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Elasticities for U.S. Wheat Food Use by Class 
 
Abstract: We conceptualize wheat for food use as an input into flour production and derive demand 
functions to quantify price responsiveness and economic substitutability across wheat classes.  Cost, 
price, and substitution elasticities are estimated for hard red winter, hard red spring, soft red wheat, soft 
white winter, and durum wheat.  In general, hard red winter and spring wheat varieties are much more 
respons ive to their own price than are soft wheat varieties and durum wheat.  Morishima elasticities 
indicate that hard red winter and hard red spring wheat are economic substitutes for milling purposes. 
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Introduction 
 
In the United States (U.S.), the use of wheat as an input into food production has been increasing over 

the past several decades.  The U.S. Department of Agriculture estimates that per-capita flour 

consumption, including semolina, has increased from 111 pounds in 1974 to 148 pounds in 1998.   

Concurrently, per-capita wheat used for food increased from 2.55 bushels in 1974 to 3.89 bushels in 

1998.  While physical substitutability among wheat classes has been extensively studied (see, for 

example, Faridi and Faubion 1995), economic substitutability among classes of wheat for domestic food 

use has yet to be addressed in a theoretically consistent and empirically rigorous manner.  The 

importance of economic substitutability of wheat between classes is evident by recent publications 

highlighting the impact of substitutability on the flour milling industry (Sosland), on university research 

programs developing new varieties of hard white wheat (Boland, Schumacher, and Johnson 2000), and 

on government wheat research and programs (Barnes and Shields 1998).  For example, the Commodity 

Credit Corporation (CCC) just released market loan rates by class “to establish loan rates that are in line 

with market forces in order to avoid over-production of wheat in a county in response simply to the 

benefits that are available under the marketing loan program” (U.S. Department of Agriculture 2002). 1  

Given the importance of economic substitutability of wheat between classes, the purpose of the current 

study is to obtain cost, price, and substitution elasticity estimates from an industry cost function of the 

flour milling industry in the U.S. using aggregate food use data.   

 There are five major classes of wheat grown in the U.S. for food consumption, including hard 

red winter (HRW), hard red spring (HRS), soft red winter (SRW), soft white (SWW), and durum (DUR) 

wheat. 2 Most HRW is grown in the central and southern Great Plains, HRS in the northern Great Plains, 

SRW east of the Mississippi River, SWW in the Pacific Northwest and DUR in North Dakota and 
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Montana.  Historically, wheat for food in the U.S. has been predominately used as input into flour 

production. 3  The hard wheat classes have higher protein content, which is desirable for baking.  The 

higher protein content in hard red spring and hard red winter is suited for the production of bread and 

rolls.  Durum is used in the production of semolina flour and a variety of pasta products.  The soft wheat 

classes have lower protein content.  Soft red winter is used in flat breads, cakes, crackers, and pastries.  

Soft white wheat is processed into crackers, cookies, pastries, muffins, and flour for cakes.  HRW has the 

widest range of protein content and is often mixed with HRS and SRW.  This illustrates the wide variety 

of food items consumed in the primary market that are produced with wheat flour from different classes 

of wheat produced in geographically distinct parts of the U.S. 

Several studies have attempted to differentiate among end uses by estimating primary or 

consumer demand for wheat by class.4  Demand for each wheat class was specified as a function of its 

own-price, prices of competing classes, and income.  Chai (1972) estimated domestic demand for wheat 

by class over the period from 1929 to 1963.  Linear equation-by-equation OLS demand models were 

estimated for HRW, HRS, SRW, SWW, and DUR using wheat cash prices from major markets.  Chai 

concluded that price elasticities were more elastic for hard classes than soft classes of wheat.  Barnes 

and Shields (1998) estimated a double- log demand system for wheat by class.  The wheat classes 

examined were HRW, HRS, SRW, SWW, and DUR .  Annual data from 1981 to 1998 were used in a 

demand system analysis with regional prices at the farm level.  Inelastic own-price elasticities were 

reported for each of the five wheat classes, but different from Chai, SWW was reported as being the most 

elastic and DUR being the least elastic.  Barnes and Shields (1998) also estimated linear equation-by-

equation OLS models that yielded results qualitatively consistent with Chai.  Mohanty and Peterson 

(1999) estimated demand for wheat by class and origin for the U.S. and European Union (EU) using a 
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dynamic AIDS model.  They examined several classes of wheat, separating DUR from spring wheat and 

other wheat.  Reported price elasticities indicate that DUR was more price responsive than spring wheat, 

which was more price responsive than other wheat.   

Other studies have examined aspects of wheat quality.  For example, Bale and Ryan (1977) 

applied a “Lancaster” production characteristics approach to differentiate classes of wheat by their 

protein content.  Estimates of relative wheat prices were obtained from simple measures of protein 

supply.  Wilson and Gallagher (1990) investigated the effects of relative prices on shifts of imported 

wheat class market shares.  They found quality differentials and prices both are competitive factors in 

international markets.  Espinosa and Goodwin (1991) estimated a hedonic price model for Kansas wheat 

characteristics.  They concluded that wheat prices are responsive to differences in the quality of wheat, 

as measured both at the farm gate and in milling and baking enduses.  Parcell and Stiegert (1998) also 

estimated the marginal value of hard red spring and red winter wheat-grading characteristics and wheat 

protein in a spatially competitive framework.  The marginal values of protein in Kansas HRW and North 

Dakota HRS were affected by the level of protein in other districts within and across regions.  Dahl and 

Wilson (2000) examined changes in exports of hard wheat across grades and classes in the U.S. and 

Canada. These studies illustrate the important role that quality, and in particular protein content, plays in 

markets for wheat food use.   

Relative to the previous demand studies, deriving price and substitution elasticity estimates from 

an industry cost function of the flour milling industry provides several advantages.  First, U.S. 

consumers typically do not utilize raw grain products for direct consumption.  Rather, raw wheat is 

processed into flour before consumption.  Moreover, only 15% of the flour processed is directly sold to 

consumers, while the other 85% is used in baked goods (Harwood et al. 1989).  Second, specification of 
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consumer income in the demand for raw wheat product is not generally consistent with economic theory.  

Rather, changes in income are signaled through retail prices of flour and baked goods to flour millers 

and processors.  Third, use of farm level prices in a consumer demand model is also problematic. 

Consumers respond to retail level prices of flour and baked goods.  In contrast, in the processing sector, 

flour millers respond to farm level prices.  Consequently, price elasticities and measures of 

substitutability across wheat classes derived from an industry cost function of the flour industry are 

consistent with economic theory and, as will be discussed ahead, are consistent with the data available 

with which to estimate empirical relationships.5  In all, deriving demand from a cost function of the flour 

industry better differentiates market characteristics for wheat food use that can be used to enhance 

industry, university, and government decision making.   

Deriving Demand for Wheat Food Use 

Following Wholgenant (1989), Goodwin and Brester (1995), and others, we consider raw product as an 

input into food production.  Hence, we specify an industry cost function for the flour milling industry 

and derive factor demand equations.  In specification of the cost function, we do not differentiate 

between types of flour produced, but rather assume flour output is a homogeneous product.  Although 

this is a simplification, the assumption is empirically practical because of limited quantity data for flour.  

Finally, millfeed output is not considered in the conceptual model specification. This is because millfeed 

is a by-product of flour milling that is used as feed input in the livestock industry and prices typically 

follow other feed stuffs such as corn prices (Harwood et al., 1989). 

Conceptual Model 

The cost function is defined by 

(1)     ( ),C C y= w
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where y is a (1× 1) scalar representing flour output and w =(w1,…,wk)′ is a (k × 1) vector of input prices.  

The standard properties of a cost function are that it is homogenous of degree one, nondecreasing, and 

concave in input prices, as well as nondecreasing and convex in y (Varian 1992, Chambers 1988).  The 

underlying behavioral assumption is a bundle of input quantities are chosen so as to minimize cost of 

producing y.  It is convenient for the purposes of this paper to assume the cost function is weakly 

separable in inputs, partitioning inputs into two subgroups of wheat and other inputs 

(2)     

 
In (2), c1 and c2 are micro-functions that posses properties of a cost function, w1 =(w1,…,wn)′ is a (n × 1) 

vector of input prices representing the different classes of wheat, and w2 =(wn+1,…,wk)′ is a (k-n × 1) 

vector of prices for the remaining inputs (e.g., capital, labor, energy).6  From this framework, conditional 

factor demand equations for wheat by class may be obtained by applying Shephard’s Lemma to the 

micro-function c1 

(3)         

 

where x1=(x1,…,xn)′ is a (n × 1) vector of input quantities of wheat by class.   

Price and substitution elasticities derived from the conditional demand equations in (3) reflect 

theoretically consistent behavioral responses across the different classes within the wheat group, but the 

weak separability assumption imposes specific restrictions across wheat and other inputs.  Weak 

separability in inputs is akin to assuming a two-step cost minimization process where the first step is to 

minimize the cost of producing a single unit of an aggregate input composed of a subgroup of the inputs 

and the second step is to combine the aggregate inputs in a cost minimizing manner to produce the final 

1
1 1

1 ( , )
c
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∂
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∂
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product (Chambers 1988).  The implications of maintaining weak separability are equivalent to 

restricting the degree and direction of the substitution relationships.  For example, if input prices wi and 

wj in the wheat group are separable from price wk outside of the wheat group, then inputs xi and xk are 

Allen substitutes only if xj and xk are also Allen substitutes.  Although weak separability imposes 

restrictions, we contend the separability assumption is flexible enough to estimate price and substitution 

elasticities across wheat classes and, yet, retains sufficient degrees of freedom for estimation in the 

empirical model discussed below.7 

Empirical Model 

To complete the model specification, the factor demand equations in (3) are derived from a 

normalized quadratic cost function.  The normalized quadratic is a flexible functional form that allows 

estimation of price and substitution elasticities, as well as the explicit investigation of the interactions 

between input prices and output quantity (e.g., Shumway, Saez, and Gottret 1988, Featherstone and 

Moss 1994).  The normalized quadratic function is given by  

(4)  
1 1 1 1

* * * * * 2
0

1 1 1 1

1 1
( , )

2 2

n n n n

i i ij i j y iy i yy
i i j j

c w y b b w b w w b y b w y b y
− − − −

= = = =

 
= + + + + + 

 
∑ ∑∑ ∑  

where normalized cost and input prices are defined by c*=c/wn and * /i i nw w w= .8  Hence, the input 

demand equations are given by 

(5)    
1

*

1

 for 1,..., 1
n

i i ij j iy
j

x b b w b y i n
−

=

= + + = −∑  

The complete system of equations consists of the cost function in (4) and n-1 demand equations in (5).  

Homogeneity follows from normalizing the input prices and cost.  Concavity of input prices can be 

imposed by reparameterizing the matrix B of input price coefficients into B*as 
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(6) 

* *
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where B* is a negative semi-definite matrix (Lau 1978).  Symmetry requires that * *
ij jib b= .   Convexity of 

output is imposed by * *yy yy yyb a a= . 

Price elasticities are given by the equation 

(7)    
* *
ij j

ij
i

b w

x
ε =   for i, j=1,…,n-1 

using the estimated *
ijb  and the predicted xi.  Morishima elasticities of substitution are  

(8)    M
ij ji ii= −σ ε ε  for i, j=1,…,n-1 

that measure the effect of varying the input price ratio pi / pj  in the ith direction on the input quantity 

ratio xi / xj (Blackorby and Russell 1989).   The cost elasticity of output is defined by 

(9)   * *

1

/
m

cy y iy i yy
i

E b w y y cα α
=

   = + +    
∑  

which measures the change in the micro-function c* due to an incremental change in output given that 

all factors are held fixed.  Output elasticities of demand are defined by 

(10)   [ ]/iy iy iE b y x=  

and provide a measure of a shift in demand for wheat class xi given an incremental change in output y.  

Data  

Annual prices and quantities for the empirical analysis for each of the five wheat classes are based on 

June to May marketing years, from 1974/1975 to 1999/2000.  Descriptive statistics are provided in 

Table 1. Wheat quantity and price data were collected from U.S. Department of Agriculture’s Economic 
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Research Service, Wheat Year Book, annually from 1974 to 2001.  Total flour production increased from 

251 million cwt in 1974 to 412 million cwt in 1999, averaging 332 million cwt over the period.   Total 

wheat food use (the sum of HRW, HRS, SRW, SWW, and DUR food use) has increased from 545 million 

bushels in 1974 to 925 million bushels in 1999.  Figure 1 presents food use by wheat class, showing 

food use has been trending upwards over time.  From 1974 to 1999 the average (standard deviation) 

proportion of total food use was 0.42 (0.03), 0.25 (0.02), 0.19 (0.01), 0.07 (0.01), and 0.07 (0.01) for 

HRW, HRS, SRW, SWW, and DUR, respectively.   

For completeness, and to compare with previous studies, we considered two different series to 

represent wheat prices in the empirical analysis.  First, given the importance of protein content for hard 

wheat varieties in flour production, we estimated the empirical model with wheat cash prices from major 

markets.  In particular, the HRW price is represented by Kansas City, No.1 (13% protein); HRS price by 

Minneapolis, dark No.1 spring (13% protein); SRW price by Chicago, No. 2;  SWW price by Portland 

No.1; and DUR by Minneapolis, No.1 hard amber durum.  Second, and primarily for comparison 

purposes, we re-estimated the empirical model using average price data by region from the U.S.  It is 

anticipated that the empirical model with cash prices from major markets will yield more elastic 

responses (especially for HRW and HRS with 13% protein content).  This is because HRW and HRS 

prices are sensitive to protein content across regions (Parcell and Stiegert 1998) and that these quality 

impacts from protein may likely be averaged out in the regional price data.9   

Estimation Issues 

The weakly separable, complete system consisted of the cost function in equation (4) and four factor 

demand equations in equation (5), including HRW, HRS, SRW, and SWW.  DUR price was used to 

normalize cost and the remaining input prices.  Several econometric issues were addressed prior to 
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selecting the final model, including statistical tests on exogeneity of prices, residuals, and symmetry and 

curvature restrictions.  Furthermore, to draw inferences on the price and substitution elasticities 

bootstrapped confidence intervals were constructed. These issues are discussed in more detail below.  

The final version of the five-equation system was estimated imposing symmetry and curvature 

restrictions using an iterative seemingly unrelated regression estimator with a first-order autocorrelation 

correction.  Price data used were from major market locations to account for quality impacts through 

protein content.  Elasticities were recovered for the DUR equation using standard properties of general 

demand restrictions.   

Exogeneity of Prices 

Tests for exogeneity of own prices were conducted on each demand equation using the 

Hausman-Wu test statistic, which is asymptotically distributed chi-square with 1 degree of freedom 

(Hausman 1978).  The null hypothesis is that prices are exogenous.  The Hausman-Wu test statistics for 

the HRW, HRS, SRW, and SWW equations were 0.0025, 0.4136, 0.9164, and 0.2491, respectively.  For a 

critical value of 3.84 at the 0.05 level of significance, exogeneity of own prices could not be rejected for 

each equation.       

Diagnostic and Autocorrelation Tests of the Residuals 

Diagnostic testing of the residuals for each equation of the system was completed with several 

nonparametric test statistics (see Table 2). The Kolmogorov-Smirnov-Lilliefors test statistic was used to 

test for normality of residuals equation-by-equation with the null hypothesis that the residuals are 

normally distributed (Mittelhammer 1996).  Normality of residuals could not be rejected in all cases at 

the 0.05 level of significance.   
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The Wald-Wolfowitz (WW) runs test (Mittelhammer 1996), which under the null assumes 

independent and identically distributed (iid) residuals and has an asymptotic normal distribution, was 

also completed equation-by-equation.  The iid hypothesis was rejected for the soft red and white wheat 

equations (with critical value of 1.96 at the .05 level).  The system was then corrected for first-order 

autocorrelation using the Berndt and Savin (1975) approach, which has been adopted by Piggott et. al. 

(1996), Holt and Goodwin (1997), and others.  The autocorrelation coefficient, ρ , was positive and 

significant at the 0.05 level (Table 3).  After correcting for first-order autocorrelation, the WW test 

statistics the hypothesis of iid residuals was not rejected for each of the equations at the .05 level.   

Symmetry and Curvature Restrictions 

To test hypothesis consistent with symmetry and curvature restrictions, we used a log- likelihood 

ratio (LR) test between unrestricted and restricted models.10  The LR tests were completed for both the 

models with and without the autocorrelation correction.  Under the null hypothesis that symmetry holds 

(with no curvature restrictions), the LR test is asymptotically chi-square distributed with L=6 degrees of 

freedom.   The LR tests for symmetry yielded test statistic values of 8.79 with no autocorrelation and 

3.18 with first-order autocorrelation (Table 4).  Comparing these results with the 0.05 level critical value 

of 12.59, symmetry restrictions could not be rejected in either case.   

To test curvature restrictions, we used a log- likelihood ratio (LR) test between an unrestricted 

model with no curvature restrictions and restricted models imposing concavity or curvature.  Symmetry 

restrictions are maintained for both the unrestricted and restricted models.  Under the null hypothesis 

that curvature restrictions hold, the LR test is asymptotically chi-square distributed with L=10 degrees of 

freedom for concavity in prices and L=1 degree of freedom for convexity in output.  LR test statistics in 
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Table 4 indicate that curvature restrictions (concavity, convexity, and concavity-convexity) could not be 

rejected with and without the autocorrelation correction.   

Bootstrapped Confidence Intervals 

To measure the significance of price and substitution elasticities, bootstrapped confidence 

intervals were constructed.  Bootstrap procedures are convenient for intractable inference problems and 

are often equivalent or superior to first-order asymptotic results (Mittelhammer, Judge, and Miller 

2000). Bootstrap estimates were obtained by (a) resampling the residuals of the model corrected for 

autocorrelation, (b) predicting cost and quantities of wheat with the autocorrelated model, 11  (c) 

reestimating the five-equation system with predicted values, and (d) then recalculating the elasticities. 

This process was repeated 1000 times to generate distributions of cost, price, and substitution 

elasticities.  Then 90% confidence intervals for each elasticity were constructed based on the percentile 

method, which requires ordering the estimated elastiticities and then selecting outcome 50 (0.05*1000) 

for the lower critical value and outcome 950 (0.95*1000) for the upper critical value.  For hypothesis 

testing, if the bootstrapped confidence interval for the elasticity contains zero, then the elasticity va lue is 

not considered significantly different from zero at the 0.10 level. 

Results and Discussion  

Parameter estimates, asymptotic standard errors, and asymptotic z-values are presented in Table 3 for 

the model that was corrected for first-order autocorrelation with symmetry and curvature imposed.  

Based on asymptotic z-values, eleven of the twenty-one estimated coefficients and the autocorrelation 

coefficient are statistically significant at the 0.05 level.  The output coefficients are positive and 

significant at the 0.05 level for each demand equation.  R-square values, which explain variation in 
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quantity of wheat for food use, ranged from 0.84 for the HRS equation to 0.98 for the cost equation 

(Table 2).   

Table 5 contains the price elasticities evaluated at mean values for each demand equation along 

with 90% bootstrapped confidence intervals.  Signs of the own-price coefficient estimates were negative 

as required with the imposition of concavity.  The results indicate that the own-prices are inelastic for 

SRW, SWW, and DUR and elastic for HRW and HRS.  The most inelastic is SRW at -0.05.  The most 

elastic is HRS at -1.72, followed by HRW, DUR, and SWW, respectively.  Cross-price effects are 

inelastic, except between HRW and HRS.   SRW exhibited the most inelastic response to cross-price 

effects.  For the DUR equation, the cross-price effects were larger for HRW and HRS prices relative to 

the soft wheat classes.  Except for the cross-effects between HRW and HRS, the 90% confidence 

intervals for the cross-price elasticities included zero at the 0.10 level of significance.  

To better interpret substitution across wheat classes, Table 6 reports the Morishima substitution 

elasticities evaluated at mean values with bootstrapped 90% confidence intervals.  These results indicate 

that all the wheat classes are Morishima substitutes at the mean and that there appears to be more 

potential for substitution between HRW and HRS than the other wheat classes.  For the HRW and HRS 

equations, excluding SWW in the HRW equation, the 90% confidence intervals for the substitution 

elasticities do not contain zero.  For the SRW and SWW equations, the 90% confidence intervals indicate 

the substitution elasticities are almost all not statistically different from zero. The exception being in the 

SWW equation, which has a significant substitut ion elasticity for SRW.  Similar to the price elasticities, 

the substitution elasticities for the SRW equation are the most inelastic.  Finally, consider the DUR 

equation.  It has significant substitution elasticities for HRW and SRW, but not for HRS or SWW.   
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Interestingly, the Morishima substitution elasticities in Table 6 exhibit asymmetrical responses.  

For example, the substitution elasticities for the SRW equation are very inelastic and insignificant.  In 

contrast, changes in price of SRW induce significant substitution effects across the other classes of 

wheat.  More generally, the significance (insignificance) of the substitution elasticities for the HRW and 

HRS (SRW and SWW) equations are likely due to the nature of the price data.  Under a cost minimizing 

assumption, one would not expect a miller to substitute (or mix off ) the higher protein HRW and HRS 

wheat for lower protein SRW and SWW wheat.  

Elasticities of cost and demand with respect to output are reported in Table 7 with 90% 

bootstrapped confidence intervals.  The cost elasticity estimate from (9) is 1.1212 with a lower critical 

value of 1.0840 and upper critical value of 1.2125 for the bootstrapped 90% confidence interval.  That 

is, a 1% increase in output yields a 1.12% increase in costs.  This does not imply there are decreasing 

economies of scale for the milling industry, but simply that the micro-function for producing a single 

unit of aggregate input composed of the wheat subgroup decrease with increasing output.12   Output 

demand elasticities in (10) are all elastic, with HRS the most elastic at 1.7848 and SWW the least elastic 

at 1.2960.  For instance, 1% increase in output yields a 1.78% shift upwards in the demand for HRS. 

Further Results 

For comparison purposes, the own-price elasticities from the current study and the results from 

Chai (1972) and Barnes and Shields (1998) are presented in Table 8.  Using prices from major market 

locations, Chai found that the soft wheat types were least responsive to own price changes and the hard 

wheat types the most responsive to own price changes.  These estimates were obtained using equation-

by-equation OLS for two study periods from 1929 to 1941 and 1946 to 1963.  Using average prices for  

each wheat class by U.S. region, Barnes and Shields reported elasticities using an equation-by-equation 
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OLS estimator from 1977 to 1995 and using a double- log demand system estimated with  seemingly 

unrelated regression from 1981 to 1997.  The equation-by-equation OLS estimates were qualitatively 

similar to the results reported by Chai.  In contrast, the elasticities from the double- log demand system 

indicated that SWW wheat was the most price responsive.  The next most price responsive to own price 

from the double- log system was the HRW equation, followed by SRW, HRS, and DUR.  Interestingly, 

except for DUR, the own-price elasticity estimates from the Barnes and Shields double- log demand 

system fall outside of the 90% confidence intervals reported in Table 5.  

To provide a closer comparison to the results reported by Barnes and Shields study, we re-

estimated equations in (4) and (5) using the average price by region at the farm level.  These results are 

reported in Table 9.  Most notable differences occurred for the magnitudes of the HRW and HRS price 

elasticities, which decreased with HRW having a larger magnitude than HRS and both being inelastic.  

One plausible explanation is that the average price data from U.S. regions does not fluctuate as much 

with changes in protein content.  In all, results of the current study remain qualitatively consistent with 

results of Chai’s and Barnes and Shields’ single-equation OLS results in that HRW and HRS are most 

price elastic.  On the contrary, results of the current study differ with those the Barnes and Shields’ 

double-log demand system.13   

To test the sensitivity of the results from the normalized quadratic model, we re-estimated the 

same cost and input demand equations with the translog cost model. 14  Homogeneity and symmetry 

conditions were imposed following standard procedures.  Curvature restrictions are imposed in the 

translog system at every data point using Geweke’s (1986) Bayesian framework.  More specifically, we 

follow closely the systems estimation approach outlined by Griffith, O’Donnell, and Cruz (2000) using 

the Metropolis-Hastings algorithm to impose curvature.15  The autocorrelation structure imposed on the 
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normalized quadratic model is not included in this analysis, but both concavity of input prices and 

convexity of output are imposed.16  Price elasticities from the translog model are presented in Table 9 

for both major market and regional prices.  The own-price elasticities from the translog based on major 

markets remained elastic for HRW and HRS, but increased in magnitude for SRW, SWW, and DUR, 

relative to the elasticities from the normalized quadratic in Table 5.  For regional prices, the translog 

own-price elasticities are more elastic than those from the normalized quadratic. 

Implications  

Findings from the current research are of importance to industry agents, university researchers, and 

policymakers.  In contrast to previous studies on demand for wheat food by class, which reported that 

post World War II demand for wheat is inelastic, we find that high protein HRS and HRW wheat used 

for food and flour production are own-price elastic.17 This has important implications that can help 

understand better the wheat market and be used to answer questions related to government programs.  

For example, millers often blend hard red spring and hard winter wheat to produce flour for breads.18  

Interestingly, this observation is consistent with the substitution elasticities between HRW and HRS 

wheat presented in Table 6.  In hindsight, the substitution response between HRW and HRS is apparent 

in the quantity series shown in Figure 1.  As a result, we contend that this more thorough understanding 

of the economic substitutability between wheat classes can help prepare flour millers to better anticipate 

and respond to future changes in the quantity demanded for wheat food use. 

Alternatively, consider government price support and export programs.  Chai (1972) argued that 

using an elasticity estimate from all wheat has limited and possibly misleading implications when 

applied to analysis of individual classes for wheat in domestic food use.  Farnsworth  (1961) went a step 

further and emphasized some consequences of ignoring wheat by class relationships.  She identified 
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surplus problems that arose from government price support and export programs that kept price spreads 

between different types and qualities of wheat narrower and less variable.  Interestingly, the recent 

action by the Commodity Credit Corporation to released market loan rates by class reflects the 

government’s recognition of problems that arise by treating wheat as a homogeneous product (U.S. 

Department of Agriculture 2002).   

Of particular importance to university and government policymakers, is the introduction and 

distribution into the agricultural sector of newly developed varieties of hard white wheat (HWW).  HWW 

and HRW are reportedly close substitutes in baking quality with the primary difference that HRW carries 

the polyphenol oxidase that may cause discoloration in the processed product.  Boland and Howe 

indicate that short-run economic incentives for HWW will likely be driven by domestic flour millers in 

the form of price premiums from millers to growers.  For sake of discussion, suppose HRW and HWW 

are perfect economic substitutes.  Consider a 1.00% increase in price of HRW; this yields a decrease of 

1.10% in quantity demanded of HRW and an increase of 1.72% of HRS.  In 1999/2000 this would have 

resulted in a decrease of 4.00 million bushels of HRW demanded and an increase of 3.74 million bushels 

of HRS demanded.  Under the perfect substitute scenario, any price increase for HWW would likely 

induce a shift out of HWW into HRS wheat by millers.  The potential substitution to HRS wheat further 

complicates the introduction of HWW and could potentially nullify any short-run economic incentive for 

HWW coming from the milling industry. 

These findings also have implications based on provisions of the 2002 Farm Bill.  Under Section 

1616, Subtitle F, Title I – Commodity Programs, the CCC will make available $US20 million dollars a 

year for incentive payments to producers to encourage production of HWW for food use.  To be eligible 

the HWW must meet a specific quality criteria and the producer must demonstrate that buyers and 
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endusers are available.  If HWW and HRW are perfect economic substitutes for a specific region then a 

overall affect of this farm policy program may be to increase the number of acres planted to HWW but 

not necessarily directly impact allocations of cost minimizing expenditures by millers for wheat food 

use. 

Conclusions  

Policymakers in the U.S. have been recently altered and introduced farm programs that recognize 

differences in demand and supply responses for wheat classes.  The Commodity Credit Corporation 

(CCC) just released market loan rates by wheat class and the 2002 Farm Bill will make available $US20 

million dollars a year for incentive payments to producers to encourage production of new hard white 

wheat varieties for food use.  To better understand market responses for wheat food use, we 

conceptualized and specified an industry cost function with the different wheat classes as an input into 

flour production.  The cost function and factor demand system, derived from the normalized quadratic 

function, were estimated, elasticities derived, and results compared to findings of previous studies.   

 Empirical results of this study are important to policymakers.  Results indicate that own-prices 

are more elastic for HRW and HRS than for SRW, SWW, and DUR.  This is consistent with results from 

linear equation-equation models reported in Chai, Barnes and Shields, and Terry, but not consistent with 

results from the Barnes and Shields double- log demand system.  In contrast to previous studies, which 

reported inelastic own-price elastiticites across all wheat classes, we find that HRW and HRS with higher 

protein levels (13%) have elastic own-price effects.  In addition, there appears to be more substitution 

between HRW and HRS than among the soft wheat varieties and DUR.   The larger substitution effect 

between HRW and HRS has important policy implications relevant to industry, government wheat 

programs, and the introduction of new hard white wheat varieties in the U.S. 
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 Finally, there are several important limitations of this study.  First, the empirical results are based 

on a weakly separable cost function and conditional factor demand equations.  Ideally the derived 

demand system should accommodate all factor input prices.  Second, we dealt with primarily wheat 

quantity issues and not quality (e.g., protein) issues that are in need of further research.  We suggest 

future research such as the demand for wheat protein be investigated at a more disaggregate level. Even 

with such limitations, the findings of this study provide an important step towards understanding the 

economic substitution between wheat classes.   
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Table 1.  Descriptive statistics for nominal price and quantity data  
from 1974 to 1999. 
Variable Mean St. Dev. Min Max 
QFL (1000 cwt)  332090.00 51405.00 251100.00 411970.00 
PHRW ($US/bu) 
Price of Hard Red Winter  3.93 0.66 2.81 5.69 
PHRS ($US /bu) 
Price of Hard Red Spring 3.94 0.67 2.83 5.64 
PSRW ($US /bu) 
Price of Soft Red Wheat 3.43 0.63 2.19 4.83 
PSWW ($US /bu) 
Price of Soft White Wheat 3.86 0.61 2.90 5.27 
PDUR ($US /bu) 
Price of Duru m 4.74 1.11 3.30 7.03 
QHRW (million bu) 
Quantity of Hard Red Winter 305.35 45.95 251.00 387.00 
QHRS (million bu) 
Quantity of Hard Red Spring 178.46 39.52 128.00 260.00 
QSRW (million bu) 
Quantity of Soft Red Wheat 133.65 17.10 94.00 155.00 
QSWW (million bu)  
Quantity of Soft White Wheat 54.23 14.50 31.00 85.00 
QDUR (million bu) 
Quantity of Durum 53.15 17.63 32.00 80.00 
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Table 2.  Summary and test statistics for normalized quadratic models.     
   Equation   
 Cost HRW HRS SRW SWW 

      
Model Ia      
WW b 0.0000 -0.9624 0.0000 -4.2640* -3.4514* 
KSLc 0.1327 0.1281 0.1260 0.1418 0.1479 
      
      
Model IId      
WW b 1.0031 1.2523 1.6697 -0.1117 -0.4174 
KSLe 0.1060 0.1281 0.1130 0.1397 0.1742 
R-square 0.9832 0.8996 0.8379 0.9580 0.8679 
aModel I - not corrected for autocorrelation with curvature and symmetry imposed.  Log-Likelihood, LL= -418.592. 
bWald-Wolfowitz runs test.  * reject iid residuals at the 0.05 level with critical value 1.96. 
c Kolmogorov-Smirnov-Lilliefors Normality Test of Errors. Critical value of 0.1772 at the 0.05 level with 25 observations.     
dModel II - corrected for first-order autocorrelation with curvature and symmetry imposed. Log-Likelihood, LL=-398.123. 
e Kolmogorov-Smirnov-Lilliefors Normality Test of Errors. Critical value of 0.1806 at the 0.05 level with 24 observations.     
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 Table 3.  Parameter estimates from the normalized quadratic  
system.  Study period from 1974 to 1999.a   
Coefficient 
 

 Coefficient 
Estimate  

Asymptotic  
Z-value 

Asymptotic  
P-value  

b0  -70.02309 -4.6796 0.0000 
b1  48.66286 0.7463 0.4555 
b2  -85.92666 -1.3311 0.1831 
b3  59.80453 3.8818 0.0001 
b4  -21.47446 -1.0152 0.3100 
b5  34.65769 8.7591 0.0000 
a11  19.99827 6.4055 0.0000 
a12  -18.71125 -5.9336 0.0000 
a13  0.43579 0.3618 0.7175 
a14  0.45775 0.3036 0.7615 
a22  -4.08071 -2.0341 0.0419 
a23  -1.96406 -0.8424 0.3996 
a24  2.31600 0.9087 0.3635 
a25  2.15029 0.5367 0.5915 
a33  -2.39413 -1.0984 0.2720 
a34  0.00002 0.0000 1.0000 
b15  86.59887 5.0535 0.0000 
b25  72.50575 4.2553 0.0000 
b35  24.38608 6.1190 0.0000 
b45  21.43907 3.8599 0.0001 
ayy  -0.00003 0.0000 1.0000 
ρ   0.65508 9.2181 0.0000 

a Quantity of flour was scaled by 100,000 in estimation.  
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Table 4.  Likelihood ratio test results for symmetry and curvature restrictions. 
   Degrees Chi-square 
Restrictions LR Test Statistics of 0.05 Critical 
 Model Ia Model IIb Freedom Value 

     
     
Symmetry 8.79 3.18 6.00 12.59 
     
Concavity with 
Symmetry 
 0.95 1.57 10.00 18.31 
Convexity with 
Symmetry 
 2.08 3.44 1.00 3.84 
Concavity and 
Convexity with 
Symmetry 2.91 5.13 11.00 19.68 
     

     
aModel I - not corrected for autocorrelation.   
bModel II - corrected for first-order autocorrelation. 
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Table 5.  Price elasticity estimates from the normalized quadratic  
system with bootstrapped 90% percentile confidence intervals.   
 

Equation 
Price  
 Price Elasticities 
 HRW HRS SRW SWW DUR 
HRW -1.1043* 1.7517* -0.0545 -0.1396 0.5469 
HRS 1.0351* -1.7200* 0.0009 0.2753 -0.3251 
SRW -0.0211 0.0006 -0.0476* 0.1272 0.0774 
SWW -0.0251 0.0839 0.0591 -0.1715* -0.0779 
DUR 0.1155 -0.1162 0.0421 -0.0913 -0.2213* 
      
 90% Confidence Interval 

Upper Critical Value 
 HRW HRS SRW SWW DUR 
HRW -0.5313 3.2634 0.2212 1.0489 1.0493 
HRS 1.9203 -0.7818 0.2919 1.1188 0.2408 
SRW 0.0857 0.1920 -0.0017 0.3273 0.1413 
SWW 0.1881 0.3436 0.1501 -0.0230 0.0873 
DUR 0.2195 0.0849 0.0758 0.1010 -0.0357 
      
 90% Confidence Interval 

Lower Critical Value 
 HRW HRS SRW SWW DUR 
HRW -2.0822 0.8074 -0.3185 -0.8388 -0.0873 
HRS 0.4797 -3.1828 -0.2498 -0.7361 -0.8009 
SRW -0.1249 -0.1636 -0.1126 -0.0262 -0.0472 
SWW -0.1509 -0.2189 -0.0120 -0.7261 -0.2218 
DUR -0.0182 -0.2851 -0.0254 -0.2562 -0.3623 
* 90% confidence interval does not contain zero. 
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Table 6.  Morishima substitution elasticities from the 
 normalized quadratic system with bootstrapped 90%  
percentile confidence intervals.   

Equation 
Price  
 Substitution Elasticities 
 HRW HRS SRW SWW DUR 
HRW  2.7551* 0.0265 0.1464 0.3368* 
HRS 2.8560*  0.0482 0.2555 0.1051 
SRW 1.0498* 1.7209*  0.2306* 0.2635* 
SWW 0.9647 1.9952* 0.1748  0.1300 
DUR 1.6512* 1.3949* 0.1250 0.0937  
      
 90% Confidence Interval 

Upper Critical Value 
 HRW HRS SRW SWW DUR 
HRW  5.0768 0.1459 0.8195 0.5183 
HRS 5.3239  0.2575 0.8972 0.3480 
SRW 2.0769 3.2709  0.8494 0.3936 
SWW 2.9502 3.6791 0.4235  0.3423 
DUR 2.8723 3.0489 0.2269 0.6312  
      
 90% Confidence Interval 

Lower Critical Value 
 HRW HRS SRW SWW DUR 
HRW  1.2749 -0.0801 -0.0265 0.0598 
HRS 1.3626  -0.1240 -0.0430 -0.1296 
SRW 0.4328 0.8165  0.0168 0.0337 
SWW -0.0174 0.7119 -0.0138  -0.0774 
DUR 0.7525 0.4248 -0.0235 -0.0067  
* 90% confidence interval does not contain zero.  
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Table 7.  Output cost and demand elasticities with  
bootstrapped 90% percentile confidence intervals.   
     
 
Equation Elasticity 

Lower Critical 
Value 

Upper Critical 
Value  

 
Cost 1.1212* 1.0840 1.2125  
 
HRW 1.5963* 1.2653 1.7491  
 
HRS 1.7848* 1.5622 2.2192  
 
SRW 1.4644* 1.4483 1.8202  
 
SWW 1.2960* 1.0841 1.6095  
     
     
* 90% confidence interval does not contain zero.  
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Table 8.  Estimated own-price elasticities from previous studies.      
   Equation   
 HRW HRS SRW SWW DUR 

Chai:      
OLS single-equation 
1929-1941 -1.808  a -0.759 -0.447 -0.428  a -0.087  a 
OLS single-equation 
1946-1963 -0.617  a -0.725 -0.091  a -0.022   -0.106  a 
      
Barnes and Shields:       
OLS single-equation 
1977-1995 -0.746  a -0.468 -0.024  a -0.137  a -0.146  a 
ITSUR double-log system 
1981-1997 -0.420 -0.205 -0.239 -0.769 -0.161  a 
      
      
a own-price elasticities contained in 90% bootstrapped confidence interval reported in Table 5. 
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Table 9.  Further price elasticity estimates from 1974 to 1999.   
Equation 

Price Price Elasticities 
 Normalized Quadratic 

U.S. Regional Prices  
 HRW HRS SRW SWW DUR 
HRW -0.5107  0.4839 0.0531 0.2511 0.5517 
HRS 0.2984 -0.2837 -0.0226 -0.1522 -0.3303 
SRW 0.0232 -0.0160 -0.0542 b 0.0225 0.0235 
SWW 0.0487 -0.0479 0.0100 -0.0339b -0.0668 
DUR 0.1404 -0.1363 0.0137 -0.0875 -0.1782 b 
      
 Transloga 

U.S. Major Market Prices  
 HRW HRS SRW SWW DUR 
HRW -1.1400 b 1.7558 -0.0363 0.4846 0.2238 
HRS 1.0238 -1.8736 b 0.1411 -0.1594 0.2038 
SRW -0.0141 0.0942 -0.3629 0.4113 0.1398 
SWW 0.0847 -0.0478 0.1847 -0.6801 b -0.0482 
DUR 0.0457 0.0714 0.0734 -0.0564 -0.5191 
      
 Transloga 

U.S. Regional Prices  
 HRW HRS SRW SWW DUR 
HRW -0.7199 b 0.6454 0.3552 0.8295 0.0341 
HRS 0.3976 -0.5597 -0.1473 -0.2588 0.2467 
SRW 0.1561 -0.1051 -0.3400 0.1089 0.1505 
SWW 0.1578 -0.0799 0.0471 -0.7170 b 0.0287 
DUR 0.0085 0.0993 0.0849 0.0374 -0.4600 
a homogeneity, symmetry, and curvature conditions imposed with no autocorrelation structure. 
b own-price elasticities contained in 90% bootstrapped confidence interval reported in Table 5.
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Figure 1. Domestic food use in the US by wheat class from 1974 to 1999. 
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Footnotes 
 
                                                                 

1 The concern over perverse impacts of government intervention on wheat by class is not a recent 
matter.  Farnsworth (1961) and Chai (1972) both discussed surpluses of hard red winter and 
white wheat, attributing them to government price support and export programs that kept price 
spreads between different types and qualities of wheat narrower and less variable.   
2 Hard white wheat is not explicitly examined in this analysis because of the lack of consistent 
time series of data. 
3 Over the period from 1973 to 1998, the average ratio of bushels of wheat used for food to bushels of 
wheat ground for flour was 97% (U.S. Department of Agriculture). 
4 Blakeslee (1980), and others, assumed perfect substitutability across wheat classes in studies 
that pursued alternative objectives. 
5 Wholgenant (1989) provides theoretical and empirical insight into issues between primary and derived 
demand relationships for agricultural commodities. 
6 From 1983 to 1998 at the Kansas City Milling center, the cost of wheat as input into flour 
production made up 91% of its wholesale price (Table 24, USDA-ERS). 
7 Limited degrees of freedom are not the only obstacle to overcome if additional inputs were used 
in the empirical analysis.  For instance, the marketing year for the annual quantity data are from 
June to May, which is not necessarily consistent with available industry data for other inputs. 
8 Henceforth, the superscript notation is discarded as we deal only with the wheat inputs. 
9 More specifically, a shortage of protein content for the HRW crop in the central and southern 
Great Plains has the potential of shifting up the demand for higher protein HRS in the northern 
Great Plains.  
10 All likelihood ratio test statistics are calculated using the adjusted likelihood ratio test statistic 
for systems estimation LR[MT-.5(Nu+Nr)-.5M(M+1)]/(MT) where LR-unadjusted log-
likelihood value, M-# equations, T-# observations, Nu-#parameters in unrestricted model, Nr-
#parameters in restricted model (Moschini, Moro, and Green 1994).   
11 Computation of predictions with the autocorrelated model follows standard methods discussed 
in Reinsel (1993). 
12 By examining the marginal effects of (2), it becomes evident why (9) can not be used to 
interpret the economies of scale for an industry.  Taking a partial derivative of the cost function 

with weakly separable inputs in (2) with respect to output yields 
1 2

1 2 3

C c c
C C C

y y y
∂ ∂ ∂

= + +
∂ ∂ ∂

, where Ci 

is the partial derivative with respect to the ith argument in the cost function.  The cost elasticity 

in (9) depends on the marginal effect 
1c
y

∂
∂

of the wheat micro-function c1, which is part of only 

one term in the cost elasticity of the industry functions in (1).    

13 Terry (2000) estimated several factor demand systems derived from an indirect profit function 
and a cost function for wheat by class, but combined SRW and SWW into a soft wheat class.  
Terry’s results were consistent with findings in the current paper and the equation-by-equation 
OLS models in that soft wheat was less responsive to its own price than were the hard wheat 
varieties.   
14 Initially, homogeneity and symmetry conditions were imposed without curvature restrictions.  
Here, the most notable change was the appearance of a positive own-price elasticity for SRW 
wheat. Terry (2000, Appendix A), using regional price data, also reported a positive own-price 
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elasticity for SRW wheat when using the translog model and when trying to replicate the Barnes 
and Shields double- log demand system.   
15 Further discussion of applying the Metropolis-Hastings algorithm is provided in Chib and 
Greenberg (1996) and Robert and Casella (1999). 
16 Additional details of this estimation process are available from the author upon request. 
17 Blakeslee (1980) reported inelastic demand for all wheat from 1954 to 1974, with a price 
elasticity of  -0.012.  He also notes that wheat for food use had little variation over the study 
period.  
18 Harwood, Leath, and Heid (1989) report that in periods when red winter wheat has low protein, 
millers of bread flower generally purchase large amounts of hard red spring wheat and blend the 
two classes.   


