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Estimation of supply response in CAPRI1

                                                      
1 This paper is an excerpt from the dissertation "Econometric specification of constrained optimiza-
tion models" (Jansson, 2007).  

Torbjörn Jansson 

Abstract 
The primary objective of this paper is to estimate behavioural parameters 

of the quadratic regional supply models in the modelling system CAPRI, using 
the time series data in the CAPRI database. A secondary objective is to replace 
the constant yields of the original model by functions that depend on input use. 
Due to lack of statistical robustness, the second objective is not achieved, thus 
yields remain constant. A Bayesian highest posterior density estimator is de-
veloped to address the primary objective. After discarding regions with insuf-
ficient data, parameters for up to 23 crop production activities with related in-
puts, outputs, prices and behavioural functions are estimated for 165 regions in 
EU-15. The results are systematically compared to the outcomes of other stud-
ies. For crop aggregates (e.g. cereals, oilseeds etc.) on the level of nations, the 
estimated own price elasticities of supply are found to be in a plausible range. 
On a regional level and for individual crops, the picture is much more diverse. 
Whether the regional results are plausible or not is difficult to judge, since no 
other study of similar regional and product coverage is known to the author.  

Keywords: Bayesian estimation, errors-in-variables, PMP 
JEL-classification: Q11, C32. 

1. Introduction 
The primary objective of this research is to develop a robust method for estimat-
ing the behavioural parameters of the supply module in the regionalised European 
agricultural sector model CAPRI, utilizing the time series of observations avail-
able in the CAPRI database and the optimality conditions of the model. As a sec-
ondary objective, the current model assumption of constant yields will be re-
viewed and, if feasible, revised. 

The CAPRI model is a constrained quadratic programming model for NUTS2 
regions in 34 European countries, where agriculture in each region is represented 
by an instance of a template programming model. 

In this context we only consider the arable annual crop producing part of the 
representative regional farm, keeping other parts (husbandry, permanent grassland 
and permanent crops) fixed when necessary or leaving them out altogether when 
possible. We also ignore the fertilization constraints of the full model, working 
with Leontieff fertilizer input coefficients. With those restrictions, we need to 
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estimate parameters for a maximum of 23 land use activities using ten inputs in 
172 regions in EU-15 (thus excluding new member states).  

Since most regions produce only a subset of the 23 crops, and some regions 
have too short time series of data, the actual extent of the exercise is somewhat 
smaller. Still, it is a large scale application that requires a method equally applica-
ble to all regions and that is robust to data problems. The full list of crops and 
crop groups (see following sections) is provided in appendix 1, table 16. The ten 
inputs are listed in table 17. 

Data for the model is provided by the CAPRI database. The part of the dataset 
that is relevant for this research has been compiled from the Economic Accounts 
for Agriculture (EAA, production values and volumes at national level) and New 
Cronos Regio (acreages and yields on regional level), both databases from Euro-
stat, completed with policy information from regulations and expert data where 
necessary. The dataset has been processed by econometric/heuristic software of 
the CAPRI system to be made complete (no holes in time series) and consistent 
(with respect to physical and economical interrelations) on member state as well 
as NUTS2 level.  

The report is outlined as follows: In section two we describe the structure of 
the template regional representative farm model that is used for all regions. The 
existing model has fixed input and output coefficients. In order to check whether 
that is a good specification, two sections follow that investigate two different 
extensions of the model to endogenous yields. In section three we test for all re-
gions of the model whether yield significantly depends on inputs. Section four 
analyses in greater depth for one single region, selected for its good data quality 
(long time series, many crops produced) whether changed acreages lead to 
changed yields. Since it is concluded that none of the extensions in section three 
and four is statistically reliable, we return in section five to the primary objective 
to estimation of the model with fixed yield coefficients. We propose a general 
estimation approach based on Bayesian technique that finds the posterior mode, 
similar to the methods described by DeGroot (1970). In section six, results are 
presented for selected regions, and compared to the results of other studies. 

2. A regional supply model 
The regional representative farm is assumed to act as if solving a linearly con-
strained quadratic programming problem (1) in every time period t. Throughout 
this paper we generally use lower case bold face letters to represent items that are 
column vectors for each t, upper case bold face letters to represent matrices and 
italic letters to represent scalars. The dimensions of vectors and matrices are de-
noted by upper case letters, where a lower case version of the same letter denotes 
the indices of the elements in that dimension, so that for instance the “J-vector of 
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acreages x” means a vector of length J, with elements xj, j = 1…J. The prime 
character (′) denotes the ordinary transpose of a vector or a matrix. 

All regional models have identical structure, and no cross-regional constraints 
or relationships are assumed, in order to keep down the complexity of the estima-
tion. Thus, indices for regions can be omitted. The producer is assumed to solve 
the optimization problem in each period independently of other periods, thus all 
items that change across periods obtain an index t, so that for example xt denotes 
the vector x in period t. This implies that x also can be considered a 3-
dimensional array with dimensions with only one column, or dim(x) = (J,1,T). At 
some occasions it is convenient to denote the time series for some element j of x, 
and this is done somewhat sloppy as xj, where the reader is assumed to remember 
that x also has another dimension T, which is now in the rows2. 

The model can then be written for each period as 

 
[ ] [ ][ ]

ttt

tttttttttt lq
t

vxR

xGGBDcxwAspYx
x

=

′+−′−−+′

s.t.

max 2
1

 (1) 

where for each t,  
xt vector of acreages for each of J land uses  
Y t J × J diagonal matrix with yields on the diagonal  
pt J vector of prices  
st J vector of direct subsidies  
A t J × I matrix of input coefficients for I inputs  
wt I vector of input prices  
qt price index  
c J vector of parameters  
l t a land availability index (described further below)  
D J × J diagonal matrix of parameters  
G J × M matrix that sums up land use by each of M = 6 crop groups, 
 i.e. with gjm = 1 if crop j belongs to group m, else gjm = 0  
B 6 × 6 matrix of parameters  
Rt 2 × J matrix of constraint coefficients, where r1j = 1 for j = 1…J and 
 r2j is the net set-aside contribution of crop j  
vt 2 vector with v1 total land available, v2 = 0. 

The model implies that the producer maximises the sum of gross margins (the 
first term) minus a quadratic function (the second term), subject to a land con-
straint and set-aside requirement. The quadratic function in the objective function 
is a behavioural term in the tradition of positive mathematical programming 

                                                      
2 I.e. we perform a generalised transpose of the 3-D array x where the first and last dimensions are 
swapped, and signal this only by a switch of indices. In general, symbols are better thought of as 3-
D arrays where the index denotes the 3rd dimension. 
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(PMP, see e.g. Horner et al. 1992 or Howitt 1995) that is intended to capture the 
aggregated influence of economic factors that are not explicitly included in the 
model, like land heterogeneity and additional resource constraints (Heckelei 
2002). The function is in what follows sometimes referred to as the PMP-
function, and the parameters c, D and B as the PMP parameters, or the behav-
ioural parameters of the model. It is the objective of this work to estimate those 
parameters. 

In order to reduce the number of parameters to estimate, we assume that the 
quadratic function has a special structure: Cross-crop effects are only permitted 
between groups of crops, so that for instance an increase in the area of potatoes 
plus sugar beet may influence the cost of producing cereals and increase the cost 
of producing both sugar beet and potatoes. In order to provide each individual 
crop with increasing marginal costs3, we also admit a quadratic term that depends 
only on the individual crop. The structure described is implemented using a vector 
c of linear effects, a diagonal matrix D of quadratic own-crop effects, and a matrix 
B of cross-group effects. The J × M matrix G is used to sum the acreages within 
each group, substantially reducing the number of parameters compared to estima-
tion of a full J × J matrix. 

The prices p and w in the model are nominal, and since the quadratic function 
is assumed to capture, among other things, the opportunity cost of resources not 
explicitly modelled, it should be inflated. This is obtained by multiplication of c 
by the general price index qt. 

The total amount of land fluctuates slightly between years, in general with a 
downward trend due to migration of land into other sectors (fallow land is mod-
elled explicitly as a land use activity). We do not know if it is productive or un-
productive land that migrates, so to avoid that land migration strongly influences 
land rent (the dual value of the first constraint), we use land shares instead of ab-
solute land use in the quadratic term of the PMP-function. This is equivalent to 
scaling the matrix [D + GBG′] by the square inverse of total land available in 
each period. In order to obtain values approximately interpretable as “marginal 
cost change in euro per hectare” it is also multiplied by ½ times square of total 
land available in year 2000, or (v1)2000. Thus, the lt = ((v1)2000/(v1)t)². 

The optimization model (1) can be equivalently described by the following 
first- and second order conditions for optimal x 

 [ ] 0λRxGGBDcwAspY =′−′+−−−+ tttttttttt lq  (2) 

 Rtxt = vt  (3) 

                                                      
3 More precisely, to ensure a strictly definite Hessian matrix. 
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 UUB ′=   (4) 

 djj ≥ 0 for j = 1…J (and dij = 0 for i ≠ j) (5) 

λλλλt is the 2 × 1 vector of dual values for the constraints. Note that for positive 
semi-definiteness of the Hessian matrix it is sufficient that B is positive semi-
definite, which is satisfied by the Cholesky factorisation with the upper triangular 
matrix U, and that all elements of D are non-negative4. 

The primary objective of the paper can now be more precisely formulated as 
estimating the PMP parameters by using the optimality conditions as estimating 
equations. 

The secondary objective of evaluating the assumption of constant yields can be 
restated as an attempt to lift some of the non-linearity out of the PMP-function 
and explicit it in the form of a non-constant marginal gross value added, i.e. to 
estimate the relationship between yields and input use.. The first such extension is 
a variant of the model where yield depends endogenously on input use (land 
counting as an input). A second extension is the lesser modification that yields 
depend on allocated acreage. 

3. Should yield depend on input use? 

3.1. Motivation 

The purpose of this section is to determine if prices of outputs and inputs are im-
portant determinants of yields of major agricultural crops in the EU. If a signifi-
cant relationship between prices and yields can be identified, yields should be an 
endogenous function of input use in the CAPRI model, else input use and yields 
should be treated as exogenous to the model. The underlying idea is that perhaps 
some of the nonlinearity of the model, which is currently modelled only by the 
quadratic cost component, can be explained more explicitly (cf. Heckelei 2002). 
To decide which of those two alternative formulations to use, we estimate a yield 
function. 

We start from the microeconomic model (1), and augment it with yields 
endogenously depending on x and A as in equation (6). We thus assume that yield 
Yjt of crop j in period t can be approximated by a function that is quadratic in in-
puts A = (aij), linearly dependent on planned number of hectares x and on trend T 
and with a random term εεεε: 

 jtijtijijtijjtjtjjjt aaxTY εααγγγ +++++= 2
21210  (6) 

                                                      
4 In fact, we will use a stronger restriction of djj ≥ δij > 0 in estimations to avoid numerical problems 
when estimating elasticities. 
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In this estimation, it is assumed that the acreage allocation x is the optimal so-
lution to the maximization problem at some expected prices and yield. We may 
then use the envelope theorem to obtain the optimality conditions for input use. 

The first order condition for profit maximum of the extended model with re-
spect to A at the expected output prices p and input prices w can be written 

 ( ) itjtijtijijjt
ijt

jt
wpap

a

Y
=+=

∂
∂

21 2αα  

Solving for the optimal input quantities gives aijt
* = (wit/pjt – α1ij)/(2α2ij). Sub-

stituting that expression into the yield function (6) and defining 

 ∑−=
i ij

ij
jj

2

2
1

00 4α
α

γβ   

 β1j = γ1j  

 β2j = γ2j  

 

ij
ij

2
3 4

1

α
β =  and  

 r ijt = wit/pjt  

gives us an expression for yields that depends on the square price ratio r ijt: 

 it
i

ijtijjtjtjjjt rxTY εββββ ++++= ∑ 2
3210  (7) 

The second-order condition for a profit maximum is that α2ij < 0, so we expect 
β3 to be negative. Without that condition holding true, we will not obtain useable 
estimates, and we would better choose exogenous yields. Thus, we want to test 
the hypothesis that β3 < 0 versus β3 ≥ 0.  

3.2. Data 

The estimation is carried out on NUTSII level for the EU15 member states. All 
input prices have been aggregated to a single input price index by first computing 
the Laspeyres price index of the aggregates “plant protection” (PLAP) and “all 
other inputs” (REST), with the average total input quantities 2001-2003 as 
weights, and then merging them into a single input price index for each crop by 
computing the Laspeyres price index using the average 2001-2003 crop specific 
input coefficients as weights (input coefficients coming from the CAPRI data-
base). Expected output prices were observed prices lagged one year (naïve price 
expectation), whereas input prices entered without lag. 
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It is crucial to be able to separate the effect of trend from that of the other ex-
planatory variables., The squared price ratio is, however, likely to contain a trend 
component as well, which we will not be able to separate from the pure trend. To 
be on the safe side, i.e. not to find a significant influence of prices that is really 
only the influence of the trend in prices, we subtract linear trends from the ex-
planatory variables x and r . This is done by fitting and subtracting a simple trend 
from each variable ξξξξ using the equation 

 ( ) ξCCCCξξ ′′−= −1*  

where C is the n × 2 matrix with ones in the first column and the sequence from 1 
to n in the second column, and ξξξξ a time series for some exogenous variable to 
clear of trend. 

3.3. Estimation method 

The principal estimation method used is Least Squares. Three problems are likely 
to be present in the data set, so that some modifications of the ordinary least 
squares (OLS) seem appropriate. Firstly, there may be problems with endogene-
ity, because the lagged price ratio is likely to influence acreage. To avoid obtain-
ing biased estimates, we try an alternative estimation where the trend free acreage 
is instrumentalized by lagged acreage, lagged output price, lagged price index of 
substitutes, direct subsidies and the other explanatory variables in (7) except for 
lagged squared price ratio. Denoting, for now, the T × K matrix of K explanatory 
variables T years for each crop j by X j (not to confuse with acreage xj) the instru-
mental variables matrix by Z j, and the vector of coefficients by ββββIV, we estimate 

 ( ) ( ) jjjjjjjjjjIVj , XZZZZXyXXXβ ′′=′′= −− 11 ˆˆˆ  for j = 1…J 

The correlation between acreage and instrumentalised acreage should be rather 
high for the instrumentation to make sense. The coefficients of correlation are 
shown for all relevant crops in table 1. Albeit there are some cases with low corre-
lation, the general impression is that the instrumentation is good, with 55% of the 
correlations greater than 0.80. 
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Table 1: Correlation between acreage and instrumentalized acreage 

 BL DK DE EL ES FR IR IT NL AT PT SE FI UK 
SWHE 0.72 0.84 0.86 0.87 0.87 0.70 0.54 0.61 0.39 0.83 0.79 0.78 0.90 0.54 
DWHE   0.84 0.67 0.89 0.92  0.85  0.90 0.84   0.95 
RYEM 0.89 0.55 0.87 0.61 0.83 0.96  0.42 0.56 0.89 0.79 0.77 0.61 0.83 
BARL 0.92 0.74 0.87 0.94 0.78 0.88 0.96 0.89 0.70 0.85 0.52 0.90 0.79 0.91 
OATS 0.79 0.65 0.96 0.46 0.97 0.99 0.63 0.91 0.87 0.77 0.85 0.74 0.88 0.66 
MAIZ   0.78 0.97 0.78 0.53  0.86 0.83 0.85 0.74    

OCER 0.60  0.63 0.92 0.78 0.90  0.81   0.95   0.90 
RAPE  0.86 0.87  0.93 0.79 0.84 0.94  0.96  0.87 0.26 0.41 
SUNF   0.91 0.97 0.96 0.82  0.86  0.88 0.77    
SOYA     0.86 0.71  0.74  0.69     
PULS 0.78 0.40 0.96 0.98 0.80 0.95  0.93 0.89 0.93 0.79 0.53 0.84 0.73 
POTA 0.88 0.88 0.99 0.69 0.94 0.74 0.53 0.87 0.68 0.89 0.43 0.64 0.73 0.62 
SUGB 0.77 0.94 0.76 0.54 0.94 0.68 0.82 0.72 0.77 0.99 0.54 0.68 0.88 0.90 
MAIF  0.98 0.80 0.64 0.91 0.53  0.97 0.80 0.84 0.85 0.58   

OFAR 0.72 0.69 0.95 0.99  0.72 0.82 0.62 0.71 0.93 0.63 0.85 0.81  
 

Secondly, a strong correlation between error terms of certain crops should be 
expected due to the similar influence of weather on similar crops. For example, 
one should expect a positive correlation between the yields of barley and rye, 
because their vegetative periods are similar and they have similar requirements 
regarding weather and soil. Thus, a seemingly unrelated regression (SUR) would 
be appropriate. Such an estimator would be more efficient than OLS would the 
covariance matrix be known. In the current case, the covariance matrix is not 
known, but has to be estimated, which may hamper efficiency considerably. This 
was tried out using iterated SUR with and without the instrumentation above. The 

estimation was carried out in three steps: (i) instrumentation of X by X̂  as above, 

(ii) iterated SUR of Y on X̂  to obtain stable weights matrix W, which was com-
puted from the inverse covariance matrix ΣΣΣΣ of the error terms of the regression of 

Y on X̂ , weighting each element of the covariance matrix by the harmonic mean 
of the degrees of freedom of the relevant equations, 

( )( )jjiiij KNKNDF −−= , and (iii) computation of estimator 

( ) WyXWXXβ ''SUR
ˆˆ 1−

= . The index free matrices represent the stacked system as 

in Greene (2003, p. 342). X is the (JT) × (JK) partitioned matrix with matrix X j on 

the j th diagonal position and zeros elsewhere, and similar for X̂ . W = ΣΣΣΣ-1 ⊗ I , and 
y the vertically concatenated vectors yj. 

Thirdly, there could be an aggregation bias. It may well be that for example a 
price increase has a greater production response in a sub region with generally 
low yields. The weight of the low yield region in the aggregate would increase, 
leading to reduced aggregate yield although the yield in each sub-region increased 
as response to the higher price. To investigate this effect to the extent possible by 
the available data, the regressions were re-run on sub national level (NUTS2 
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where possible, UK NUTS1). Prices are only available on national level. They 
were mapped down to the respective sub regions. Acreages and yields, on the 
other hand, are also available for NUTS2 regions. 

Alltogether, eight different estimations were run to account for each of the 
three problems. The estimation setups are shown in table 2. The estimations were 
evaluated based on the number of significant coefficients using t-tests on the 5% 
level. The t-tests were computed for the test β3j = 0 using standard deviations of 
the vector of estimators computed as the square root of the diagonal elements of 

( ) 1ˆˆ)(Cov
−

= XW'Xβ . Note that in the case of no instrumentation, X̂  = X, and W-1 
becomes the standard variance estimator with degrees of freedom correction. 

Table 2: Different estimation methods tried 

Estimation nr. Regional resolution Acreage instrumentation SUR 
1 national no no 
2 sub regions no no 
3 national yes no 
4 sub regions yes no 
5 national no yes 
6 sub regions no yes 
7 national yes yes 
8 sub regions yes yes 

3.4. Results 

The results indicate that there is a relationship between yields and input prices and 
also between acreages and yields in some regions for some crops., The relation-
ships ,however, can not be statistically detected for all crops in all regions. For the 
major share of all crops no significant influence at all of neither input prices nor 
acreages on yields is found. The results also show that the sophistication of the 
estimation method by the instrumentation of acreages, use of sub regions and 
SUR covariance structure is worthwhile, because the number of significant coef-
ficients increase by their introduction, and the signs of the price influence tend to 
be more conform with theory (which suggests a negative influence of the output-
input price ratio). Table 3 shows the number of estimated equations, the number 
of coefficients with positive and negative signs and the number of coefficients 
significantly different from zero with each sign. 

Since a rather large number of t-tests were carried out at the 5% level, one 
would expect 5% of the tests to show a significant β3 ≠ 0 even if the true β3 = 0. 
For example, in the estimations with sub regions, 1858 t-tests were carried out. 
We would then expect 2.5% of 1858 = 93 tests to show b significantly different 
from zero in each direction even if the true b = 0. Even with this in mind, it seems 
that the number of significant coefficients is too large to be a pure random out-
come (e.g. 184 negative significant to 96 positive significant out of 1858 tests for 
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regionalised iterated SUR estimation with instrumentation). Therefore, we con-
clude that there is indeed a general influence of prices on yields, but that the in-
fluence is so hard to detect statistically that it does not seem worthwhile to try to 
estimate an economic model with endogenous yields. 

Table 3: Summary of results for different estimation setups. 

Est. nr. Eq. b3<0 b3>0 b3<0* b3>0* b2<0 b2>0 b2<0* b2>0* 
1 163 90 73 12 8 95 68 20 6 
2 1858 1097 745 137 63 1051 807 204 114 
3 163 95 68 9 7 96 67 14 4 
4 1858 1112 730 125 61 1024 834 117 103 
5 163 98 65 24 9 84 79 29 11 
6 1858 1032 810 189 117 995 863 273 192 
7 163 98 65 28 6 90 73 31 21 
8 1858 1062 780 184 96 986 871 176 178 

Est. nr. refers to estimation number in table2, b3 is the coefficient of price ratio, b2 the coefficient of acreage, 
and a star refers to significance of 5 % level double sided t-test. 

Why is there no statistically reliable influence of prices on yields? It is well 
known that yield of most crops is a concave function of inputs. Given profit 
maximizing behaviour of producers, a relationship similar to that estimated here 
should result. There are, however, at least five major obstacles involved. 

(1) The quadratic yield model implied here may be wrong. In reality, yield also 
depends on a lot of other factors that are all collected in the error term. Crop rota-
tion is certainly a significant determinant of yield that is not controlled for in 
these estimations. This could be introduced by a careful selection of substitute 
acreages. A share of this influence should already be represented by the inclusion 
of own acreage, and introducing further explanatory variables would reduce the 
degrees of freedom and aggravate the problems with endogeneity (acreages de-
pending on prices) 

(2) The producers may not be rational in the way assumed here. Output price 
expectations may not be naïve, and the decision on input use may have to be taken 
with some time lag so that an input price expectation is required as well. It may 
also be the case that the yield function is largely unknown to the producer, so that 
rational behaviour as in the conceptualized model is impossible. Producers are 
perhaps more likely to choose input amounts from a table or heuristic with very 
few, if any, alternative levels of inputs. As an alternative price expectation, the 
formula 0.67Pt-1 + 0.33Pt-2 was tried, but without improvement in fit. 

(3) The yield function may have a shape that implies almost the same input use 
and yield for a wide range of price ratios, so that there are almost only two differ-
ent profit maximizing solutions: either “zero” or “full” input use. That would be 
the case if the graph of yield to inputs has an almost linear initial part and then 
bends sharply downwards at some point. Then the influence of the price ratio 
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would be “almost” discontinuous, with almost no change in yield for moderate 
price ratio changes and a big leap at some point. Then, for most price ratios, the 
optimal yield choice is almost the same. 

(4) It may well be the case that the sub regional level used in the estimations 2, 
4, 6 and 8 is still too aggregated so that an aggregation bias remains. 

(5) The data sampling model underlying the estimations is inappropriate. Ac-
tually, observed acreages and prices are only indicators of the true (latent) 
planned acreage and expected price. Because the errors on acreages and prices 
now (erroneously) are attributed to measurement errors in yields, the estimated 
variance is too large, and thus the tests likely weaker. The coefficients are also 
likely to be biased in unknown directions (Fuller 1987). In addition, the observed 
yield is the average yield, whereas if yield really is endogenous the decision is 
based on the expected marginal yield. Actually, a model including measurement 
errors and marginal yield expectation together with the full optimality conditions 
(2-5) was the starting point of the estimation, but proved too complex to handle 
efficiently. Thus, the estimations of yield functions were performed in this sepa-
rate step to determine whether endogenous yield should be part of the final model. 
We return to the measurement error model and yield expectations below, though 
without endogenous input coefficients. 

4. Should yields depend on land allocation? 

4.1. Problematic marginal cost curves 

If the zero-profit condition (2) is solved for x we find that acreages are linearly 
depending on prices according to the relation 

 [ ] [ ]tttttttttt ql λRcwAspYGGBDx ′−−−+′+= −− 11  (8) 

Because the matrix [ ] 11 −− ′+ GGBDtl  is required to be positive semi-definite by 
the second order conditions, we expect the graph of xt to gross margin mt = Y tpt + 
st − A twt, to be an upward sloping curve, so that increasing gross margin leads to 
increased acreage. Figure 1 shows the development of rye acreage and gross mar-
gin (nominal prices) between 1985 and 2003 for one of the most important cereals 
producing regions in France, the Nuts 2 region with code FR24 (Centre). Obvi-
ously, it would be difficult to fit acreage to gross margin with a positive slope if 
no other information is included, because the gross margin has increased whereas 
production decreased. In fact, the coefficients in an OLS regression of acreage on 
constant and gives the slope coefficient -0.0122 with a p-value of 0.0152. The 
points and the fitted line are shown in figure 2. 
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Figure 1. Gross margin and acreage of rye in FR24. 
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Figure 2. Acreage linearly fitted to gross margin for rye in FR24. 

Thus, something more is influencing the producer decision to decrease rye 
production despite apparently increasing gross margin. Several auxiliary hypothe-
ses come to mind. For instance, we tacitly assumed that the dual vector λλλλ was 
constant, whereas it in fact λλλλ depends on the gross margins of all other crops. 
Perhaps gross margins in, say the most important crop soft wheat, has increased 
enough to increase land price enough to force back rye. Figure 3 shows acreage 
and gross margin in soft wheat in the same region and time period. As can be seen 
in the figure, the gross margin in soft wheat has decreased slightly during the time 
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period, which is not favourable for that hypothesis (though it is not enough to 
reject it; soft wheat may have been the wrong crop). 
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Figure 3. Gross margin and acreage of soft wheat in FR24. 

A second assumption in the simple regression of acreage on gross margin was 
that the coefficient is constant over time. Comparison of the regression model 
with the equation (8) derived from the first order conditions reveals that the coef-
ficient contains the parameters c, D and B which change over time with price 
index and total area. Thus the cost component c actually increases in nominal 
terms over time, which also helps alleviate the problem of reverse reaction of rye. 
A proper analysis should thus include at least the full first order conditions. 

Estimation of (2-5) for all crops simultaneously, with a measurement error ap-
proach5 allowing for errors on x, Y, p, A and w, and endogenous dual values with 
prior information for identification, did however result in a boundary solution for 
D and/or B. The boundary solution is such that rye obtains as small a coefficient 
as possible, still yielding a positive definite matrix. That implies an elasticity of 
supply of rye of close to infinity in the resulting simulation model, which is sim-
ply not plausible. That model is further discussed in the next section. 

The rest of this section discusses a third auxiliary hypothesis that is sufficient 
to estimate rye parameters with the expected sign. The hypothesis is based on the 
fact that our yield data are really average yields, whereas the producer is assumed 
to base his production decision on expected marginal yield. Then gross margins 
m were computed in the wrong way above, using average yields. In fact, a closer 
                                                      
5 The estimation also uses linear trends for expected yield and expected input requirements to re-
move stochastic weather influences, and uses prior information of 0.5 times gross margin of soft 
wheat for land price dual value and similar for set-aside for identification of the model. 
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look on the components p, Y, s, A and w of gross margins reveals that output 
prices have dropped steadily, and that the main reason for the increasing gross 
margin is that rye yields have risen sharply from about three to about five tons per 
hectare (figure 4). If the marginal yield is actually depending on x, then the devel-
opment of marginal yields may be a qualitatively different from that of averages. 
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Figure 4. Average yields of rye in FR24 

4.2. Motivation for endogenous yield 

It could be the case that rye, which is grown on a considerably smaller area than 
soft wheat, is treated as an inferior alternative of many producers, and is thus 
grown on soil less suitable for cereals production. If prices increase, rye becomes 
an increasingly competitive alternative to soft wheat on the better soils. In that 
case, the marginal yield of rye with respect to acreage would be an upward slop-
ing function. 

One could also motivate a downward sloping yield function (of acreage) by 
assuming that first the soil that is best suited for rye is used, or that there is some 
rotational effect favouring smaller land use for rye. To investigate which is the 
case, we attempt to estimate the relation between yield and acreage. 

Assume that marginal yield is approximated by the linear model 

 fjt(xjt) = β0j + Ttβ1j + 2xjtβ2j 

with T a linear trend, and that observations of average yields arise according to 
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Integration gives the model to estimate, 

 yjt = β0j + Ttβ1j + xjtβ2j + εjt. (9) 

Note that the coefficient β2 in the expression for the marginal yield enters with 
twice its estimated value. Thus, if β2j is positive and xjt decreases over time, then 
the marginal yield decreases over time compared to average yield. If the β2j is big 
enough, this may be enough to turn the apparent positive gross margin develop-
ment for example in rye in the case study region FR24 into a negative one. 

4.3. Pitfalls when estimating the expected marginal yield 

A straightforward least squares estimation of (9) gives a β2 for rye of 0.04577, 
which is supporting the hypothesis that gross margin actually has been increasing 
less rapidly than indicated by the average yields. The t-test for β2 = 0 gives a poor 
p-value of 0.544. The estimation, however, has at least two pitfalls that potentially 
make the estimation less efficient and reduces the power of the t-test of β2 = 0. 

(i) The yields of all crops tend to be correlated. 

(ii) We ignore that acreage is measured with errors. 

The first pitfall makes the LS estimation inefficient, because a more efficient 
estimator would recognise that if, say, all cereals have a low yield in 2003 (which 
was the actual case), then error terms in that year should have less weight in the 
estimation. That is, a seemingly unrelated regression (SUR) could be a more ap-
propriate model (as in the previous section). 

The second pitfall must be further explained. Above it was briefly mentioned 
that the ultimate goal is to perform an estimation with errors on the acreages x. So 
we should not now ignore that our observations of acreages may not be the true 
planned acreages, but acknowledge that a measurement error may be involved. If 
we assume the simple model that observed acreages X relate to true planned acre-
ages x with a simple additive error model, 

 X j = xj + uj  

then the estimates of β2 are likely to be biased and the variances of the estimates 
are likely to be biased too (see Fuller 1987 for a thorough treatment of the linear 
measurement error model). In a simple linear model with a single explanatory 
variable, the coefficient is biased towards null by a factor κ = σxx(σxx + σuu)

-1, and 
the estimated variance of the coefficient is biased by κ-2. (but t-test β = 0 is not 



 

16 

weakened). Unfortunately the situation becomes more complicated when there are 
two explanatory variables (TREND and ACREAGE), one of which is measured 
without error (TREND). To correct for these biases, a measurement error model 
seems to be the appropriate method. 

4.4. A seemingly unrelated regression 

The SUR estimator requires knowledge of the covariance matrix of yields. If that 
is not available, it can be estimated in a feasible generalised least squares estima-
tion (FGLS). In this analysis we use an iterated SUR. In the first step, we estimate 
the model with independent error terms (identity matrix as weighing matrix). The 
residuals are used to estimate the yield covariance matrix ΣΣΣΣe. The inverse covari-
ance matrix 1−

eΣ  is used in the second step to estimate the FGLS model by mini-
mising the generalised sum of squares 

 ( )( ) ( )∑ −−−Σ−−− −

jkt
ktktkkktjkejtjtjjjt XTYXTY 210

1
210min ββββββ  

where j,k are alternative indices for J crops and t the index for time. 
In order for the coefficient vector to converge, certain limitations are required 

to bring down the number of elements in ΣΣΣΣe. This was done by subdividing the 
crops into five groups that were conjectured to react similarly or perform a similar 
function in the rotation. This is equivalent to a separate SUR estimation for each 
group. The groups are the ones shown in table 16 in the appendix, except of 
course for the group NOCR (crops with no physical yield) which was not in-
cluded. In FR24 there was sufficient data for 15 cropping activities. 

The SUR estimator 2β
)

for β2 in rye is considerably smaller than the OLS esti-
mator, 0.01878 instead of 0.04577, and the t-statistic indicates an even less sig-
nificant coefficient, P(abs(2β

)
)≥0.01878|β2=0) = 0.598. The block wise covari-

ance matrix and the estimated coefficients are shown in the following tables (4-9). 
One can see in the table that the assumption of covariation of yields across crops 
within the groups is reasonable, because all items except for the covariation 
PULS.POTA in table 8 are positive. Nevertheless, the estimated 2β

)
 are signifi-

cantly different from zero only in 4 out of 15 cases (determined by Student’s t-
test), rye not being one of them. So even if the coefficient on rye tends to have the 
right sign, the effect could just as well be coincidence in most cases. 
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Table 4. Coefficients for TREND and ACREAGE in SUR estimation 

 1β
)

.value 1β
)

.p 2β
)

.value 2β
)

.p Significance of 2β
)

 

SWHE 0.0688 0.0090 -0.0011 0.5870  
DWHE 0.0564 0.0250 -0.0022 0.1210  
RYEM 0.1492 0.0000 0.0188 0.5980  
BARL 0.0689 0.0050 0.0001 0.9770  
OATS 0.0534 0.0140 0.0177 0.0010 *** 
MAIZ 0.1785 0.0001 -0.0009 0.7880  
OCER -0.0318 0.2620 0.0511 0.0190 * 
RAPE -0.0013 0.9680 0.0012 0.7070  
SUNF 0.0150 0.4100 -0.0020 0.3220  
PULS 0.0214 0.2760 0.0066 0.1460  
POTA 0.7869 0.0030 -0.6038 0.4310  
SUGB 0.9813 0.0000 -2.1111 0.0008 *** 
MAIF -0.0790 0.7810 -0.2972 0.0440  
OFAR -0.4271 0.1190 -0.1502 0.0000 *** 
NONF 0.0731 0.0020 0.0072 0.3830  

Table 5. Covariance matrix of SUR residuals for Cereals 

 SWHE DWHE RYEM BARL OATS 
SWHE 0.305 0.244 0.202 0.210 0.151 
DWHE 0.244 0.274 0.183 0.184 0.133 
RYEM 0.202 0.183 0.228 0.147 0.146 
BARL 0.210 0.184 0.147 0.233 0.149 
OATS 0.151 0.133 0.146 0.149 0.147 

Table 6. Covariance matrix of SUR residuals for Cereals2 

 MAIZ OCER 
MAIZ 0.413 0.256 
OCER 0.256 0.263 

Table 7. Covariance matrix of SUR residuals for Oilseeds 

 RAPE SUNF NONF 
RAPE 0.129 0.018 0.038 
SUNF 0.018 0.067 0.021 
NONF 0.038 0.021 0.061 
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Table 8. Covariance matrix of SUR residuals for Other Arable Crops 

 PULS POTA SUGB 
PULS 0.205 -0.034 0.835 
POTA -0.034 9.426 2.167 
SUGB 0.835 2.167 11.051 

Table 9. Covariance matrix of SUR residuals for Fodder 

 MAIF OFAR 
MAIF 22.212 12.228 
OFAR 12.228 15.024 

4.5. A measurement error model 

To include the assumption that X j = xj + uj into the estimation, a total least 
squares estimation is performed by minimising the following extremum estima-
tion criterion, scaled by the inverse of the number of observations n = JT (for J 
crops and T periods): 

minimize 

( )( ) ( )

( )( ) ( )∑

∑

−−+

−−−−−−

−

−

jkt
ktktjkujtjtn

jkt
ktktkkktjkejtjtjjjtn

xXxX

xTYxTY

11

210
1

210
1

Σ

βββΣβββ
 (10) 

Here ΣΣΣΣe denotes the covariance matrix between the residuals obtained from the 
SUR estimation mentioned previously, whereas ΣΣΣΣu is a prior covariance matrix of 
acreages. ΣΣΣΣu only contains diagonal entries that are constructed following the 
principle that the standard deviation always is 6⅔ percent of the sample mean 
(over time for each crop), implying that virtually all outcomes are within ± 20% 
of the observations. That is, for σjj diagonal element of ΣΣΣΣu,  

 
2

3

20.0







= •jjj Xσ . 

The model 10 with errors in the explanatory variables is referred to as a meas-
urement error model (Fuller 1987), or sometimes Errors-In-Variables-model 
(EIV). The coefficients of the EIV estimation are solved for using a non-linear 
programming (NLP) solver software, and the results shown in the following table 
(10). The signs and sizes of the coefficients are generally similar to those of the 
SUR estimators. 
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Table 10. Coefficients in EIV estimation 

 B0 B1 B2 
SWHE 37.21941 0.00644 -0.04172 
DWHE 5.58560 0.05500 -0.00250 
RYEM 2.82318 0.14463 0.00699 
BARL 4.91312 0.06313 0.00195 
OATS 2.60144 0.05768 0.01952 
MAIZ 6.17032 0.18124 -0.00051 
OCER 3.05974 -0.04094 0.06173 
RAPE 2.90948 -0.00335 0.00137 
SUNF 2.74305 0.01259 -0.00229 
PULS 3.68404 0.02101 0.00965 
POTA 32.54321 0.85206 -0.86423 
SUGB 166.77830 0.67172 -3.90225 
MAIF 55.23074 -0.29928 -0.44824 
OFAR 69.80859 -0.68218 -0.18152 
NONF 0.67922 0.07145 0.00797 

 

It would be desirable to obtain an estimator of the standard deviations of the 
EIV coefficient estimators. Fuller (1987) finds that he is unable to establish the 
exact distribution of the estimators even in the simple case with one explanatory 
variable. He instead derives an approximate (normal) distribution for the coeffi-
cient vector in large samples.  

Here we follow another approach using asymptotic properties of extremum es-
timators as described in Mittelhammer, Judge, Miller (2000, ch. 7). 

4.6. Asymptotic properties of the estimators in the EIV model 

We start off by putting the model (10) in matrix form. Rewrite it separating the 
exogenous variable “acreages” that is measured with errors from the matrix of 
exogenous Z that is known with certainty; constant and trend. Denote the coeffi-
cients of x by γγγγ and the coefficients for Z by ββββ. We denote the true planned acre-
ages by lower case x and the observed values from the statistics by the random 
variable upper case X. Then the model can be written in matrix form as  

 
( ) ( ) ( ) ( )

X)z,Y,|xγ(β

xXΩxXγxβzYΩγxβzY

,,min

min 111

,,

m

n

β,γ,x

ubbebb
x

⇔

−′−+−−′−− −−−

γβ  (11) 

where, for IT of size T, and ⊗ the Kronecker product, 

 TuuTee IΣΩIΣΩ ⊗=⊗= −−−− 1111 ,  
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The vectors/matrices Y, x, z, X, and ββββ are the vertically concatenated vec-
tors/matrices Y j, xj, zj,, X j, and ββββj. γγγγ is the vector of γj for crops j = 1…J, the sub-
script b denotes the block-wise diagonalisation where the j th diagonal block of the 
JT × JK (for K columns in z) matrix zb is zj (and similar for xb), so that the func-
tion m can be written alternatively as 
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The rightmost vector (…) in the first term is the same as the first bracketed ex-
pression, omitted to save space. The extremum estimator defined in (11) is 
equivalent to an element-wise weighted total least squares estimator, shown to be 
consistent in Kukush and Huffel (2004). 

We will now attempt to obtain a Lagrange Multiplier (LM) test of the hypothe-
sis that γγγγ = 0, following the procedure described in Mittelhammer, Judge and 
Miller (2000) (section 7.6). One can show that the conditions in theorem 7.3.3 are 
satisfied, so that θ̂  is asymptotically normally distributed, with n½( θ̂  − θθθθtrue) 

→d  N(0,H-1ΣΣΣΣH-1), with H-1 the Hessian of m and ΣΣΣΣ the covariance matrix of n½ 
times the Jacobian of m, both w.r.t. θθθθ evaluated at θθθθtrue. 

We may then use the operational Lagrange Multiplier (LM) test with the test 
statistic 

 [ ][ ] [ ] ( )0,~ˆˆˆˆˆ 211111 JnLM rr χΓcHccHΣHccHcΓ ′′′′= −−−−−  

for ΓΓΓΓr the Lagrange Multipliers associated with the model (11) restricted by the J 
restrictions γj = 0, or in matrix form as a linear restriction of the entire parameter 
vector, cθθθθ = 0, where c is a J × (3J + JT) matrix of zeros and ones constructed by 
horizontal concatenation of (J × 2) zeros, I J and (J × JT) zeros. Differentiation of 
m gives the Jacobian J(m) as column vector as 
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where γγγγd denotes the JT × JT diagonal vector with γγγγ ⊗ ιιιιT (for ιιιι vector of “1”) on 
the diagonal. Since E(e) = E(u) = 0, we have that E(J(m)) = 0. The Jacobian is a 
linear combination of the (assumed) normally distributed random variables in [e′ 
u′]′, the covariance matrix 
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so the covariance ΣΣΣΣ of n½J(m(θθθθ)) evaluated at the estimated θθθθ computed is given 
by 
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The Hessian matrix is obtained by differentiation of the Jacobian, to obtain 
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The model (11) is then solved twice, once unconstrained and once constrained 
by γj = 0 for j = 1…15. The LM test statistic is computed using the Lagrange Mul-
tipliers obtained in the constrained model and the estimated H and ΣΣΣΣ. The result-
ing test statistic is 26.7, which is asymptotically distributed as chi-square(15) if 
the constraints are true. For a test on 5% level we compare LM with the 5% tabu-
lar value of the chi-square distribution, which is 25.0, and conclude that the null 
hypothesis is rejected at the 5% level (the exact p-value is 0.031). 

So, yields could depend on acreages. However, a look at the estimated coeffi-
cients in table 10 shows that the estimations are not sufficiently robust to use on a 
large scale: Sugar beet (SUGB) obtains the (significant at 0.1% level in a test 
using the asymptotic normal distribution for θ̂ ) coefficient of minus 3.90 tons per 
thousand hectares. This implies that the marginal yield at the observed acreage 
(about 25’000 hectares) is negative, which is unacceptable. At the same time, the 
coefficient on rye is very close to zero and not significant, so the original problem 
is not solved. Thus, we decide to discard the model with yield depending on acre-
age despite the failure to reject the hypothesis that γγγγ = 0. 

5. A Bayesian estimator based on highest posterior density 

5.1. Principles of estimator 

After having discussed two different versions of yield endogeneity in sections 
three and four, we now return to the primary objective and model (1). The basic 
assumption underlying the data sampling model is that there exists a set of true 
parameters ψψψψ = (p,Y,s,A,w,q,l,c,D,B,R,v) of the model, satisfying the second 
order conditions (4-5), a vector of true planned acreages x* and a vector of dual 
values λλλλ* such that (x*,λλλλ*) is the unique optimal solution to the model pa-
rametrized by ΨΨΨΨ. We may thus write x* = x*(ψψψψ) and λλλλ* = λλλλ*(ψψψψ). Furthermore, the 
values z = (xobs,pobs,Yobs,sobs,Aobs,wobs,qobs,lobs,Robs,vobs) in the CAPRI database are 
considered the outcome of a random variable vector Z that is conditional on ΨΨΨΨ, 
i.e. there exists a probability density function f(z|ΨΨΨΨ). 

We have prior beliefs regarding the parameter ΨΨΨΨ that are not contained in the 
CAPRI database. We expect the dual values of the constraints and the price elas-
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ticities implied by ψψψψ to be of “reasonable size”. If we are express those beliefs as 
a prior density function ξ(ΨΨΨΨ), we may use Bayes’ rule to derive the posterior den-
sity function of ΨΨΨΨ conditional on the outcome z: 

 ξ(ΨΨΨΨ|z) ∝ f(z|ΨΨΨΨ)ξ(ΨΨΨΨ) 

In the following sections, we first develop an error model that relates z to ΨΨΨΨ in 
order to derive the function f. We discuss the chosen error model and compare it 
to alternatives. Then we formulate our prior beliefs regarding elasticites and dual 
values in terms of the unconditional density function ξ. Finally, we devise an 
estimation method that chooses as an estimate the parameter vector ΨΨΨΨ that maxi-
mises the conditional density ξ(ΨΨΨΨ|z). DeGroot (1970) calls this estimator the gen-
eralised maximum likelihood estimator. Other authors have called it the posterior 
mode estimator, the maximum a-posteriori estimator or the highest posterior den-
sity estimator. 

5.2. Data sampling process 

The distribution of Z is based on the following assumptions, which are detailed 
further below: 

(i) All elements in Z are independent. 

(ii) Subsidies, price index, set-aside rate and total land constraint are known 
with certainty, i.e. are degenerate random variables. 

(iii) Errors are additive. 

(iv) Producers have naïve price expectations. 

(v) Expected yields and input requirements follow linear trends. 

(i) The covariance matrix Σ only contains diagonal elements. This is discussed 
further in the following section on prior distributions. 

(ii) We assume that set-aside rate, subsidies, price index and total land con-
straint are known with certainty. Since the outcomes of those items in the random 
vector Z will be the corresponding items of ΨΨΨΨ itself, they are from now on re-
moved from Z. An outcome of Z is thus written z = (xobs,pobs,wobs,Yobs,Aobs). 

(iii) We write an outcome of Z as the sum of its conditional expectation 
µµµµ(ψψψψ) = (µµµµx,µµµµp,µµµµw,µµµµY,µµµµA), (with appropriate dimensions), and the random error vec-
tor εεεε, so that, Z = µµµµ(ψψψψ) + εεεε. For acreages, we have 

 µµµµx = x*(ψψψψ) 
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(iv) Naïve price expectations imply that the expectation of the price measure-
ment in period t-1 equals the producer price in that period, or conversely, 

 pt = (µµµµp)t-1  

 wt = (µµµµw)t-1  

where the expression on the right hand side denotes the expected value of the 
output and input prices for all crops in period t-1. 

(v) The producers expect the yield in each period to equal (µµµµy)t, which in-
creases over time by an exogenous linear trend. The same assumption is made for 
input coefficients, We thus have that 

 Y t = (µµµµy)t = ββββ0 + ββββ1Tt (12) 

 A t = (µµµµA)t = αααα0 + αααα1Tt 

with T being a linear trend and ββββ = (ββββ0,ββββ1) and αααα = (αααα0,αααα1) new parameters to 
estimate. Unfortunately, there are no observations available for actual input appli-
cation. Instead, we use estimated input coefficients (available in the CAPRI data-
base), that are based on total input use in the agricultural sector in combination 
with farm level data, economic reasoning and engineering knowledge. Those ex-
pert coefficients are denoted by Aobs. The actual amount of inputs applied in any 
given year may differ from the expected value due to unexpected climatic condi-
tions, just as the yield may deviate from expected yield, though the hypothesis is 
that the agricultural production plan is made up with the expected values in mind6. 

5.3. Discussion of alternative error models 

The error model developed above is fairly sophisticated in the sense that it at-
tempts to take into account that all measurements are likely to be subject to er-
rors7. The sophistication comes at a cost, because it requires information about the 
covariance matrix of Z. Ideally, this information would be supplied by replicate 
measurements or external datasets (Carroll, Ruppert and Stefanski 1995). In the 
case at hand, no such replicates are available, and instead, the relative variability 
of the different errors is based on assumptions. 

Although the error model is sophisticated on the side of the researcher (meas-
urement errors), it is very simple on the side of the economic agent. We assume 

                                                      
6 This implies a general error model, but the resulting formulation is indistinguishable from the 
measurement error model. 
7 Griliches and Ringstad (1970 p. 370) conclude, in relation to measurement errors in nonlinear 
models, that “In short, errors in variables are bad enough in linear models. They are likely to be 
disastrous to any attempts to estimate additional nonlinearity or curvature parameters.” 
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that the agent has perfect information about the true parameters, and that he is 
able to determine the optimal production decision exactly. That is, no part of the 
errors enter the model equations, thereby influencing production. A more general 
error model, as discussed by McElroy (1987) and Pope and Just (2002) would 
also take into account the possibility that the producer may not correctly appreci-
ate the true parameters and/or is not able to determine exactly the optimal supply 
decision. Let us look at the implications of neglecting those errors. 

The exogenous (in this model) parameters that are subject to considerable un-
certainty are prices (p,w) and I/O coefficients (A,Y). Saying that the producer 
does not correctly appreciate those is silly, since they are defined as the pro-
ducer’s expectation. It may however be the case that the expectation model is not 
the correct one (the possibility that the producer does not base his expectation on 
the same observations as the researcher is already included in the error term). In 
those cases, the producer bases his land allocation decision not on the true pa-
rameters (p,w,A,Y) (which can then no longer be called “true”) but on stochastic 
(p + δδδδp,w + δδδδw,A + δδδδA,Y + δδδδY) for some deviations δδδδ. This is a kind of specifica-
tion error of the model. If we at this point assume that the producer solves the 
optimization problem correctly, we can substitute the disturbed parameters into 
the first order conditions and rearrange to obtain  

 [ ] ttttttttttt lq ∆λRxGGBDcwAspY =′−′+−−−+  

with ∆∆∆∆ = Aδδδδw + wδδδδA + δδδδAδδδδw − Yδδδδp − pδδδδY − δδδδpδδδδY (time indices omitted). This makes 
the relationship between the true parameters stochastic. It is not clear what effect 
the omission of ∆∆∆∆ has on the estimation of the parameters of interest, (c,B,D). 

The producer may also commit an optimization error, i.e. instead of choosing 
the optimal acreage vector x*, which would solve the optimization problem, he 
allocates x* + δδδδx, which does not solve it, but satisfies the constraints. That kind of 
error would be impossible to distinguish from a pure measurement error on the 
side of the researcher, except that we would require Rδδδδx = 0 (because Rx* = v = 
R(x* + δδδδx)). 

Since the general error model requires an increased amount of prior informa-
tion and is anyway difficult to distinguish from the measurement error model, we 
choose to limit ourselves to measurement errors. We now proceed with explicit 
assumptions regarding the data sampling processes. 

5.4. Augmented parameter vector and its prior distribution 

In the ex-post perspective, the outcome e of the error vector εεεε has actually already 
been determined, but the outcome is not directly observable. We thus choose to 
consider e yet another unknown parameter. If the density function f for the ran-
dom vector Z is conditional also on e and the yield and input parameters ββββ, and αααα 
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defined above, then there are no random components left, and f becomes the de-
generate density function 
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One can immediately see that there must be a large number of vectors 
(ψψψψ,ββββ,αααα,e) that give the density value “1” for almost any outcome z of Z. Without 
further information, there is no way of discriminating between any two such vec-
tors by saying that one is any more likely than the other to be the true parameter 
vector. This is why we require a prior distribution ξ(ΨΨΨΨ,e,αααα,ββββ). In this section, we 
define the prior distribution based on the following assumptions, detailed below: 

(i) ξ(ΨΨΨΨ,e,αααα,ββββ) = ξ(e)ξ(λλλλ*(ΨΨΨΨ,αααα,ββββ))ξ(ηηηη(ΨΨΨΨ,αααα,ββββ)), with ηηηη(ΨΨΨΨ,αααα,ββββ) denoting the 
vector of implied own price supply elasticities. That is, we assign prior 
distributions to error terms, dual values and implied point price elastic-
ities of supply, and assume that those are functionally independent. 

(ii) The errors e are independent and normally distributed with standard de-
viations equal to a fix share of the observed value of the respective pa-
rameter. 

(iii) The dual values are independent, with means proportional to average ob-
served gross margins over all crops in each region each year, and stan-
dard deviations proportional to a fix share of that. 

(iv) We believe that the parameter vector is such that the implied point price 
elasticity of supply matrix ηηηη(ΨΨΨΨ,αααα,ββββ) is normally distributed with mean 
depending on the crop mix (rotational shares) and standard deviation in-
dependent for each item. For non-diagonal elements of ηηηη, the prior distri-
bution is non-informative (i.e. we have no specific beliefs regarding cross 
price elasticities). 

Regarding (ii): Specifically we assume that e ∼ N(0,ΣΣΣΣe) with ΣΣΣΣe a diagonal ma-
trix with ( )22 320.0 iei z=σ  on the i th position. This means that we assume that 
errors are independent normally distributed with mean zero covariance matrix 
such that three standard deviations cover 20% of the observed value of the related 
parameter. 

Regarding (iii): In order for the posterior density to have a unique maximum, 
we require informative priors also for the dual values λλλλ in order to be able to iden-
tify ΨΨΨΨ (since for example c and λλλλ enter the first order conditions additively). We 
make the assumptions 
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where m”OSET” t is the observed gross margin in compulsory set aside, tm  the aver-
age gross margin over all crops and ρt the general set-aside rate in period t. The 
prior mode (mean of normal distribution) of λλλλ is thus based on the assumption 
that the expected land rent is approximately 25% of the average observed gross 
margin tm  in the respective year taken over all crops except sugar beet (whereas 
sugar quota rents are missing in the model). For the case study region FR24 this 
fits reasonably well with data on land rental prices obtained from Eurostat for 
France, shown in table 11. The priors for dual values of the set-aside constraint 
were derived in a similar manner, but also including. The variances of λλλλ were 
assumed to be such that 20% of the prior means equal three standard deviations. 

Table 11. Land rents in France (Euro per ha) 

 Eurostat* λ1 prior λ2 prior 
1986 102 86  
1987 104 132  
1988 106 94  
1989 109 113  
1990 111 134  
1991 113 119  
1992 115 101 -116 
1993 117 91 -23 
1994 119 124 -5 
1995 121 175 -8 
1996 122 163 -27 
1997 125 148 11 
1998 129 155 -98 
1999 132 193 -6 
2000 132 139 39 
2001 131 145 74 
2002 131 181 24 

*Source: Eurostat (2003) 

Regarding (iv): There are cases when the observations imply a supply elastic-
ity that is far outside any plausible range, e.g. > 1000. One case when this would 
happen is when the observations imply a downward sloping supply function, as in 
the case of rye in FR24 discussed in a previous section. Given the second order 
conditions for optimality, the best fit is obtained by a horizontal supply curve, 
implying an infinite elasticity. Such a simulation behaviour of the model is unac-
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ceptable, and we firmly believe that the aggregate supply response of regions in 
reality is much smoother. Put differently, we believe that the parameter vector 
comes from a distribution that makes such extreme values utterly improbable, but 
is rather indifferent for elasticities within some plausible range. For this purpose, 
we choose a very wide normal distribution, with mean and standard deviation 
derived below. 

Most studies (see comparison to other studies below) find supply elasticities in 
the range of, say, 0.1 to 5. More specifically, we see that the elasticity is typically 
around unity for major crops, but that it is higher for crops that occupy a small 
share of the total area. One motivation for such a relation is that if a small crop 
expands with a certain percentage, that should have less effect on the value of 
fixed resources, like pushing other crops out of the rotation on the constrained 
land, compared to if a major crop expands by the same percentage.  

Letting r j denote the share of land allocated to crop j, we believe that the own 
price supply elasticities have means 3

1

5.0
−

jr  and standard deviations such that 
three standard deviations cover 1000% of the mean (the standard deviation rela-
tive to mean is thus fifty times that of the acreages, prices or yields). There are no 
priors at all for cross price elasticities. In the result section below, the priors are 
compared to elasticities from literature for the Netherlands, Denmark and France, 
and found to be in a plausible range. 

We will see that the explicit expression for supply elasticities is a nonlinear 
function of the parameters. That makes its inclusion into the estimation difficult. 
Jansson (2005) solves a similar model for supply elasticities and includes the ex-
pression explicitly in the estimation. His model, however, did not have area con-
straints, and imposed land constrain only implicitly over curvature constraints on 
the Hessian matrix, which simplified the expressions for supply elasticities con-
siderable. Heckelei and Wolff (2003) makes a similar estimation but with in-
vented data for a didactic size problem, with a simultaneous incorporation of elas-
ticity priors. Here, we have two constraints in most years and only one constraint 
in some years (before set-aside regime), which complicates things further. The 
elasticities of supply in our model can be obtained by solving the first order con-
ditions for xt (repeated here for convenience), 

 [ ] [ ]tttttttttttt ql λRcwAspYGGBDλpx ′−−−+′+= −− 11* ),( . (13) 

Let [ ]GGBDE ′+= tt l  and insert that expression into the constraints to obtain a 
solution for λλλλ, 

 [ ] ( )[ ]tttttttttttttt q vcwAspYERRERpλ −−−+′= −−− 111* )( . (14) 
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Computing x*
t(pt,λλλλ*

t(pt)) by inserting (14) into (13), taking derivatives and 
multiplying the result by yield gives us the following expression for marginal 
production8: 

 
( ) [ ] 
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Using the definition of elasticity, we finally obtain the expression 

 [ ] ttttttttttttt PYERRERREYEXη 




 ′′−= −−−−−− 111111  (16) 

where upper case X t means the square diagonal matrix with xt on the diagonal, 
and similar for upper case Pt. 

This expression is strongly non-linear in D and B (via E) and thus difficult to 
include as constraint in the estimation. In some models, the expression has been 
simplified by neglecting the second term in the bracket and only computing di-
agonal elements in E. That simplification was previously used in different model 
to compute only diagonal elements of the quadratic PMP-parameter, e.g. in the 
CAPRI model (not published), and by Helming (2005) in the DRAM model. 

Nevertheless, with appropriate initialisation of the solution algorithm 
(CONOPT for GAMS) together with reasonable bounds for the variables, equa-
tion 16 turns out to be possible to solve simultaneously in the estimation, thus 
enabling us to include our prior beliefs regarding elasticities of supply in a trans-
parent way. 

5.5. Definition of the estimator 

Putting all the pieces together, we can now formulate the estimation problem us-
ing Bayes’ theorem as above and write 

 maxargˆ =Ψ ξ(ψψψψ,ββββ,αααα,e|z) ∝ f(z|ψψψψ,ββββ,αααα,e)ξ(ψψψψ,ββββ,αααα,e) 

To repeat, the point estimate of (ψψψψ,ββββ,αααα,e) that we are looking for is the value 
that maximises the posterior density ξ(ψψψψ,ββββ,αααα,e|z), i.e. the posterior mode. Note 
that with the degenerate density function this is equivalent to solving 

 max  ξ(ψψψψ,ββββ,αααα,e)  

 subject to eαβψµz += ),,(   

  0λxψg =),,( **   

                                                      
8 In this case, the marginal production could be solved for directly. In the general case with continu-
ous derivatives, the implicit function theorem may be used instead. 
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Since the value that maximises some function h also maximises log (h), we 
may take the logarithm of the objective function (which is a multivariate normal 
density function with covariance matrix ΣΣΣΣ). Doing that and replacing the con-
straints with the equations derived above, we arrive at the following extremum 
estimation problem: 

  minimise 

  
( ) ( )( )

( ) ( )( )ννλλeeeeeΣ

ννλλeeeee

ˆ)(diag,,,,,,vec

ˆ)(diag,,,,,,vec
1- −−×
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prior
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prior
AwpYx  

 subject to 

  [ ] 0λRxGGBDcwAspY =−′−′+−−−+ δttttttttttt MAClq   

  Rtxt = vt   

  UUB ′=    

  djj ≥ 0 for j = 1…J (and dij = 0 for i ≠ j)  

  xobs = x + ex 

  Yobs = Y + eY 

  Y t = ββββ0 + ββββ1Tt 

  pt
adm
t

adm
t

obs
tt epppp +−+= −− )( 11  

  Aexp = A + eA 

  A = αααα0 + αααα1Tt 

  [ ] ttttttttttttt PYERRERREYEX 




 ′′−= −−−−−− 111111ν  

The dummy variable MACt with associated parameter δ in the first order con-
dition was added to control for additional effects of the MacSharry reform. It is 
equal to 1 for year 1992 and earlier for regions that were member of the EU then, 
and zero from 1993 and on. This is motivated by an optical inspection of the time 
series. For example, looking again at the gross margin and acreages of rye if fig-
ure 1 suggests that there are two clouds of observations, which correspond to pre- 
and post MacSharry reform (1993). Thus the reform is likely to have influenced 
behaviour in some way not captured in the present model (the situation is similar 
for some other products). 
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5.6. Data preparations 

The time series in the CAPRI database is different long for different crops even 
within regions. It also contains holes and obvious errors, especially for crops of 
residual character like “other cereals”, or when the area cropped is very small 
compared to other crops in the region. Thus, the estimations require data to be 
processed prior to estimation in order to make sure that no obvious data errors 
corrupt the estimations, we must select a strategy for choosing which regions, 
crops and years to include in estimation, and we must decide what to do with ze-
ros in the data. 

Selection of crops: A potentially different set of crops were estimated in each 
region. To start with, all acreages smaller than 1000 ha were set to zero. Then, the 
crops to be estimated were those satisfying all of the following three conditions: 
(1) There is acreage data in year 2000, (2) there is acreage data in at least five 
years, and (3) the sum of acreage over all years is at least 10 000 ha. 

Selection of years: A year t was included in the estimation if the total acreage 
over all crops just selected was at least 10 000 ha in year t-1. The lag is necessary 
for the lagged prices to work. The longest possible time series was 1986 to 2003. 

Selection of regions: A region was included in the estimation if the following 
three conditions were satisfied: (1) Year 2000 was included in the set of years to 
estimate for that region, (2) the set of crops to estimate contain at least three ele-
ments, and (3) the number of observations over all crops and years is at least 50. 
The number of regions to estimate determined in this way turned out to be 165. 

Treatment of outliers: Outliers for prices, yields and input coefficients were 
detected and replaced with time series mean using the following procedure: 

 Do for i = 1,2  

  1. Compute mean z  using all but the greatest and the smallest value.  

  2. If not (ai ≤ zt ≤ b/i), then replace zt with z   

where a and b are constants. The replacement was done twice, and with narrower 
bounds in the second repetition in order to alleviate the problem that the presence 
of two outliers biases the mean. Trial and error revealed that (a,b) = (0.1,6.0) 
worked fine for prices, (0.2,4.0) for yields and (0.25,4.0) for input coefficients. 

Unbalanced panels: In the cases where some time series were shorter than the 
others, it was assumed that this was really due to missing data, perhaps truncated 
by the “1000 ha rule”, not that the data truly was zero (except in the case of the 
“political activities” compulsory set-aside and non-food production on set-aside). 
Then, the estimator was allowed to choose any value satisfying the equation sys-
tem as the estimate, but the item did not enter the posterior density function. Since 
consecutive years are interlinked via the other parameters (yield, input require-
ment, PMP terms), this does not generally cause any problems. In most regions 
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where some time series was shorter than the other, it was early years that were 
missing, which are of lesser importance for the intended use of the estimates.  

6. Results 
The estimation produced a large number of results: 1917 elements of the key pa-
rameters c and D respectively, and 5457 elements of the cross group effects ma-
trix B. Furthermore, 329 092 price elasticities were computed, including the cross 
price elasticities. To this comes a very large number of fitted values and all other 
parameters in ΨΨΨΨ. It is impossible to give even an overview of all those results, and 
in this section we only present estimation results for the French case study region 
FR24 and for France as a whole. The results are evaluated following two criteria: 

1. How well is the prior information recovered? To address this, a kind of 
R2 measure is computed as the share of the explained variance observa-
tions or prior mode. In an appendix, we also provide a visual presentation 
of prior and posterior mode for selected items (plots). 

2. How is the resulting model behaving in simulation? We discuss our esti-
mated point price supply elasicities and compare them to estimates from 
literature. 

6.1. Measures of fit 

Table (12) shows the share of explained variation, R², for acreages, prices and 
yields for all land use activities in FR24. We see that in most cases, the fit of 
acreage is high, above 0.90. Exceptions are soft wheat, potatoes, sugar beet and 
voluntary set-aside. Only the last of those crops has an R² below 0.50 (0.393). The 
fit of prices is equally high in general. The fit of yields is lower because here a 
more restrictive error model is employed: the expected yields have to lie on a 
straight line (12). In four cases, the fit of yield is even negative. One can see on 
the plots in the appendix that the yields of those crops are highly variable. 
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Table 12. R² for acreages (X), prices (P) and yields(Y) 

Crop Item N R2   Crop Item N R2 
SWHE P 18 0.928  PULS X 18 0.907 
DWHE P 18 0.820  POTA X 18 0.649 
RYEM P 18 0.927  SUGB X 18 0.805 
BARL P 18 0.791  MAIF X 18 0.987 
OATS P 18 0.915  OFAR X 18 0.938 
MAIZ P 18 0.794  NONF X 11 0.999 
OCER P 18 0.935  OSET X 12 1.000 
RAPE P 18 0.923  VSET X 14 0.393 
SUNF P 18 0.932  SWHE Y 18 0.291 
PULS P 18 0.838  DWHE Y 18 0.235 
POTA P 18 0.964  RYEM Y 18 0.673 
SUGB P 18 0.455  BARL Y 18 0.179 
MAIF P 18 0.716  OATS Y 18 0.012 
OFAR P 18 0.685  MAIZ Y 18 0.657 
NONF P 18 0.948  OCER Y 18 -0.030 
SWHE X 18 0.591  RAPE Y 18 -0.164 
DWHE X 18 0.995  SUNF Y 18 0.234 
RYEM X 18 0.998  PULS Y 18 -0.027 
BARL X 18 0.977  POTA Y 18 0.490 
OATS X 18 0.997  SUGB Y 18 0.717 
MAIZ X 18 0.909  MAIF Y 18 -0.086 
OCER X 18 0.988  OFAR Y 18 0.428 
RAPE X 18 0.979  NONF Y 11 0.891 
SUNF X 18 0.934      

Source: Own estimations. 

6.2. Elasticities 

The point price elasticities of supply are computed simultaneous in the estima-
tions by equation (16). In this section we present elasticities for individual crops 
and for crop groups for one selected subregion, FR24, and for the aggregate 
France, all in the year 2002. The aggregation from the 22 French regions esti-
mated and whole of France was done by weighing the regional elasticities with 
the region's share of national crop area, or 

 ∑∑
r

rj
r

rjrj xxη  

Aggregation to crop groups was done similarly, by weighing with each crop's 
share in the crop group to which it belongs. The crop groups are the same that 
were used in the estimation, reported in table (16). Table (18) and (19) shows the 
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elasticities of individual crops for FR24 and France respectively. Table (20) and 
(21) show the elasticities of the crop groups. Some of the elasticities, especially 
for individual crops of minor land share on regional level, are high. This is true 
for e.g. rye and durum wheat, which both have elasticities above 7 and small rota-
tional shares. In contrast, soft wheat has the moderate elasticity of 0.79 for a land 
share of 36%; however, there are notable exceptions. Potatoes has a rotational 
share of only 0.36%, but only an elasticity of 0.38. 

As one might expect, the crop groups generally show less elasticity to price 
changes than the individual crops. This is partly due to the land restriction, but 
also to the crop group structure of the model, that allows catching substitution 
effects between related crops. The most notable case for FR24 is perhaps oil 
seeds. In table (18) we see that rapeseed and sunflower are good substitutes, but 
table (20) reveals inelastic supply response as a group. 

Aggregation from regions to the member state offers no great surprises. Most 
of the elasticities are of similar size at national as on regional level in the case 
studied. The greatest difference is for durum wheat, where the elasticity in FR24 
is much higher than that in the member state aggregate. One reason for not find-
ing greater differences between the region and the aggregate is probably that the 
rotational shares in the region are similar to those on national level. 

Although there are several studies that present elasticities on national level, no 
other study that the author is aware of publishes elasticities for individual crops 
on regional level with this crop coverage. Below we compare our point elasticity 
estimates as well as our priors with four other studies. Two of the other studies 
are for France, one study is for the Netherlands and one is for Denmark. In all 
comparisons, we use our point price elasticities for the year 2002. 

For France, we can compare our results to those in Heckelei and Britz (2000) 
(HB00) and Guyomard et al. (1996) (GBC96). This has been done in table (13), 
where also the land share and prior mode are printed. GBC96 estimates a model 
with seven outputs and three inputs based on a restricted profit function, using 
annual data for France. HB00 estimate a similar model as ours, but they use a 
cross-section data set of French regions for the year 1994 instead of time series 
for individual regions as we do. 

We see that GBC96 finds considerable smaller elasticities for barley (0.35) 
and other coarse grains (0.76) than this study (2.24 and 2.53), HB00 (2.65 for 
barley) or the priors (1.11 and 1.55). For soft wheat the results are much more in 
line, with the priors (0.77) quite close to GBC96 (0.72) and the estimates (1.01) in 
between GBC96 and HB00 (1.32). For maize the estimates (1.68) are close to 
GBC96 (1.63) but much higher than HB00 (0.65), whereas the priors lie in be-
tween (1.07). Rapeseed and sunflower occupy small rotational shares, less than 
5%, and as a consequence the priors are higher, about 1.5. The elasticity estimates 
for those crops are also much higher, 1.28 and 2.96, than GBC96, which finds 
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values of 0.42 and 0.22, and more in line with HB00, which finds elasticities 
greater than unity. All of the three studies find high elasticities for soya, for which 
the rotational share is less than 0.5%. 

Table 13. Comparison with other studies of own price supply elasticities in France 

Crop Land shareb Priorc Own estimate GBC96d HB00e 
Other coarse grainsa 0.034 1.547 2.531 0.758 -.--- 
Soft wheat 0.273 0.771 1.009 0.715 1.322 
Maize 0.102 1.070 1.680 1.630 0.653 
Barley 0.092 1.109 2.243 0.351 2.647 
Rapeseed 0.045 1.405 1.284 0.418 1.457 
Sunflower 0.027 1.664 2.959 0.223 1.126 
Soya 0.004 3.276 2.020 3.701 1.861 

a: Aggregated from rye, oats and other cereals. 
b: Computed from the data in CAPRI for 2002 
c: Using the formula for priors reported above 
d: Guyomard et al. (1996) 
e: Heckelei and Britz (2000) 

For the Netherlands, Oude Lansink and Peerlings (1996) (OLP96) estimate 
twelve farm type models producing three outputs (CO = Cereals and oilseeds, 
Rootcrops = Potatoes and sugar beet, and Other = all other crops). They estimate 
the model using panel data on individual farms, and also have a land constraint 
and a fixed area of rootcrops. In their table A3 they present supply elasticites, of 
which the own price effects are compared to our estimates for the Netherlands for 
similar product aggregates in table (14). To make the comparison, our individual 
crop elasticities have been aggregated with estimated planned rotational shares for 
2002. The “other crops” aggregate in OLP96 could not be formed, since we have 
three crops, (voluntary and compulsory set-aside and fallow land) for which there 
is no output price. 

Our estimates for CO (0.94) are quite close to OLP96 (0.90), but considerably 
higher for root crops (OLP96 find 0.34, our estimate 0.91). We must then keep in 
mind that in OLP96, the area used in root crops was fixed, so that the price elas-
ticity can come only from a change in intensity. It then seems reasonable that their 
estimates for that aggregate turn out lower. 

Table 14. Comparison with other own price supply elasticity estimates for the 
Netherlands 

Crop group Land share Prior Own estimate OLP96a 
CO 0.266 0.778 0.937 0.90 
Root crops 0.342 0.715 0.909 0.24 

Oude Lansink and Peerlings (1996) 
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Jensen (1996) estimates an econometric model of Danish agriculture, and also 
presents aggregated supply elasticities for three selected crop groups. In table (15) 
we have reprinted those elasticities and also our implied estimates for the corre-
sponding aggregates. We see that for the first two groups, our elasticities are 
higher than those in ibid., though our prior for cereals is similar to the estimate in 
ibid. For the last group, root crops, the elasticities are very similar and more than 
twice as high as our prior.  

Table 15. Comparison with other own price supply elasticity estimates for Den-
mark 

Crop Land share Prior Own estimate Jensen (1996) 
Cereals 0.575 0.601 1.073 0.60 
Pulses + rapeseed 0.037 1.498 1.999 0.66 
Root crops 0.035 1.522 3.772 3.80 

6.3. Complete results and estimation program 

The GAMS program and the data that were used for performing the estimations, 
and all the results are available in a compressed archive from the publications 
page of the website of the Institute for Food and Resource Economics, Bonn Uni-
versity (http://www.ilr.uni-bonn.de/publ/dispap_e.htm). The top level GAMS 
program file is ESTNLP.GMS, and all results are found in the GAMS data ex-
change file RESULTS.GDX. New results are written at the end of the program to 
EVAL.GDX. The input data used is stored in TIMESERIES02.GDX. That file 
was extracted from the CAPRI database “Warsaw version” using the GAMS pro-
gram GETDATA.GMS, which is also found in the archive. The directory IMG 
contains plots of fit similar to those found in the appendix to this text, but for all 
regions. 

6.4. Conclusive remarks 

No confidence regions for the estimates are established. Exact analytical confi-
dence regions are very difficult to deduce. Approximations would in theory be 
possible. Reilly and Patino-Leal (1981) compute approximate probability con-
tours of the posterior in a non-linear errors-in-variables model by iterated lineari-
sations. In our case, analytical deduction of approximate confidence regions is 
more difficult than in ibid. due to the curvature constraints. Numerical computa-
tion by Monte Carlo simulations is not feasible because of the amount of compu-
tation time required with the present setup (several hours for a single simulation 
of all regions). 

We conclude that the estimated elasticities compare well with estimates in the 
four cases from literature studied. Nevertheless, only a handful elasticities from 
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three member states could be compared. The vast amount of estimates are for 
individual crops in NUTS2 regions, and for them, we have nothing to compare to. 
Some of those elasticities appear high, e.g. rye and durum wheat in FR24 (table 
18). Such parameter settings will result in a model that reacts strongly on shocks 
in simulation compared to the current CAPRI model that in the past had inelastic 
supply. However, the high elasticities are most often found for crops with small 
rotational shares, where an elastic response is sensible. 

With repeated future applied analyses with the full CAPRI modelling system 
and the new parameters, experiences will be gained regarding the performance of 
the estimates. 
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Appendix 1. Activities and inputs in estimation 

Table 16. Crop groups and activities modelled 

Group Description Crop Description 
CERE Cereals SWHE Soft wheat 
  DWHE Durum wheat 
  RYEM Rye 
  BARL Barley 
  OATS Oats 
CER2 Cereals2 MAIZ Maize 
  OCER Other cereals 
OILS Oil seeds RAPE Rapeseed 
  SUNF Sunflower 
  SOYA Soya 
  OOIL Other oilseeds 
  NONF Ind. rapeseed 
OARA Other arable crops POTA Potatoes 
  PULS Pulses 
  SUGB Sugar beet 
  TEXT Fibre crops 
FARA Fodder on arable land MAIF Fodder maize 
  OFAR Silage grass 
  ROOF Fodder root crops 
NOCR Non-yield crops OSET Obligatory set-aside 
  VSET Voluntary set-aside 
  FALL Fallow land 

Table 17: Inputs in estimation 

Seed Repairs buildings Fuel 
Plant protection Electricity Lubricants 
Fertilize Gas for drying Other inputs 
Repairs machinery   
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Appendix 2: Supply elasticity estimates in France 

Table 18. Supply elasticities for FR24 in year 2002 for individual crops.  

 Share SWHE DWHE RYEM BARL OATS MAIZ OCER RAPE SUNF PULS POTA SUGB MAIF OFAR NONF 
SWHE 36.17% 0.786 -0.127 -0.018 -0.280 -0.027 -0.061 -0.007 0.003 0.016 0.032 0.000 0.002 -0.016 -0.055 0.039 
DWHE 1.80% -2.226 7.913 -0.134 -2.037 -0.199 -0.441 -0.049 0.022 0.115 0.234 0.001 0.016 -0.118 -0.397 0.283 
RYEM 0.29% -3.366 -1.392 7.733 -3.079 -0.301 -0.667 -0.073 0.034 0.174 0.354 0.001 0.024 -0.179 -0.600 0.427 
BARL 12.04% -0.860 -0.356 -0.052 2.261 -0.077 -0.171 -0.019 0.009 0.045 0.090 0.000 0.006 -0.046 -0.153 0.109 
OATS 1.08% -2.320 -0.959 -0.140 -2.122 2.903 -0.460 -0.051 0.023 0.120 0.244 0.001 0.017 -0.123 -0.413 0.294 
MAIZ 7.27% -0.237 -0.098 -0.014 -0.217 -0.021 3.168 -0.261 -0.109 -0.559 -0.965 -0.001 -0.020 0.155 0.742 0.064 
OCER 1.93% -0.233 -0.096 -0.014 -0.213 -0.021 -2.334 2.074 -0.107 -0.549 -0.949 -0.001 -0.019 0.152 0.729 0.063 
RAPE 9.18% 0.012 0.005 0.001 0.011 0.001 -0.109 -0.012 1.659 -1.265 0.043 0.000 0.003 -0.014 -0.033 -0.066 
SUNF 4.94% 0.134 0.056 0.008 0.123 0.012 -1.214 -0.134 -2.751 4.059 0.480 0.001 0.036 -0.151 -0.366 -0.738 
PULS 2.89% 0.465 0.192 0.028 0.425 0.042 -3.568 -0.392 0.159 0.817 2.225 -0.040 -1.264 -0.302 -1.434 -0.117 
POTA 0.38% 0.001 0.000 0.000 0.001 0.000 -0.002 0.000 0.000 0.001 -0.031 0.384 -0.001 0.000 -0.001 -0.001 
SUGB 1.22% 0.017 0.007 0.001 0.016 0.002 -0.040 -0.004 0.006 0.033 -0.683 -0.001 3.083 -0.003 -0.021 -0.015 
MAIF 1.36% -0.711 -0.294 -0.043 -0.650 -0.064 1.728 0.190 -0.151 -0.775 -0.913 0.000 -0.015 6.590 -6.639 0.135 
OFAR 6.90% -0.366 -0.151 -0.022 -0.335 -0.033 1.274 0.140 -0.056 -0.289 -0.666 -0.001 -0.018 -1.020 2.108 -0.056 
NONF 1.43% 1.658 0.685 0.100 1.516 0.148 0.695 0.076 -0.723 -3.708 -0.344 -0.003 -0.083 0.132 -0.355 3.944 
OSET 6.29% -0.289 -0.120 -0.017 -0.265 -0.026 -0.246 -0.027 0.181 0.930 0.139 -0.001 -0.035 0.077 -0.135 -0.917 
VSET 0.82% -3.982 -1.646 -0.240 -3.643 -0.356 -3.266 -0.359 -0.563 -2.886 1.564 0.002 0.073 -0.125 -0.127 0.619 
FALL 4.01% -1.044 -0.432 -0.063 -0.955 -0.093 -0.857 -0.094 -0.129 -0.661 0.412 0.001 0.016 -0.025 -0.044 0.081 
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Table 19. Supply elasticities for France in year 2002 for individual crops. 

 Share SWHE DWHE RYEM BARL OATS MAIZ OCER RAPE SUNF PULS POTA SUGB MAIF OFAR NONF 
SWHE 26.84% 1.009 -0.056 -0.010 -0.397 -0.048 -0.091 -0.006 -0.003 -0.011 -0.001 -0.010 -0.006 -0.029 -0.020 -0.090 
DWHE 1.84% -0.766 2.102 -0.054 -0.480 -0.072 -0.132 -0.013 0.004 0.004 0.001 0.029 -0.002 -0.014 -0.022 -0.230 
RYEM 0.16% -3.276 -1.086 8.577 -2.818 -0.970 -0.939 -0.397 -0.018 -0.055 -0.013 0.074 0.092 0.003 -0.115 -1.240 
BARL 9.01% -1.322 -0.112 -0.028 2.243 -0.113 -0.199 -0.032 -0.027 -0.035 -0.001 -0.007 -0.004 -0.023 -0.028 -0.144 
OATS 1.14% -2.202 -0.241 -0.133 -1.666 2.884 -0.391 -0.126 -0.015 -0.036 -0.005 0.002 0.021 -0.031 -0.059 -0.440 
MAIZ 10.04% -0.195 -0.022 -0.006 -0.129 -0.018 1.680 -0.285 -0.020 0.043 0.011 -0.160 -0.024 -0.143 0.020 -0.314 
OCER 2.03% -0.122 -0.018 -0.022 -0.181 -0.050 -2.384 2.205 0.016 -0.003 0.009 -0.047 -0.002 -0.043 0.009 -0.566 
RAPE 4.44% -0.011 0.003 0.000 -0.049 -0.001 -0.054 0.006 1.284 -0.539 -0.011 0.087 -0.008 0.061 -0.098 -0.404 
SUNF 2.67% -0.076 0.007 -0.001 -0.097 -0.006 0.084 -0.001 -1.016 2.959 -0.042 0.358 -0.008 0.087 -0.181 -1.727 
PULS 0.35% -0.058 0.008 -0.003 -0.034 -0.009 0.482 0.047 -0.196 -0.373 2.020 0.066 -0.056 0.002 -0.050 -1.443 
POTA 2.40% -0.130 0.044 0.003 -0.014 0.001 -0.993 -0.005 0.180 0.458 0.010 2.113 -0.234 -0.712 -0.200 -1.812 
SUGB 0.89% -0.020 0.000 0.002 -0.004 0.004 -0.065 0.000 -0.006 -0.006 -0.003 -0.099 1.210 -0.023 0.000 0.059 
MAIF 2.40% -0.114 -0.003 0.000 -0.026 -0.002 -0.205 -0.008 0.030 0.023 0.000 -0.172 -0.018 2.434 -0.043 -0.144 
OFAR 7.74% -0.089 -0.009 -0.002 -0.043 -0.006 0.051 0.002 -0.071 -0.071 -0.002 -0.076 -0.001 -0.063 1.304 -1.114 
NONF 18.08% -0.195 -0.039 -0.009 -0.102 -0.022 -0.203 -0.059 -0.121 -0.287 -0.036 -0.237 0.033 -0.064 -0.417 2.059 
OSET 2.02% 1.329 0.146 0.025 0.785 0.092 0.897 0.286 -0.586 -1.196 -0.083 0.381 -0.250 0.209 -0.127 -1.973 
VSET 5.17% -0.442 -0.043 -0.006 -0.256 -0.027 -0.241 -0.092 0.279 0.603 0.048 -0.062 0.076 -0.163 0.206 0.124 
FALL 1.15% -1.355 -0.141 -0.026 -0.824 -0.071 0.012 0.030 -0.208 -0.430 -0.010 0.292 -0.018 -0.001 -0.664 -1.499 
Note: Numbers in parentheses from Heckelei and Britz (2000 table 2), in square brackets from Guyomard et al. (1996 table 2). 
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Table 20. Supply elasticities for FR24 for crop groups in 2002. 

 CERE CER2 OILS OARA FARA 
CERE 0.509 -0.124 0.107 0.064 -0.131 
CER2 -0.666 2.554 -0.685 -1.118 1.017 
OILS 0.489 -0.418 0.321 0.148 -0.207 
OARA 0.727 -2.473 0.540 1.228 -1.085 
FARA -0.999 1.428 -0.444 -0.691 0.861 
NOCR -2.066 -0.765 -0.354 0.334 -0.076 
 

Table 21. Supply elasticities for France for crop groups in 2002. 

 CERE CER2 OILS OARA FARA 
CERE 0.508 -0.152 0.046 -0.038 -0.151 
CER2 -0.395 1.220 0.076 -0.343 -0.343 
OILS 0.352 0.209 0.807 0.240 -1.042 
OARA -0.138 -0.543 0.402 1.623 -0.895 
FARA -0.299 -0.167 -0.428 -0.231 1.201 
NOCR -1.273 -0.360 -0.353 -0.127 -0.656 
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Appendix 3:Plots of prior versus posterior mode for FR24 
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