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Abstract. In this article, we develop a general method for testing threshold effects in
regression models, using sup-likelihood-ratio (LR)-type statistics. Although the sup-LR-
type test statistic has been considered in the literature, our method for establishing the
asymptotic null distribution is new and nonstandard. The standard approach in the lit-
erature for obtaining the asymptotic null distribution requires that there exist a certain
quadratic approximation to the objective function. The article provides an alternative,
novel method that can be used to establish the asymptotic null distribution, even when
the usual quadratic approximation is intractable. We illustrate the usefulness of our ap-
proach in the examples of the maximum score estimation, maximum likelihood estimation,
quantile regression, and maximum rank correlation estimation. We establish consistency
and local power properties of the test. We provide some simulation results and also an
empirical application to tipping in racial segregation. This article has supplementary ma-
terials online.
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1. Introduction

This article develops general tests for threshold effects in a variety of regression models,

including mean, median and quantile regression, binary response, censored or truncated

regression, and proportional hazards models as special cases. To illustrate our testing

problem, consider a binary regression model as an example. In this model, an observed

binary outcome Y is modeled typically as Y = 1(Y ∗ ≥ 0), where 1(A) denotes the indicator

function, i.e., 1(A) = 1 if A is true and zero otherwise, and Y ∗ is a latent continuous variable

that determines the binary outcome Y (see e.g. Manski, 1988). Suppose that Y ∗ has the

following form:

Y ∗ = g (W, θ0, γ0) + U,(1.1)

g (w, θ, γ) = x′β + z′α1 {t > γ} ,(1.2)

where W is a vector of regressors that consist of distinct elements of (X,Z, T ), U is an

unobserved random variable, and θ0 := (β ′
0, α

′
0)

′ and γ0 are unknown true parameter values

and belong to Θ := B × A and Γ, respectively, which are subsets of finite-dimensional

Euclidean spaces. Without loss of generality, assume that the vector Z is a subset of X

such that Z = R′X for some known matrix R and that T might be an element of X. The

random variable T is the threshold variable and γ0 is the unknown threshold parameter.

Note that we specify the threshold effect as a change-point due to an unknown threshold

in a particular covariate.

Threshold models have a large number of applications in empirical research. In econom-

ics and sociology, racial segregation can be modeled as a threshold effect. For example,

Card et al. (2008) recently investigated the existence of race-based tipping in neighbor-

hoods using U.S. Census data. In their setup, the hypothesis of interest is whether there

exist discontinuities in the dynamics of neighborhood racial composition: once the minor-

ity share in a neighborhood exceeds a threshold level (“tipping point”), most of the whites

would leave the neighborhood. In a simple model developed by Card et al. (2008), whites’
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willingness to pay for homes depends on the neighborhood minority share. In their model,

the location of the tipping point can vary depending on whites’ preferences, thereby im-

plying that the location of the tipping point is unknown. In Section 4, we illustrate our

methodology by applying it to the data used by Card et al. (2008).

There are more examples of threshold models. In economics, Durlauf and Johnson (1995)

argue that cross-country growth models with multiple equilibria can exhibit threshold ef-

fects. In addition, Khan and Senhadji (2001) examine the existence of threshold effects

in the relationship between inflation and growth. In empirical finance, Pesaran and Pick

(2007) argue that the effect of financial contagion (see, e.g. Forbes and Rigobon, 2002)

can be described as a discontinuous threshold effect, hence testing for threshold effects

implies testing for the presence of financial contagion. In biostatistics, dose-response mod-

els are typically specified with some unknown threshold parameters (see, e.g. Cox, 1987;

Schwartz et al., 1995). In epidemiology, logistic regressions with unknown change-points

are used to model the relationship between the continuous exposure variable and disease

risk (see Pastor and Guallar, 1998; Pastor-Barriuso et al., 2003).

We consider a test of no threshold effect against the presence of threshold effects. That

is, the null and alternative hypotheses are that

H0 : α0 = 0 for any γ0 ∈ Γ vs. H1 : α0 6= 0 for some γ0 ∈ Γ.

In general, unknown parameters in (1.2) are identifiable under the alternative hypothesis;

however, the threshold parameter γ0 is not identified under the null hypothesis. This feature

that the threshold parameter is not identified under the null hypothesis is an example of

the so-called “Davies problem” (see Davies, 1977, 1987).

As common in the literature (see, e.g., Andrews and Ploberger, 1995; Hansen, 1996;

Andrews, 2001), we develop our tests following Roy’s union-intersection principle (Roy,

1953) to deal with the Davies problem. Specifically, in our setup, we suppose that there

exist an objective function and a corresponding extreme estimator for the null hypothesis
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of no threshold model and those for the alternative hypothesis of a threshold model. Then

our test statistic is based on the difference between the maximum values of the objective

functions under the null and alternative hypotheses. This test statistic can be viewed as a

sup-likelihood-ratio (LR)-type statistics.

The main objective of this article is to provide a general testing framework in regression

models using the sup-LR-type statistic under weak conditions. Most of the prior literature

has focused mainly on applications in time series analysis (see, e.g., Tong, 1990; Chan, 1993;

Andrews and Ploberger, 1994; Hansen, 1996; Cho and White, 2007). More recently, thresh-

old models have been considered for nonparametric models (e.g. Delgado and Hidalgo,

2000), for panel data models (e.g. Hansen, 1999), for transformation models (e.g. Pons,

2003; Kosorok and Song, 2007), and for binary response models (e.g. Lee and Seo, 2008),

among others.

In this article, we focus on cross-sectional applications and aim to provide a unifying test-

ing framework that includes objective functions that are sufficiently different from standard

log-likelihood functions. For example, we consider an objective function for the maximum

score estimator (Manski, 1975, 1985), and also consider an objective function based on

U -processes such as the maximum rank correlation estimator (Han, 1987). To our best

knowledge, we are the first to propose tests for threshold effects that can include maximum

score and maximum rank correlation estimators as special cases.

1.1. Related Literature. Although the sup-LR-type test statistic is well known in the

literature, our method for establishing the asymptotic null distribution is new and nonstan-

dard. The standard approach in the literature for obtaining the asymptotic null distribution

requires that there exist a certain quadratic approximation to the objective function (see,

e.g., Andrews, 2001; Liu and Shao, 2003; Zhu and Zhang, 2006; Song et al., 2009). For ex-

ample, Andrews (2001) assumes that the objective function has a quadratic expansion in

identifiable parameters for each value of a nuisance parameter that is unidentified under the

null hypothesis. In this article, we provide an alternative, novel method that can be used
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to establish the asymptotic null distribution, even when the usual quadratic approximation

such as one in Andrews (2001) is intractable (see Section 3 for details). For example, no

existing method can be applied to the objective function for the maximum score estimator.

However, it is worth noting that when quadratic approximations are available, Andrews

(2001) covers a more general case such as one where parameter vectors may lie on the

boundary of the parameter space under the null hypothesis.

In the literature, there exist articles that establish asymptotic distributions for likelihood

ratio types of statistics, without requiring usual asymptotic quadratic approximations. For

example, Fan et al. (2000) establish that Wilks results hold as long as likelihood contour

sets are fan-shaped. As a result, they show that the likelihood ratio statistics can still be

asymptotically chi-squared, even if the maximum likelihood estimator is not asymptoti-

cally normal. In addition, Zhang and Li (1993) develop an empirical process approach to

deriving the asymptotic null distribution of the sup-LR-type statistics without requiring

the usual quadratic approximation to the likelihood function, using the general result in

Zhang and Cheng (1989). Their approach is closely related to ours in that it employs the

empirical process method; however, their method is different from ours in the sense that

they focus on the case when the objective function is a likelihood function and when the

class of likelihood functions is assumed to be Hölder continuous in parameters. Again, nei-

ther Fan et al. (2000) nor Zhang and Li (1993) can include our maximum score estimator

example as a special case.

1.2. Structure of the Paper. The remainder of the article is as follows. In Section 2,

we provide an informal description of our test statistic and a couple of examples. Section

3 provides an informal overview of our method for obtaining the asymptotic null distribu-

tion. Section 4 illustrates the usefulness of our test by applying it to real data used by

Card et al. (2008). Formal results are given in Section 5 and they are illustrated in Section

6. A summary of Monte Carlo simulation results are provided briefly in Section D. In

Section 8, we provide some concluding remarks. All the proofs, some additional theoretical
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results, and details of Monte Carlo experiments are contained in the online supplementary

materials.

2. The Test Statistic

This section describes our test statistic. To develop a general testing framework without

being tied down to a particular statistical model, we suppose that under the null hypothesis,

the remaining unknown parameters in (1.2) can be estimated by optimizing a particular

objective function and also that under the alternative hypothesis, all unknown parame-

ters including α0 can be estimated by optimizing a suitable objective function. In other

words, we develop our test statistic based on the distance between optimized restricted and

unrestricted objective function values.

To be more specific, let Qn : Θ⊗Γ 7→ R denote an objective function of interest based on

a random sample {(Yi,Wi) : i = 1, . . . , n}. For a given γ ∈ Γ, let θ̂ (γ) denote an estimator

of θ0 that maximizes the objective function Qn (θ, γ). Define Qn (γ) := Qn

(
θ̂ (γ) , γ

)
to be

a profiled objective function and let

γ̂ = argmax
γ

Qn (γ) , θ̂ = θ̂ (γ̂) , and Q̂n = Qn (γ̂) .

In addition, let

β̃ = argmax
β:α=0

Qn (θ, γ) and Q̃n = max
β:α=0

Qn (θ, γ) .

Recall that Qn does not depend on γ when α = 0. That is, Q̃n is the maximum value of

the objective function under the null hypothesis and Q̂n is the maximum value without

imposing the null hypothesis.

Our test statistic is based on the difference between Q̂n and Q̃n, analogous to the likeli-

hood ratio (LR) statistic. Define the quasi-LR (QLR) statistic by

QLRn = r2n

(
Q̂n − Q̃n

)
,
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where rn is a rate of convergence in probability of θ̂ (γ) for a given γ. Let

QLRn (γ) = r2n

[
Qn (γ)− Q̃n

]

for each γ, and note that

QLRn = sup
γ∈Γ

QLRn (γ) .

Thus, the statistic QLRn can be viewed as a sup LR-type statistic. This statistic is rel-

atively easier to implement and analyze than some alternative statistics, e.g. a sup Wald

test statistic because it would not be straightforward to studentize the latter and to show

the uniform tightness of α̂ (γ) in some cases, e.g. in the maximum score estimation for

binary response models. Also, we expect that the objective-function-based statistic would

have better finite sample performance as it is more immune to local maxima problems.

We consider two types of Qn (θ, γ): the first type is a sample mean statistic and the

second type is a U -statistic. For the first case, the objective function has the form

(2.1) Qn (θ, γ) =
1

n

n∑

i=1

q (Yi,Wi; θ, γ) ,

where q is a known function up to parameters θ and γ. For example, the maximum score

estimator maximizes Qn (θ, γ) with

q (y,w; θ, γ) = (2y − 1) 1 {g (w, θ, γ) ≥ 0} .

In this example, the rate of convergence is rn = n1/3. For the second case, the objective

function has the form

(2.2) Qn (θ, γ) =
2

n(n− 1)

∑

1≤i<j≤n

χ (Yi,Wi, Yj,Wj; θ, γ) ,

where χ is again a known function up to parameters, and is symmetric in the sense that

χ (yi,wi, yj,wj; θ, γ) = χ (yj,wj, yi,wi; θ, γ) . For example, the maximum rank correlation
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estimator maximizes Qn (θ, γ) with

χ (y1,w1, y2,w2; θ, γ) = 1 {y1 > y2} 1 {g (w1, θ, γ) > g (w2, θ, γ)}

+ 1 {y1 < y2} 1 {g (w1, θ, γ) < g (w2, θ, γ)} .

In this example, rn = n1/2. In both cases, we assume that q or χ depends on (θ, γ) only

through the regression function g.

Additional examples include the maximum likelihood estimator of the probit (or logit)

model, the quantile regression estimator (see Koenker, 2005, for the comprehensive treat-

ment of the methodology), and the partial maximum likelihood estimator of the propor-

tional hazard model (see Cox, 1972, 1975) in the first class, and various rank correlation

based estimators such as the monotone rank estimator (Cavanagh and Sherman, 1998) and

the pairwise rank estimator (Abrevaya, 1999) in the second class.

3. Informal Overview of the Results

This section provides an informal overview of our method for obtaining the asymptotic

null distribution. Formal results are given in Section 5. The main idea is to represent

our test as a continuous functional of an empirical process for a certain transformation of

objective functions of interest without referring to the estimators under the null and alter-

native hypotheses. Therefore, our method for obtaining the asymptotic null distribution

does not require an expansion of the objective functions, and can be used even in cases

when the usual quadratic approximation is unavailable or difficult to obtain. In general, the

asymptotic null distribution is not pivotal; however, a method for computing asymptotic

p-values is illustrated with a couple of examples (subsampling is another option).

In what follows, we use the conventional notation in empirical process theory. Denote

by P the common probability measure, by Pn the empirical measure of the random sample

of size n from P, and by Gn the empirical process indexed by a class F of functions q such

that Gnq =
√
n (Pn −P) q.
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To provide the main idea behind our method, we focus on M-estimation, that is the

objective function has the form (2.1). Define

mξ,γ = qθ,γ − q̃b,

where ξ = (θ′, b′)′ , qθ,γ = q (y,w; θ, γ) , and q̃b = q(b′,0)′,γ. Note that q̃b is the same for any

γ and thus it is a function of b only. We have introduced the index b to denote arguments

for β0 in the objective function with the restriction α = 0 to distinguish this from the index

β that denotes arguments for β0 in the unrestricted objective function.

Also, note that qθ,γ is the same for all γ if θ = θ0, using the fact that α0 = 0 under H0.

Thus, under H0, qθ0,γ = q̃β0
, and when b is restricted to β0,

mξ,γ = qθ,γ − qθ0,γ.

Similarly, when θ is fixed at θ0,

mξ,γ = qθ0,γ − q̃b.

It now follows that

QLRn = r2n

[
sup
θ,γ

Pnqθ,γ − sup
b

Pnq̃b

]

= r2n

[
sup

ξ,γ:b=β0

Pnmξ,γ − sup
ξ,γ:θ=θ0

(−Pnmξ,γ)

]
,(3.1)

which is a continuous transformation of r2nPnmξ,γ.

Note that since ξ := (θ′, b′), b is still a free parameter after fixing θ at θ0 and also θ is

still a free parameter after fixing b = β0. That is, we treat θ and b separate parameters.

The reason why mξ,γ is defined in this way is to write the QLR test as a continuous

transformation of an empirical process for mξ,γ. Note also that mξ0,γ = 0 for any γ, where

ξ0 = (θ′0, β
′
0)

′ . Then the convergence of r2nPnmξ,γ can be derived using the empirical process
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theory through the decomposition

(3.2) r2nPnmξ,γ =
r2n√
n
Gnmξ,γ + r2nPmξ,γ.

Since the supremum is obtained at θ = θ̂ (γ) for each γ and at b = β̃, respectively, with

the convergence rate rn, we examine a rescaled version of the process in (3.2) to obtain the

asymptotic null distribution.

3.1. Example 1: Probit. We use the probit model as our first illustrative example. Define

Wγ := (X′,Z′1{T > γ})′ . The function q(y,w; θ, γ) for the probit model has the form

(3.3) q (y,w; θ, γ) = y log Φ (g (w, θ, γ)) + (1− y) log Φ (−g (w, θ, γ)) ,

where Φ (·) is the cumulative distribution function (CDF) of the standard normal distri-

bution and g (W, θ, γ) = W′
γθ. It will be shown formally in Section 6 that the limiting

distribution of the test statistic is the supremum of a chi-square process indexed by γ as

in (5.10) . Let φ(·) denote the probability density function of the standard normal distri-

bution. Let e = (2Y − 1)φ (X′β0)/Φ ((2Y − 1)X′β0) and V (γ) = E
[
−e2WγW

′
γ

]
. Also,

let G denote a Gaussian process with the covariance kernel

K (γ1, γ2) = E
[
e2Wγ1W

′
γ2

]
.

Then, the asymptotic distribution of the QLRn test becomes

(3.4)
1

2

[
sup
γ

G(γ)′V (γ)−1G(γ)− G ′
1V

−1
β G1

]
,

where G1 and Vβ denote the first kβ elements of G and the first kβ × kβ block of V (γ),

respectively. Here, kβ denotes the dimension of β.

Note that we cannot tabulate the critical values due to the nonstandard asymptotic

distribution and need a simulation method to conduct the testing procedure. For example,

we can adopt the p-value transformation method as in Hansen (1996). The basic idea is to

approximate the asymptotic distribution by simulating the Gaussian process, which is the
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empirical process of the score function in our case. For each i = 1, . . . , n, let

∇θq̂i = Wγ,i(2Yi − 1)
φ(W′

γ,iθ̂(γ))

Φ[(2Yi − 1)W′
γ,iθ̂(γ)]

,

∇bq̃i = Xi(2Yi − 1)
φ(X′

iβ̃)

Φ[(2Yi − 1)X′
iβ̃]
,

where Wγ,i := (X′
i,Z

′
i1{Ti > γ})′. We now carry out the following steps to simulate the

p-value.

(1) to generate i.i.d. N (0, 1) random variables {vij}ni=1 for j = 1, ..., J for a sufficiently

large J ;

(2) to simulate unrestricted and restricted score functions, respectively:

Gj
n,θ (γ) =

1√
n

n∑

i=1

∇θq̂i (γ) vij and Gj
n,b =

1√
n

n∑

i=1

∇bq̃ivij;

(3) to simulate test statistics {Dj
n}

J
j=1 using the simulated score functions above and

the sample analogue of the asymptotic distribution in (3.4):

Dj
n = sup

γ

1

2

[
Gj

n,θ (γ)
′ Î−1

θ,γG
j
n,θ (γ)−Gj′

n,bÎ−1
b Gj

n,b

]

where Î−1
θ,γ = (1/n)

∑n
i=1∇θq̂i (γ)∇θq̂i (γ)

′ and Î−1
b = (1/n)

∑n
i=1∇bq̃i∇bq̃

′
i, respec-

tively;

(4) to set p̂Jn = (1/J)
∑J

j=1 1
{
Dj

n > D̂n

}
.

3.2. Example 2: Quantile Regression. We now consider the quantile regression model.

The function q(y,w; θ, γ) for the quantile regression model has the form

(3.5) q(y,w; θ, γ) = −ρτ [y − g(w, θ, γ)] ,

where ρτ (u) := u(τ − 1(u < 0)) is the ‘check’ function and g (W, θ, γ) = W′
γθ. As in the

probit model, it will be shown formally in Section 6 that the limiting null distribution of



12 LEE, SEO, AND SHIN

the QLR statistic is characterized by

(3.6)
1

2

[
sup
γ

G(γ)′V (γ)−1G(γ)− G ′
1V

−1
1 G1

]
,

where G is a mean-zero Gaussian process with covariance kernel

(3.7) K (γ1, γ2) = τ(1− τ)EWγ1W
′
γ2
,

V (γ) is a matrix such that V (γ) = E
[
WγW

′
γfY |W(X′β0|W)

]
, and G1 and V1 denote the

first k1 elements of G and the first kβ×kβ block of V (γ), respectively. As before, kβ denotes

the dimension of β. Now the p-values can be simulated in the following way:

(1) to generate i.i.d. Unif [0, 1] random variables {uij}ni=1 for j = 1, ..., J for a sufficiently

large J ;

(2) to simulate the following functions, respectively:

Gj
n (γ) =

1√
n

n∑

i=1

Wγ,i[τ − 1(uij ≤ τ)] and G̃j
n =

1√
n

n∑

i=1

Xi[τ − 1(uij ≤ τ)];

(3) to simulate test statistics {Dj
n}

J
j=1 by:

Dj
n = sup

γ

1

2

[
Gj

n (γ)
′ V̂ (γ)−1Gj

n (γ)− G̃j′
n Ṽ

−1G̃j
n

]

where

V̂ (γ) =
1

nhn

n∑

i=1

Wγ,iW
′
γ,iK

(
Yi −X′

iβ̃

hn

)
, and

Ṽ =
1

nhn

n∑

i=1

XiX
′
iK

(
Yi −X′

iβ̃

hn

)
;

(3.8)

(4) to set p̂Jn = (1/J)
∑J

j=1 1
{
Dj

n > D̂n

}
.

In step (3), K is a kernel function and hn is a bandwidth. Recall that β̃ is the estimator

of β0 under the null. When the regression error is independent of the regressors, then we
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can estimate V̂ (γ) and Ṽ by

V̂ (γ) =

[
1

n

n∑

i=1

Wγ,iW
′
γ,i

]
×
[

1

nhn

n∑

i=1

K

(
Yi −X′

iβ̃

hn

)]
, and

Ṽ =

[
1

n

n∑

i=1

XiX
′
i

]
×
[

1

nhn

n∑

i=1

K

(
Yi −X′

iβ̃

hn

)]
.

(3.9)

4. Application: Tipping in Segregation

We apply the proposed testing procedure to check whether there exists a tipping point

for segregation. Using U.S. Census tract-level data, Card et al. (2008) recently showed

that the neighborhood’s white population decreases substantially when the minority share

in the area exceeds a tipping point (or threshold point).

In this application, we use a subsample of the dataset originally used by Card et al.

(2008). Among three different base years, we choose a sample of which base year is 1980.

Next we pick four major cities and tested if there is a tipping point. To illustrate our

testing procedure, we first consider the probit model. We suppose that data {(Yi,Xi, Ti) :

i = 1, . . . , n} are generated from

Dwi = β0 + α01{Ti > γ0}+X′
iδ0 + εi,

Yi = 1 {Dwi > 0} ,

whereDwi is the ten-year change in the neighborhood’s white population, Ti is the base-year

minority share in the neighborhood, and Xi is a vector of six tract-level control variables.

The X variables include the unemployment rate, the log of mean family income, the frac-

tions of single-unit, vacant, and renter-occupied housing units, and the fraction of workers

who use public transport to travel to work. See Card et al. (2008) for details on the dataset

and variables. In the original dataset, Dwi is observed but for the time being, we treat this

as a latent variable to illustrate our testing procedure for the probit model. The error term

εi follows the standard normal distribution. Thus, the null and alternative hypotheses in
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our setting are

H0 : α0 = 0 and H1 : α0 6= 0,(4.1)

respectively.

The four cities we have chosen are Boston, Chicago, New York, and Philadelphia. The

p-values are calculated by the simulation method described in Section 3 with 1,000 simu-

lations. For estimating a tipping point (γ) under the alternative, we use the grid search

method. The grid points are constructed from Ti that fell in the interval [l, 50%], where l

is the maximum of 5% and the 5th percentile of {Ti}.

Table 1. Test for Tipping in Segregation: Probit Model

City obs. p-value
Tipping

EX[∆Pr(y = 1|X)]
Points (γ̂)

Boston, MA 700 2.8% 46.80 -0.25
Chicago, IL 1813 0.0% 48.74 -0.34
New York, NY 2430 0.0% 14.01 -0.09
Philadelphia, PA 1300 0.0% 39.64 -0.30

We summarize the result in Table 1. The last column of each table shows the average

changes in probability that the white population would increase when the minority share

crosses the tipping point. We calculate this average marginal effect as

EX[∆Pr(y = 1|X)] =
1

n

∑

i

{
Φ(β̂ +X′

iδ̂)− Φ(β̂ + α̂+X′
iδ̂)
}

where Φ(·) is the CDF of the normal distribution.

First of all, testing results show that there exist tipping points in all four cities. Second,

the tipping points vary from 14.01% in New York to 48.74% in Chicago. This shows that

cities are heterogeneous in whites’ preferences, among other things, implying that tolerance

levels against minority shares are quite different across different cities. Third, the average

marginal effects are also different across cities. New York shows that the probability drops

less than 10%. Meanwhile, Chicago shows that it drops more than 30%.
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We now illustrate our testing procedure for the median regression model using observed

Dwi directly, instead of Yi. We now suppose that data {(Dwi,Xi, Ti) : i = 1, . . . , n} are

generated from

Dwi = β0 + α01{Ti > γ0}+ p(Ti) +X′
iδ0 + εi,

where median(εi|Xi, Ti) = 0 and p(T ) is the 4th-order polynomial of T . Note that Card et al.

(2008) considered the mean regression model (that is, E(εi|Xi, Ti) = 0) with the 4th-order

polynomial in p(T ). The null and alternative hypotheses are the same as those in (4.1).

The p-values are calculated by the simulation method described in Section 3 with 2,000

simulations. In the application, we estimated V̂ (γ) and Ṽ by (3.8) since we do not know

whether regression errors are independent of regressors. For estimating a tipping point (γ)

under the alternative, we used the grid search method. The grid points were constructed

from Ti that fell in the interval [l, 60%], where l is the maximum of 5% and the 5th percentile

of {Ti}.

Table 2. Median regression model with the 4th-order polynomial

City obs. p-value
Tipping Size of the
Point (γ̂) Jump (α̂)

Boston, MA 700 4.7% 51.75 -17.640
Chicago, IL 1813 2.9% 48.45 -13.929
New York, NY 2430 1.5% 23.70 -7.309
Philadelphia, PA 1300 1.2% 39.65 -11.599

We summarize the result in Table 2. Testing results show that there exist tipping points

in all four cites at the 5% level. The tipping points vary across these cities and are not

much different from those from the probit model, especially in Chicago and Philadelphia.

5. The Asymptotic Null Distribution

This section provides asymptotic theory for obtaining the asymptotic null distribution.

Our assumptions are quite general and allow for a nonsmooth objective function Qn, which
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may not permit usual quadratic approximations. As in Section 3, we focus on the M-

estimation in this section. In the online supplements, we provide asymptotic theory for the

case when objective functions are based on U -processes and verify regularity conditions for

the maximum rank correlation (MRC) estimator. The consistency and local power of the

test are included in the online supplements as well.

5.1. M-estimation. This section considers the first case when the objective function has

the form in (2.1). Our estimators need not be exact maximizers, which might have mea-

surability issues. Thus, we consider an estimator θ̂γ for a given γ ∈ Γ such that

Qn

(
θ̂γ , γ

)
= sup

θ∈Θ
Qn (θ, γ) + opγ

(
r−2
n

)
,

where opγ (1) indicates the sequence under consideration is op (1) uniformly over γ ∈ Γ. We

define oγ (1) and Opγ (1) similarly. Also, let β̃ satisfy

Q̄n

(
β̃
)
= sup

β∈B
Q̄n (β) + op

(
r−2
n

)
,

where Q̄n denotes the restrictive objective function with α = 0.

To derive the asymptotic distribution of the statistic QLRn, we impose some high-level

assumptions, which will be verified later for each example. We first introduce some notation.

Let

(5.1) Fδ = {qθ,γ − qθ0,γ : |θ − θ0| < δ, γ ∈ Γ} ,

where |·| is the Euclidean norm for a vector (we use the notation ‖·‖ to indicate a generic

norm for a function space). An envelope function of a class F is a function F such that

PF 2 < ∞, |f (x)| ≤ F (x) for any x and f ∈ F . An envelope function for Fδ is denoted

by Fδ.

Weak convergence of the statistic QLRn draws on the size of the class Fδ measured by

entropy with or without bracketing. Let N (ε,F , ‖·‖) and N[ ] (ε,F , ‖·‖) denote covering and

bracketing numbers, respectively. The logarithm of the covering number is called entropy
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(without bracketing) and that of the bracketing number is called entropy with bracketing.

We mostly use the Lr (Q)-norm, ‖f‖Q,r =
(∫

|f |r dQ
)1/r

, where Q is a probability measure.

When the entropy without bracketing is concerned, it is common that the required condition

is in terms of uniform entropy, supQ logN (ε,F , Lr (Q)) , where the supremum is taken

over all the possible probability measures on the sample space, with 0 < QF r <∞. While

the measurability is an issue in the formal discussion of uniform entropy conditions, it

hardly matters in applications. We assume measurability throughout the article. See e.g.

van der Vaart and Wellner (1996) for more general discussions on the empirical process

method.

We now present a set of assumptions, whose details will be discussed later on.

Assumption 5.1 (Uniform Consistency). θ̂ (γ) = θ0 + opγ (1) and β̃ = β0 + op (1) .

A set of sufficient conditions for the uniform consistency in Assumption 5.1 is that

(i) uniform convergence of the objective function Qn; (ii) separability of the true value.

Formally, we present it as Lemma 5.2 in Section 5.2.

Assumption 5.2 (Uniform Rates of Convergence in Probability). rn

(
β̃ − β0

)
= Op (1) and

rn

(
θ̂ (γ)− θ0

)
= Opγ (1) .

Most often, the rate rn in Assumption 5.2 is already known for linear models and rn must

be the same for θ̂ (γ) for each γ since g (w, θ, γ) is a linear function in θ. Thus, Assumption

5.2 has mainly to do with verifying the uniformity. However, the entropy conditions below

in Assumption 5.4 are almost sufficient to ensure it, as will be shown in Lemma 5.3 in

Section 5.2.

In what follows, fix 0 < K <∞ and assume the following.

Assumption 5.3 (Lindeberg Condition and L2-Continuity). For any η > 0,

r4n
n
PF 2

K/rn = O (1) ,

r4n
n
PF 2

K/rn1

{
r2n√
n
FK/rn > η

√
n

}
= o (1) .
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In addition, for any decreasing sequence ηn → 0,

(5.2) sup
|h1−h2|<ηn
|γ1−γ2|<ηn

r4n
n
P
(
qθ0+h1/rn,γ1 − qθ0+h2/rn,γ2

)2
= o (1) .

Assumption 5.3 is a minimal set of conditions on the moments of the envelope function F

and on the smoothness of the limit objective function. These are straightforward to verify.

Assumption 5.4 (Entropy Conditions). For some δ0 > 0, assume that

(5.3)

∫ 1

0

sup
δ<δ0

sup
Q

√
logN

(
ε ‖Fδ‖Q,2 ,Fδ, L2 (Q)

)
dε <∞

or

(5.4)

∫ 1

0

sup
δ<δ0

√
logN[ ]

(
ε ‖Fδ‖P,2 ,Fδ, L2 (P )

)
dε <∞.

It is not always trivial to verify these entropy conditions. However, there are well-

known classes of functions that satisfy either of the conditions. For example, Vapnik-

Červonenkis (VC) classes of functions have the covering numbers that are bounded by a

polynomial in ε−1, thus satisfying (5.3) as long as the VC indexes are bounded in n. The

bracketing numbers for classes of smooth functions, monotone functions, convex functions,

or Lipschitz functions are known, see e.g. Section 2.7 of van der Vaart and Wellner (1996).

In particular, the bracketing number of the collection of Lipschitz functions are bounded

by the covering number of the index set, thus, being at most the polynomial in (1/ε)p ,

where p is the dimension of the parameter space.

Partition h into (h′θ, h
′
b)

′ according to the dimensions of θ and b, respectively.

Assumption 5.5 (Finite-Dimensional Weak Convergence). Let h1n = ξ0 + h1r
−1
n and

h2n = ξ0+h2r
−1
n . Then, for any K > 0, any γ1, γ2 ∈ Γ, and any h1 and h2 whose Euclidean

norms are less than K,

r4n
n
P (mh1n,γ1 −mh2n,γ2)

2 → E (G1 (h1, γ1)−G1 (h2, γ2))
2 ,
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where G1 is a zero-mean Gaussian process. Furthermore, let hn = ξ0 + hr−1
n . Then

r2nPmhn,γ −→ G2 (h, γ)

uniformly in h and γ over any compact set, for some non-stochastic G2. Finally, G1 and

G2 satisfy that

(5.5)
EG1 (h, γ)

2

|hθ|r
→ 0 and

G2 (h, γ)

|hθ|r+1/2
→ −∞

as |hθ| → ∞, for any γ, hb, and some r > 0.

The limit process over which the supremum will be taken is characterized by the terms

given in Assumption 5.5. Considering the definition of mξ,γ, the Gaussian process G1 (h, γ)

is likely to be degenerate in h as shown in later examples. Condition (5.5) in Assumption

5.5 guarantees that the restricted suprema (as in the definition of QLRn in (3.1)) of G1+G2

are Op (1). When G2 (h, γ) is quadratic in h and G1 (h, γ) is linear in h for a given γ, then

one can choose r = 1 in (5.5).

We now present our main theorem.

Theorem 5.1. Under Assumptions 5.1-5.5,

(5.6) QLRn ⇒ sup
γ

[
sup

h:hb=0
G (h, γ)− sup

h:hθ=0
(−G (h, γ))

]
,

where G = G1 +G2.

While the asymptotic null distribution of QLRn is well-defined under the restriction in

Assumption 5.5, the asymptotic critical values cannot be tabulated due to the unknown co-

variance kernel of G1. Therefore, we need to simulate critical values or asymptotic p-values.

Alternatively, we need to use resampling methods such as the bootstrap or subsampling.

Subsampling works more generally including all the examples we examined in this article.

When we can solve out the maximizers explicitly for the expression inside the bracket in
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(5.6), simulating the critical values in the spirit of Hansen (1996) can also be applied. Two

examples in Section 3 belong to this case.

5.2. Low-Level Sufficient Conditions for Assumptions. This section provides low-

level sufficient conditions for Assumptions 5.1-5.5. First, we present the following lemma

that can be used to verify Assumption 5.1.

Lemma 5.2. Let F be a class of functions {qθ,γ : (θ, γ) ∈ Θ×Γ} with envelope F such that

PF <∞. Suppose either of the following two conditions is satisfied: (i) N[ ] (ε,F , L1 (P)) <

∞ for every ε > 0; (ii) For FM defined as the class of functions f1 {F ≤M} for f ∈ F ,

logN (ε,FM , L1 (Pn)) = op (n) for every ε and M > 0. Then,

sup
θ,γ

|Qn (θ, γ)−Q (θ, γ)| p−→ 0,

where Q (θ, γ) = Pqθ,γ. Furthermore, assume that

(5.7) sup
γ∈Γ

[
sup
θ/∈Θ0

{Q (θ0, γ)−Q (θ, γ)}
]
> 0

for every open set Θ0 that contains θ0. Then, θ̂ (γ)− θ0 = opγ (1) .

While there are different ways to present sufficient conditions for Assumption 5.1, we

choose this way as the subsequent discussion also draws on the entropy conditions. The

entropy conditions in Lemma 5.2 are automatically satisfied if Assumption 5.4 holds. Thus,

separability is the one we need to check. Recall that Q (θ0, γ) is the same for all γ since γ

is not identified under the null. However, once we establish the consistency for a given γ

and that Q (θ0, γ) > supθ/∈ΘQ (θ, γ), the verification of the separability is not very difficult

since γ appears only through an indicator function.

We now consider sufficient conditions for Assumption 5.2. The following lemma general-

izes a standard method in van der Vaart and Wellner (1996) for obtaining the convergence

rate to the case where a uniform rate is needed due to the presence of a nuisance parameter.

See Andrews (2001) for a different approach when the quadratic approximation is plausible.
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Lemma 5.3. Assume that for every θ in a neighborhood of θ0,

(5.8) sup
γ

P (qθ,γ − qθ0,γ) ≤ −C |θ − θ0|2 ,

for some finite constant C > 0 and that for every n and sufficiently small δ,

(5.9) E sup
γ

sup
|θ−θ0|<δ

|Gn (qθ,γ − qθ0,γ)| = O (φ (δ)) ,

for a function φ such that φ (δ) /δr is decreasing for some r < 2. If Assumption 5.1 holds,

then

rn

(
θ̂ (γ)− θ0

)
= Opγ (1) ,

for every rn such that r2nφ (1/rn) ≤
√
n for every n. If the rate rn is known, then (5.9) can

be stated for δ = K/rn and φ (δ) =
√
n/r2n.

The first condition (5.8) is not difficult to verify. Often, Pqθ,γ is twice continuously

differentiable at θ0 for all γ. In this case, a sufficient condition is the existence of nonsingular

second derivative matrices at θ = θ0 whose maximum eigenvalues are uniformly bounded

away from zero.

The second condition (5.9) is implied by Assumptions 5.3 and 5.4. It is known that the

left-hand side term in the equation (5.9) is bounded by the product of the L2 norm of the

envelope function, P1/2 (F 2
δ ) , and the uniform entropy integral or the bracketing integral,

which is defined respectively by

sup
Q

∫ 1

0

√
1 + logN

(
ε ‖Fδ‖Q,2 ,Fδ, L2 (Q)

)
dε

or ∫ 1

0

√
1 + logN[ ]

(
ε ‖Fδ‖P,2 ,Fδ, L2 (P)

)
dε.

See e.g. Theorems 2.14.1 and 2.14.2 in van der Vaart and Wellner (1996). These are

bounded by Assumption 5.4. Thus, in case when the rate rn is not known a priori, it
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is typical that φ2 (δ) = PF 2
δ yields the correct rate, leading to the rate as the solution of

r4nPF
2
1/rn

∼ n. This is in fact the first condition in Assumption 5.3.

We now provide sufficient conditions for Assumption 5.4. Many interesting examples

feature the estimating function q in the form of Lipschitz of order r transformation in the

sense that qθ,γ = q (y, g (w, θ, γ)) and

|q (y, g (w; θ1, γ1))− q (y, g (w, θ2, γ2))| ≤ Lr (w) |g (w; θ1, γ1)− g (w; θ2, γ2)|r ,

where Lr is square integrable in P. In this case, verification of the entropy conditions and

the conditions on the envelope function is straightforward as in the following lemma.

Lemma 5.4. Suppose that Fδ is a class of functions qθ,γ, which are Lipschitz of order

r ∈ (0, 1] transformations, where |θ − θ0| < δ and γ ∈ Γ. Then, for some δ0 > 0,

∫ 1

0

sup
δ<δ0

sup
Q

√
logN

(
ε ‖Fδ‖Q,2 ,Fδ, L2 (Q)

)
dε <∞.

Let φ (δ) = δr. Then, there exists an envelope function Fδ such that for every η > 0,

lim
δ→0

φ−2 (δ) PF 2
δ 1
{
Fδ > ηδ−2φ2 (δ)

}
= 0.

The lemma specifies the functional form of φ (δ) as δr, resulting in the convergence rate

rn = n1/(4−2r), upon verifying conditions on Pqθ,γ. There are quite a few examples that are

Lipschitz of order 1. They include the quantile regression model and the probit model in

Section 3.

If Pqθ,γ is twice continuously differentiable at θ = θ0 with a unique maximum at θ0,

Assumptions 5.1 and 5.2 may be implied by other conditions as discussed above. Then,

the following corollary is more convenient to apply than the main theorem. It provides

conditions under which G2 (h, γ) is quadratic in h for a given γ and most applications

belong to this case.
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Corollary 5.5. Suppose that the function Q (θ, γ) has a well-separated maximum θ0 in

the sense of (5.7) and it is twice continuously differentiable at θ0 with a negative second

derivative matrix, say −V (γ), whose maximum eigenvalues are bounded away from zero

for all γ. Let Vβ denote the block of V (γ) that is associated with the second derivative with

respect to β. Then, r2nPmhn,γ −→ −1
2
h′θV (γ)hθ +

1
2
h′bVβhb = G2 (h, γ) , uniformly over any

compact set. If Assumptions 5.3 and 5.4 hold with a sequence rn, then rn

(
θ̂ (γ)− θ0

)
=

Opγ (1) and rn

(
β̃ − β0

)
= Op (1). If Assumption 5.5 holds as well, then

QLRn ⇒ sup
γ

[
sup

h:hb=0
G (h, γ)− sup

h:hθ=0
(−G (h, γ))

]
.

If in addition G1 (h, γ) is linear in h for a given γ, then a more explicit form of the

asymptotic null distribution is available. By construction, we may write

G1 (h, γ) = h′G (γ) = (hβ − hb)
′ G1 + hαG2 (γ) ,

where G (γ) =
(
G ′
1,G2 (γ)

′)′ is a Gaussian process with some covariance kernel K(γ1, γ2).

Then, simple algebra shows that the limiting distribution of QLRn has the form

(5.10)
1

2

[
sup
γ

G(γ)′V (γ)−1G(γ)− G ′
1V

−1
β G1

]
.

Standard linear algebra allows us to write this as

1

2
sup
γ

G (γ)′Hα (γ)Hα (γ)
′ G (γ) ,

where Hα (γ) is a full-column rank matrix whose rank is the dimension of α, say kα.

Furthermore, if efficient estimators are used for both restricted and unrestricted models,

then for each γ, Hα (γ)
′ G (γ) is distributed as standard multivariate normal with dimension

kα. Thus, 2QLRn converges in distribution to the supremum of a chi-square process indexed

by γ. This is the case with the homoskedastic linear regression model with ordinary least

squares estimators (Hansen, 1996) and also with maximum likelihood estimators for logit

and probit models.
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6. Examples

This section presents a few well-known statistical models as examples to illustrate how

to check the regularity conditions given in Section 5.

6.1. Maximum Score Estimation. The estimating function for the maximum score es-

timation is

(6.1) q (y,w; θ, γ) = (2y − 1) 1 {x′β + z′α1 {t > γ} ≥ 0} .

To check the entropy condition (5.3) in Assumption 5.4, we show that the class F of

these functions qθ,γ, where θ and γ belong to any compact subset in the Euclidean space,

is a VC class of functions. Indeed, the set {x′β + z′α1 {t > γ} ≥ 0} can be represented by

union and intersection of half-spaces in the Euclidean space. Since half spaces are VC class

of sets and the VC feature is preserved under unions and intersections, see Lemma 2.6.17

in van der Vaart and Wellner (1996), the sets constitute a VC class, so do the indicator

functions of the sets. Now, Fδ = {qθ,γ : |θ − θ0| < δ, γ ∈ Γ} is also a VC class of functions

of the same index at most as F . Thus, the covering numbers of FK/rn is bounded in a

polynomial in (1/ε)−1 , not depending on n, and thus (5.3) is satisfied.

To find an envelope function for Fδ, note that |qθ,γ − qθ0,γ| ≤ 1 and that it takes nonzero

values only when x′β0 and x′β + z′α1 {t > γ} take different signs. The latter implies that

the distance between the two is greater than x′β0 in absolute values. Thus,

|x′β0| ≤ max
θ:|θ−θ0|≤δ

|x′ (β − β0) + z′α1 {t > γ}| ≤ 2δ |x| ,

which yields an envelope function

Fδ = 1 {|x′β0| ≤ 2δ |x|} .
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It is shown in Theorem 6.1 below under some regularity conditions on P that this envelope

function satisfies the conditions in Assumption 5.3 with the rate obtained in Kim and Pollard

(1990) for β̃, that is, with rn = n1/3.

The following assumption is imposed, which is somewhat more restrictive than required

to simplify the exposition. Let Wγ = (X′,Z′1{T > γ})′ .

Assumption 6.1. (i) The parameter θ has unit length, that is, Θ is the surface of the unit

sphere in Rk, and γ ∈ Γ, which is an open subset of the support of T.

(ii) The distribution of U conditional on W = w, denoted by FU |W(·|w), is absolutely con-

tinuous with respect to Lebesgue measure and the corresponding conditional density is uni-

formly continuous and positive everywhere with probability one. In addition, FU |W(0|w) =

0.5 for almost every w and it is continuously differentiable with respect to w.

(iii) X has a continuously differentiable density pX (·) and the angular component of X,

considered as a random element in the unit sphere, has a bounded, continuous density with

respect to surface measure on the sphere. Furthermore, the density pX has compact support.

(iv)
∫
1 {x′β0 = 0} pW (w) d$ > 0, where $ denotes the Lebesque measure on {w : x′β0 = 0} .

(v) T is continuously distributed.

The following theorem shows that conditions in Theorem 5.1 are satisfied.

Theorem 6.1. Suppose Assumption 6.1 hold and h, h1 and h2 belong to the null space of

ξ0. Let ` (w; h1, h2, γ1, γ2) be the sum of the lengths of two intervals (I1 − I2) and (I2 − I1) ,

where I1 is the interval between w′
γ1
h1θ and w′

γ2
h2θ and I2 is the interval between x′h1b and

x′h2b. Also, let

κ(w) := E [1 {g (W; θ0, γ0) + U ≥ 0} − 1 {g (W; θ0, γ0) + U < 0} |W = w]

= 1− 2FU |W[−g(w, θ0, γ0)|w].

(6.2)

Then, the covariance kernel of the limit Gaussian process G1 is characterized by

E (G1 (h1, γ1)−G1 (h2, γ2))
2 =

∫
` (w; h1, h2, γ1, γ2) 1 {x′β0 = 0} pW (w) d$,
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and

G2 (h, γ) =

∫ (
(x′hb)

2 −
(
w′

γhθ
)2)

1 {x′β0 = 0} [(∂/∂x′) κ (w) β0] pW (w) d$.

Furthermore,

QLRn ⇒ sup
γ

[
sup

h:hb=0
G (h, γ)− sup

h:hθ=0
(−G (h, γ))

]
,

where qθ,γ for QLRn is defined using (6.1) and G = G1 +G2.

Theorem 6.1 establishes the asymptotic null distribution for the maximum score estima-

tion. The corresponding distribution is nonstandard and cannot be tabulated; however,

statistical inference can be carried out by subsampling as in Delgado et al. (2001). Since

without Theorem 6.1, it would be difficult to obtain the validity of subsampling, one of the

merits of Theorem 6.1 is to provide the asymptotic validity of subsampling.

6.2. The Probit Model. We now verify regularity conditions for the probit model. Note

that the function q(y,w; θ, γ) in (3.3) is Lipschitz of order 1 transformation and twice

continuously differentiable in θ. Therefore, applying Lemma 5.4 and Corollary 5.5, we

only need to check the separability condition (5.7) and Assumption 5.5. We assume the

following regularity conditions:

Assumption 6.2. (i) The parameters θ and γ are in the interior of compact sets Θ and

Γ where Γ is contained in an open subset of the support of T.

(ii) For any γ, the matrix E
[
WγW

′
γ

]
exists and is nonsingular.

(iii) T is continuously distributed.

We first verify the separability condition. Let γ be given. Since E
[
WγW

′
γ

]
is nonsingu-

lar, it is positive definite. This implies that W′
γθ0 6= Wγθ for any θ 6= θ0. Therefore, strict

monotonicity of Φ (·) assures identification for each γ, which establishes the separability

condition.
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Since q (·) is twice continuously differentiable, it follows from the discussion following

Corollary 5.5 that the limiting distribution of the test statistic is the supremum of a chi-

square process indexed by γ as in (5.10) . Then the desired result in (3.4) follows. Using

identical arguments, we can obtain the null asymptotic distribution of the test statistic for

the logit model. In general, similar arguments can apply to statistical models for which the

test statistic can be constructed based on the maximum likelihood estimator.

6.3. Quantile regression. Note that the function q(y,w; θ, γ) in (3.5) is Lipschitz of

order 1 as a function of g(w, θ, γ). Therefore, the bracketing entropy condition (5.4) and

the condition on the envelope function in Assumption 5.3 are satisfied due to Lemma 5.4.

Furthermore, rn =
√
n. We verify the other conditions in Corollary 5.5.

Assume that the density of Y conditional on W and that of T conditional on the other

elements inW exist and are continuously differentiable with uniformly bounded derivatives.

Let fY |W (·|w) denote the conditional density of Y given W = w. Then, Pqθ,γ is twice

continuously differentiable in any (θ, γ) , implying the last condition in Assumption 5.3 is

satisfied. Furthermore, G1 is linear in h as to be shown below. Thus, the limit distribution

is characterized by (5.10) with

V (γ) = E
[
WγW

′
γfY |W(X′β0|W)

]
,

and a mean-zero Guassian process G with covariance kernel in (3.7). To see this, write

∆τ (a) := ρτ (y − a)− ρτ (y − a0)− [1(y < a0)− τ ](a− a0).

Then as in Pollard (1991), simple algebra yields that

(6.3) |∆τ (a)| ≤ |a− a0|1{|y − a0| ≤ |a− a0|}.

Define

ϕh,γ(y,w) := [1(y < x′β0)− τ ] (x′ (hβ − hb) + z′hα1{t > γ}) .
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By (6.3),

nE |mhn,γ − ϕhn,γ|2

≤ E
∣∣W′

γhθ
∣∣ 1
{
|Y −X′β0| ≤

∣∣W′
γhθ
∣∣

√
n

}
+ E |X′hb| 1

{
|Y −X′β0| ≤

|X′hb|√
n

}

→ 0.

Therefore, the covariance kernel is given by that of ϕh,γ by applications of Cauchy-Schwarz

inequality, which is given by (3.7).

Note that in this example, the asymptotic null distribution is not the supremum of a chi-

square process indexed by γ. This is due to the fact that the quantile regression estimator

is not an efficient estimator. However, critical values can be simulated by the same method

as in the maximum likelihood estimation, which was illustrated in section 3.

7. Monte Carlo Simulations

In this section, we report Monte Carlo simulation results for all four examples considered

in the article. Details of simulation designs and testing procedures are provided in the online

supplement.

Figure 2 summarizes the results of the simulation study, by showing the power functions

for four examples with three different sample sizes: n = 50, 100, and 200. The top right

and left panels report results from the probit example and those from the maximum score

estimation example, respectively. In addition, the bottom right and left panels report

results from the quantile regression example and those from the maximum rank correlation

estimation example, respectively. First of all, the figure shows the finite sample size of the

test when the nominal level is 5%. Under the null hypothesis (α = 0), the rejection rates

of the test are close to the nominal level in most cases. Secondly, Figure 2 shows the power

of the test when α increases from 0 to 1. The result indicates that, in all cases, the power

increases fast as the parameter value of α is farther away from zero and also it increases as

n gets large.
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Figure 1. Power Functions of Threshold Models
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8. Conclusions

We have developed a general testing procedure for threshold effects and have proposed a

new method for establishing the asymptotic null distribution. Since the new approach does

not require to approximate the objective function in a quadratic form, we can construct

the test statistic for nonstandard cases like the maximum score estimation. Furthermore,

we have proposed the test statistic when the objective function is a U-process. We believe

our approach would prove useful in many other occasions where objective function based

inferences are made.
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Fan et al. (2001) show that a class of the generalized likelihood statistics based on some

appropriate nonparametric estimators are asymptotically chi-squared in nonparametric

testing problems. However, they do not consider the Davies problem. It is an interest-

ing research topic to see whether one can generalize the methodology of Fan et al. (2001)

to cover the case when there may be a nuisance parameter that appears under the alter-

native, but not under the null. Such examples are partially linear regression models and

varying coefficient models with a change-point due to a covariate threshold.

We have provided local power results in the online supplements, but have not established

the asymptotic admissibility of the test we proposed. Andrews and Ploberger (1995) have

established the asymptotic admissibility of the likelihood ratio test. It might be possible

to extend their results to more general cases, including our QLR statistics. Alternatively,

following Andrews and Ploberger (1994) and Song et al. (2009), we may introduce a class

of tests of the following form:

Exp−QLRn = r2n

[
(1 + c)−p/2

∫
exp

(
1

2

c

c+ 1
QLRn (γ)

)
dJ (γ)

]
,

where p is the dimension of b, J (·) is a prespecified weight function over values of γ

in Γ, and c is a prespecified scalar constant. It might be possible to establish that

Exp − QLRn has some weighted average power properties in our setup, along the lines

of Andrews and Ploberger (1994) and Song et al. (2009). These are interesting topics for

future research.

Appendices

The appendices contain all the mathematical proofs, additional theoretical results, and

Monte Carlo simulation results. In particular, (i) we provide the proofs of all the theo-

rems; (ii) we provide asymptotic theory for the case when objective functions are based

on U -processes and verify regularity conditions for the maximum rank correlation (MRC)
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estimator; (iii) we discuss the consistency and local power of the test when the null hy-

pothesis is false; and (iv) we report details of Monte Carlo simulation designs and testing

procedures.

Appendix A. Proofs of Theorems

Proof of Theorem 5.1. As supremum is a continuous operator, we need to establish the

weak convergence of the process r2nPnmξ,γ. Also note that in view of Lemma 2.5 of Kim and

Pollard (1990) the supremum of the limit process G is Op (1) under Assumption 5. Under

the uniform convergence rate given in Assumption 2, it is sufficient to consider the process

r2nPnmξ,γ only on the r−1
n neighborhood of ξ0. Furthermore, given the decomposition (3.2)

of r2nPnmξ,γ and Assumption 5, it remains to obtain the weak convergence of the empirical

process indexed by the sequence of classes of functions

Mn =

{
r2n√
n
mhn,γ : |h| ≤ K, γ ∈ Γ

}
,

where hn is defined in Assumption 5. That is, we derive the weak convergence of

r2n√
n
Gnmhn,γ ,

for any given K > 0. Then, an application of the continuous mapping theorem concludes

the proof.

We apply either Theorem 2.11.22 or 2.11.23 of van der Vaart and Wellner (1996) to ob-

tain the weak convergence. While our assumptions are sufficient for both theorems, they

are presented in terms of functions q not of functions m. Thus, we need to show that the

conditions on q are preserved under the transformation yielding m. First, we verify that the

boundedness of both entropy conditions (5.3) and (5.4) is preserved under summation. For

the latter, note that the definition of the bracketing numbers implies that for two classes

F and G of functions,

N[ ] (2ε,F + G, Lr (Q)) ≤ N[ ] (ε,F , Lr (Q))N[ ] (ε,G, Lr (Q)) .
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Therefore, the bounded entropy condition (5.4) for Fδ implies the boundedness of the

entropy condition for the class

Mδ = {mξ,γ : |ξ − ξ0| < δ} .

For the former case of uniform entropy, we refer to Theorem 2.10.20 of van der Vaart and Wellner

(1996), which shows

logN
(
ε ‖2Fδ‖Q,2 ,Fδ + Fδ, L2 (Q)

)
≤ 2 logN

(
ε ‖Fδ‖Q,2 ,Fδ, L2 (Q)

)
.

Thus, it is shown that the class Mδ also satisfies either the entropy conditions (5.3) or (5.4),

which also satisfies that of either Theorem 2.11.22 or 2.11.23 of van der Vaart and Wellner

(1996). An envelope function Mδ for Mδ is given by 2Fδ, which satisfies the conditions

of Theorem 2.11.22 or 2.11.23 of van der Vaart and Wellner (1996) under Assumption 3.

This completes the proof.

Proof of Lemma 5.2. The proof of this lemma is omitted since the first conclusion is a re-

statement of Theorems 2.4.1 and 2.4.3 in van der Vaart and Wellner (1996) and the second

conclusion follows immediately from Lemma A-1 of Andrews (1993). Specifically speaking,

Condition (a) of Lemma A-1 of Andrews (1993) is satisfied by Theorem 2.4.1 and Theorem

2.4.3 in van der Vaart and Wellner (1996).

Proof of Lemma 5.3. To prove the lemma, we modify the peeling device in the proof of

Theorem 3.2.5 in van der Vaart and Wellner (1996). For each n, the parameter space

can be partitioned into the shells Sj,n = {θ : 2j−1 < rn |θ − θ0| ≤ 2j} for integer j’s. If

rn supγ

∣∣∣θ̂ (γ)− θ0

∣∣∣ is larger than 2M for a given M, θ̂ (γ) is in one of the shells for some

γ. In that case supθ,γ Pnqθ,γ − Pnqθ0 ≥ 0, where the supremum is taken over the shell for θ
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and γ ∈ Γ, due to the definition of θ̂. Therefore, for any η > 0,

Pr

(
rn sup

γ

∣∣∣θ̂ (γ)− θ0

∣∣∣ > 2M
)

≤
∑

j≥M,2j≤ηrn

Pr

{
sup

θ∈Sj,n;γ
Pnqθ,γ − Pqθ0 ≥ 0

}

+Pr

(
2 sup

γ

∣∣∣θ̂ (γ)− θ0

∣∣∣ ≥ η

)
.

The two terms in the right side of the inequality can be shown to be made arbitrarily

small by the same argument in the proof of Theorem 3.2.5 in van der Vaart and Wellner

(1996).

Proof of Lemma 5.4. Let Gδ denote the collection of g (w; θ, γ)s such that |θ − θ0| < δ and

ḡδ an envelope function of Gδ. Then, it follows from Theorem 2.10.20 of van der Vaart and Wellner

(1996) that the uniform entropy integral of Fδ is bounded by

(A.1)

∫ 1

0

sup
Q

√
logN

(
ε ‖ḡδ‖Q,2r ,Gδ, L2r (Q)

) dε

ε1−r
,

where the supremum is taken over all finitely discrete probability measures Q. It is clear that

Gδ constitutes a VC class of functions since the subgraphs are represented by intersections

and unions of half spaces as discussed in Section 6.1. Since the VC-index does not depend

on δ and the covering number of a VC class is polynomial in (1/ε) , the uniform entropy

integral in (A.1) is bounded uniformly in δ. This in turn implies that the uniform entropy

integral condition in (5.3).

An envelope function for Fδ is given by Fδ = 2Lr · ḡrδ since

|q (y, g (w; θ, γ))− q (y, g (w; θ0, γ0))|2 ≤ 4L2
r (w) ḡ2r (w) .

To check the conditions on the envelope function, note that ḡδ (w) = |w| δ is an envelope

function for Gδ using the Cauchy-Schwarz inequality. Then, it is straightforward to see that
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with φ (δ) = δr

φ−2 (δ) PF 2
δ 1
{
Fδ > ηδ−2φ2 (δ)

}
= E

(
4L2

r (W) |w|2 1 {2Lr (W) |w| δr > η}
)

→ 0,

as δ → 0 for any η > 0.

Proof of Corollary 5.5. From the second order expansion of Pmhn,γ, the functional form

of G2 is obvious since the first derivative is zero at ξ = ξ0 from the first order condition.

The consistency of θ̂ (γ) (and thus β̃) follows from Lemma 5.2, and the convergence rates

follow from Lemma 5.3 since (5.8) is satisfied due to the presence of the second derivative

matrix Vθ (γ) and (5.9) is implied by Assumption 5.4. The last convergence then follows

from Theorem 5.1.

Proof of Theorem 6.1. We prove the conditions in Theorem 5.1. Assumption 5.4 is also dis-

cussed in the text. The first two conditions for the envelope function FK/rn in Assumption

3 are verified in Kim and Pollard (1989) .

To show the uniform consistency, we need to verify the condition (5.7) . Since γ0 is not

identified, it is an arbitrary fixed number, say, zero. Then it can be shown that

∆∗(θ, γ) = P (qθ0,γ0 − qθ,γ)(A.2)

= E
[
κ(W)

(
1 {g (W; θ, γ) ≥ 0 > g (W; θ0, γ0)}

− 1 {g (W; θ0, γ0) ≥ 0 > g (W; θ, γ)}
)]
.

By the assumption that FU |W[0|w] = 0.5, note that κ(w) ≥ 0 when g(w; θ0, γ0) ≥ 0 and

that κ(w) < 0 when g(w; θ0, γ0) < 0. Define

Q(θ, γ) =
[
w ∈ supp(W) : {g(w; θ, γ) ≥ 0 > g(w, θ0, γ0)}∪ {g(w, θ0, γ0) ≥ 0 > g(w, θ, γ)}

]
.
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By arguments identical to those used to prove Proposition 2 of Manski (1988), θ0 is identified

if and only if infγ Pr(W ∈ Q(θ, γ)) > 0 for any θ 6= θ0. Therefore, supγ ∆
∗(θ, γ) is non-

positive everywhere and is equal to zero only when (θ, γ) = (θ0, γ0).

The uniform convergence with rn = n1/3 can be argued from Lemma 5.3 upon proving

(5.8) , which will be verified when we derive the limit of r2nPmhn,γ.

Now we present the covariance kernel of the limit gaussian process G1 and verify the last

condition in Assumption 3. The following decomposition is useful: for any ξ1, ξ2, γ1, and

γ2,we have

rnP (mξ1,γ1 −mξ2,γ2)
2

= rnP (|1 {g (W, θ1, γ1) ≥ 0} − 1 {g (W, θ2, γ2) ≥ 0}|)

+ rnP (|1 {X′β1 ≥ 0} − 1 {X′β2 ≥ 0}|)

− rn2P (1 {g (W, θ1, γ1) ≥ 0} − 1 {g (W, θ2, γ2) ≥ 0}) (1 {X′β1 ≥ 0} − 1 {X′β2 ≥ 0})

=: A1 + A2 + A3.

Some reparameterization and change of variables are useful. In particular to impose the

normalization restriction, |θ| = |b| = 1, we characterize the localized parameters as

hn =
(
h′nβ, h

′
nα, h

′
nb

)′

=

(√
1−

∣∣∣ḣθ/rn
∣∣∣
2

β ′
0 + ḣ′β/rn, h

′
α/rn,

√
1−

∣∣∣ḣb/rn
∣∣∣
2

β ′
0 + ḣ′b/rn

)′

,

where
∣∣∣ḣβ
∣∣∣ ,
∣∣∣ḣb
∣∣∣ < K and ḣβ and ḣb are orthogonal to β0. Note here that since α0 = 0 the

parameter hα is not constrained. Let gn be defined in the same way. Note here that we

index by h and g rather than h1 and h2 to ease the exposition. Accordingly, decompose x

into

(A.3) x = ζβ0 + η,
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where β ′
0η = 0. Then, x′hnβ = ζ

√
1−

∣∣∣ḣθ/rn
∣∣∣
2

+ η′ḣβ/rn. Now, take A1 and note that

A1 = rnP1 {g (W, θ1, γ1) ≥ 0 > g (W, θ2, γ2)}+ rnP1 {g (W, θ2, γ2) ≥ 0 > g (W, θ1, γ1)} .

Let Zγ = Z 1 {T > γ} and pW (x,w−x) = pW (w) for W =
(
X′,W′

−x

)′
. Also recall that

z = R′x = R′β0ζ +R′η and let Rγ = R1 {T > γ} . Take the first term with substitution of

(A.3) , θ1 = hnθ and θ2 = gnθ, that is, consider

rnP

{
ζ

(√
1−

∣∣∣ ḣθ

rn

∣∣∣
2

+
β′

0
Rγ1hα

rn

)
+
η′

rn

(
ḣβ +Rγ1hα

)

≥ 0 > ζ

(√
1−

∣∣∣ ġθrn
∣∣∣
2

+
β′

0
Rγ2gα
rn

)
+
η′

rn
(ġβ +Rγ2gα)

}
,

which becomes, after rearranging terms and changing the variable ξ = ζ̇/rn,

∫∫
1

{
η′(ḣβ+Rγ1hα)

−
√

1−|ḣθ/rn|2−β′

0
Rγ1hα/rn

≤ ζ̇ <
η′(ġβ+Rγ2gα)

−
√

1−|ġθ/rn|
2−β′

0
Rγ2gα/rn

}

×1 {η′β0 = 0} pW
(
ζ̇

rn
β0 + η,w−x

)
dζ̇d$,(A.4)

and converges to

∫ (
η′
[(
ḣβ − ġβ

)
+R (hα1 {t > γ1} − gα1 {t > γ2})

])
+

1 {η′β0 = 0} pW (η,w−x) d$,

where (x)+ = x1 {x > 0} and $ denote the Lebesque measure on {w : x′β0 = 0} . The
convergence follows from the dominated convergence theorem.

Then, after sorting out notation, the limit function of A1 with ξ1 = hn and ξ2 = gn can

be represented by ∫∫ ∣∣w′
γ1hθ −w′

γ2gθ
∣∣ 1 {x′β0 = 0} pW (w) d$,

where hθ and gθ take values on the space orthogonal to θ0. By the same reasoning, that of

A2 is given by ∫∫
|x′ [(hb − gb)]| 1 {x′β0 = 0} pW (w) d$,
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where hb and gb orthogonal to β0.

Note that the limit of A1 (and A2) is an integral of the length of the interval between

two points indexed by (hθ, γ1) and (gθ, γ2) (and by hb and gb) and that the limit of A3 is a

composite of union and intersection of the two intervals. Then, using the notation in the

text, we can write

E (G1 (h, γ1)−G1 (g, γ2))
2 =

∫
` (w; h, g, γ1, γ2) 1 {x′β0 = 0} pW (w) d$,

for h and g in the null space of ξ0. It can also be seen that the condition (5.2) in Assumption

5.3 is satisfied, observing (A.4) is bounded by
(∣∣∣ḣβ − ġβ

∣∣∣+ |hα − gα|
)
(1 + o (1)) .

Next, turn to G2 (h, γ) or r
2
nPmhn,γ = r2nP (qhθ,γ − q̃hb

) . We analyze r2nPqhθ,γ, then the

limit of r2nPq̃hb
can be derived in the same way. Write r2nPqhθ,γ = B1n + B2n, recalling

(A.2) , where

B1n = r2nE (κ (W) 1 {X′β0 < 0 ≤ g (W, hn, γ)})

B2n = −r2nE (κ (W) 1 {X′β0 ≥ 0 > g (W, hn, γ)}) .

The first term B1n can be written as, using the decomposition of x in (A.3) and keeping

the relevant notation there,

B1n = rn

∫∫
1

{
η′(ḣβ+Rγhα)

−
√

1−|ḣθ/rn|2−β′

0
Rγhα/rn

≤ ζ̇ < 0

}
(A.5a)

×1 {η′β0 = 0} κ
(
ζ̇

rn
β0 + η,w−x

)
pW

(
ζ̇

rn
β0 + η,w−x

)
dζ̇d$,(A.5b)

which, using the fact that κ (w) = 0 for w such that x′β0 = 0 and an expansion for κ with

a mean value ζ̃ ,

κ

(
ζ̇

rn
β0 + η,w−x

)
= κ (η,w−x) +

∂

∂x′
κ

(
ζ̃

rn
β0 + η,w−x

)(
ζ̇

rn
β0

)
,
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converges by the dominated convergence theorem to

∫
ζ̇1
{
−x′

(
ḣβ +Rγhα

)
≤ ζ̇ < 0

}
1 {x′β0 = 0} [(∂/∂x′)κ (w)β0] pW (w) dζ̇d$

= −1

2

∫ (
x′
(
ḣβ +Rγhα

))2
1 {x′β0 = 0} [(∂/∂x′)κ (w)β0] pW (w) d$.

Similarly, we can see that B2n − (−B1n) → 0. And the limit of r2nPq̃hb
is also obvious.

Since this result also implies (5.8) , we verified all the conditions of Theorem 5.1.

Appendix B. Estimation Based on U-Processes

In this section, we provide asymptotic theory for the case with objective functions based

on U -processes. To do so, let Un denote the random discrete measure putting mass 2/n(n−
1) for each of the points {(Yi,Wi, Yj,Wj) : 1 ≤ i < j ≤ n}. Since we assume that χ in

(2.2) depends on (θ, γ) only through the regression function g (W, θ, γ) in this case as well,

arguments identical to those in Section 5.1 yields

QLRn = r2n

[
sup
θ,γ

Qn (θ, γ)− sup
β
Qn (β)

]

= r2n sup
γ

[
sup
ξ:b=β0

Unµξ,γ − sup
ξ:θ=θ0

(−Unµξ,γ)

]
,

where

µξ,γ(yi,wi, yj,wj) := χθ,γ(yi,wi, yj,wj)− χ̃b(yi,wi, yj,wj)

and χ̃b := χ(b′,0)′,γ. Therefore, QLRn is a continuous transformation of r2nUnmξ,γ. General

theory on U -processes provides a method for approximating r2nUnmξ,γ by its projection

uniformly in ξ and γ (e.g. see Ghosal et al., 2000, Appendix). Therefore, the derivation

of the asymptotic null distribution is similar to that of Section 5.1.

In this section, we consider the case with rn = n1/2 since all the estimators, which we

are aware of, based on U -Processes are n−1/2 consistent. To state an additional regularity

condition for this section, consider a class of functions

Mδ = {χθ,γ − χθ0,γ : |θ − θ0| < δ, γ ∈ Γ}
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with an envelope function Mδ.

Assumption B.1 (Envelope Function and Entropy Condition). (1) Let Q denote the

product measure P ⊗ P. Then, QM2
K/n1/2 → 0 for any positive K < ∞. (2) For some

δ0 > 0, we have that

∫ 1

0

sup
δ<δ0

sup
Q

logN
(
ε ‖Mδ‖Q,2 ,Mδ, L2 (Q)

)
dε <∞.

The first condition in Assumption B.1 is reasonable given that Mδ is defined only for

a local neighborhood around θ0. The entropy condition here is more stringent than that

of Assumption 5.4. However, VC classes of functions have the covering numbers that are

bounded by a polynomial in ε−1, thus still satisfying condition (2) of Assumption B.1 as

long as the VC indexes are bounded in n.

Consider a class of functions F̄δ that is the same as in (5.1) with q = Πχ, where

Πχθ,γ(y,w) = 2 [Eχθ,γ(Y,W, y,w)−Qχθ,γ ] .

An envelope function for F̄δ is denoted by F̄δ. In addition, define

Πµξ,γ(y,w) = 2 [Eµξ,γ(Y,W, y,w)−Qµξ,γ] .

The following theorem establishes the asymptotic null distribution when an estimator is a

maximizer of a U -Process.

Theorem B.1. Let Assumptions 5.1 and 5.2 hold with rn = n1/2. Let Assumption 5.3

hold with Fδ = F̄δ and q = Πχ, and Assumption 5.5 hold with m = Πµ. In addition, let

Assumption B.1 hold. Then

QLRn ⇒ sup
γ

[
sup

h:hb=0
G (h, γ)− sup

h:hθ=0
(−G (h, γ))

]
,

where G = G1 +G2 is redefined suitably with m = Πµ.
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Proof of Theorem B.1. Define

Ûnµξ,γ := Qµξ,γ + PnΠµξ,γ.

Then by Theorem A.1 of Ghosal et al. (2000) and comments following this theorem, there

exists a universal constant C <∞ such that

E

(
sup

µξ,γ∈MK/n1/2

|Unµξ,γ − Ûnµξ,γ|
)

≤ Cn−1(QM2
K/n1/2)

1/2

∫ 1

0

sup
Q

logN
(
ε
∥∥MK/n1/2

∥∥
Q,2

,MK/n1/2, L2 (Q)
)
dε

= o(n−1),

where the last equality follows from Assumption B.1. Then since PΠµξ,γ = 0 and rn = n1/2,

we have that

r2nUnµξ,γ = r2nQµξ,γ +
r2n√
n
GnΠµξ,γ + op(1),

uniformly over Mδ. All regularity conditions of Theorem 5.1 are assumed directly ex-

cept for Assumption 5.4. By Lemma A2 of Ghosal et al. (2000), the entropy condition

of Assumption B.1 is sufficient for Assumption 5.4. Therefore, Theorem 5.1 proves this

theorem.

Since the asymptotic distribution is identical to the M-estimation case with the projected

function Πµξ,γ, a corollary similar to Corollary 5.5 can be established. The discussion

following the corollary is also valid. Therefore, if Qχθ,γ is twice differentiable at θ0 with

relevant rank conditions satisfied and if G1 is linear in h, then the asymptotic representation

in (5.10) would be obtained.
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B.1. Maximum Rank Correlation Estimation. The objective function of the maxi-

mum rank correlation (MRC) estimator is a second-order U-process with kernel

χ (y1,w1, y2,w2; θ, γ)

:= 1 {y1 > y2} 1 {g (w1, θ, γ) > g (w2, θ, γ)}+ 1 {y1 < y2} 1 {g (w1, θ, γ) < g (w2, θ, γ)} .

Recall that the MRC estimator can be applied to a general regression model defined as

Y = H ◦ F (g (W, θ0, γ0) , U) ,

where H is a non-degenerate monotone function and F is a strictly monotone function

for both arguments. To provide its asymptotic null distribution, we need to check the

separability condition, Assumptions 5.3, 5.5, and B.1. We assume the following conditions

which are slight modification of the standard regularity conditions of the MRC estimator

in Sherman (1993) to reflect the threshold effects.

Assumption B.2. (i) The first element of θ, say θ1, is normalized to be 1.

(ii) The first component of W has an everywhere positive Lebesgue density conditional on

the remaining components W̃ = w̃ for all w̃.

(iii) W is independent of U, and the support of Wγ is not contained in any proper linear

subspace of Rdim(X)+dim(Z) for any γ.

(iv) T is continuously distributed.

(v) Let N be a neighborhood of θ0. Then, the following conditions hold: (a) all mixed second

partial derivatives of Πχθ,γ with respect to θ exist on N for all γ ∈ Γ; (b) There exists an

integrable function M (y,w) such that

sup
γ

|∇θθ′Πχθ,γ (Y,W)−∇θθ′Πχθ0,γ (Y,W)| ≤ M (Y,W) |θ − θ0| ;

(c) supγ P |∇θΠχθ0,γ|2 < ∞; (d) supγ P
∑

i,j

∣∣∣ ∂2

∂θi∂θj
Πχθ0,γ

∣∣∣ < ∞; and (e) P∇θθ′Πχθ0,γ is

negative definite for all γ ∈ Γ.
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Since the functions H and F are monotone, the support condition of W implies that

Pr (Y1 > Y2|W1,W2) > Pr (Y1 < Y2|W1,W2) ⇔ g (W1, θ0, γ) > g (W2, θ0, γ)

for any γ. This condition combined with the identification arguments in Han (1987) com-

pletes the separability condition. We next turn our attention to Assumption B.1. Consider

the class of functions

MK/n1/2 =
{
χθ,γ − χθ0,γ : |θ − θ0| < K/n1/2, γ ∈ Γ

}
.

From the arguments in Section 5 of Sherman (1993) and in the example of maximum score

estimation, we can show that MK/n1/2 is a VC-class of functions and that MK/n1/2 has an

envelope function MK/n1/2 = 1
{
|x′β0| ≤ C

(
K/n1/2

)
|x|
}
for a constant C. Therefore, it

satisfies the conditions in Assumption B.1. To verify Assumption 5.3, consider the following

class of projected functions

F̄K/n1/2 =
{
Πχθ,γ − Πχθ0,γ : |θ − θ0| < K/n1/2, γ ∈ Γ

}
.

Then, Assumptions 5.3 follows from the finite envelope and the smoothness condition of

Πχθ,γ. It remains to show Assumption 5.5. However, it follows from the differentiability of

Πχθ,γ that the asymptotic representation in (5.10) applies. In particular, the covariance

kernel of G (γ) is given by P
[
(∇θΠχθ0,γ1) (∇θΠχθ0,γ2)

′] and V (γ) = P∇θθ′Πχθ0,γ.

Appendix C. Consistency and Local Power

In this section, we present asymptotic properties of our test statistic when the null

hypothesis is false. We first consider a fixed alternative g (w) such that

g (w) 6= x′β,

for any β. Let P1 denote the common probability measure under this alternative.
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Theorem C.1. Let F be a class of functions qθ,γ with envelope F such that P1F <∞. As-

sume either of the following two conditions: (i) N[ ] (ε,F , L1 (P1)) <∞ for every ε > 0; (ii)

For FM defined as the class of functions f1 {F ≤M} for f ∈ F , logN (ε,FM , L1 (Pn)) =

op (n) for every ε andM > 0. Let Q1 (θ, γ) = P1qθ,γ and assume that there exists (θ, γ) such

that Q1 (θ, γ) > supθ:α=0Q (θ, γ) . Then, the test QLRn is consistent against the alternative

g, that is, the rejection probability of our test goes to one under P1.

This theorem states conditions under which our test is consistent. This theorem might

not be very constructive to convey some meaningful insight into what alternatives our test

can detect as it is difficult to determine the functional form of Q1 without a specific q and

P1. Roughly speaking, however, it implies that the test can detect an alternative which is

better approximated by a piecewise linear structural form than linear one. Clearly, if

g (w) = x′β0 + z′α01 {t > γ0}

for some α0 6= 0, the test is consistent under the other conditions of the above theorem.

Furthermore, Theorem C.1 suggests that the test be powerful against some other nonlinear

alternatives, as we demonstrate via Monte Carlos experiments in Section D.

Next, we investigate the asymptotic power property of our tests under sequences of local

alternatives:

gn (w) = x′β0 + ρ−1
n · x′α (t) ,

where α is a vector-valued integrable function defined on the support of T and ρn → ∞.

This alternative is a natural generalization of the threshold model to encompass smooth

transition models and varying coefficient models. Let Pn denote the probability measure

for each n under the local alternatives. As above, general statement is less informative

than examination of specific examples since local power depends largely on whether or not

the limit of rnPnmhn,γ is different from that of rnPmhn,γ.

When ρn = rn, the local asymptotic distribution of QLRn under Pn can be obtained

under minor modification of previous assumptions. We discuss this. We keep Assumption 1
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and 2. Assumptions 3-5 need to be restated in terms of Pn. The uniform entropy condition

(5.3) in Assumption 4 remains the same since it does not depend on the true measure (see

e.g. section 2.11.1 of van der Vaart and Wellner (1996)). Lemmas 1 and 2 are valid under

these modifications on Assumption 3 and 4 and thus Assumptions 1 and 2 can be verified

in the same way as under the null. The limit quantities in Assumption 5 would not the

same as those under P. Either of the covariance kernel of G1 or the functional form of G2

or both change under Pn, yielding the local power. The methods to verify Assumptions

1-5 are similar as under P. When Pmξ,γ is twice differentiable, its first derivative is zero

at ξ = ξ0, where ξ0 := (β ′
0, 0

′, β ′
0)

′, and G2 is quadratic in its second derivative. On the

other hand, the first derivative of Pnmξ,γ is not zero at ξ = ξ0 but rn (∂/∂ξ)Pnmξ0,γ has

a non-vanishing limit. This is usually called the “noncentrality parameter”, which is the

source of the local power and yields the consistency when ρn = o (rn) . All of our examples

have nontrivial noncentrality parameters.

We now present two of previous examples to illustrate power properties of our test, fo-

cusing on the noncentrality parameter. First, consider the maximum score estimation of

the binary response model. We begin with r2nPnmhn,γ. As shown in section 6.1, r2nPmhn,γ

converges to a quadratic function in h without a linear term as the first term in the ex-

pansion vanishes under P. We show that the linear term does not vanish under Pn. In

particular, note that κ (w) in (6.2) need to be replaced by

κn (w) = 1− 2FU |W

(
−x′β0 − r−1

n x′α (t) |w
)

= κ (w) + 2fU |W

(
−x′β0 − ρ−1

n · x′α̃ (t) |w
)
ρ−1
n x′α (t) ,

where α̃ is the mean value. Then, following the steps to derive the limit of r2nPmhn,γ in

the proof of Theorem 6.1 with κ (w) replaced by κn (w) , we can see that the difference

r2nPnmhn,γ − r2nPmhn,γ, that is, the noncentrality parameter is given by

2

∫ ∫ [
α (t)′ (xx′ (hβ − hb) + xx′1 {t > γ}hα)

] rn
ρn

1 {x′β0 = 0} fU |W (0|w) pW (w) d$.
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If α (T ) is nonzero with positive probability, then the noncentrality parameter is nonzero

for some γ, regardless of h unless hα = 0. On the other hand, we can easily see from the

proof of Theorem 6.1 that the covariance kernel of G1 does not change. Therefore, our test

has local power with ρn = rn and is consistent when ρn = o (rn) .

Next consider the MLE of the probit model. Let ρn = rn =
√
n and examine the score

functions for q (y,w; θ, γ) and q̃ (y,w; b) under Pn. Their expected values are zero under

P but non-zeros and different from each other under Pn, which yields the noncentrality

parameter. In particular, a direct calculation of the expected value with an expansion of

the term Φ (x′β0 + x′α (t) /
√
n) at x′β0 yields

√
nPn

∂

∂θ
q (y,w; θ0, γ) = E


φ (X

′β0)

Φ (X′β0)


 X

X1 {T > γ}


φ

(
X′β0 +X′ α̃ (T )√

n

)
X′α (T )




+E


 φ (X′β0)

Φ (−X′β0)


 X

X1 {T > γ}


φ

(
−X′β0 −X′ α̃ (T )√

n

)
X′α (T )




→ E


 φ2 (X′β0)

Φ (X′β0)Φ (−X′β0)


 XX ′α (T )

XX ′1 {T > γ}α (T )




 ,

where α̃ lies between α and 0. Similarly,

√
nPn

∂

∂b
q̃ (y,w; β0) → E

[
φ2 (X′β0)

Φ (X′β0)Φ (−X′β0)
XX ′α (T )

]
.

Then, the noncentrality parameter becomes

E

[
φ2 (X′β0)

Φ (X′β0) Φ (−X′β0)
XX ′α (T ) 1 {T > γ}

]
6= 0

for some γ as long as α (T ) is not zero with positive probability. Therefore, the test has non-

trivial local power against local alternatives of the above form as well as of the threshold

type. Furthermore, if ρn = o (
√
n) , then the noncentrality parameter diverges to infinity

to yield the consistency of our test.
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Appendix D. Monte Carlo Simulations

In this section we investigate finite sample properties of the proposed test by Monte Carlo

experiments. we report Monte Carlo simulation results for all four examples considered in

the article.

D.1. Binary Response Models: Probit, Logit, and Maximum Score. First, we

report Monte Carlo simulation results when the samples are generated from a simple probit

or logit model. To see whether the test has power against an alternative that is different

from a threshold model, we consider the smooth transition model as well as the threshold

model as alternatives. Therefore, we have 4 different models in total, and the baseline

model has the following form:

Y ∗ = β0 + β1X+ αZψ (T, γ) + U

Y = 1 {Y ∗ > 0} ,

where ψ (T, γ) = 1 {T > γ} for the threshold model and ψ (T, γ) = 1/ (1 + exp (− (T − γ)))

for the smooth transition model. The true parameter values are set as β0 = 0.5, β1 = 1,

γ = 0.5 for the threshold model, and γ = 0 for the smooth transition model. When the null

hypothesis is true, the parameter α is equal to zero. Under the alternatives, α has various

non-zero values from 0.2 to 1. The covariates X and Z are generated independently from

N (0, 1) and N (0, 2), respectively. The covariate T follows the uniform distribution on the

interval [0, 1] for the threshold model and N (0, 1) for the smooth transition model. The

error term U is generated from either N (0, 1) or the logistic distribution.

Parameters other than γ are estimated by the Newton-Raphson’s method, and the thresh-

old parameter γ is estimated by the grid search. For the grid, we used the data points of T

after trimming at lower and upper 10th percentiles. We considered three different sample

sizes, n = 50, 100, and 200, and replicated each simulation design 1000 times. For the

simulation number of the score functions, we set J = 2000.
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Figure 2. Power Functions of Threshold Models
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Figure 3. Power Functions of Smooth Transition Models
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Figures 2–3 summarize the result of the simulation study. Overall, the test performs well

as expected from the theory. First, under the null hypothesis (α = 0), the rejection rates of

the test are close to the nominal level in most cases. Second, Figures 2–3 show the power

of the test when α increases from 0 to 1. The result indicates that, in all cases, the power

increases fast as the parameter value of α is farther away from zero. The test shows good

performance even with a relatively small sample size, say n = 100.

We now report simulation results for testing the null hypothesis that α0 = 0 for the

probit threshold model above with the maximum score objective function. This amounts
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Figure 4. Power Functions of the Probit Threshold Model with Maximum
Score Estimation
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to the case when a researcher only relies on the assumption that U has conditional median

zero without knowing that U follows the standard normal distribution. The critical values

are obtained via subsampling. The subsample sizes (m) and original sample sizes (n) were

(m,n) = (20, 50), (30, 100), (35, 200), respectively.

Figure 4 shows the power functions with the 5% level test. Not surprisingly, relative to

the left panel of Figure 2, the power does not increase rapidly as α gets large or n increases.

Note that this is consistent with the theoretical result that the test with the maximum score

estimation has local power at a rate of n−1/3.

D.2. Quantile Regression. In this section we investigate finite sample properties of the

proposed test for the quantile regression model. In particular, we consider the median

regression model (τ = 0.5):

Y = β0 + β1X+ αZψ (T, γ) + U,

where ψ (T, γ) = 1 {T > γ}. The true parameter values are set as β0 = 0.5, β1 = 1,

γ = 0.5. When the null hypothesis is true, the parameter α is equal to zero. Under the

alternatives, α has various non-zero values from 0.2 to 1. The covariates X and Z are

generated independently from N (0, 1) and N (0, 2), respectively. The covariate T follows
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the uniform distribution on the interval [0, 1] for the threshold model. The error term U is

generated from the standard normal distribution.

Parameters other than γ are estimated by the linear programming method for the stan-

dard linear quantile regression model, and the threshold parameter γ is estimated by the

grid search. For the grid, we use the data points of T after trimming at lower and upper

10th percentiles. We consider three different sample sizes, n = 50, 100, and 200, and repli-

cate each simulation design 1000 times. For the simulation number of the score functions,

we set J = 2000.

In addition, we estimate V̂ (γ) and Ṽ by (3.9) since regression errors are independent of

regressors. Finally, we use the standard normal density as the the kernel function K and

Silverman’s rule of thumb for h = 1.06× σ̃n−1/5, where σ̃ is the sample standard deviation

of Ũ := Yi −X′
iβ̃.

Figure 5. Power Functions of Threshold Quantile Regression Models
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Figure 5 shows the power functions for the 5 % level test. Under the null of α = 0, the

rejection rates of the test are about 2% lower than the nominal level. The figure shows the

power of the test increases fast as α or n gets large.
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D.3. Maximum Rank Correlation Estimation. For the simulation study of the MRC

estimator, we use the following data generating procedure:

T (Y ) = β1X1 + β2X2 + αZ · 1 (T > γ) + U

where covariates, X1,X2,Z and T, are generated independently fromN (0, 4) , N (0, 1) , N (0, 1) ,

and the uniform distribution on the interval [0, 1] , respectively. The error term U is gen-

erated from N (0, 1) . We set the transformation function T (y) log y. The parameter β1 is

normalized as 1, and other parameters are set as β = 1 and γ = 0.5. The parameter α is

equal to zero under the null hypothesis, and varies from 0.2 to 1 under the alternatives.

Note that the constant term is not identified in the unknown transformation model, so we

drop it from the model.

We estimate all parameters using the grid search. The girds used for each parameter

are as follows: the 51 points equally spaced on the interval [−1, 3] are used for estimating

β2, the 51 points on [−1, 2] for α, and the 36 points on [0.1, 0.9] for γ. We consider three

sample sizes, n = 50, 100, and 200, and replicate each design 1,000 times. We calculate the

simulated p-value with J = 1, 000.

Figure 6. Power Functions of Threshold Models with Maximum Rank Cor-
relation Estimation
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Simulated critical values can be obtained using numerical derivatives as in Section 7 of

Sherman (1993). Specifically, we use the smooth objective function in the simulation step

by substituting the standard normal cdf for the indicator function with an appropriate

bandwidth. Figure 6 shows the power functions for the 5 % level test. Overall, test seems

to perform well as in previous examples.

We now explain how to obtain critical values in detail below:

(1) Given the data, estimate the parameter under the null and the alternative, β̃ and
(
θ̂, γ̂
)
, respectively. Construct the test statistic QLRn using the estimates.

(2) Recall some notation here:

Qn (θ, γ) = Unχθ,γ(Yi ,Yj ,Wγ,i ,Wγ,j )

=
1

n (n− 1)

∑

i 6=j

1 (Yi > Yj) 1
(
W′

γ,iθ >W′
γ,jθ
)

and

µξ,γ (Yi, Yj,Wi,Wj) = χ(Yi ,Yj ,Wγ,i ,Wγ,j )− χ̃b(Yi ,Yj ,Xi ,Xj )

= 1 (Yi > Yj)
[
1
(
W′

γ,iθ >W′
γ,jθ
)
− 1

(
X′

ib > X′
jb
)]
.

Replace indicator functions in the objective function with the standard normal cdf.

Now, µξ,γ is twice differentiable with respect to ξ (slightly abuse notation and use

the same µ, χ etc.) The first order derivative of µξ,γ is

∂

∂ξ
µξ,γ =




∂
∂θ
χθ,γ

− ∂
∂b
χ̃b


 ,

where

∂

∂θ
χθ,γ = Φ

(
Yi − Yj
a

)
φ

(
(Wγ,i −Wγ,j)

′ θ

a

)
Wγ,i −Wγ,j

a

∂

∂b
χ̃b = Φ

(
Yi − Yj
a

)
φ

(
(Xi −Xj)

′ b

a

)
Xi −Xj

a
.
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The bandwidth a is set as a = 2σ̂n(−3/5) where σ̂ is the sample standard deviation

of the argument in the function, i.e. Yi − Yj, (Wγ,i −Wγ,j)
′ θ etc. The second

derivative is

∂

∂ξ∂ξ′
µξ,γ =




∂2

∂θ∂θ′
χθ,γ 0

0 − ∂2

∂b∂b′
χ̃b


 ,

where diagonal elements can be computed easily.

(3) To generate the simulated empirical U-process, say Ûn, for each (i, j), we mul-

tiply Vij = Vi + Vj to µξ,γ (Yi, Yj,Wi,Wj), where Vi and Vj are generated from

Gamma(0.25, 0.5), independently.

(4) Then the simulated test statistic is

sup
γ

1

2

[
rn

(
Ûn − Un

) ∂

∂ξ
µξ̃,γ

]′ [
−Un

∂2

∂ξ∂ξ′
µξ̃,γ

]−1 [
rn

(
Ûn − Un

) ∂

∂ξ
µξ̃,γ

]
.

(5) Simulate the same statistic J times for a large J , and calculate the simulated p-

value as in the main text (that is, the proportion of simulated test statistics that

are greater than the original test statistic).
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