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Captur ing Preference Heterogeneity in Stated Choice Models: A Random Parameter  Logit 
Model of the demand for  GM Food. 

 
 
 

 

 

 

Abstract:   

 

Analyses of data from random utility models of choice data have typically used fixed 
parameter representations, with consumer heterogeneity introduced by including factors 
such as the age, gender etc of the respondent.  However, there is a class of models that 
assume that the underlying parameters of the estimated model (and hence preferences) 
are different for each individual within the sample, and that choices can be explained by 
identifying the parameters of the distribution from which they are drawn.  Such a 
random parameter model is applied to stated choice data from the UK, and the results 
compared with standard fixed parameter models.  The results provide new evidence of 
preferences for various aspects of the UK food system, particularly in relation to GM 
food but other environmental and technical aspects also. Indications of how random 
parameter models might be developed further are discussed on the basis of these results. 

 

Keywords:  random parameter logit; choice modelling; GMOs; food safety;  

 

 

1. Introduction. 

 

The assumption that preferences are homogenous has been a cornerstone of empirical analysis 

within demand and valuation studies. For the analysis to be tractable one has typically had to 

assume that, at some level, agents have the same utility function, that the parameters of that 

function are common across individuals, and typically any heterogeneity is reduced to the 

residual, rationalized as the individual components that are not represented by the specified 

function.  Where heterogeneity is considered, it is usually through the inclusion of individual 

specific variables such as age, gender, etc which act to modify the values of the parameters of the 

utility function.  For example, household characteristics are employed in studies of demand 

(Deaton, 1997); individual experience is used to modify recreational choice (McConnell et al. 
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1995); gender is used to modify preference functions over the environment (Bennett and Blamey, 

2001). 

 

In the random utility model (RUM) commonly used to explain agents’  choices across discrete 

outcomes, the random error term takes on an increased significance. It is the presence of this 

individual heterogeneity which accounts for different individuals making different choices when 

faced with the same choice sets.  Applications of the RUM have a widespread application in the 

analysis of revealed preference data (e.g. recreational demand choices over locations; travellers’  

choices over transport types) and also contingent data derived from survey (e.g. on environmental 

values, potential product purchasing etc).  Similarly, within this structure, heterogeneity of 

preferences can be explicitly modelled by using individual characteristics as determinants of 

marginal values for attributes of the choices. 

 

However, there are alternative specifications of the RUM that approach individual heterogeneity 

from a different perspective.  The random parameter framework assumes  that the functional form 

and arguments of utility are common across individuals within the sample, but the parameters 

vary across individuals.  The use of the random parameter model approach brings with it a 

number of advantages, but also some issues of interpretation and application.  The intent of this 

paper is to present an application of a random parameter model to a choice modelling data set that 

has been used elsewhere to explore the preferences for food characteristics and compare it with 

the results obtained from the fixed parameter approach.  It also gives some indications of the 

limitations of some of the distributional assumptions used, and areas for further development of 

the technique. 

 

 

 

2. RUM and conditional logit models 

 

Assume that the utility gained by individual n from some option j is given by a linear function of 

the attributes of j: 

 

       (1) 
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where there are k attributes.  Formally, if presented with 2 options (such as the simple version in 

Table 1)  the respondent will choose Option 1 if U1>U2.  The task of the statistical analysis is 

then to identify estimates of the parameters (β) so that the predicted choices, made on the basis of 

a comparison of the utilities predicted for each option using equation (1), match as closely as 

possible the actual choices revealed in the survey.  

 

The model is implemented by choosing a particular distribution of disturbances.  If it is assumed 

that the disturbances are independent and identically distributed, with a Gumbal distribution 

(Greene, 1997): 

F(ε) = exp(-exp(u))        (2) 

 

(where  u is normally distributed) then one has a conditional logit model.  The probability of 

choosing option i from J options is expressed as: 
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It is important to note that individual heterogeneity can be incorporated in such a model to 

explain choices, but it has to be done in a particular way.   Since personal characteristics are 

constant over all choices made by an individual they have no impact on the choices made if they 

enter the utility function linearly.  However, personal characteristics can be included in the 

analysis, if they affect the way that attributes contribute to utility, hence such characteristics are 

introduced as modifiers to the parameter on the attribute levels so that the 
�
's become a function 

of individual characteristics. 

 

In the context of the application presented below, an important aspect of the interpretation of the 

outcomes from choice modelling results is the notion of a ‘partworth’ .  As is more fully 

explained in Section 3, the choice modelling approach presents respondents with a series (usually 

3) options, each of which is defined by common attributes but with differing levels.  It is usual to 

have as one of the attributes a payment vehicle, for example the price of a recreation trip or the 
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cost of the product. It is these attributes levels (interacting with personal characteristics) that 

determine the choices made.  Estimates are therefore derived for the impact marginal changes in 

attribute levels has on the likelihood of an option being chosen.  Although individual parameters 

generated by the model do not have a direct interpretation, other than in their signs or statistical 

significance  they can be combined to identify monetary values associated with changes in each 

attribute’s level.  The partworth of a marginal change in an attribute level is given by the 

(negative) ratio of the attribute parameter to the payment vehicle parameter. 

 

 

3. Choices of food futures in the UK 

 

Burton et al., (2001) report the data collection process for a choice modelling application they 

conducted in the UK in 2000.  The authors analyse these data using a fixed parameter conditional 

logit model.  Since a full description of the data collection and analysis are provided in Burton et 

al., (2001) only a summary is provided here. 

 

The data were derived from a survey of respondents in the UK, who were presented with a 

number of alternative 'food futures' and asked to choose between them.  The attributes of the 

options were limited to the form of production technology used (conventional, GM based on 

plants, GM based on plants and animals); level of on-farm chemical use; food related health 

risks; structure of the food system; and weekly food bills. Each choice set comprised 3 

alternatives: one being the status quo and then two alternatives that had some aspect of the food 

system changed. Each individual was presented with 9 choice sets to complete.  In total 228 

individuals returned questionnaires, generating 2030 completed choice sets.  Table 2 below 

reports the attribute levels employed in the choice set design.  By presenting respondents with a 

wide range of alternative choice sets with varying attribute levels the utility function can be 

empirically identified. 

 

In the original analysis (Burton et al., 2001) a range of alternative specifications were explored, 

including investigations of stability of preferences across sub-groups, consistency of the variance 

of the error term across sub groups, and the role of individual specific heterogeneity in 

determining choices.  For current purposes a simplified modelling structure is presented.  The 

data was split into 3 groups, based on the individuals self declared purchasing habits for organic 
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food, identified as ‘ Infrequent’ , ‘Occasional’  and ‘Committed’ .  Preferences for the food futures 

presented to the respondents was found to be highly differentiated between these 3 groups.  

Individual conditional logit models were then estimated for each group.  In line with the original 

paper, the gender of the respondent was used as a determinant of the value placed on GM 

technology. 

 

Tables 3 and 4 provide a summary of the results generated via the fixed parameter conditional 

logit model used by Burton et al.. In Table 3 parameter estimates are provided for each of the 3 

groups identified in the sample (headed ‘conditional logit’ ). Table 4 contains the associated 

estimated partworths (headed ‘CL’)1.   

 

As one might expect, the model reveals a preference for cheaper food (bill), lower chemical use 

(chem), lower risk of health impacts (r isk) and a desire for more locally sourced food (fm).  An 

additional variable appearing in Table 3 is identified as sq, representing ‘status quo’ , a term 

which merits a little attention before the GM results are discussed. A common aspect of choice 

modelling applications is determining whether there are impacts on utility which are associated 

with an option as a whole, rather than the individual attribute levels which comprise the option.  

This is only relevant when there is an obvious interpretation of the option in question.  There is 

such an interpretation to the status quo option included in every choice set in the survey.  It is 

therefore possible to test whether respondents may have a tendency to simply select the current 

position, irrespective of the attribute levels of the other options used.  The other two food futures 

which, along with the status quo, comprise each choice set, have no equivalent interpretation.  

Hence a dummy variable, sq, was defined, taking a value of 1 if the option is the status quo, and 

zero otherwise.  Table 3 indicates a strong positive preference for this option, 

 

The results in Table 3 indicate that the response to agricultural technologies is complex. There 

are few  statistically significant parameters relating to GM foods developed using plant genes 

(GM P) across any of the 3 groups (the exception is females in the Committed group) and no 

significant partworths. There is concern and significant partworths regarding the use of GM food 

that involves the introduction of genes from animals and plants (GM P+A) in those groups which 

more frequently purchase organic produce.  However, the estimated partworths are large, and in 

                                                 
1 Note these do not correspond exactly with those in Burton et al (2001) due to the slightly different specification, but 
are very similar. 
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places unreasonably so.  The statistical insignificance of the willingness to pay estimates for 

these more frequent organic purchasers do not imply that the attribute is unimportant in 

respondents’  choices, on the contrary the results in Table 3 indicate the coefficients on the 

individual attributes are statistically significant.  Rather they indicate the (im)precision with 

which a monetary valuation can be identified.  The latter depends on the marginal utility of food 

bill changes, which, as already noted, is small and only statistically significant at the 15% level 

for the ‘Committed’  consumer group.   The implication is that Committed and, to some extent, 

Occasional groups are not placing a great weight on the food bill component of choices. 

 

As estimated, these standard fixed parameter logit models exhibit three technical traits which 

may be of concern.  First, the model imposes IIA.  The implications of this is that the relative 

probability of two choices is independent of the attribute levels in the 3rd.  Under some 

circumstances this may be unreasonable, and may be rejected statistically.  This can be treated by 

appropriate nesting structures, but there may be  issues about what is the appropriate 

configuration of choices.  Second, the representation of heterogeneity of preferences over 

attributes (as opposed to the random component of utility) is restricted to those individual 

attributes that are measured and may be included. Given the widespread public concern about 

GM in the UK, it is perhaps surprising that the GM (plant) variable is not significant.  However, 

this may reflect the fact that there is a diversity of opinion, ranging from deep concern to 

irrelevance, and this leads to imprecise estimates of the population average 'preference'.  Finally, 

the data consists of repeated choices (in the this case, up to nine) which may well exhibit some 

degree of correlation.  However, the conditional logit model as estimated assumes that all choices 

are independent, as if each choice is being made by a different person. 

 

4. The random parameter model. 

 

The random parameter model has implications for all three of these concerns.  The models do not exhibit 

IIA, they can explicitly account for the repeated nature of the choices made, and they explicitly allow for a 

distribution of preferences within the population. In this section the form of the random parameter 

logit models estimated in this study are outlined (the exposition draws heavily on Train, 1998; 

Revelt and Train, 1998; Train, 1999). 
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A person faces a choice among the alternatives in choice set j on each of the occasions they make 

a choice.  The number of choice situations can vary over people, and the choice set can vary over 

people and choice situations. The utility that respondent n obtains from alternative j in choice 

situation t is: 

 

njtnjtnnjt xU εβ += '         (4) 

 

where xnjt is a vector of observed variables and coefficient vector 
�

n, representing peoples’  tastes, 

is unobserved for each person and varies in the population with density f(
�

n|� * ) where � *  are the 

(true) parameters of this distribution. � njt is an unobserved random term that is distributed iid 

extreme value, independent of 
�

n and xnjt. This is a standard logit specification except that the 

coefficients 
�

n vary across the population rather than being fixed. Note there is no t subscript on 

the 
�

n term: tastes vary across those making choices in the survey, but not across the choices 

made by the same person.   

 

The variation in 
�

n introduces correlation in utility across choices.  The vector of coefficients 
�

n 

can be expressed as the population mean (b) and the individual specific deviation from that mean 
�

n. Hence the utility that respondent n obtains from alternative j in choice situation t (equation 4) 

can be re-written as: 

 

njtnjtnnjtnnjt xxbU εη ++= ''       (5) 

 

The estimation process described below estimates b but � n is not observed and hence there is 

correlation in unobserved utility (��� n xnjt + � njt) across options and choice situations via the 

presence of the � n term. 

 

Conditional on 
�

n, the probability that person n chooses alternative i in choice situation t is: 
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If 
�

n were known to take the value 
�

, the probability of a particular option being chosen would be 

given by a standard logit. Given that the values of 
�

n are not known, the probability of choosing 

option i in choice t is the integral of the conditional probability in (6) over all possible values of 
�

n which depend on the parameters of the distribution of 
�

n. This integral takes the form: 

 

nnnnitnit dfLQ βθββθ * )|()(* )( �=       (7) 

 

For maximum likelihood estimation the probability of each respondent’s sequence of observed 

choices is required. Denoting the alternative that person n chose in period t as i(n,t) and assuming 

that 
�

n = 
�
, the probability of person n's observed sequence of choices is given by: 

 

∏=
t

nttnninn LS )()( ),( ββ          (8) 

Given that 
�

n  is unobserved, the unconditional probability for the sequence of choices is the 

integral of (8) over all possible values of 
�
: 

 

nnnnn dfSP βθββθ * )|()(* )( �=       (9) 

 

The coefficient vector 
�

n is the parameters associated with person n, representing that person's 

tastes. These tastes vary over people; the density of this distribution has parameters � * . The aim 

of the estimation procedure is to estimate � * , that is, the population parameters that describe the 

distribution of individual parameters. 

 

The log-likelihood function is LL( � )= � n lnPn (� ).  
 

This log-likelihood function is maximized via simulation. Specifically, P( � ) is approximated by a 

summation over values of 
�

n generated by Halton draws (Train, 1999). For a given value of the 

parameters � , a value of 
�

n is drawn from its distribution and on the basis of this draw of 
�

n, 

Sn(
�

n), the product of standard logits is calculated. This process is repeated for many draws, and 

the mean of the resulting values of Sn(
�

n) is taken as the estimated choice probability: 
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where R is the number of draws of 
�

n, 
�

n
r|�  is the r-th draw from f(

�
n|� ), and SPn(� ) is the 

simulated probability of person n's sequence of choices. SPn( � ) is an unbiased estimator of Pn( � ) 
whose variance decreases as the number of draws increases and is strictly positive for any 

realization of the finite R draws, such that the log of the simulated probability is always defined.  

 

The simulated log-likelihood function is constructed as SLL( � ) = � n ln(SPn ( � )) and the estimated 

parameters are those that maximize SLL.  

 

A number of alternative distributions are feasible for the distribution of 
�

n: Here the results of 

models estimated using a normal distribution is reported. 

 

 

5. RPL estimation 

 

As a starting point, the conditional logit models specified in Table 3 are re-estimated as random 

parameter models for direct comparison purposes2.  These are reported in the right hand section 

of Table 3 (headed ‘ random parameter’ ).  As outlined above, for each preference parameter (apart 

from the food bill variable) one has an estimated coefficient for the mean of the distribution, and 

one for the variance of the distribution.  Associated with each of these is an estimate of the 

standard error, so one can draw standard inferences about the significance of the coefficient.  If 

the estimate of the variance is not different from zero, then one can infer that the preference 

parameter is constant across the population.  If the mean coefficient is zero, but the variance 

estimate is significant one cannot infer that the attribute does not affect choice: but rather that 

there is a diversity of preferences, both positive and negative.  For an attribute to be declared as 

having no impact on choices, both the estimate of the mean and the variance have to be 

insignificantly different from zero. 

 

                                                 
2 All estimation employs GAUSS, and the software developed by Train 
(http://elsa.berkeley.edu/~train/software.html).  We particularly acknowledge the advice and  encouragement given 
by Prof Train during the course of this research. 
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Table 4 compares the partworths from the conditional logit and random parameter logit models.  Note that 

the estimates of the partworths from the RPL models are derived from the estimate of the mean of the 

distribution for each attribute and do not reflect the whole distribution.  The CL and RPL results are largely 

similar, but with some noteworthy differences. For example, the GM Male partworths (for both GM 

types) are different in some cases. For the Occasional organic group, the conditional logit has 

very large values for the partworths, but the significance of the partworths is very low 

(insignificant or only at 15%). The RPL model produces (smaller) estimates which are far more 

statistically accurate, in most cases significant at the 5% level. 

 

Note however that one is just using the mean of the parameters from the RPL model for these 

estimates in order to make some rather crude  comparisons across the models; one is ignoring the 

other information generated by the RPL model regarding the distribution of the parameters.  

 

The starting point for the random parameter logit results presented here was the preferred 

specification in Burton et al., (2001) to enable a comparison, and as such they have not been 

based on any extensive exploration of the underlying specification of the model using the RPL 

framework. However, an extensive range of tests of structure have been conducted, to evaluate: 

a) whether the 3 RPL models can be collapsed into a single model, with common preference 

parameters across all three;  

b) if any parameters can be treated as fixed, rather than random;  

c) if the gender interaction effects should be maintained; 

 

The results of these tests (results available on request) indicate  that the 3 group structure should 

be maintained and that in only one case can any of the parameters be treated as fixed. In addition 

the results do not support the inclusion of gender as a determinant of preferences towards GM 

technology, that is, the use of a random parameter specification to capture heterogeneity obviates 

the need for an explicit measure of heterogeneity.  The results of these models are reported in 

Table 5 and Table 6 showing parameter estimates and  associated partworths respectively.    

 

Note that these partworths again only rely open the mean of the attributes preference parameter, 

and the food bill parameter.  Of more interest is the implied distribution of the partworths.  These 

are plotted in Figure 1 for the willingness to pay to avoid food produced involving the transfer of 

genes from other plants, and in Figure 2 for food involving the transfer of genes from other plants 
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and animals. Imposing a normal distribution on the preference parameter implies that, with small 

levels of probability, there will be extreme levels of WTP.   

 

What is of more interest is the extent to which the model implies positive values: i.e. a preference 

for GM. In Figure 1 half the distribution for 2 of the 3 groups falls in the positive WTP range, 

and for the third group it is still a substantial proportion of the distribution.  Regarding WTP for 

GM(P+A) food in Figure 2, in all three cases there is a reasonable portion of the distribution that 

that lies in this positive WTP range, implying people with a preference for GM food. 

 

One can reasonably ask the question whether this implied set of preferences in the population is 

genuine, or whether it is an artefact of the use of the normal distribution. This leads to a 

consideration of whether a different distribution should be used for the parameter distribution. 

For example, it seem reasonable to suggest that, in the case of GM technology, preferences may 

be truncated or censored at indifference towards the attribute, with some elements being 

indifferent and the rest of the population averse to the attribute (for example, one might want to 

restrict the coefficient on the payment vehicle to be always negative).   

 

Alternative distributions are available that can achieve this outcome.  For example the lognormal 

distribution will impose a single sign on preferences.  However, features of this function include 

the fact (i) the density function equals zero at zero i.e. the model implies that no-one in the 

population is indifferent to the attribute, and (ii) there is a very long negative tail, implying a 

huge negative mean WTP. In this context, censored or truncated distributions (as illustrated in 

Figure 3) would be more attractive.  The software capable of estimating such distributions is 

becoming available, and this appears to be a promising area for exploration. 
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6. Conclusions  

 

In this paper we have explored the implications of using a random parameter specification to 

estimate a conditional logit model for food demand.  The approach has some intuitive attraction 

in so far as it allows explicitly for a range of attitudes towards attributes within the population.  

This is likely to be important in circumstances where one is interested in potential market 

penetration: it is not the average attitude that is important to identify, but the size of the group 

who will/will not be prepared to accept the product.   

 

The results we have estimated imply that, for the data set under consideration, a random 

parameter representation is appropriate rather than the conventional fixed parameter model. 

Indeed despite the robust and statistically significant parameter estimates presented in Burton et 

al., the work reported here has revealed the very large distribution of ‘ tastes’  around those point 

estimates which the standard conditional logit model are unable to capture or convey. 

 

The development of RPL models like those presented here may change the view of what is the 

best way to accommodate heterogeneity.  The use of gender was no longer supported once a 

random parameter specification was employed.   However, the results also raise a number of 

technical issues.  A simple normal distribution for preference parameters opens up the possibility 

of both positive and negative attitudes towards an attribute.  In some cases one may hold strong 

priors that they should be mono-valued.  In that case one requires some restriction on the 

distribution.  Simple 2 parameter models exist (e.g. lognormal, or restricted triangular 

distributions) but these distributions may be too restrictive.  Truncated or censored distributions, 

which are becoming available, may represent an alternative, but no doubt will raise issues for 

themselves: in particular the feasibility or otherwise of statistically testing for the 'best' 

distribution. However, the random parameter structure appears to offer a rich seam of research 

for further exploration. 
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Table 1  A Simple Choice Set 
 
 
Attributes 

Option1 Option 2 

Technology Traditional GM 

Weekly food bill 100% of current 80% of current 

 

 

 

 

 Table 2.  Attr ibutes and their  Levels  
 
Attribute 

 

Level 

Level of weekly food bill (% change from 
current) 
(bill) 

-50, -40, -30, -20, -10, 0, +10, +20, +30, +40 

Form of production technology used 
GM(P) 
GM(P+A) 

Traditional, GM(plants), GM(plants and 
animals) 

Level of on-farm chemical use 
(chem) 

-30%, No change, +10% 

Structure of food system (food miles) 
(fm) 

-30%, No change, +10% 

Food health risk 
(r isk) 

1/15000, 1/10000, 1/5000   
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Table 3 Comparison of Conditional logit and random parameter  estimates 
 

Infrequent organic group 
Conditional logit  Random parameter  

 coeff st.error t  coeff st.error t
bill -0.031 0.004 -9.09  bill -0.052 0.006 -8.41

chem -0.040 0.005 -8.33  chem  -0.058 0.011 -5.28

  var -0.063 0.014 -4.42

fm -0.016 0.005 -3.28  Fm -0.024 0.009 -2.56

  var -0.045 0.012 -3.62

risk 0.147 0.022 6.69  Risk 0.227 0.050 4.52

  var 0.320 0.060 5.38

sq 1.766 0.189 9.37  Sq 2.948 0.348 8.47

  var -0.434 0.448 -0.97

GM(P) -M 0.041 0.295 0.14  GM(P) -M 0.278 0.582 0.48

  var 1.432 0.611 2.34

GM(P)-F 0.105 0.232 0.45  GM(P)-F 0.131 0.435 0.30

  var 1.659 0.369 4.50

GM(P+A)-M -1.389 0.345 -4.03  GM(P+A)-M -2.331 0.725 -3.22

  var 1.138 0.675 1.69

GM(P+A)-F -1.249 0.242 -5.15 GM(P+A)-F -2.393 0.547 -4.37

     var 1.637 0.415 3.95

Occasional organic group 

Conditional logit Random parameter  
 coeff st.error t  coeff st.error t

bill -0.012 0.003 -4.05  bill -0.028 0.006 -4.96

chem -0.049 0.004 -10.97  chem  -0.100 0.012 -8.10

  var -0.031 0.011 -2.91

fm -0.014 0.005 -3.05  Fm -0.019 0.010 -1.83

  var -0.048 0.014 -3.52

risk 0.050 0.020 2.51  Risk 0.123 0.054 2.30

  var 0.369 0.068 5.44

sq 1.173 0.179 6.57  Sq 2.108 0.320 6.59

  var -1.080 0.307 -3.52

GM(P) -M 0.359 0.268 1.34  GM(P) -M 0.509 0.668 0.76

  var 3.047 1.095 2.78

GM(P)-F -0.378 0.220 -1.72  GM(P)-F -1.155 0.569 -2.03

  var 3.215 0.828 3.88

GM(P+A)-M -0.542 0.269 -2.02  GM(P+A)-M -5.085 1.609 -3.16

  var 4.408 0.918 4.80

GM(P+A)-F -1.697 0.249 -6.81  GM(P+A)-F -4.641 1.369 -3.39

  var 6.286 1.773 3.55
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Table 3 continued 
         

Committed organic group 
Conditional logit  Random parameter  

 coeff st.error t  coeff st.error t
bill -0.007 0.004 -1.61  bill -0.019 0.007 -2.52

chem -0.062 0.007 -9.19  chem  -0.114 0.018 -6.28

     var 0.049 0.021 2.32

fm -0.024 0.008 -3.07  Fm -0.043 0.015 -2.95

     var 0.032 0.015 2.14

risk 0.066 0.033 2.01  Risk 0.137 0.079 1.73

     var 0.374 0.072 5.17

sq 1.201 0.227 5.28  Sq 2.053 0.404 5.08

     var -0.497 0.472 -1.05

GM(P) -M -0.568 0.377 -1.51  GM(P) -M -2.434 1.200 -2.03

     var 3.063 0.834 3.67

GM(P)-F -1.237 0.313 -3.95  GM(P)-F -2.522 0.839 -3.01

     var 2.775 1.271 2.18

GM(P+A)-M -1.736 0.414 -4.20  GM(P+A)-M -2.525 0.971 -2.60

     var 3.152 1.059 2.98

GM(P+A)-F -3.108 0.433 -7.18  GM(P+A)-F -8.784 2.478 -3.54

     var 4.195 1.462 2.87

 
 
Table 4 Par tworths for  selected changes in attr ibute levels: Conditional logit (CL) and 
Random Parameter Logit (RPL) Models 
 

 CL RPL  
 

CL RPL  
 

CL RPL  
 

 Infrequent Occasional Committed 
GM (P) free 

Male 
Female 

 
-1.25 
-3.30 

 
-5.31 
-2.50 

 
-31.42 
33.54*  

 
-18.24 
41.41***  

 
88.64 
192.81 

 
130.87*  
135.59*** 

GM (P+A) free  
Male 

Female 

 
44.17***  

39.68***  

 
44.48***  
45.67***  

 
46.19 
148.56***  

 
182.25*** 
166.33*** 

 
268.75 
483.08*  

 
135.76*** 
472.27*** 

10% reduction 
chemical use 

 
12.79***  

 
11.09***  

 
43.01***  

 
35.88***  

 
97.03*  

 
61.13***  

10% reduction 
in food miles 

 
5.17***  

 
4.561***  

 
12.39***  

 
6.85**  

 
36.41*  

 
23.07***  

Food risk 
1/10000 to 
1/15000 

 
23.42***  

 
21.70***  

 
 21.02***  

 
22.08**  

 
50.00 

 
36.72*  

(* )(**) (* * *) partworth significant at the 15% (10%) (5%) level. 
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Table 5 Random parameter logit estimates: preferred specification 
 
Infrequent organic group    
  coeff st.er ror t
 pay -0.049 0.006 -8.61
 chem  -0.068 0.011 -6.17
 var 0.055 0.011 4.98
 Fm -0.023 0.009 -2.60
 var 0.038 0.011 3.49
 Risk 0.267 0.051 5.21
 var -0.253 0.044 -5.75
 Sq 2.817 0.316 8.92
 var 0.609 0.358 1.70
 GM(P) 0.040 0.391 0.10
 var 1.407 0.357 3.94
 GM(P+A) -2.386 0.514 -4.65
 var -1.910 0.485 -3.94
     
     
Occasional organic group    
  coeff st.er ror t
 pay -0.026 0.005 -4.901
 chem  -0.096 0.012 -7.792
 var 0.043 0.010 4.273
 Fm -0.028 0.010 -2.871
 var 0.014 0.015 0.882
 Risk 0.178 0.076 2.337
 var -0.368 0.062 -5.929
 Sq 2.069 0.312 6.641
 var -0.899 0.294 -3.06
 GM(P) -0.279 0.451 -0.618
 var 3.051 0.601 5.078
 GM(P+A) -6.623 1.617 -4.097
 var -6.756 1.225 -5.513
     
     
Committed organic group    
  coeff st.er ror t
 pay -0.022 0.008 -2.964
 chem  -0.135 0.021 -6.444
 var -0.026 0.018 -1.482
 Fm -0.060 0.016 -3.73
 var -0.007 0.013 -0.531
 Risk 0.103 0.070 1.48
 var -0.527 0.105 -5.041
 Sq 2.327 0.483 4.817
 var -2.294 0.515 -4.451
 GM(P) -2.382 0.711 -3.348
 var 3.390 0.832 4.076
 GM(P+A) -7.230 1.633 -4.428
 var 4.419 1.152 3.837
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Table 6 Par twor ths for  selected changes in attr ibute levels: Conditional logit (CL) and 
Preferred Specification of the Random Parameter  Logit (RPL) Model 
 

 CL RPL 
 

CL RPL 
 

CL RPL 
 

 Infrequent Occasional Committed 
GM (P) free 

Male 
Female 

 
-1.25 
-3.30 

-0.80 
 
-31.42 
33.54* 

13.64 
 
88.64 
192.81 

106.33***  

GM (P+A) free  
Male 

Female 

 
44.17***  

39.68***  
48.60***  

 
46.19 
148.56***  

211.09***  
 
268.75 
483.08* 

322.76***  

10% reduction 
chemical use 

 
12.79***  

 
13.83***  

 
43.01***  

 
32.41***  

 
97.03* 

 
60.40***  

10% reduction 
in food miles 

 
5.17***  

 
4.66***  

 
12.39***  

 
9.15***  

 
36.41* 

 
26.74***  

Food risk 
1/10000 to 
1/15000 

 
23.42***  

 
27.18***  

 
 21.02***  

 
23.54***  

 
50.00 

 
23.06 

(*)(**) (* * *) partworth significant at the 15% (10%) (5%) level. 
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Figure 1. Distr ibutions of WTP for GM food (plant gene transfer  only) 
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Figure 2. Distr ibutions of WTP for GM food (plant  and animal gene transfer) 
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Figure 3. Alternative distr ibutional assumptions 
 

 
 
 
 
 
 
 


