstation-

ary Gaussian process. Because this limit is non-Markovian, its increments may be related in complicated

ways. Durbin’s suggestion was essentially to calculate boundary crossing probabilities as if this incon-

venience did not exist. This final approximation improves upon P1 and is the solution to a numerically

evaluated integral equation. A great deal of tractability is gained through this simplification, and the

examples below suggest that the results are, perhaps surprisingly, quite accurate.

Let y be a mean-zero Gaussian process with covariance function ρ. Define6





β1(s, t)

β2(s, t)



=





ρ(s, s) ρ(s, t)

ρ(t, s) ρ(t, t)





−1



ρ2(s, t)

ρ1(t, t)



 . (45)

The approximate density p2(t, a) is the solution of the integral equation

p2(t, a) = p1(t, a)− a

∫ t

0

�

β1(s, t) + β2(s, t)
�

f (t|s, a)p2(s, a)ds. (46)

In (46), p1(t, a) is as in equation (21) and f (t|s, a) is the value of the transition density of the

process on the boundary a at time t given that the process is on the boundary at time s ≤ t and

assuming it is Markovian; in the present case of a constant boundary, the transition distribution is

F(t|s, a) = F(y(t)|y(s) = a) =N

�

ρ(s, t)
ρ(s, s)

a,ρ(t, t)−
ρ2(s, t)
ρ(s, s)

�

(47)

and the density is evaluated at a.

Equation (46) holds exactly for Gaussian processes that are also Markovian, and it was Durbin’s

suggestion to use this relation as an approximation method for non-Markovian processes as well. That

is, given a Gaussian process v̂ (the weak limit of v̂n) with covariance function ρ, the Gauss-Markov

approximation to the probability that v̂ crosses a > 0 in [0,1] is given by

P2(a) =

∫ 1

0

p2(t, a)dt (48)

where p2 has been computed as one would compute p2 in (46). This disregards the potentially in-

tractable autocovariance structure of the process but also delivers reasonable results, as will be seen in

Section 6.
6This is similar to the linear estimate in the derivation of p1 in that it comes from consideration of a hypothetical regression

of y(r) on y(t) and y(s), s, t ≤ r.
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3.3.1 Gauss-Markov processes

A Gauss-Markov process is a Gaussian process that also satisfies the Markov property7 (it need not

be stationary — for example, the Brownian bridge is nonstationary.) This immediately implies that a

mean-zero process with covariance function ρ has transition probabilities that can be characterized as

(x , t)|(y, s)∼N

�

ρ(s, t)
ρ(s, s)

y,ρ(t, t)−
ρ2(s, t)
ρ(s, s)

�

. (49)

Mehr and McFadden (1965) derive several important results for these processes. These results stem

from the fact that the covariance functions of such processes must be triangular; that is, a Gaussian

process is also Markovian if and only if its covariance function ρ satisfies, for all 0≤ r ≤ s ≤ t

ρ(r, t) =
ρ(r, s)ρ(s, t)
ρ(s, s)

. (50)

Because of this, there must exist (differentiable) functions η and ζ such that ρ(s, t) = η(s)ζ(t). Fur-

thermore, it can be shown (Doob, 1953; Mehr and McFadden, 1965) that all such processes are scaled,

time-changed Brownian motions: that is, if y is a Gauss-Markov process and W is standard Brownian

motion, then η/ζ is strictly increasing and we have the representation

y(t) = ζ(t)W
�

(η/ζ)(t)
�

. (51)

Using these results, Di Nardo et al. (2001) have shown that Durbin’s derivation is a special case of a

result on boundary crossing probabilities for diffusion processes found in Buonocore et al. (1987). A

mean-zero Gauss-Markov process is a diffusion process with a transition probability density function f

that satisfies the Fokker-Planck equation

∂

∂ t
f (x , t|y, s) =−

∂

∂ x
�

A1(x , t) f (x , t|y, s)
	

+
A2(t)

2

∂ 2

∂ x2 f (x , t|y, s) (52)

with lims→t f (x , t|y, s) = δ(x − y) (Di Nardo et al., 2001), and where

A1(x , t) = lim
s→t

∂

∂ t

ρ(s, t)
ρ(s, s)

y =
ρ2(t, t)
ρ(t, t)

y (53)

and

A2(t) = lim
s→t

∂

∂ t
ρ(t, t)−

ρ2(s, t)
ρ(s, s)

= ρ1(t, t)−ρ2(t, t) (54)

The function A2 in particular is intimately connected to Durbin’s approximation— see equation (47)

above and equation (4) of Durbin (1985). The function A1 is also strikingly similar to equation (19)

above, especially given the fact that for the parametric empirical process, ρ1(t, t)−ρ2(t, t) = 1 for all

7That is, if a process y is defined on the filtration F , it satisfies the Markov property if E
�

yt |Fs
�

= E
�

yt |ys
�

for s ≤ t.
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t.

It may be noted that a Gauss-Markov process allows several integral equations involving the first

passage density to be derived; for example, one may start with the Chapman-Kolmogorov equations

that are so fundamental to Markov processes. In particular, one particularly simple formulation is the

following, which uses an argument analogous to Peskir (2002, Theorem 2.2)8:

Theorem 3. Let y : T → R, T ⊂ [0,∞) be a Gaussian Markov process with a.s.-continuous sample paths

such that P{y0 = 0}= 1, mean function m(t)≡ 0 and covariance function ρ(s, t) such that y has regular

conditional probabilities. Let a > 0, let

τa = inf{t > 0 : yt ≥ a}

be the first exit time of y from the set (−∞, a), a > 0, and let F be the distribution function of τa. Then

for all t for which y is well defined, the following integral equation is satisfied:

Ψ





a
p

ρ(t, t)



=

∫ t

0

Ψ





a−m(s, t)
p

V (s, t)



 p(s, a)ds (55)

where

m(s, t) =
ρ(s, t)
ρ(s, s)

a and V (s, t) = ρ(t, t)−
ρ2(s, t)
ρ(s, s)

(56)

and Ψ= 1−Φ, where Φ denotes the standard normal cumulative distribution function.

Proof. The result follows from the combination of Peskir (2002, Theorem 2.2) and the transition distri-

butions of Gauss-Markov processes, given above in (49). Namely, because y is Markovian,

P{yt ∈ B}=
∫ t

0

P{yt ∈ B|ys = a}dF(s) (57)

for all measurable B ⊆ [a,∞). Given the distributions (49),

P{yt ∈ [a,∞)}=Ψ





a
p

ρ(t, t)



 (58)

because P{y0 = 0}= 1 and

P{yt ∈ [a,∞)|ys = a}=Ψ





a−m(s, t)
p

V (s, t)



 (59)

where m and V are defined above. The distribution of τa has a density because of the relationship

between Brownian motion and y , that is, equation (51).

8One might also start with a similar equation due to Fortet; see Durbin (1971, Section 2) for a derivation.
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The connection between the integral equations (55) and (46) is not as straightforward as it might

seem. Differentiating equation (55) with respect to t results in another integral equation that is remark-

ably similar to equation (46). Despite the similarities, only a circuitous connection can be made9—

see Di Nardo et al. (2001) and Buonocore et al. (1987). The decision regarding which integral equa-

tion to employ in computing the critical values presented in Section 5 was made on practical grounds:

although equation (55) is slightly simpler to put into practice, Durbin’s second-kind Volterra equation

was more stable in numerical experiments.

3.3.2 Computation of p2

Equation (46) is a nonseparable Volterra integral equation of the second kind and thus must be solved

numerically. Elementary methods can be used to calculate the solution. Following Press et al. (2001, p.

786), one simple algorithm is a recursively computed numerical integral that steps forward from 0 to 1

on an equally spaced grid. The properties of ρ make this easy to accomplish: the kernel of the integral

equation — −a(β1(s, t) + β2(s, t)) f (t|s, a), for s ≤ t — has a limiting value of 0 whenever t or s are

0, 1, or equal to each other. Given an equally-spaced partition {t i = (i − 1)/m, i = 1,2, · · ·m+ 1} (the

value of m is chosen by the researcher,) the integration algorithm simplifies to the following recursive

rule: for i = 0,1 (recall t0 = 0),

p2(0, a) = 0, p2(t2, a) = p1(t2, a) (60)

and for i ≥ 3

p2(t i , a) = p1(t i , a) + a
1

m

i−1
∑

j=2

K(t j , t i)p2(t j , a) (61)

where K(·, ·) is the kernel of the integral equation.

A partition of (0, 1) using m subintervals for numerical integration results in accuracy of order

O(1/m2) for any a; as it appeared that convergence was slower than theory predicted in small ex-

periments, the value of m was set at 10, 000 to produce the results below. The weighting technique

proposed by Di Nardo et al. (2001) did not appear to have an effect on final critical value estimates,

and so was not used in the calculations.

This technique will be applied to specification tests in Section 5. As an alternative to working

directly with distributionally dependent statistics, the next section explores a technique that is designed

to bypass this dependence through the construction of a different process that results in asymptotically

distribution-free statistics.
9Once again, this is because both equations can be related to the result of Fortet (cf. Durbin (1971).)
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3.4 Discussion

The approximations discussed above are useful alternatives to simulation methods for sup-norm tests.

Although there is no clear theoretical way to quantify the relationship between Durbin’s approxima-

tions and the true boundary crossing probability for the limit of the parametric empirical process, the

arguments above are strong evidence in support of their accuracy. In fact, Theorem 2 is strong evidence

that all of the approximations perform quite well, since it applies to Pg , and Durbin’s original intent was

that this approximation be the roughest of the three. One possible drawback to the approach outlined

below should be noted: since the approximates presented in this section are applied to the Gaussian

limit of the parametric empirical process, there is no formal guarantee that they necessarily improve

as the sample size of a given experiment increases. However, in the case examined in Section 6, per-

formance is not affected as sample size increases. It seems likely that this is due to the accuracy of the

approximations relative to small sample anomalies.

Furthermore, these methods are generalizable. While Subsection 3.2 may appear to be only a

serendipitous confluence of results from some quite different theoretical starting points, it should be

noted that the body of theory represented in Piterbarg (1996) is very general and applicable to a wide

variety of Gaussian processes and fields, and as such may serve as a fruitful point of departure for

solutions to more general problems, for example the extension of these techniques to test statistics that

converge to Gaussian processes in higher dimensions. On the other hand, approximation P2 is also

very flexible — it may be applied to any sup-norm test for which the empirical process has a Gaussian

limit, as is for example the case with the empirical characteristic function (Matsui and Takemura, 2005,

Theorem 2.1). For goodness of fit tests based on regression residuals, very few modifications must be

made; in the dynamic case, some regularity is required on the sequence of score functions to ensure

weak convergence of the process — see Bai (2003). However, beyond these conditions, it is only

required that the covariance function of the limiting process be tractable enough to be used in the

formulas above. On the other hand, addressing problems for which estimators are not efficient is more

challenging. If θ̂ only satisfies assumption A2 above but is not efficient, the covariance function needs

to be derived on a case-by-case basis. The method presented in the next Section can be used in such

situations.

These approximations are attractive because they tie the adjusted critical values of a test to the

parametric family being tested through the function g, the score function of the model. This makes

this testing strategy more involved than simulation for the applied researcher, but it makes it possible

to understand more about the test under consideration and the relationship between the model and

the test statistic. In addition, as will be seen in Section 6, there is reason to believe that in more

complicated settings, tests that use adjusted critical values can perform at least as well as tests that rely

on simulation methods.
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4 Khmaladze’s martingale transform

An alternative approach to the problem of testing a statistical model with estimated parameters was

suggested by Khmaladze (1979, 1981). He proposed a transformation of the empirical process that

is not affected asymptotically by the estimation of model parameters, thereby avoiding the problems

inherent in the use of the parametric empirical process. In the one-sample setting, some interesting

connections can be made between the martingale transform, the parametric empirical process, and

simple projection techniques.

Viewed as a real-valued random element of L2[0, 1], Fn is a submartingale with respect to F Fn =

{F Fn
t }t≥0, the filtration of σ-algebras generated by Fn. Therefore the Doob-Meyer decomposition

implies a right-continuous increasing and predictable compensator K may be calculated that renders

Fn−K a martingale with respect toF Fn . At any point x in the support of F , the compensator K(x ,Fn,θ)

is asymptotically equivalent to the conditional expectation E
�

Fn(x)
�

�Fn(y), y ≤ x ,θ
�

.

The process

Ṽn(x) =
p

n
�

Fn(x)− K(x ,Fn, θ̂n)
�

(62)

is called the transformed empirical process, and Khmaladze (1981) showed that Ṽn converges weakly

in L2[0,1] to W ◦ F , a time changed Brownian motion. This renders statistics based on process (62)

asymptotically distribution-free.

The intimate relation between the function g defined in equation (4) and the compensator is some-

what more clear if one makes the time transformation t = F(x ,θ)— in the sequel, g(t,θ)will generally

be shortened to g(t) when the parameters used in the transformation and the evaluation of the func-

tion are identical. The reason for this is that it can be shown that ġ, the derivative of g with respect to

t, satisfies the equation

ġ(t) =
∂

∂ t
g(t,θ) =

∂

∂ θ
log f (x ,θ)

�

�

�

x=F−1(t,θ)
(63)

implying that g is in effect the integrated score function for the model. The compensator K(t,Fn, θ̂) is

a projection of changes in the empirical distribution function onto the score of the null model. With this

in mind, define the p+ 1 dimensional extended score function h and the (p+ 1)× (p+ 1)-dimensional

function Γ by

h(t,θ) =





1
∂ g(t,θ)
∂ t



 and Γ(t,θ) =

∫ 1

t

h(s,θ)h(s,θ)>ds. (64)

Finally, let the compensator K be defined as follows: for any t ∈ (0,1)

K(t,Fn,θ) =

∫ t

0

h(s,θ)>Γ−1(s,θ)

∫ 1

s

h(r,θ)dFn(r)ds. (65)
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It is usually easier to perform computations using the following equivalent expression:

=

∫ 1

0

∫ t∧r

0

h(s,θ)>Γ−1(s,θ)ds h(r,θ)dFn(r). (66)

One may think of equation (65) as a functional analog to ŷ = xβ̂ familiar from usual regression

analysis, with h(t) playing the role of explanatory variable and the projection Γ−1(t)
∫ 1

t
h(s)dFn(s) as

β̂ . Note also the fact that Γ(0,θ) is simply an augmented version of the Fisher information matrix of

the model: because of the similarities between h and the score, and Γ and the Fisher information, it

can be shown that the compensator also has a form that does not depend on parameter values when

the null model is a member of the special classes of parametric models discussed in Subsection 2.1. See

Appendix B for more on this topic. For a more general interpretation of the martingale transform as a

projection onto the score function of a parametric model, see Li (2009).

Although the compensator may be difficult to calculate analytically, it can be easily implemented

using a projection technique employing recursive least squares and the score function from the null

model. This ease of implementation is an attractive feature of the martingale transform method. The

details are addressed in Subsection 4.1. It should also be noted that this technique need not be limited

to tests of Kolmogorov-Smirnov type; after transformation of the empirical process, any functional

can be used to derive an asymptotically distribution-free test statistic, for example an L2 statistic like

the Cramér-von Mises statistic. The approximation methods of Section 3 are approximate boundary

crossing probabilities, and as such they only apply to sup-norm tests, although L2 analogs exist (i.e.

Durbin et al. (1975))

4.1 Computation of the compensator

Khmaladze’s compensator can be calculated using standard recursive least squares and numerical inte-

gration methods on a finite partition of [0,1] — see Bai (2003, Appendix B) for an alternate explana-

tion. Its accuracy depends only on the fineness of the partition used for integration.

Suppose we have a partition {t i} of the unit interval. First, least squares coefficients {β̂i}mi=1 are

generated at each t i by projecting the empirical distribution function onto the score of the model for

each {t j} j≥i . Then, projections are integrated from 0 to each t i to make a “prediction” of the score

function integrated up to the t th quantile of the null model.

This can be accomplished as follows. Suppose we use the same evenly spaced grid as in Subsec-

tion 3.3.2. The score and empirical distribution functions are evaluated at each t i and then stacked

into the following series of matrices of size (m− i+ 2)× 2 and (m− i+ 2)× 1 respectively:

X i =

















Æ

1
m

Æ

1
m

ġ(tm+1)
Æ

1
m

Æ

1
m

ġ(tm)
...

...
Æ

1
m

Æ

1
m

ġ(t i)

















yi =















p
m
�

Fn(tm+1)− Fn(tm)
�

p
m
�

Fn(tm)− Fn(tm−1)
�

...
p

m
�

Fn(t i)− Fn(t i−1)
�















(67)
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Then, least squares coefficients for each t i are calculated:

β̂(t i) = (X
>
i X i)

−1X>i yi

=





1
m
(m− j+ 2) 1

m

∑m+1
j=i ġ(t j)

1
m

∑m+1
j=i ġ(t j)

1
m

∑m+1
j=i ġ2(t j)





−1



∑m+1
j=i [Fn(t j)− Fn(t j−1)]

∑m+1
j=i ġ(t j)[Fn(t j)− Fn(t j−1)]



 . (68)

That is, for each t i , β̂(t i) is the projection of changes in {Fn(t j)} j≥i onto {h(t j)} j≥i . Given the form of

{X i}i and {yi}i it can be seen that rather than generating m− p+ 1 very similar X and y matrices, an

efficient way to calculate the sequence {β̂(t i)}i is via recursive least squares from tm−p+1 to t1. Then

for any t i the compensator K̂(t i) is obtained by integrating numerically:

K̂(t i) =
1

m

i
∑

j=1

h>(t j)β̂(t j). (69)

Here it can be seen why Bai (2003) called the martingale transform method a “continuous time de-

trending operation” using the score function of the model. The above algorithm is simply a discretized

approximation to the operator K . As such, each estimate K̂ is subject to some approximation error that

shrinks as the size of the partition (m) increases. That is, because the inverted matrix term of equa-

tion (68) and h are continuous functions of t, the accuracy of the numerical integral (69) increases

with m.

5 Examples

One-sample tests of exponentiality and normality with estimated parameters are simple examples with

which one can compare the approaches proposed by Durbin and Khmaladze. For tests of exponen-

tiality there is one parameter10, while for tests of normality there are two parameters and therefore a

greater variety of distributionally dependent boundary crossing probabilities. The martingale transform

is illustrated analytically for the exponential case, a result first presented in Haywood and Khmaladze

(2008) and developed here under the time transformation t = F(x ,θ0). Khmaladze and Koul (2004)

and Khmaladze and Koul (2009) discuss some features of the compensator for the null hypothesis of

normality, although it is tedious to express it analytically. Some other examples may be found in Koul

and Sakhanenko (2005).

5.1 The exponential distribution

The exponential model has convenient distribution and quantile functions. The hypothesis of exponen-

tiality is

H0 : F(x ,λ) = 1− e−λx , x ∈ [0,∞), λ ∈ (0,∞). (70)

10Martynov (2009) shows that the calculation of the parametric empirical process for the Weibull model is only marginally
more complicated than for the exponential model, but an analytic expression for the compensator is difficult to derive.
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The function g for the exponential model is

g(s,λ) =
−1

λ0
(1− s) log(1− s)e

λ
λ0 (71)

and the weak limit of the parametric empirical process for tests of exponentiality with efficiently esti-

mated parameters is a mean-zero Gaussian process with covariance function

ρ(s, t) = s ∧ t − st − (1− s)(1− t) log(1− s) log(1− t). (72)

which clearly does not depend on any parameter values (this distribution is a member of the scale-shape

class discussed in Subsection 2.1.)

The methods of Section 3 were applied using (72) to produce the approximate critical values in

Table 1 for testing the hypothesis of exponentiality. The corresponding standard Kolmogorov-Smirnov

critical values are included in the last column to give an impression of the magnitude of the difference

between them and the distributionally dependent critical values. Note that since the third term in

equation (10) is positive definite, the covariance function of the parametric empirical process is smaller

than that of the Brownian bridge for all t, and therefore critical values for the Kolmogorov-Smirnov

test using the parametric empirical process should always be smaller than for the standard test (van der

Vaart and Wellner, 1996, p. 441).

Table 1: Approximate critical values for the composite hypothesis of exponentiality and correspond-
ing classical Kolmogorov-Smirnov critical values. These values are invariant to the value of the scale
parameter.

Significance Level P1 Pg P2 K-S
10% 0.89401 0.88055 0.87726 1.07298
5% 1.00063 0.99105 0.98983 1.22387
2.5% 1.09766 1.09042 1.09013 1.35810
1% 1.21464 1.20930 1.20955 1.51743

Both Pg and P2 adjust the first approximation P1 downward slightly. Although it is a global approx-

imation, the values of Pg are extremely close to those produced using P1 and P2: for purposes of quick

approximation, Pg offers reasonable precision with very little computation.

5.1.1 The compensator for the exponential case

Khmaladze’s compensator for the exponential distribution is presented here on t ∈ [0,1]. For the

exponential distribution, straightforward computation reveals that

h(t,λ) =





1
1
λ
(1+ log(1− t))



 (73)
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and

Γ(t,λ) =





1− t 1
λ
(1− t) log(1− t)

1
λ
(1− t) log(1− t) 1

λ2 (1− t)(1+ log2(1− t))



 . (74)

From here one can compute the compensator for any t. Let {ε̂i}ni=1 = {F(X i , λ̂)}ni=1 for some

appropriate estimator λ̂. Then

K(t,Fn, λ̂) =

∫ t

0

1

2
log2(1− ε̂)− 2 log(1− ε̂)− log2(1− ε̂)dFn(ε̂)

+

∫ 1

t

1

2
log2(1− t)− 2 log(1− t)− log(1− ε̂) log(1− t)dFn(ε̂), (75)

or alternatively

K(t,Fn, λ̂) =
1

n

∑

i:ε̂i≤t

�−1

2
log2(1− ε̂i)− 2 log(1− ε̂i)

�

+
�

1

2
log2(1− t)− 2 log(1− t)

�

�

1− Fn(t)
�

−
1

n
log(1− t)

∑

i:ε̂i>t

log(1− ε̂i), (76)

both of which depend only on the parameter estimate through {ε̂i}i . Note that without making the

transformation t = F(x ,θ) Haywood and Khmaladze (2008) derive this compensator, which is

K̃(x ,Fn, λ̂) =
λ̂

n

∑

i:X i≤x

�

2X i −
λ̂

2
X 2

i

�

+

�

2λ̂x +
λ̂2

2
x2

�

(1− Fn(x))−
λ̂2

n
x
∑

i:X i>x

X i

(77)

but from this expression it is not apparent that the form of the compensator is independent of the value

of the estimate λ̂.

5.2 The normal distribution

The normal model is also of interest. The hypothesis of normality is

H0 : F(x ,θ) =

∫ x

−∞

e
−1

2σ2 (y−µ)
2

p

2πσ2
dy, x ∈ R, θ = (µ,σ2) ∈ R× (0,∞). (78)

All of Durbin’s approximations are available for the N(0,σ2) distribution with σ2 unknown and

with µ and σ2 unknown, but Pg does not exist for the mean-unknown case (the result as computed in

Appendix A is shown in Table 2.) Letting ξµσ(s) be the sth quantile of the N(µ,σ2) distribution, the
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function g for the mean- and variance-unknown case is equal to

g(s,θ) =









∂
∂ µ

∫ ξµσ(s)

−∞
1p

2πσ2
e
−(y−µ)2

2σ2 dy

∂
∂ σ2

∫ ξµσ(s)

−∞
1p

2πσ2
e
−(y−µ)2

2σ2 dy









=













−e
(ξµσ(s)−µ)2

2σ2p
2πσ2

−(ξµσ(s)−µ)
2σ2

e
−(ξµσ(s)−µ)2

2σ2p
2πσ2













. (79)

Since the normal model is in the location-scale class, specific parameter values can be ignored and

standard normal quantiles can be used (see Appendix B.) Then, letting ξ and φ be respectively the

quantile and density functions of the standard normal distribution, one finds that the limit of the

parametric empirical process has the covariance function

ρµσ(s, t) = s ∧ t − st −φ(ξ(s))φ(ξ(t))
�

1+
1

2
ξ(s)ξ(t)

�

. (80)

The global approximation in this case is Pg(a) =
Æ

2π
π−2

exp{−2πa2/(π− 2)}.

Table 2: Approximate critical values for the composite hypothesis of normality. These values are in-
variant to parameter values, although they change according to the combination of parameters left
unspecified in the null hypothesis. The values of Pg are computed using the methods of Fatalov (1992,
1993); see Appendix A for more details.

Significance Level P1 Pg P2

Both parameters unspecified
10% 0.76690 0.75716 0.74979
5% 0.84364 0.83620 0.83274
2.5% 0.91429 0.90839 0.90673
1% 1.00036 0.99581 0.99526

Mean unspecified
10% 0.82311 0.82541 0.81305
5% 0.90099 0.90299 0.89410
2.5% 0.97198 0.97375 0.96690
1% 1.05786 1.05940 1.05421

Variance unspecified
10% 1.04103 1.02466 1.03443
5% 1.19298 1.18174 1.18906
2.5% 1.32857 1.32026 1.32604
1% 1.48967 1.48365 1.48810

The diagonal nature of the information matrix for the normal model makes the third term of the

covariance function additive in the two parameters. Therefore the covariance functions for the other

two possible cases are immediate. For the mean-unknown case we have

ρµ(s, t) = s ∧ t − st −φ(ξ(s))φ(ξ(t)) (81)

As mentioned above, the approximation Pg does not exist in this case, because the second derivative

of ρ(t, t) evaluated at t∗ = 1/2 is equal to zero. Similarly, the covariance function in the variance-
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unspecified case is

ρσ(s, t) = s ∧ t − st −
1

2
ξ(s)ξ(t)φ(ξ(s))φ(ξ(t)) (82)

and Pg(a) = (2/3)1/2 exp{−2a2}. Note that there is a small error in this expression in Durbin (1985, p.

117); a sketch of the derivations required appears in Appendix A.

Approximate critical values are presented in Table 2. The values are all quite close to one another;

as in the exponential case, the values of Pg and P2 are uniformly lower than those of P1. Due to the

invariance of the limiting process to parameter values in these model classes, one may use the standard

normal distribution to compute the values given in all the tables of this section; the resulting values are

the same for any configuration of parameter values.

6 Monte Carlo experiments

Table 3 presents the results of a small Monte Carlo experiment using the D− statistic for testing the

null hypothesis of exponentiality against stochastically dominant alternatives Both the Gauss-Markov

approximation and the martingale transform were included. Because there is an analytic form for the

compensator, the numerical approximation calculated as in Subsection 4.1 can be compared to the

exact version. A partition of m = 1.5n points in the interval was used for the recursive least squares

algorithm for the compensator. This is meant to reflect the fact that in some cases (for example, quantile

regression processes,) the total number of points in the partition has an upper limit.

Table 3: Sizes (in percent) of a one-sided sup-norm test (D−) using adjusted critical values or a mar-
tingale transform for a test of exponentiality. Nominal sizes appear in the column header. 50,000
repetitions.

sample size 10 5 2.5 1
50

G-M approximation 10.41 4.92 2.36 0.92
analytic transform 11.03 4.53 1.72 0.46
RLS transform 8.77 3.60 1.42 0.37
Standard K-S 2.70 0.81 0.23 0.05

100
G-M approximation 10.52 5.15 2.48 0.95
analytic transform 10.54 4.56 1.87 0.50
RLS transform 9.26 4.02 1.66 0.48
Standard K-S 2.84 0.83 0.26 0.06

200
G-M approximation 10.36 5.04 2.44 0.97
analytic transform 10.12 4.64 1.96 0.57
RLS transform 9.42 4.38 1.87 0.57
Standard K-S 2.77 0.87 0.26 0.05

As theory predicts, naively applied classical Kolmogorov-Smirnov critical values result in tests that

have a size much lower than the nominal size. The exact compensator leads to inferences that improve

as the sample size increases, as is to be expected, although the improvement is smaller at lower levels
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(cf. Table 1 of Haywood and Khmaladze (2008)). At the 10% and 5% levels, the process using the exact

compensator is clearly closer to the nominal level than its discretized counterpart, but this relationship

reverses at the 2.5% and 1% levels. The Gauss-Markov approximation results in tests that are reason-

ably close to their nominal size, although they appear to do slightly better for smaller sample sizes

and for smaller levels. The compensator computed using recursive least squares (“RLS transform” in

Table 3,) typically the only feasible transformed process, performs roughly as well as the Gauss-Markov

approximation in most cases.

The power of these tests is not often addressed; notable exceptions include Aki (1986), Haywood

and Khmaladze (2008) and Koul and Sakhanenko (2005), with some results on power for the martin-

gale transformation technique. A second small Monte Carlo experiment was conducted using smooth

local alternatives to the null hypothesis of exponentiality. Stochastically dominant alternatives were

constructed in one of two ways. First, local alternative mixture densities were generated using the

following formula:

fmix(x , n) =
�

1−
c
p

n

�

fex p(x) +
c
p

n
fal t(x) (83)

where fex p is the exponential density and fal t is a different density. These alternative densities were

arbitrarily chosen to be lognormal(0,1/2), or uniform [0,4], with the parameters and constants c

chosen so as to achieve nontrivial (i.e., not 0 or 100%) power for all the tests. Two other convergent

alternative models that nest the exponential were considered: the gamma and weibull models. These

alternatives were set with scale parameters equal to 1 and shape parameters equal to 1+ c/
p

n. The

tests considered were Durbin’s P2 and Pg approximations, compensated empirical processes calculated

both analytically and using recursive least squares, and a bootstrap test.

The bootstrap was conducted following Romano (1988). That is, each sample was used to generate

a bootstrapped critical value by estimating λ̂ in the given sample and then producing 200 random

exponential(λ̂) samples with the same sample size as the original. Although it would be more natural

in this simple setting to generate a critical value by simply simulating the distribution of the supremum

of the parametric empirical process, the above algorithm was chosen to reflect a setting in which such

a strategy was not an option.

The results of the power experiment appear in Table 4. The first row simply repeats the size of

the tests, and the remaining rows are the empirical power from 50,000 simulated samples for the

alternatives described above. It can be seen that the classical Kolmogorov-Smirnov critical values result

in tests that are uniformly less powerful than tests using adjusted values, which is to be expected since

the adjusted values are always smaller than the unadjusted ones. This bootstrap technique tends to

be less powerful than using tests with asymptotically derived critical values. However, it is also of

interest to note that of the two alternative strategies — to test with either an adjusted critical value or a

transformed process — neither is a uniformly better test. For example, tests based on the transformed

process do extremely well against the uniform alternative. On the other hand, they do not seem to

do quite as well as tests using the parametric empirical process against the lognormal and gamma

alternatives. Evidently these tests have differential performance against alternatives from different
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Table 4: Empirical size and power for the alternatives described in the text. All tests are intended to
have a size of 5%; e.g. the first row shows that the last four methods are more or less conservative in
this experiment. 50,000 repetitions.

sample size P2 Pg analytic RLS bootstrap K-S
transform transform

null model
50 5.0 4.9 4.4 3.5 1.2 0.8
100 5.0 4.9 4.6 4.1 1.2 0.8
200 5.1 5.0 4.7 4.3 1.2 0.8

uniform mixture
50 83 83 99 99 55 49
100 71 71 98 97 37 32
200 57 57 97 96 22 18

lognormal mixture
50 40 40 34 31 19 16
100 40 40 33 32 19 16
200 40 40 33 32 18 16

gamma alternative
50 56 56 53 49 28 24
100 62 62 59 57 34 30
200 67 67 63 62 39 36

weibull alternative
50 51 51 55 51 25 21
100 55 55 59 57 28 25
200 59 58 63 61 31 28

parts of the space of alternatives.

7 Conclusion

The techniques examined in this paper exploit the structure of the parametric empirical process, in

particular the score function under the null model. This function is the common thread that connects

Khmaladze’s transformation to the covariance function underlying Durbin’s approximations. Using the

exponential model, the martingale transform method is compared with two critical value approxima-

tions for the one-sample sup-norm test with estimated parameters. Monte Carlo evidence suggests that

the approximations proposed by Durbin result in tests that have a size comparable to tests based on the

transformed empirical process. It is also apparent that neither method dominates the other in terms of

power, although the experiment suggests that these tests are more powerful than bootstrap tests.

Appendix A: Pg

In order to clarify equation (23), Durbin’s global approximation, some further details are presented for

the specific cases mentioned in the examples.

First of all, the calculation of t0 is straightforward: for the normal cases, simple optimization shows
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argmaxt ρ(t, t) = 1/2, while for the exponential distribution, t0 must satisfy the following equation:

1− 2t0+ 2(1− t0)
�

log(1− t0) + log2(1− t0)
�

= 0. (84)

Using a numerical root-finding procedure, one finds that the value of t0 is approximately 0.3398 for the

exponential case. The rest of the calculations for the exponential case must also be done numerically.

However, it is possible to calculate Pg analytically for the two normal cases mentioned above.

For the two computable normal cases (i.e., when both parameters or only the variance parameter

are unspecified,) the second derivatives of each ρ(t, t) are respectively

d2ρµσ(t, t)

dt2 =−1+
�

1+φ(ξ0(t))
�

ξ2
0(t)− ξ

4
0(t) (85)

and

d2ρσ(t, t)
dt2 =−3+ 4ξ2

0(t)− ξ
4
0(t), (86)

where φ is the standard normal density function and ξ0 is the standard normal quantile function.

When evaluated at t0 = 1/2 we have −1 and −3 respectively.

Evaluating the above functions and the covariance functions together at the maximum t0 = 1/2

(recall ρ1(t0, t0) = 1/2 for all models) and putting everything together as in equation (23), we have

Pg(a) =
1/2

1
4
− 1

2π

s

−2
�

1
4
− 1

2π

�

−1
exp







−a2

2
�

1
4
− 1

2π

�







=

r

2π

π− 2
e
−2π
π−2

a2
(87)

and

Pg(a) =
1/2

1/4

r

−2/4

−3
exp

¨

−a2

2/4

«

=
p

2/3e−2a2
. (88)

Large deviation approximations

The constants used in Fatalov’s formulation of the boundary crossing probability for tests of normality,

as presented in Theorem 1, are

(µ̂, σ̂2) : σ2(t0) =
π− 2

4π
A=

Ç

π

π− 2
C =

2π

π− 2
k = 1 (89)

(µ, σ̂2) : σ2(t0) = 1/4 A=
p

3 C = 2 k = 1 (90)

(µ̂,σ2) : σ2(t0) =
π− 2

4π
A= 4

È

2π2

3(π− 2)
C =

2π

π− 2
k = 2 (91)
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Note the value of A is different from what is printed in Piterbarg (1996) for two of three cases. Plugging

these values into equation (30) results in

P

¨

sup
t∈[0,1]

X (t)> a
�

�

�µ̂, σ̂2

«

=

r

2π

π− 2
e
−2π
π−2

a2
(92)

P

¨

sup
t∈[0,1]

X (t)> a
�

�

�µ, σ̂2

«

=
p

2/3 e−2a2
(93)

P

¨

sup
t∈[0,1]

X (t)> a
�

�

�µ̂,σ2

«

=
Γ(1/4)
π− 2

4

r

3π

2

p
a e
−2π
π−2

a2
(94)

Appendix B: Location-scale and scale-shape families

These two classes of parametric families have the attractive feature that their score functions may be

separated into two parts: one that contains parameter values and one that contains only functions that

depend on the model. The location-scale case is very well-known (e.g. Shorack and Wellner (1986,

Section 5.5),) the scale-shape case was noted as a general phenomenon by Martynov (2009), and both

were noted as special cases in Kulinskaya (1995).

Members of the location-scale class, defined by the equivalence (11), have the following property:

g(t) =∇θ F(x ,θ)
�

�

x=F−1(t,θ) =
−1

θ2





f0(F
−1
0 (t))

F−1
0 (t) f0(F

−1
0 (t))



 (95)

and the score function inherits this separability, since the derivative of g with respect to t is

ġ(t) =∇θ log f (x ,θ)
�

�

x=F−1(t,θ) =
−1

θ2





( ḟ0/ f0)(F
−1
0 (t))

1+ F−1
0 (t)( ḟ0/ f0)(F

−1
0 (t))



 (96)

This in turn implies that the information matrix also has a separable structure: that is,

I(θ) =

∫

[0,1]
ġ(t) ġ>(t)dt =

1

θ2
2





σ11 σ12

σ12 σ22



=
1

θ2
2

I0 (97)

where each σi j can be derived from equation (96) and I0 is a fixed matrix depending only on the

model.

The situation is similar for the scale-shape class. For members of this class we have

g(t) =





−θ2

θ1
F−1

0 (t) f0(F
−1
0 (t))

1
θ2

log(F−1
0 (t))F

−1
0 (t) f0(F

−1
0 (t))



 (98)
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and

ġ(t) =





−θ2

θ1

�

1+ F−1
0 (t)( ḟ0/ f0)(F

−1
0 (t))

�

1
θ2

�

1+ log(F−1
0 (t)) + log(F−1

0 (t))F
−1
0 (t)( ḟ0/ f0)(F

−1
0 (t))

�



 (99)

so that

I(θ) =







θ2
2

θ2
1
σ11

−1
θ1
σ12

−1
θ1
σ12

1
θ2

2
σ22






(100)

Although the information matrix is not as simple as for the location-scale class, parameters cancel

in the calculations described below. From the form that the third term takes in the covariance function

of the parametric empirical process when efficient estimators have been used,

g>(s)

 

∫ 1

0

ġ(r) ġ>(r)dr

!−1

g(t), (101)

it is straightforward to show that the terms that depend on parameters cancel, for members of either

the location-scale or scale-shape class. Note also that the conditions given for finite Fisher information

in Subsection 2.1, equations (13) and (14), are the same as the assumption that ġ exists a.e. and
∫

ġ ġ> <∞. The result is analogous for the compensator — it is constructed using only the augmented

score function h, and as such, the parameter values in the integrand of the compensator,

h(s,θ)>
 

∫ 1

s

h(s,θ)h>(s,θ)ds

!−1 ∫ 1

s

h(r,θ)dFn(r) (102)

can be factored out in the same way.
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