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Abstract

Data envelopment analysis (DEA) is commonly used to measure the relative

efficiency of decision-making units. Often, in a second stage, a regression model is

estimated to relate DEA efficiency scores to exogenous factors. In this paper, we

argue that the traditional linear or tobit approaches to second-stage DEA analysis

do not constitute a reasonable data-generating process for DEA scores. Under the

assumption that DEA scores can be treated as descriptive measures of the relative

performance of units in the sample, we show that using fractional regression models

are the most natural way of modeling bounded, proportional response variables

such as DEA scores. We also propose generalizations of these models and, given

that DEA scores take frequently the value of unity, examine the use of two-part

models in this framework. Several tests suitable for assessing the specification of

each alternative model are also discussed.
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1 Introduction

Data envelopment analysis (DEA) is a technique widely used to evaluate the relative

efficiency of individual decision-making units (DMUs). DEA efficiency scores () are

typically defined on the interval ]0 1], with, in general, few values, if any, close to 0 but

some values of unity. In order to examine the effect on the efficiency of DMUs of factors

that are beyond their control (the so-called environmental, contextual or non-discretionary

variables), often, in a second stage, a regression model is estimated for DEA scores.

The choice of regression model for the second stage of DEA analysis is not a trivial

econometric problem. The standard linear model is not, in general, appropriate for such

analysis, since the predicted values of  may lie outside the unit interval and the implied

constant marginal effects of the covariates on  are not compatible with both the bounded

nature of DEA scores and the existence of a mass point at unity in their distribution.

Moreover, the standard approach of using a two-limit tobit model, with limits at zero

and unity, to model DEA scores (see the references in Simar and Wilson 2007) is also

questionable. Indeed, the accumulation of observations at unity is a natural consequence

of the way DEA scores are defined rather than the result of censoring. Furthermore, the

domain of the two-limit tobit model differs from that of DEA scores because typically

efficiency scores of zero are not observed. This difference is particularly relevant because

application of the two-limit tobit model in this context in fact amounts to estimation of

a one-limit tobit for  ∈ ]−∞ 1].

In the second-stage DEA literature, despite the acknowledgement by authors such

as Ruggiero (1998) that misspecifying the second-stage regression model may generate

misleading results, only recently has this issue been addressed. Given the bounded nature

of DEA scores, both Hoff (2007) and McDonald (2009) considered the use of Papke and

Wooldridge’s (1996) logit fractional regression model. However, both researchers conclude

by recommending the use of the simpler linear regression model, although McDonald

(2009) acknowledges that there are advantages in using Papke and Wooldridge’s (1996)

model for more refined analyses.

In this paper, we argue that any sensible description of the data-generating process

(DGP) for DEA scores defined on ]0 1] requires the use of regression models that are

appropriate for dealing with fractional data in the second-stage DEA analysis. In contrast

to Hoff (2007) and McDonald (2009), who considered only the logit fractional regression
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model, we analyze several alternative functional forms that may be more useful for dealing

with the typical asymmetric nature of DEA scores. In addition, we provide examples to

show clearly that both linear and tobit models may produce outcomes that differ greatly

from those of fractional regression models (FRMs). Another advantage of using FRMs

is that they may be estimated by quasi-maximum likelihood (QML). This is because,

unlike tobit models, FRMs do not require assumptions to be made about the conditional

distribution of DEA scores or heteroskedasticity patterns.

The relatively high proportion of efficient DMUs usually found in empirical studies

raises another issue in the description of the DGP for DEA scores: should the values of

unity be treated differently? In fact, there are two options: (i) use a single-equation model

to explain the DEA scores of all DMUs, including those of the efficient ones; or (ii) use

a two-equation model that explains separately, first, why some DMUs are efficient while

others are not ( = 1 versus   1) and, second, the relative efficiency of inefficient DMUs.

To our knowledge, most researchers use one-part models, an exception being Hoff (2007).

In this paper, we discuss two-part models that are more flexible than those proposed by

Hoff (2007). This greater flexibility derives from our use of QML (rather than maximum

likelihood) for estimation of the second component of these models, because QML enables

one to avoid the distributional assumptions made by Hoff (2007).

The validity of the assumptions that underlie the models used in the DEA second-stage

regressions has been systematically overlooked in the DEA literature: most empirical

practitioners do not test the conditional mean and/or the distributional assumptions

implied by their models. Because FRMs estimated by QML merely require the correct

specification of the conditional mean of the DEA scores, in this paper we focus on this

issue and survey some general specification tests that can be applied in this framework.

The paper is organized as follows. In Section 2, we establish the framework of the

paper. In Section 3, we examine alternative regression models for DEA scores, including

the traditional linear and tobit models and several alternative one-part and two-part

FRMs. In Section 4, we briefly describe some specification tests suited to assessing the

conditional mean assumption made in FRMs. In Section 5, we use an empirical example

to compare and discuss the different estimators and tests analyzed throughout the paper.

In section 6, we present concluding remarks. Throughout the paper, as explained in

Section 2, DEA scores are treated as descriptive measures of the relative efficiency of the
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DMUs in the sample.

2 Two-stage DEA regression analyses

There are a number of ways in which environmental variables can be accommodated into

DEA analysis. Since its introduction by Ray (1991), the standard approach for studying

the influence of environmental factors on the efficiency of DMUs is to use two-stage DEA

analysis. This involves first using DEA techniques to evaluate the relative efficiency of

DMUs and then regressing DEA efficiency scores on appropriate covariates. See Simar

and Wilson (2007) for an extensive list of references to the use of this approach, Coelli,

Rao, O’Donnell and Battese (2005) and Daraio and Simar (2005) for other approaches to

incorporating the influence of efficiency factors into DEA analysis, andWang and Schmidt

(2002) for an explanation of why, in the framework of stochastic frontier analysis, using a

single-stage procedure to estimate inefficiency and the impact of environmental variables

jointly is the appropriate approach for productivity analysis.

Despite the popularity of two-stage DEA analysis, there has recently been some con-

troversy over applying this approach to examining how a set of environmental factors

determines technical efficiency; see Grosskopf (1996) for an early criticism of this ap-

proach. Indeed, as pointed out by Simar and Wilson (2007), none of the many studies

cited in their paper describes the DGP underlying their two-stage approaches. In order

to provide a rationale for second-stage DEA regressions, two distinct justifications have

recently been put forward. These justifications depend crucially on the interpretation

given to the DEA score used as the dependent variable in the second-stage regression

analysis. As discussed by McDonald (2009, Section 11), at stage two, DEA scores may be

interpreted either as observed measures of DMU efficiency or as estimates of ‘true’, but

unobserved, efficiency scores.

In the first of these approaches, which is adopted by, in McDonald’s (2009) termi-

nology, ‘instrumentalists’, DEA scores are treated as descriptive measures of the relative

technical efficiency of the sampled DMUs. Given this interpretation, the frontier can be

viewed as a (within-sample) observed best-practice construct and, therefore, in stage two,

the DEA scores can be treated like any other dependent variable in regression analysis.

Hence, parameter estimation and inference in the second stage may be carried out using
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standard procedures. In this framework, the main issue is choosing an appropriate DGP

for the DEA scores, which requires essentially selecting a suitable functional form for

the regression model that relates these scores to the environmental variables. In most

empirical studies, linear specifications or, because of the bounded nature of DEA scores,

tobit models are used. However, as stressed by Simar and Wilson (2007), no coherent

account of why a model suitable for censored data should be used in this setting has been

provided.

Although the instrumentalist approach may appear simplistic and naive, it reflects the

common practice in economics of dealing with dependent variables that are based on the

extremely complex measurements of economic aggregates. As McDonald (2009) argues,

although the values of such dependent variables should be treated as estimates rather

than as actual measures, this is not normally done because ‘it is thought it would lead

to considerable complexity and perhaps only minor changes in inference’. See McDonald

(2009) for more arguments that justify the instrumentalist approach, which has been

implicitly adopted for most two-stage DEA empirical studies.

By contrast, in the so-called ‘conventionalist’ approach (McDonald 2009), DEA scores

measure efficiency relative to an estimated frontier (the true value of which is unobserved).

This implies that estimates of efficiency from DEA models are subject to uncertainty

because of sampling variation. As shown by Kneip, Park and Simar (1998), although

DEA scores are consistent estimators of true efficiency, they converge slowly. Moreover,

they are biased downwards. Using DEA scores in the second-stage regression analysis

leads to two additional problems: (i) the input and output factors used to estimate the

DEA scores may be correlated with the explanatory variables in the second stage; and (ii)

under the DEAmethodology, DEA scores are dependent on each other and, hence, making

the assumption of within-sample independence, which is required for regression analysis,

is inappropriate. Consequently, the estimated effects of the environmental variables on

DMU efficiency may be inconsistent and standard inferential approaches are not valid.

Under the conventionalist framework, a coherent DGP for the DEA scores must include

not only a specification for the regression model used in the second stage but also a

description of how the variables used in the first and second stage are related. In this

context, Simar and Wilson (2007) and Banker and Natarajan (2008) were the first to

describe a coherent DGP and to develop appropriate estimation procedures for two-stage
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DEA analysis.

Simar and Wilson (2007) provide a set of assumptions under which the consistency of

the second-stage regression parameters is not affected by the use of estimates rather than

true efficiency scores. To make inferences about those parameters, they propose two alter-

native bootstrap methods that take into account the sampling variability of DEA scores.

Two of the assumptions made by Simar and Wilson (2007) are particularly relevant.

First, they assume that a separability condition, which allows environmental variables

to affect the efficiency scores but not the frontier, holds. Second, they assume that the

true efficiency scores follow a truncated normal distribution. See inter alia Zelenyuk and

Zheka (2006), Latruffe, Davidova and Balcombe (2008) and Kravtsova (2008) for recent

applications of this approach.

Banker and Natarajan (2008) provide a formal statistical foundation for two-stage

DEA analyses, deriving conditions under which two-stage procedures yield consistent es-

timators at stage two. One of their specifications implies a linear relationship between

the log of efficiency scores and the environmental variables. This has the favorable im-

plication that the parameters of interest in second-stage DEA analysis can be estimated

consistently by using ordinary least squares. The DGP proposed by Banker and Natara-

jan (2008) is less restrictive than that suggested by Simar and Wilson (2007) (see endnote

1 in the former paper for details). However, they considered only parameter estimation,

do not discussing how to testing hypotheses about the parameters estimated in stage

two. Moreover, because the dependent variable in the regression model is the log (rather

than the level) of the DEA score, reestimating efficiency scores or quantifying the mar-

ginal effects requires distributional assumptions about the error term of the second-stage

regression.1

From our discussion, it is clear that one important issue in both the instrumentalist

and conventionalist approaches is the choice of model used in the regression stage. If the

specification is incorrect, any of the procedures discussed above will produce inconsistent

estimates of the parameters of interest. However, to our knowledge, no one has tested

the suitability of the regression model used in second-stage DEA analysis. In this paper,

we propose several alternative regression models of efficiency scores (defined on ]0 1])

1See Duan (1983) for a seminal paper on the consequences for prediction of using logged dependent

variables.
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on environmental variables, and we show how such specifications may be assessed using

simple statistical tests. For simplicity, we adopt the instrumentalist approach and treat

DEA scores as observed measures of technical efficiency. This strategy allow us to focus

exclusively on two key points the paper: (i) any sensible DGP for DEA scores requires the

use of FRMs (or their two-part extensions); and (ii) because there are many alternative

FRM specifications, which may generate different results, it is fundamental to test the

specification chosen for the regression model.

Thus, while papers such as Simar and Wilson (2007) focus on incorporating into

the second-stage the variability induced by estimation in the first stage, and assume

that the parametric model of DEA scores is correctly specified, we examine the effects of

misspecifying this model in a framework in which such variability is assumed to be absent.

Note that misspecification of the functional form is a more serious problem than ignoring

the sampling variability of DEA scores: only the former is expected to cause inconsistent

estimation of the second-stage parameters of interest. In the final section of this paper,

we briefly discuss the implications of using our methodology under the conventionalist

approach.

3 Alternative regression models for efficiency scores

Consider a random sample of  = 1   DMUs. Let  be the variable of interest (the

DEA efficiency score), 0   ≤ 1, and let  be a vector of  environmental factors. Let
 (| ) denote the conditional distribution of , which may be known or unknown, and
let  be the vector of parameters to be estimated. In this section, we first discuss the

main characteristics of the traditional regression models employed in the second stage of

DEA efficiency analysis. Then, we present the (one- and two-part) FRMs.

3.1 Traditional approaches: linear and tobit models

Some DEA analyses have used linear conditional mean models, given by

 (|) = , (1)

to explain efficiency scores. However, the linearity assumption is unlikely to hold in

the DEA framework, for two main reasons. First, the conceptual requirement that the
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predicted values of  lie in the interval ]0 1] is not satisfied. Second, in a linear model,

the marginal effect on the DEA score of a unitary change in covariate ,

 (|)


= ,

is constant over the entire range of , which is not compatible with either the bounded

nature of DEA scores or the existence of a mass point at unity in their distribution.

The traditional approach to explaining DEA scores is to use a two-limit tobit model

on data censored at 0 and 1; see the references in Simar and Wilson (2007). This model

assumes that there is a latent variable of interest, ∗, −∞  ∗  +∞, which is not fully
observed. Instead of observing ∗, we observe , which is defined as follows:  = 0 if

∗ ≤ 0,  = ∗ if 0  ∗  1, and  = 1 if ∗ ≥ 1. It is also assumed that there exists a
linear relationship between ∗ and the covariates,  (∗|) = , which implies that the

conditional mean of the observed fractional response variable is given by

 (|) =
∙
Φ

µ
1− 



¶
−Φ

µ
−



¶¸
−

∙


µ
1− 



¶
− 

µ
−



¶¸
+1−Φ

µ
1− 



¶
.

(2)

The partial effects of a unitary change in  on  are given by

 (|)


= 

∙
Φ

µ
1− 



¶
−Φ

µ
−



¶¸
, (3)

where Φ (·) and  (·) denote the standard normal distribution and density functions, re-
spectively, and  is the standard deviation of the error term  = ∗ −  (∗|); see inter
alia Hoff (2007).

Researchers such as Simar and Wilson (2007) and McDonald (2009) criticize this

approach on the grounds that the concentration of observed DEA scores at unity is a

product of the way the scores are defined rather than the result of a censoring mechanism,

as implied by the tobit model. Indeed, whereas with censored data one is typically

interested in inferring the effects of a change in  on ∗, which is given simply by , in

the DEA framework, one is interested in the partial effects on the observable variable ,

given in (3); see Wooldridge (2002) pp. 517-521 for discussion of these issues. However,

some DEA researchers mistakenly focus on the potential marginal effects, given by ,

rather than on the actual partial effects (3); see, e.g., Chilingerian (1995) and Gillespie,

Schupp and Taylor (1997).

As pointed out byWooldridge (2002), provided that the focus of the research is changed

from ∗ to , tobit and other regression models originally devised for censored dependent
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variables may also be used for response variables that are by nature limited from above

and/or below (so-called ‘corner solution’ variables). According to this view, the tobit

model described by equation (2) is a plausible specification for the conditional mean of a

variable defined on the interval [0 1]. However, in the DEA framework, efficiency scores

do not generally take on values of zero. In the absence of observations for  = 0, the first

term of the log-likelihood function of the two-limit tobit model,

 = (=0) logΦ

µ
−



¶
+(01) log

1




µ
 − 



¶
+(=1) log

∙
1− Φ

µ
1− 



¶¸
,

(4)

disappears. This means that, in practice, estimation is based on a one-limit tobit model

for  ∈ ]−∞ 1]. Although the consequences of this are not usually serious, it is obvious

that the DGP that underpins this tobit model is not the one that governs the variable of

interest.

3.2 Fractional regression models

A model that avoids the problems associated with using linear and tobit models in the

DEA framework is the FRM. This model was proposed by Papke and Wooldridge (1996)

to deal with dependent variables defined on the unit interval, irrespective of whether

boundary values are observed. In fact, given that DEA scores are relative measures of

efficiency, they can be seen as the result of a normalizing DGP in which the efficiency

measures are mapped onto the interval ]0 1]; see McDonald (2009).

The FRM only requires the assumption of a functional form for  that imposes the

desired constraints on the conditional mean of the dependent variable, as follows:

 (|) =  () , (5)

where  (·) is some nonlinear function satisfying 0 ≤  (·) ≤ 1. The model defined by (5)
may be consistently estimated by QML as suggested by Papke and Wooldridge (1996).

Alternatively, nonlinear least squares or maximum likelihood estimation may be used, but

the former is less efficient than QML estimation, and the latter requires the specification

of the conditional distribution of  given  (for which the beta distribution is commonly

chosen).

Papke andWooldridge (1996) propose estimating FRMs by QML based on the Bernoulli
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log-likelihood function, which is given by

 () =  log [ ()] + (1− ) log [1− ()] . (6)

Given that the Bernoulli distribution is a member of the linear exponential family, the

QML estimator of , defined by

̂ ≡ argmax


X
=1

 () , (7)

is consistent and asymptotically normal, regardless of the true distribution of  conditional

on , provided that  (|) in (5) is indeed correctly specified (see Gourieroux, Monfort
and Trognon 1984 for details). Moreover, as Papke and Wooldridge (1996) point out,

there are cases in which this QML estimator is efficient within the class of estimators

containing all linear exponential family-based QML and weighted nonlinear least squares

estimators. The asymptotic distribution of the QML estimator is given by

√

³
̂ − 0

´
→ N (0  ) , (8)

where  = −1−1, with  =  [−∇0 ()] and  =  [∇ ()∇0 ()]. Con-

sistent estimators for  and  are given by ̂ = −1P

=1 ̂
2
 
0


h
̂

³
1− ̂

´i−1
and

̂ = −1P

=1 ̂
2
 ̂
2
 
0


h
̂

³
1− ̂

´i−2
, respectively, where ̂ ≡ 

³
̂
´
,  () =

 ()  (), ̂ ≡ 
³
̂
´
and ̂ =  − ̂.

3.2.1 Standard models

Papke and Wooldridge (1996) suggest as possible specifications for  (·) any cumula-
tive distribution function, such as those commonly used to model binary data. The

most widely used functions are undoubtedly the logit and probit functional forms, where

 () = 
¡
1 + 

¢
and  () = Φ (), respectively. However, there exist alterna-

tives such as the loglog and complementary loglog (hereafter cloglog) specifications, where

 () = 
−

and  () = 1 − −


, respectively. In all cases the partial effects are

given by
 (|)


=  () . (9)

Figure 1 illustrates the four alternative functional forms for  () referred to, as well

as the corresponding  () functions that appear in (9). While the symmetric logit and

probit models approach zero and unity at the same rate, the asymmetric cloglog (loglog)
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model increases slowly (sharply) at small values of  (·) and sharply (slowly) when  (·)
is near unity. On the other hand, the maximum partial effects produced by the symmetric

models are achieved at  (|) = 05 and are identical for values of  that yield values of
 (|) that are symmetric around that point: e.g., the effect of  on  (|) is the same
for  (|) = 005 and  (|) = 095. By contrast, in the cloglog (loglog) model, the

greatest impact of a change in  occurs on DMUs with  (|)  05 ( (|)  05).

Figure 1 about here

3.2.2 Generalized models

The models analyzed in the previous section impose a priori the condition that DMUs

with a given efficiency score (e.g., 0.5 in symmetric models), say , are the most sensitive

to changes in the explanatory variables. However, if DMUs with efficiency scores other

than  are the ones that are most sensitive to such changes, then the assumed model is

misspecified and leads to biased inferences about the marginal effect of any independent

variable. In this section, we discuss some alternative FRMs in which  is not set a priori

but is instead determined by the actual patterns observed in the data.

The new models that we propose for DEA regressions are based on two alternative

generalizations of the specifications analyzed in the previous section, both of which use an

additional parameter, , to modify the form of the response curves illustrated in Figure

1. The first generalization (generalized type I model) consists simply of raising to  any

functional form  () appropriate for dealing with fractional response variables,

 (|) =  ()

. (10)

The second generalization, based on the asymmetry of a complementary form (generalized

type II model), is given by

 (|) = 1− [1− ()]

, (11)

where   0 such that 0   (|)  1. Both generalizations reduce to  () for  = 1
and have already been considered by Ramalho, Ramalho and Murteira (2010) to derive

score tests for the adequacy of the nested functional form  (). However, these regres-

sion models have not been used to analyze fractional response variables. For binary logit

models, similar (but not identical) generalizations have already been considered; see inter
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alia Poirier (1980), Smith (1989) and Nagler (1994). For other generalizations commonly

employed with binary models, which can, however, only be applied to specific functional

forms, usually the logit, see inter alia Prentice (1976), Pregibon (1980), Aranda-Ordaz

(1981), Whitemore (1983), Stukel (1988) and Czado (1994).

The generalized models for  (|) in (10) and (11) describe a wide variety of asym-
metric patterns, giving rise to flexible regression models. The forms of asymmetry created

by the introduction of  into the functional form of  (|) are illustrated in Figure 2 (first
column) for logit models (similar patterns would be obtained for other models). Clearly,

the value of  determines the magnitude and the direction of the shift in the standard

logit curve. In particular, for both generalizations, the magnitude of the shift is larger

the farther is  from unity, with the generalization (10) ((11)) shifting the original logit

curve to the right for   1 (0    1) and to the left for 0    1 (  1), with a

more substantial impact on the left (right) tail.

Figure 2 about here

The partial effects of a unitary change in  in models (10) and (11) are now given by

 (|)


=  () ()
−1

(12)

and
 (|)


=  () [1− ()]
−1

, (13)

respectively. These partial effects are illustrated in Figure 2 (second column) for the logit

case. Again, it is clear that  governs both the magnitude and the asymmetric shape

of the curves of the partial effects. It is also clear that an infinite variety of asymmetric

shapes can be generated. Moreover, the value of  also depends on , which implies that

the greatest impact of a change in  is allowed to occur for any efficiency score. In model

(10) ((11)), when more efficient DMUs are more sensitive to changes in , the value of 

should be high (low); when less efficient DMUs are more sensitive to changes in , the

value of  should be low (high).

Despite their clear advantages in terms of flexibility, the two generalized FRMs we

propose should be used with care in applied work, particularly when estimation is based

on small samples. Indeed, the addition of the extra parameter  is expected to increase

substantially the variance of the estimates in many cases. For example, Taylor (1988)
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analyzed the two generalized binary-response regression models proposed by Aranda-

Ordaz (1981), which are also based on the incorporation of an additional parameter.

Using Monte Carlo methods, Taylor (1988) found that the cost of adding that parameter

in terms of variance inflation is 50% on average, although it can be appreciably larger

or smaller. In our empirical application, we sometimes encountered a similar problem.

Thus, particularly with small samples, we recommend using the proposed generalizations

only when all the standard specifications discussed in the previous section prove to be

inadequate.

3.3 Two-part models

All models discussed so far assume that the same environmental variables affect efficient

and inefficient DMUs in the same way. However, when the probability of observing a DEA

score of unity is relatively large, one may suspect that the sources of DMU efficiency may

differ from those of DEA inefficiency. For example, a given environmental factor may

have a significant effect on the probability of observing an efficient DMU ( = 1) but may

not explain the degree of inefficiency of DMUs for which   1.

In such a case, a two-part model should be used for modeling DEA scores. The

first part of such a model comprises a standard binary choice model that governs the

probability of observing an efficient DMU. Let  be a binary indicator that takes the

values of zero and unity for inefficient and efficient DMUs, respectively, as follows:

 =

⎧⎨⎩ 1 for  = 1

0 for 0    1.
(14)

Assume also that the conditional probability of observing an efficient DMU is

Pr ( = 1|) =  (|) =  (1 ) , (15)

where 1 is a vector of variable coefficients and  (·) is a cumulative distribution func-
tion, typically one of those discussed in section 3.2.1 for FRMs, although the generalized

specifications in (10) and (11) may also be used. Equation (15) may be estimated by

maximum likelihood using the whole sample.

The second part of the model is estimated using only the sub-sample of inefficient

DMUs and governs the magnitude of the DEA scores on the interval ]0 1[:

 (|  ∈ ]0 1[) = (2 ) , (16)
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where (·) may be any of the specifications considered for  (|) in the previous section
and 2 is another vector of coefficients.

The partial effects of a covariate  over the probability of observing an efficient DMU

and the conditional mean DEA score for an inefficient DMU are given by, respectively,

 Pr ( = 1|)


=
 (1 )


= 1 (1 ) (17)

and
 (|  ∈ ]0 1[)


=

 (2 )


= 2 (2 ) , (18)

where  (1 ) and  (2 ) are the partial derivatives of  (·) and (·) with respect to
1 and 2 , respectively. For simplicity, we assume that the same regressors appear

in both parts of the model, but this assumption can relaxed and, in fact, should be if

there are obvious exclusion restrictions.

The overall conditional mean and the partial effects of  on  can be written as

 (|) =  (|  ∈ ]0 1[) · Pr [ ∈ ]0 1[ |] + (|  = 1) · Pr ( = 1|)
=  (|  ∈ ]0 1[) · Pr [ ∈ ]0 1[ |] + Pr ( = 1|)
=  (2 ) · [1−  (1 )] +  (1 ) (19)

and

 (|)


=
 (2 )


[1−  (1 )]− (2 )

 (1 )


+

 (1 )



= 2 (2 ) [1−  (1 )] + 1 (1 ) [1− (2 )] . (20)

Thus, the total change in  can be disaggregated in two parts: (i) the change in the DEA

scores of inefficient DMUs, weighted by the probability of observing such DMUs; and (ii)

the change in the probability of observing an efficient DMU, weighted by one minus the

expected efficiency score of an inefficient DMU. This decomposition is similar to that used

by McDonald and Moffitt (1980) for the tobit model but does not constrain 1 and 2

to be identical or require  (·) and  (·) to be based on normal distribution functions.
To illustrate the rich variety of partial effects that may be produced by two-part

models, we consider in Figure 3 some specific cases. Given that the partial effects (20)

may be expressed as a function of both Pr ( = 1|) and  (|  ∈ ]0 1[), in Figure
3, we set the former at 0.2 or 0.8 and examine how the partial effects change as the

latter increases from zero to unity. Of the many potential two-part models that can be
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constructed, in Figure 3, we consider only eight variants, all of which use a logit model in

the first or second part of the model. As a reference, we also consider the one-part logit

model. Figure 3 clearly illustrates that one can obtain results that differ substantially

from those from the simple logit model.

Figure 3 about here

The two-part model considered by Hoff (2007), termed the unit inflated beta model,

is much more restrictive than the one we propose. Indeed, Hoff (2007) assumes a logit

specification for Pr ( = 1|) in (15), whereas we allow for many other alternative speci-
fications, the adequacy of each of which is easily tested. Moreover, Hoff (2007) also uses

a logit specification for  (|  ∈ ]0 1[) and assumes a beta distribution for the DEA
scores of inefficient DMUs. By contrast, in our model, we need only specify the condi-

tional mean DEA score, for which we also consider many alternative (and easily testable)

functional forms.

4 Specification tests

As our exposition suggests, the main practical difference between the alternative one-part

and two-part regression models discussed in the previous section relates to the functional

form assumed for  (|): see (5), (10), (11) and (19). In fact, for any of those regression
models, correctly formalizing  (|) is critical for consistent estimation of the parameters
of interest. However, despite the availability of a number of tests that can be used

for testing conditional mean assumptions, such tests have not been applied in empirical

studies on second-stage DEA.

The correct specification of the functional form of the conditional mean (|) requires
that a correct model must be specified for  () and for both  (1 ) and  (2 )

in the one- and two-part models, respectively. Moreover, the data must be governed by

the one-part or two-part mechanisms assumed. The reason for this is that even if the

covariates of the first and second parts of the model coincide, in general, one-part models

are not appropriate for data governed by two-part models, and vice versa. Therefore, in

this section, we discuss general tests to assess these two aspects.

One way of assessing whether the specification of  (|) is correct is to use tests ap-
propriate for detecting general functional form misspecifications, such as the well-known
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RESET test. Indeed, using standard approximation results for polynomials, it can be

shown that any index model of the form  (|) =  () can be arbitrarily approxi-

mated by 
³
 +

P

=1  ()
+1
´
if  is sufficiently large; see Pagan and Vella (1989).

Therefore, testing the hypothesis  (|) =  () is equivalent to testing  = 0 in the

augmented model  (| ) =  ( + ), where  =

∙³
̂
´2

 
³
̂
´+1¸

. The first

few terms in the expansion are the most important, and, in practice, only the quadratic

and cubic terms are usually considered. Note that the RESET test cannot be directly

applied to assess (19), the functional form assumed for two-part models. Instead, it has

to be separately applied to their two components, given by (15) and (16).

Alternatively, because all competing specifications for  (|) are non-nested, we may
apply standard tests for non-nested hypotheses, where the alternative competing specifi-

cations for  (|) are tested against each other. An example of this type of test is the 
test proposed by Davidson and MacKinnon (1981), which is probably the simplest way of

comparing nonlinear regression models; see inter alia Gourieroux and Monfort (1994) for

other alternatives. To our knowledge, the  test has not been applied either in empirical

DEA studies or for choosing between linear, tobit and FRMs; however, Ramalho, Ra-

malho and Murteira (2010) use the  test for discriminating between alternative one-part

and two-part FRMs.

Suppose that () and  () are competing functional forms for  (|). As shown
by Davidson and MacKinnon (1981), testing 0 :  () against 1 :  () (i.e., check-

ing whether () is an appropriate specification for  (|) after taking into account the
information provided by the alternative model) is equivalent to testing the null hypothesis

0 : 2 = 0 in the following auxiliary regression:³
 − ̂

´
= ̂1 + 2

³
̂ − ̂

´
+ , (21)

where  =  ()  (), 2 is a scalar parameter and ·̂ denotes evaluation at the
estimators ̂ or ̂, obtained by separately estimating the models defined by  (·) and
 (·), respectively. To test 0 :  () against 1 :  (), we need to use another

 statistic, which is calculated using a similar auxiliary regression to (21) but with the

roles of the two models interchanged. As is standard with tests of non-nested hypotheses,

three outcomes are possible: one may reject one model and accept the other, accept both

models or reject both.

The  test based on (21) may be used for choosing between: (i) various possible
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specifications for one-part models, i.e., those given in (1), (2), (5), (10) and (11); (ii) one-

part and two-part models, i.e., (1), (2), (5), (10) or (11) versus (19); and (iii) alternative

specifications for two-part models, i.e., (19). In addition,  () and  ()may represent

alternative functional forms for Pr ( = 1|) or  (|  ∈ [0 1[), in which case, the 
test may be used to select between competing specifications for the first or the second

component of a two-part model, respectively.

One may also apply the GOFF-I and GOFF-II tests proposed by Ramalho, Ramalho

and Murteira (2010) to determine, respectively, whether the Type I or Type II gener-

alizations are indeed necessary or, instead, the corresponding simpler standard FRM is

adequate. Moreover, as the conditional variance of  is in general a function of its con-

ditional mean, because the former must change as the latter approaches either boundary,

heteroskedasticity-robust versions must be computed in all cases. In the empirical appli-

cation that follows, we compute robust LM versions of all tests, which have the advantage

of not requiring the estimation of any alternative model; see Papke and Wooldridge (1996)

and Ramalho, Ramalho and Murteira (2010) for details of the computation of those sta-

tistics. Robust Wald statistics may also be easily obtained using statistical packages such

as Stata.

5 Empirical application

In this section, we apply the techniques described so far to the regression analysis of DEA

efficiency scores of Portuguese farms. First, we provide a brief description of the data used

in the analysis. Then, we illustrate the usefulness of the specification tests discussed in

Section 4 for selecting appropriate regression models for DEA scores. Finally, we compare

the regression results of linear, tobit and some FRMs in the following respects: (i) the

significance and sign of the estimated parameters of interest; (ii) the magnitude of the

partial effects; and (iii) the prediction of DEA efficiency scores.

5.1 Data

The data set used in this study is based on individual farm account records collected

by the Portuguese Ministry of Agriculture for the year 2004. Our sample comprises a

total of 266 farms located in the Portuguese region of Alentejo. In the first stage of DEA
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analysis, we considered a single output, performed an input-oriented study and assumed

variable returns to scale and weak free disposability of inputs. For each farm, output was

measured as the gross value of production and for inputs we considered two classes of

capital, two categories of labor and two categories of land.

According to this DEA analysis, 117 (44%) of the sampled farms produced on the

efficiency frontier, which makes this case study particularly relevant for comparing the

alternative second-stage DEA models discussed in this paper. The average DEA score

is 0.781, and the quartiles of its distribution are 0.585, 0.867 and 1. The lowest score is

0.213.

In the illustrative second stage of DEA analysis that follows, the efficiency scores were

related to the following factors: land ownership, farm specialization, economic size, farm

subsidies and geographical location. Land ownership is represented by a dummy variable,

LANDLORD, which takes the value of unity if the farmer owns the land and 0 otherwise.

Farm specialization is represented by two dummy variables, LIVESTOCK and CROP,

which take the value of unity if the farm specializes in livestock or crops, respectively, and

zero otherwise. Size (SIZE) is measured as the farm’s volume of sales. Farm subsidies

(SUBSIDIES) are measured as the proportion of subsidies in the farm’s total revenue. In

addition, because Alentejo is usually divided into four Nut III regions - Alto Alentejo,

Alentejo Central, Baixo Alentejo and Alentejo Litoral - we used the dummy variables

ALTO, CENTRAL and BAIXO, which take the value of unity if the farm is located in

the corresponding region and zero otherwise. These factors were used as explanatory

variables in all regression models, including the two components of the two-part models.

5.2 Model selection

For the second stage of the DEA analysis, we have available a large set of alternative

specifications: traditional models (linear and tobit), one-part standard and generalized

FRMs, which may be based on logit, probit, loglog or cloglog functional forms, and two-

part models that, in each part, use any of the previous (standard or generalized) functional

forms (plus a linear one in the second part). Given the large set of models that can be

estimated, for the one-part models and for the two components of the two-part models,

we start our empirical analysis by applying to each alternative formalization the following

tests: the RESET test (based on one fitted power of the response index); the  test,
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considering, one by one, all the other possible specifications as the alternative hypothesis;

and, when applicable, Ramalho, Ramalho and Murteira’s (2010) GOFF-I and GOFF-II

tests.

Table 1 summarizes the results obtained for the one-part models. These results clearly

indicate that only a few specifications are admissible. Indeed, only the cloglog model and

its type I generalization are never rejected at the 10% level. Moreover, almost all of the

other specifications are rejected when the  test uses one of the acceptable models as the

alternative hypothesis. Given that the GOFF-I test does not reject the correct specifi-

cation of the standard cloglog model and given that the size of our sample is relatively

small, we select the cloglog model as the most suitable one-part model. In fact, given that

the distribution of efficiency scores in our example is clearly asymmetric and given that

the number of one outcomes is large, a cloglog functional form would be our preferred

choice of one-part model.

Table 1 about here

As shown in Table 2, we choose also a cloglog specification for explaining the prob-

ability of a farm producing on the efficiency frontier. In contrast, as Table 3 shows,

all tests fail to reject any of the 13 models estimated for the second component of the

two-part models, including the linear model. This suggests that the main issue in the

regression analysis of DEA scores is not so much their bounded nature as the existence of

a mass-point at unity in their distribution. Because the GOFF tests do not reject any of

the simpler functional forms, we proceed by considering five alternative two-part models,

which use a cloglog specification in the first part and a linear, logit, probit, loglog or

cloglog model in the second part.

Table 2 about here

Table 3 about here

We also applied versions of the  test that enable testing of the selected cloglog one-

part model against the full specification of the five selected two-part models, and vice

versa, and testing of the selected full specification of the two-part models, with each

being tested against the others. In no case were we able to reject any of the tested

specifications.2

2Full results are available from the authors on request.
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5.3 Regression results

In Table 4, we report the estimation results obtained from the selected models and com-

pare them with those from the linear, tobit and the most commonly used FRM, the logit

model. For each explanatory variable, we report the value of the associated estimated

coefficient and its standard error. For each model, we report also the percentage of pre-

dictions outside the unit interval and the 2, which was calculated as the square of the

correlation between the actual and predicted efficiency scores and, thus, is comparable

across models and over estimation methods.

Table 4 about here

Although most of the 2 values are similar, they provide further evidence that the

selected models fit the data at least as well as the competing models. Indeed, the highest

2s among the one-part models and the first component of the two-part models are for

the selected cloglog models. On the other hand, the 2s of the alternative specifications

considered for the second stage of the two-part models are virtually identical, which further

confirms that when farms on the frontier are excluded from the regression analysis, most

functional forms are in general adequate for modeling DEA scores. However, note that

even in this case, for a few cases, the linear model yields predicted outcomes that exceed

unity.

The first striking point to emerge from the analysis of the regression coefficients dis-

played in Table 4 is that while all estimators produce the same conclusions in terms of

their sign and significance in the two-part models, the same does not happen with one-

part models. Indeed, in the latter case, there are some explanatory variables that have

significant coefficients in some models but not in others. Note in particular the clear

differences between the tobit and the selected cloglog models: there are three (one) coef-

ficients that are significant at the 10% level in the tobit (cloglog) model but not in the

cloglog (tobit). Again, these differences seem to be a consequence of the difficulty that

most one-part models have in dealing with a large proportion of DMUs taking the value

of unity.

Another interesting point is that the number of significant coefficients is much larger

in the two-part models. That is, analyzing separately, first, why some farms are on the

efficiency frontier and others are not, and, second, the distance to the frontier of the
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inefficient farms, seems to be a better way of uncovering the real effect of each covariate

on the DEA score. An example is the case of the variable LIVESTOCK. According to the

one-part models, specializing in livestock does not significantly affect a farm’s efficiency.

However, the two-part models show clearly that farms specializing in livestock or crops

are more likely to be on the efficiency frontier. On the other hand, in the sub-sample of

only inefficient farms, specializing in livestock lowers the DEA score.

In Table 5, we report for each model the partial effects estimated for each covariate,

which were calculated as the mean of the partial effects computed for each farm in the

sample. These results confirm that the functional form chosen for the second stage of the

two-part models hardly affects the results. By contrast, choosing the wrong model for the

first stage may seriously bias the estimation of the partial effects. For example, if instead

of using the cloglog model selected by the specification tests, we had decided to use the

commonly adopted logit model, the bias is over 10% for several covariates (LANDLORD,

SIZE, SUBSIDIES and ALTO), assuming that the cloglog is indeed the correct model.

On the other hand, in the one-part models, the differences between the various alterna-

tive specifications may be substantial. For example, among the linear, tobit and logit

regression coefficients, the maximum differences relative to the coefficients of the selected

cloglog model are 42% (SIZE), 52% (LIVESTOCK) and 41% (SUBSIDIES), respectively.

A comparison of the partial effects implied by the one- and two-part models suggests that

even the models selected by the specification tests may generate very different results.

Table 5 about here

In Figure 4, for specific models, we report partial effects and predicted DEA scores

as a function of SIZE, with the other covariates set at their mean values (SUBSIDIES)

or at their modes (the dummy variables). In this representation, for SIZE, we consider

1000 equally spaced values between the 0.01 and 0.99 quantiles of its sample distribution.

The first graph of Figure 4 clearly illustrates that linearity, which is assumed in many

existing second-stage DEA analyses and which implies constant partial effects, may pro-

vide conclusions that differ substantially from those implied by the models selected by

the specification tests (and, in fact, from all the other non-linear specifications considered

in this paper). Indeed, all the other models indicate that the effect of SIZE on the farm’s

efficiency is much larger for smaller farms. Regarding the prediction of DEA scores, which

is useful, for example, for computing the extent of managerial inefficiency not caused by
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external factors (e.g. Ray, 1991), the differences between the various competing models

are not major. Note, however, that both the tobit model and particularly the linear model

underestimate the efficiency scores for most values of SIZE.

Figure 4 about here

6 Concluding remarks

In this paper, we considered various alternative approaches to second-stage DEA regres-

sions. We argued that the DGP that governs DEA scores is not appropriately represented

by linear or tobit regression models, which are the standard approaches to second-stage

DEA analysis. We have shown that, instead, using FRMs are the most natural way of

modeling bounded, proportional response variables such as DEA scores. Because some

DEA scores are unity, we discussed both one- and two-part FRMs. Tests for assessing the

correct specification of each alternative model were also reviewed.

In our empirical example, we found that the main issue in the regression analysis of

DEA scores is not so much their bounded nature as the existence of a mass point at

unity in their distribution. Therefore, two-part models may be useful in this framework,

particularly when the percentage of unity values is large. We found important differences

between the FRMs selected by the specifications tests and the linear, tobit and other

FRMs, particularly in terms of the magnitudes of the partial effects generated by each

competing model. Given the variety of FRMs that can be constructed, functional form

tests suited to selecting the most adequate model should be routinely applied in second-

stage DEA analysis.

In this paper we made the crucial assumption, common in the existing literature, that

DEA scores are descriptive measures of the relative performance of DMUs. As discussed

in Section 2, particularly since the publication of the seminal paper by Simar and Wilson

(2007), some researchers have criticized this approach on the grounds that DEA scores

should be viewed as estimates rather than actual observations and that second-stage DEA

analyses should take this into account. Therefore, our paper could be usefully extended by

applying our proposed estimating and testing procedures to the ‘conventionalist’ approach.

Such an extension would have to deal with two main issues.

First, it must be shown that using estimated DEA scores (̂) rather than observed DEA
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scores () does not generate inconsistent parameter estimation. Given that ̂ converges

to , albeit at a slow rate, one might expect consistency to be maintained, provided that

an appropriate set of assumptions (such as a separability condition of the type assumed

by Simar and Wilson 2007) is made. However, because ̂ is a biased estimator of , in

small samples, the estimators produced by our methods for the second-stage regression

parameters will also be biased. However, this small-sample bias seems to be a common

feature of all the estimators proposed in the DEA literature.

The second issue that any extension of our methodology to the conventionalist ap-

proach has to deal with is how to make inferences about the regression parameters. Indeed,

the standard errors and test statistics obtained from standard procedures are generally

invalid because they ignore the sampling variability in ̂. Given that deriving the asymp-

totic distribution of the estimators of the second-stage regression parameters would be a

formidable task (neither Simar and Wilson 2007 nor Banker and Natarajan 2008 did so

for their models), bootstrap procedures similar to those proposed by Simar and Wilson

(2007) seem to be the only feasible way to make valid inference in this framework. In or-

der to implement (adaptations of) their parametric bootstraps, additional distributional

assumptions are required. For example, for one-part models, we may assume that DEA

scores have a beta or a simplex distribution with mean given by our (5), (10) or (11),

which would replace assumptions A2 and A3 of Simar and Wilson (2007); see Ramalho,

Ramalho and Murteira (2010) for details of these distributions. Under these additional

assumptions, both of the bootstrap methods suggested by Simar and Wilson (2007), with

the necessary adaptations, could be straightforwardly applied in our framework. For two-

part models, one could proceed similarly, assuming that one of the distributions suggested

above is applied to the DEA scores in the second part of the model. In all cases, given the

additional distributional assumptions made, one would have to apply additional specifi-

cation tests, such as the information matrix tests referred to by Ramalho, Ramalho and

Murteira (2010).
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Table 1: Specification tests for one-part models (p-values)

Linear Tobit FRM GFRM -I GFRM -II

Logit Probit Loglog C loglog Logit P robit Loglog C loglog Logit Probit Loglog C loglog

RESET test 0.686 0.065
∗

0.048
∗∗

0.066
∗

0.045
∗∗

0.148 0.693 0.266 0.059
∗

0.738 0.219 0.025
∗∗

0.528 0.143

GOFF-I test – – 0.043
∗∗

0.070
∗

– 0.149 – – – – – – – –

GOFF-II test – – 0.050
∗∗

0.062
∗

0.033
∗∗

– – – – – – – – –

P test

H1: L inear – 0.151 0.147 0.377 0.072
∗

0.778 0.029
∗∗

0.379 0.089
∗

0.818 0.529 0.079
∗

0.009
∗∗∗

0.693

H1: Tob it 0 .492 – 0.038
∗∗

0.142 0.009
∗∗∗

0.132 0.050
∗∗

0.656 0.017
∗∗

0.747 0.216 0.005
∗∗∗

0.002
∗∗∗

0.129

H1: FRM -Logit 0 .297 0.112 – 0.157 0.014
∗∗

0.280 0.010
∗∗∗

0.135 0.021
∗∗

0.398 0.087
∗

0.187 0.006
∗∗∗

0.225

H1: FRM -Probit 0 .264 0.055
∗

0.069
∗

– 0.014
∗∗

0.198 0.010
∗∗∗

0.187 0.023
∗∗

0.242 0.094
∗

0.667 0.003
∗∗∗

0.169

H1: FRM -Loglog 0.306 0.110 0.058
∗

0.138 – 0.426 0.013
∗∗

0.072
∗

0.380 0.318 0.066
∗

0.023
∗∗

0.061
∗

0.319

H1: FRM -C loglog 0.064
∗

0.075
∗

0.029
∗∗

0.048
∗∗

0.009
∗∗∗

– 0.010
∗∗∗

0.374 0.012
∗∗

0.771 0.493 0.008
∗∗∗

0.001
∗∗∗

0.077
∗

H1: GFRM -I-Logit 0 .059
∗

0.044
∗∗

0.028
∗∗

0.045
∗∗

0.009
∗∗∗

0.201 – 0.492 0.011
∗∗

0.851 0.102 0.013
∗∗

0.000
∗∗∗

0.174

H1: GFRM -I-P robit 0 .777 0.431 0.373 0.430 0.657 0.652 0.143 – 0.736 0.944 0.031
∗∗

0.013
∗∗

0.001
∗∗∗

0.507

H1: GFRM -I-Loglog 0.306 0.110 0.058
∗

0.138 0.434 0.426 0.013
∗∗

0.072
∗

– 0.318 0.066
∗

0.023
∗∗

0.061
∗

0.319

H1: GFRM -I-C loglog 0.009
∗∗∗

0.062
∗

0.025
∗∗

0.041
∗∗

0.007
∗∗∗

0.130 0.007
∗∗∗

0.454 0.010
∗∗∗

– 0.156 0.006
∗∗∗

0.000
∗∗∗

0.121

H1: GFRM -II-Logit 0 .320 0.141 0.055
∗

0.140 0.015
∗∗

0.221 0.400 0.624 0.019
∗∗

0.450 – 0.023
∗∗

0.000
∗∗∗

0.179

H1: GFRM -II-P robit 0 .319 0.455 0.047
∗∗

0.417 0.011
∗∗

0.204 0.017
∗∗

0.273 0.016
∗∗

0.563 0.087
∗

– 0.002
∗∗∗

0.157

H1: GFRM -II-Loglog 0.102 0.563 0.253 0.481 0.120 0.958 0.107 0.042
∗∗

0.246 0.755 0.335 0.009
∗∗∗

– 0.831

H1: GFRM -II-C loglog 0.064
∗

0.075
∗

0.029
∗∗

0.048
∗∗

0.009
∗∗∗

0.404 0.010
∗∗∗

0.374 0.012
∗∗

0.771 0.493 0.008
∗∗∗

0.001
∗∗∗

–

Note: ∗∗∗, ∗∗ and ∗ denote test statistics which are significant at 1%, 5% or 10%, respectively; FRM = Fractional regression model;
GFRM-I = Generalized FRM - type I; GFRM-II = Generalized FRM - type II.
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Table 2: Specification tests for the first component of two-part models (p-values)

FRM GFRM-I GFRM-II
Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

RESET test 0.145 0.326 0.397 0.105 0.034∗∗ 0.046∗∗ 0.408 0.036∗∗ 0.000∗∗∗ 0.186 0.054∗∗ 0.024∗∗
GOFF-I test 0.102 0.410 – 0.251 – – – – – – – –

GOFF-II test 0.299 0.256 0.365 – – – – – – – – –
P test

H1: FRM-Logit – 0.067∗ 0.014∗∗ 0.849 0.003∗∗∗ 0.032∗∗ 0.020∗∗ 0.039∗∗ 0.012∗∗ 0.137 0.003∗∗∗ 0.629

H1: FRM-Probit 0.931 – 0.125 0.964 0.004∗∗∗ 0.037∗∗ 0.161 0.039∗∗ 0.023∗∗ 0.150 0.033∗∗ 0.626
H1: FRM-Loglog 0.432 0.830 – 0.657 0.003∗∗∗ 0.013∗∗ 0.791 0.039∗∗ 0.002∗∗∗ 0.716 0.000∗∗∗ 0.683

H1: FRM-Cloglog 0.182 0.024∗∗ 0.011∗∗ – 0.005∗∗∗ 0.016∗∗ 0.015∗∗ 0.039∗∗ 0.002∗∗∗ 0.018∗∗ 0.002∗∗∗ 0.709
H1: GFRM-I-Logit 0.057∗ 0.013∗∗ 0.005∗∗∗ 0.132 – 0.031∗∗ 0.007∗∗∗ 0.039∗∗ 0.000∗∗∗ 0.009∗∗∗ 0.001∗∗∗ 0.053∗∗
H1: GFRM-I-Probit 0.812 0.398 0.113 0.988 0.004∗∗∗ – 0.145 0.039∗∗ 0.019∗∗ 0.463 0.030∗∗ 0.547

H1: GFRM-I-Loglog 0.432 0.830 0.726 0.657 0.003∗∗∗ 0.013∗∗ – 0.039∗∗ 0.002∗∗∗ 0.716 0.000∗∗∗ 0.683
H1: GFRM-I-Cloglog 0.070∗ 0.019∗∗ 0.006∗∗∗ 0.227 0.009∗∗∗ 0.036∗∗ 0.008∗∗∗ – 0.000∗∗∗ 0.013∗∗ 0.001∗∗∗ 0.095∗
H1: GFRM-II-Logit 0.344 0.998 0.002∗∗∗ 0.884 0.013∗∗ 0.044∗∗ 0.003∗∗ 0.039∗∗ – 0.749 0.000∗∗∗ 0.692

H1: GFRM-II-Probit 0.634 0.154 0.082∗ 0.872 0.004∗∗∗ 0.037∗∗ 0.114 0.039∗∗ 0.025∗∗ – 0.026∗∗ 0.532
H1: GFRM-II-Loglog 0.278 0.444 0.012∗∗ 0.842 0.010∗∗∗ 0.046∗∗ 0.021∗∗ 0.039∗∗ 0.017∗∗ 0.366 – 0.649

H1: GFRM-II-Cloglog 0.182 0.024∗∗ 0.011∗∗ 0.139 0.005∗∗∗ 0.016∗∗ 0.015∗∗ 0.039∗∗ 0.002∗∗∗ 0.018∗∗ 0.002∗∗∗ –

Notes: ∗∗∗, ∗∗ and ∗ denote test statistics which are significant at 1%, 5% or 10%, respectively; FRM = Fractional regression model;

GFRM-I = Generalized FRM - type I; GFRM-II = Generalized FRM - type II.
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Table 3: Specification tests for the second component of two-part models (p-values)

Linear FRM GFRM-I GFRM-II

Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

RESET test 0.593 0.736 0.705 0.924 0.516 0.960 0.516 0.821 0.392 0.913 0.718 0.930 0.523

GOFF-I test – 0.819 0.676 – 0.502 – – – – – – – –

GOFF-II test – 0.708 0.746 0.984 – – – – – – – – –
P test

H1: FRM-Linear – 0.423 0.402 0.698 0.337 0.414 0.593 0.666 0.335 0.699 0.386 0.640 0.326
H1: FRM-Logit 0.358 – 0.421 0.886 0.439 0.292 0.273 0.955 0.441 0.896 0.468 0.882 0.444

H1: FRM-Probit 0.372 0.460 – 0.988 0.485 0.381 0.358 0.920 0.499 0.989 0.747 0.956 0.491

H1: FRM-Loglog 0.437 0.818 0.663 – 0.444 0.983 0.326 0.258 0.432 0.263 0.671 0.952 0.450
H1: FRM-Cloglog 0.347 0.710 0.729 0.997 – 0.692 0.901 0.946 0.876 0.936 0.731 0.973 0.193

H1: GFRM-I-Logit 0.703 0.447 0.990 0.988 0.669 – 0.876 0.907 0.730 0.721 0.871 0.928 0.661
H1: GFRM-I-Probit 0.284 0.611 0.758 0.892 0.585 0.446 – 0.955 0.575 0.788 0.842 0.897 0.584

H1: GFRM-I-Loglog 0.437 0.818 0.663 0.443 0.444 0.983 0.326 – 0.432 0.263 0.671 0.952 0.450

H1: GFRM-I-Cloglog 0.374 0.334 0.363 0.604 0.112 0.183 0.983 0.630 – 0.446 0.320 0.509 0.112
H1: GFRM-II-Logit 0.404 0.709 0.586 0.205 0.420 0.890 0.295 0.189 0.407 – 0.598 0.521 0.426

H1: GFRM-II-Probit 0.365 0.504 0.744 0.992 0.486 0.424 0.374 0.924 0.502 0.981 – 0.960 0.492
H1: GFRM-II-Loglog 0.430 0.865 0.669 0.986 0.453 0.863 0.324 0.906 0.444 0.660 0.677 – 0.459

H1: GFRM-II-Cloglog 0.347 0.710 0.729 0.997 0.890 0.692 0.901 0.946 0.876 0.936 0.731 0.973 –

Notes: ∗∗∗, ∗∗ and ∗ denote test statistics which are significant at 1%, 5% or 10%, respectively; FRM = Fractional regression model;

GFRM-I = Generalized FRM - type I; GFRM-II = Generalized FRM - type II.
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Table 4: Estimation results for linear, tobit, logit and selected fractional regression models

One-part models Two-part models

1st part 2nd part
Linear Tobit Logit Cloglog Logit Cloglog Linear Logit Probit Loglog Cloglog

LANDLORD 0.032 0.080 0.242 0.110 0.540 0.350 -0.028 -0.115 -0.073 -0.076 -0.086
(0.033) (0.056) (0.205) (0.104) (0.299) (0.216) (0.032) (0.139) (0.086) (0.108) (0.090)

LIVESTOCK 0.054 0.128∗ 0.317 0.157 1.149∗∗ 0.856∗∗ -0.088∗∗ -0.365∗∗ -0.224∗∗ -0.284∗∗ -0.232∗∗
(0.041) (0.070) (0.218) (0.121) (0.422) (0.345) (0.036) (0.152) (0.094) (0.117) (0.100)

CROP 0.071∗ 0.130∗ 0.457∗∗ 0.201 0.823∗ 0.626∗ -0.002 -0.001 0.000 -0.003 0.002

(0.041) (0.069) (0.228) (0.124) (0.420) (0.347) (0.038) (0.166) (0.102) (0.132) (0.104)
SIZE 0.405∗∗∗ 1.130∗∗∗ 4.737∗∗∗ 2.213∗∗∗ 4.255∗∗ 2.701∗∗ 0.654∗∗∗ 2.898∗∗∗ 1.782∗∗∗ 2.310∗∗∗ 1.822∗∗∗

(0.096) (0.357) (1.217) (0.512) (1.776) (1.077) (0.204) (0.969) (0.585) (0.800) (0.572)
SUBSIDIES -0.094 -0.163∗∗ -0.451 -0.400 -0.831∗ -0.792∗ -0.123∗∗ -0.509∗∗ -0.314∗∗ -0.370∗ -0.341∗∗

(0.083) (0.080) (0.451) (0.271) (0.534) (0.417) (0.060) (0.257) (0.158) (0.192) (0.171)

ALTO -0.043 -0.040 -0.278 -0.126 0.162 0.104 -0.096∗∗ -0.416∗∗ -0.255∗∗ -0.338∗∗ -0.258∗∗
(0.037) (0.071) (0.241) (0.120) (0.382) (0.281) (0.039) (0.172) (0.106) (0.138) (0.107)

CENTRAL -0.081∗ -0.101 -0.527∗ -0.251∗ -0.102∗ -0.058∗ -0.136∗∗∗ -0.589∗∗∗ -0.361∗∗∗ -0.464∗∗∗ -0.371∗∗∗
(0.045) (0.081) (0.285) (0.146) (0.435) (0.319) (0.045) (0.200) (0.123) (0.159) (0.126)

BAIXO -0.057 -0.091 -0.419 -0.188 -0.211 -0.184 -0.078∗ -0.349∗ -0.211∗ -0.288∗ -0.206∗
(0.040) (0.072) (0.259) (0.132) (0.398) (0.300) (0.040) (0.182) (0.111) (0.147) (0.112)

 /  – 0.360∗∗∗ – – – –

(0.023)

CONSTANT 0.775∗∗∗ 0.820∗∗∗ 1.117∗∗∗ 0.415∗∗∗ -1.150∗∗∗ -1.129∗∗∗ 0.744∗∗∗ 1.021∗∗∗ 0.630∗∗∗ 1.152∗∗∗ 0.300∗∗
(0.060) (0.088) (0.339) (0.189) (0.532) (0.423) (0.053) (0.236) (0.144) (0.186) (0.149)

Number of observations 266 266 266 266 266 266 149 149 149 149 149

R2 0.085 0.080 0.086 0.091 0.101 0.105 0.183 0.185 0.185 0.185 0.184

% of predictions outside
the unit interval 1.1 – – – – – 1.3 – – – –

Notes: below the coefficients we report standard errors in parentheses; ∗∗∗, ∗∗ and ∗ denote coefficients which are significant at 1%, 5% or 10%, respectively.
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Table 5: Sample averages of partial effects

One-part models Two-part models

Logit (1st part) + Cloglog (1st part) +

Linear Tobit Logit Cloglog Linear Logit Probit Loglog Cloglog Linear Logit Probit Loglog Cloglog

LANDLORD 0.032 0.047 0.040 0.035 0.062 0.062 0.062 0.064 0.061 0.052 0.053 0.053 0.055 0.051
LIVESTOCK 0.054 0.076 0.052 0.050 0.119 0.121 0.121 0.121 0.121 0.119 0.121 0.121 0.122 0.122

CROP 0.071 0.077 0.076 0.064 0.112 0.112 0.112 0.112 0.113 0.115 0.115 0.115 0.115 0.116

SIZE 0.405 0.671 0.785 0.702 0.869 0.869 0.868 0.873 0.863 0.785 0.785 0.784 0.789 0.780
SUBSIDIES -0.094 -0.097 -0.075 -0.127 -0.168 -0.164 -0.164 -0.160 -0.166 -0.200 -0.196 -0.196 -0.192 -0.199

ALTO -0.043 -0.024 -0.046 -0.040 -0.020 -0.019 -0.019 -0.020 -0.018 -0.023 -0.022 -0.022 -0.024 -0.021

CENTRAL -0.081 -0.060 -0.087 -0.080 -0.074 -0.072 -0.072 -0.073 -0.071 -0.071 -0.069 -0.069 -0.069 -0.068
BAIXO -0.057 -0.054 -0.069 -0.060 -0.063 -0.063 -0.063 -0.065 -0.061 -0.068 -0.068 -0.068 -0.070 -0.066
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Figure 1: Standard fractional regression models
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Figure 2: Generalized logit fractional regression models
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Figure 3: Partial effects for two−part models
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Figure 4: Predicted partial effects and efficiency scores as a function of the SIZE variable


