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Abstract

The purpose of this paper is to study the effects of introducing information
systems into a model featuring managerial incentive problems and investment
opportunities that are mutually exclusive over time. In a principal-agent model
in which a manager (agent) has superior information about investment costs,
we introduce information systems, the signals from which are available to both
the manager and the owner of the investment opportunity, which allow the
owner to decrease the manager’s informational advantage.

We examine (i) the characteristics of the optimal information systems; (ii)
the effects of such information systems on the owner’s investment and compen-
sation choices and on the value of the investment opportunity to the owner;
(iii} the effects of such information systems on the timing of investment; (iv)
the effects of such information systems on the overall probability of investment;
and (v) when the owner might want to improve the information system at a
particular point in time.

1 Introduction

Recently, the theory of investment under uncertainty has undergone a revolution.
This revolution stresses that, under circurmstances where uncertainty is present, in-
vestment is irreversible, and an option exists as to when to accept an investment,
the conventional net present value rule is incorrect (see good summaries of this work
in, for example, Dixit and Pindyck, 1994, and Trigeorgis, 1996). Instead of setting
a benchmark of zero against which the NPV of an opportunity must compete, the

amended rule suggests that NPV must beat the value of the option to invest in the
opportunity at some future date.
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The literature referred to above assumes a first-best world where the interests of
investment decision-makers and the owners of investment opportunities are perfectly
aligned. Further, it is implicitly assumed that the information relevant to the exercise
of the investment opportunity is freely available to both investment decision-makers
and the owners of investment opportunities. As a consequence, these analyses ignore
the distribution of information and organizational context.

Another stream of literature emphasizes these features. In particular, in most
organizations, information is decentralized, and better informed managers may not
reveal relevant information unless they are properly compensated. For example, Antle
and Eppen (1985) derive the optimal capital budgeting procedure when a manager
has private information about one project’s profitability at one point in time. The
manager has a preference for slack consumption which arises when more resources are
received from the owner than are needed to implement the investment opportunity.
The owner is unable to detect when slack consumption occurs. As a consequence, the
interests of owner and manager are not aligned with respect to investment decision-
making. Antle and Eppen (1985) show that limiting the manager’s information rents
may involve the simultaneous existence of both capital rationing and budgetary slack.
These results are extended to contexts where the manager has access to multiple
projects in Antle, Bogetoft and Stark (1999a). Nonetheless, these analyses do not
incorporate timing options.!

Antle, Bogetoft and Stark (1999b) extend Antle and Eppen (1985) to the consid-
eration of an investment opportunity that can be accepted at one, and only one, of
two possible dates.? The present value of the opportunity is known by both owner
and manager. The manager has perfect information at each point in time at which
the opportunity can be accepted concerning the cost of the project. At the earlier
of these two points in time, owner and manager are similarly informed as to future
project costs. In this model, the existence of the timing option distorts investment
decision-making at both points in time. This is because the timing option gives the
manager an option on slack consumption at the later date at which investment can
ocecur that has to be taken into account when setting the optimal decision-making rule
at the earlier date. The manager’s slack option reduces the likelihood of investment
at the earlier point in time below what it would be if the investment opportunity is
a one-shot deal. Perhaps more surprisingly, the manager’s slack option also reduces
the likelihood of investment at the later point in time below what it would be if the
investment opportunity were a one-shot deal. This eflect arises because reducing the
likelihood of investment at the later date also reduces the value of the manager’s slack
option and, as a consequence, the cost of investing at the earlier date.

10ther papers that study capital budgeting within a principal-agent framework include Baiman
and Rajan (1995), Harris and Raviv (1996}, Holmstrom and Weiss (1985), Rees (1986). Antle and
Fellingham {1997) provides a useful summary of this type of literature.

2Antle and Fellingham (1990) analyse a two-period investment problem in which investment
opportunities are available at both points in time.



Papers that emphasize the distribution of information and organizational context
in analyzing investment decision-making tend to ignore the design of information sys-
tems the purpose of which is to reduce the information asymmetry between owner
and manager.? The interaction between incentives, investment decision-making and
information system design for a one-shot deal is considered, however, in Antle and
Fellingham (1995). Within a setting again based upon that found in Antle and Epppen
(1985), they explore the productive and distributional effects of alternative informa-
tion systems about project profitability. The output of such information systems are
available to both owner and manager. The owner’s and manager’s preferences over
information systems are completely characterized for the case of uniformly distributed
costs. These preferences are sometimes in conflict. To control the manager’s slack,
the owner prefers information systems that help distinguish costs, even in very prof-
itable circumstances. To maximize his slack, the manager prefers information that
help distinguish costs only in marginally profitable circumstances.

Nonetheless, little is known about the interaction between optimal investment
rules, incentives, timing and information systems. As a consequence, the purpose of
this paper is to study the effects of information system design on investment decision-
making when there are incentive problems and when the timing of investment is at
issue. Eassentially we extend the analysis in Antle, Bogetoft and Stark (1999b) by
introducing information systems and information system design considerations, and
we extend, in part, the analysis in Antle and Fellingham (1995) by introducing timing
issues.

We study a context in which a manager (agent) has superior information about the
cost of an investment opportunity at time ¢, and at ¢; receives superior information
about opportunity’s cost in this period. The project can only be accepted once. In this
set-up, we explore the design of costless information systems which generate imperfect
information about investment costs at both t; and ¢, in the context of the owner’s
(principal’s) planning and control problem, which is to develop optimal investment
decision-making rules subject to the constraints created by the manager’s strategic
behavior. Unlike Antle and Fellingham (1995) we only consider the information
system design from the point of view of the owner. Like Antle and Fellingham (1995),
we make restrictive assumptions about the distribution of costs at ¢ and ¢, in order
to achieve tractability and clarity of insight. Specifically, we assume that costs at i
and t; are uniformly distributed on the interval [0, 1].

In particular, we examine:

1. the characteristics of optimal information systems;

2. the effects of such information systems on the owner’s investment and compen-

3The valuc of information, although not the design of the information system, in an investment
decision-making sctting is considered by Gordon, Locb and Stark (1990). Other studies have con-
sidered the value of information in a principal-agent setting without investment decision-making
features. See, for example, Baiman and Evans (1983), Christensen (1981) and Penno (1984).
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sation choices and on the value of the opportunity to the owner;
3. the effects of such information on the timing of investrent;
4. the effects of such information on the overall probability of investment; and

5. when the owner might want to improve the information system at a particular
point in time.

The remainder of the paper is organized as follows. Section 2 presents the basic
assumptions and notation. Section 3 outlines the effects of information systems on
the owner’s profit. Section 4 characterizes the owner’s most preferred information
systems. Some applications of these results are provided in section 5. Section 6
concludes.

2 The Model

A risk neutral owner can invest in an opportunity at either ¢ or {1, but not both. The
investment project has a present value of 1 when undertaken. The investment must be
implemented by a manager. The manager learns the investment costs, ¢g € Cp = [0, 1]
and ¢; € C; = [0, 1], immediately prior to £, and t, respectively. The owner does not
know the costs at either time. The owner believes the investment costs in the two
periods are independent and uniformly distributed. The manager shares these beliefs
before becoming informed.

Immediately prior to £, the owner installs a costless information system I, that
will provide additional information at both ¢p and ¢; about the costs of investment at
those times. The signal is available to both owner and manager and, hence, can be
used for contracting purposes. The information system can be split into two elements:
the information system at £y, denoted Ip, and the information system at ¢;, denoted
I;. Thus, I = {Iy, 1}. For simplicity, we shall concentrate on information systems
corresponding to order preserving partitions of the sets of possible costs. Thus, for
example, an order preserving m-partition of C is a partition into m subsets Io; =
[a.og, ﬂm],Im = (a(;l,am],...,.[&n = (ag.m_l,agm], where 0 = agg < ap; < ... < Ao = 1.
Therefore, the owner, by observing Iy = {Io1, ..., fom}, learns to which of the intervals
I; € I, i € {1,..m}, the cost ¢o belongs. This interval is denoted I(c;), and its
index is denoted i(cg). Similar notation is used for I, an order preserving n-partition
of C;. The manager receives the same signals as the owner from the information
system. We do not assume that the information systems at g and ¢; have the same
design and, in particular, the same number of elements.

We treat m and n as indicators of the level of detail of the information systems

at o and t;. Specifically, as either m or n increases, so does the level of detail of the
relevant information system.



The owner must transfer to the manager the funds required to carry out the
investment. Let y; denote the amount transferred from the owner to the manager at
time ¢; (i = 0,1). We assume that the manager can consume any funds transferred in
excess of those needed to carry out the investment. Hence, if investment is undertaken
at time t;, the manager enjoys the slack of 8; = y; —¢; at time ¢; and of 8y =y, #1
at t;. It is often useful to think of slack as compensation and to consider the owner
as paying the investment cost, ¢, and the manager’s compensation, 8;.

The owner’s objective is to develop investment and compensation strategies to
maximize the net present value of the opportunity. We assume that both the owner
and manager have the same time preferences as represented by the interest rate p >0
with corresponding discount factor k = 1/(1 + p) < 1.4

It is advantageous for the owner to ask the manager to report the costs ¢o and ¢
as he learns them. The owner may use the possibly manipulated reports in his choice
of investments and transfer to the manager. We assure that the owner can commit
to a contract covering both points in time at to. We will discuss the significance of,
and justification for, this assumption below.

To formalize the model, we define contracts as consisting of cost- and information-
dependent investment decision-making and compensation policies:

dg[., ] : Co X {1, ,m} — {0, 1}
dil., ., .,.] : Co X C1 x {1,...,m} x {1, ..,n} = {0,1}
30[., ] : Cg X {1, ,ﬂ‘l} — Ro
81ley -] 1 Co x Cy x {1,...,m} x {1,...,n} — Ro
where, dropping arguments, d; = 1 indicates investment and d; = O indicates no-

investment st time #;. Similarly, 3; denotes the manager’s compensation at time
t;.

It is easy to ensure that the manager will not report a ¢; outside I(c;), for some
t;, by simply setting s; = 0 for such a report. Therefore, we focus on schemes that
ensure no manipulation of reports within the I(co) or I(c;) sets.

Given an information system, I, the owner selects the investment and compensa-
tion plans that maximize the net present value of the opportunity:

/ j [do(co, i{co)){1 — o) — Solco, i(co)) + k(di(eo, €1, 8(co), i(c1))(1 — 1)
C, J G
— 8(cq, €1, (o), i(€1)))|dcodey (OF)

subject to four classes of constraints.
The first class of constraints refer to the investment plans:

dg(Co,i(Co))dE {0,1} and dj(co, ¢1,%{co),i(c1)) € {0,1}, Veo, 1 (1)

anres———

4Wc assume the manager’s discount ratc is the same as the owner’s becausc this assumption

implies neither party has a comparative advantage in storage, and helpe isolate the effects of infor-
mation systems on incentives and investment policy.
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dg(Cg, t(Cg)) + dl (Cg, €, i(Co),i(Cl)) < 11 VCD'-' C1. (2)

This class of constraints has two subclasses. The first (1) restrict the investment
policy to be an indicator variable, and so defines the decision as “accept / don’t
accept’. Note that ‘don’t accept’ is not the same outcome as reject at £y because
the opportunity can be reconsidered at ¢;. The second subclass of constraints (2)
captures the real option nature of the investment by imposing mutual exclusivity.

The next class of constraints reflect the fact that the manager is unable to use
his/her own resources to implement the investment opportunity. As a consequence,
the owner must provide all the resources necessary for any implementation:

sa(co.i(co)) > 0 and (e, e, i{ca), i(er)) 2 0, Veo,ex (3)

By requiring the manager’s compensation to be nonnegative in each period, con-
straints (3) effectively ensure that the owner pays all the production costs.®

The final class of constraints induce the manager to reveal the investment cost
truthfully at each point in time. Assuming that the owner can commit to his use
of the manager’s cost reports, the revelation principle (Myerson, 1979) implies that,
without loss of generality, we may restrict attention to investment and compensation
plans that induce truthful reporting. We break this class of constraints into two sets.
The first set {4) ensures truthtelling at ¢, regardless of the manager’s to message.
The second set (5) ensures truthtelling at £, provided the manager’s tells the truth at
t;. One can verify that these constraints are equivalent to the full set of constraints
guaranteeing truthtelling in both periods. In terms of our notation:

s1(co, €1,8(c0), $(c1)) > 81(co, €1, (co), i(c1)) + di(co, &y, i(co), (1)) (¢ — 1),
VYeo and Ve, ¢} € I(c) (4)

so(co, #(co)) + Kk /C 81(co, ¢1,1(co), i{e1))der > solcp, i{co)) + dolcp, i(co))(co — co)
+k fc 81(ch, e1,4(co), i{e1))der, Vey and Yeo,cq € I(co) (5)

The resulting mathematical program is rather complex. Results in Antle, Bogetoft
and Stark (1999b) are helpful in simplifying the analysis. A simple extension of their
results suggests that optimal investment and compensation rules can be specified by
a vector of m + n different cost targets. m cost targets are defined for ¢y, denoted

by the vector ¢§ = (cf, ¢k, - Chn), and 1 cost targets are defined at t;, denoted

5Thesc constraints arc the only oncs that refer to the absolute sizc of the manager's compensation.
Implicitly, we are assuming that the manager has a reservation utility of 0, where utility equals the
present value of compensation. The constraints on the size of compensation ensure that the manager
at least receives a utility from employment of 0. As a consequence, a separate constraint is redundant.




by the vector ¢ = (cf;,¢cls,...,c1,). The cost targets can be gwen the following
interpretation. First, if the mformatlon obeerved at ty is Jo;, cX; is the highest cost
such that all ¢y € I equal to or less than it lead to investment at ¢y. Second, if the
information observed by the owner at t is Iy, ¢]; is the highest cost such that all
¢; € I; equal to or less than it lead to investment at I; if investment did not take
place at toFormally,

. 1 i apite)-1 < €0 < e
dO(CO: 1(60)) = { 0 (co{))therwise Oileo)

. . 1 if do(co, 1 =0, G14e)-1 < €1 < cF,
dl(cﬂiclrl(c“))it(c])) ={ 0 U(cﬁ (CU)) Otherl;{;;)e 1 1= 14(e1)

The targets also fully characterize the optimal compensation policies. Again, a
simple extension of the results in Antle, Bogetoft and Stark (1999b) shows that the
optimal compensation plan, as a function of the targets, is:

so(co, i(ca)) = do(co, i(co))Caitee) — Co + & /c s1{co, €1,1(co0), i(€1))de]

31(co, €1, (co), i(e1)) = da(eo, €1, 8(co), ile1))lelyey) — €3]

The form of the optimal compensation is revealing. The manager’s compensation
at t,, 91, equals the excess of the target cost over the actual cost, when investment
takes place at t;. This form of the manager’s compensation is a direct implication of
the truthtelling conditions. Getting the manager to reveal the investment cost at t,
entails paying him all the cost savings relative to the ¢; target cost for the information
interval in which the true cost lies (i.e., cfﬂ{cl) — ¢;1). If no investment takes place at
t,, the manager’s compensation is 0

The manager’s compensation at tg, Sp, 18 more complicated. If investment is
to take place at to, giving the manager the cost saving relative to the ty target
cost is not sufficient to get the manager to reveal the cost of investment at that
time. When investment is undertaken at t3, the manager’s option on slack at i,
is destroyed. Therefore, as pointed out by Antle, Bogetoft and Stark (1999b), to
provide the manager with incentives to truthfully reveal the cost of investment at
to, the manager must be compensated for the loss of expected slack at ;. These
two effects are given in the formula for the optimal so. The term ¢\ — co gives
the manager the cost savings at to. k f s1(co,¢1,4(co),i(c1))der gives the manager
the present value of his expected slack at £;. If no investment takes place at ig, the
manager’s compensation is 0.

It is important to note that, from the manager’s perspective at iy, the manager
always receives any expected slack from possible investment at {;. If investment
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occurs at tg (i.e., do{cg, i(co)) = 1), the manager receives the present value of expected
slack from possible investment at t; in his t; compensation. If investment does not
oceur at £ (i.e., dolco, i(co)) = 0), the manager receives expected slack through the ¢,
investment problem. This means that the manager benefits dollar-for-dollar by any
slack created at {,.

Nonetheless, the form of compensation contract at o (in particular, the existence
of a valuable option on expected slack at {; held by the manager at iy) depends
crucially on the assumption that the owner can commit to the manager over both
periods. Suppose, as an alternative, the owner could commit to the firing of the man-
ager after g if investment does not take place and the hiring of a strictly different
manager at {;The manager would possess no ty option on expected slack at 1, if this
is the case. Nonetheless, committing to thiscourse of action is only unequivocally eco-
nomically rational if there are no costs associated with changing managers. There will
be costs if the existing manager poesesses advantages over other available managers
in the labor market. Further, if the existing manager does possess such advantages, it
is not necessarily advantageous to commit to replacing him with complete certainty
if investment does not teke place at 5. We justify our commitment assumption,
therefore, on the basis that the managerial labor market is not sufficiently complete
to ensure that managers can be replaced costlessly and that the costs of replacing
managers are sufficiently high to discourage such a course of action.

Because the cost targets determine the compensation, for a given information
system, I = {Iy, I}, the optimal investment and compensation policies can be deter-
mined by optimizing over the n +m cost targets. To determine the optimal informa-
tion system, we need an additional n + m — 2 variables corresponding to the possible
division points between ago = 0 and aom = 1 and between a;0 = 0 and a3, = 1. As
we shall see in the next two sections, however, the optimal information system from
the owner’s point of view ie actually characterized by two parameters corresponding
to the highest costs at which investment occurs at o and {; respectively.

3 The Effects of Information System Design and
Investment Decision-Making Policy

To explore these effects, it is useful to begin with a broad analysis of how the to and
t; profit and slack affect the owner’s overall profit. Let Il and Sp represent expected
profit and compensation respectively, for some combination of information system
design and cost targets. Let IT) and S represent expected profit and compensation
respectively, conditional on investment not taking place at iy, for some combination
of information system design and cost targets. By profit we mean revenues net of
target cost transfers. Let p(I) represent the probability of investment taking place
at {y, given the combination of information system design and cost targets. The net



present value of the opportunity to the owner, II, then is given by:
IT = [y — p(IkS; + k(1 — p(I))I (6)

To see this, observe that with probability p(I), investment takes place at to. If
investment takes place at tp, the owner transfers the cost target plus an amount
equal to kS; to the manager. The first two terms on the right hand side of the
equation capture the effect of the revenues less these total transfers. Investment is
considered at £, with probability (1 — p(I)). Conditional on investment not taking
place at to, profits are I1;. Hence, the last expression on the right hand side of the
equation captures the contribution of possible investment at t; to the value of the
opportunity to the owner.

Inspecting equation (6) reveals some interesting insights into the owner’s prefer-
ences. Straightforwardly, for a given probability of investing at £y, the owner prefers,
ceteris paribus, higher ITp and I1;. The owner is indifferent to the size of So, other
than to the extent it affects I1y. Perhaps less straightforwardly, for a given probability
of investing at to, the owner prefers, ceteris paribus, a lower 5.

The owner’s desire to maximize profit at ¢y and ) is not surprising. Both di-
rectly increase the value of the owner’s investment opportunity, with an increase in
t, profit increasing the value of the owner’s option to wait. More surprisingly, the
owner also cares about the minimization of t; slack. Reducing 5; eases the owner’s
incentive problem with the manager at tg, regardless of the level of I1,. This reflects
an important effect of the manager’s timing option.

We can contrast these preferences with those that hold for the one-shot deal
setting analyzed in Antle and Fellingham (1995). In a static world (i.e. in a one
period model) analyzed there, the owner is interested in the manager’s slack only to
the extent that it comes at the erpense of profit. That is, the owner is not interested
in the manager’s slack, given a fixed level of profit and likelihood of investment. In
a multi-period model, however, slack in later periods represents an option to the
manager, and this option makes it more difficult to control incentives in the initial
period. The enlarged set of preferences identified above are related to the timing
option associated with the investment opportunity and the consequent linking of the

periods. We now examine in detail how these expanded preferences feed through into
information system design.

4 The Owner’s Optimal Information System

In the previous section, we have identified the owner’s general concerns in the design
of the information system, the setting of investment policy and the compensation
scheme. We shall now show how this pins down the design of the owner’s optimal
information systems and investment policies. All mathematical proofs are given in
the appendix.



We initially show that the owner only rations capital in the highest interval of
both Iy and J;. Further, as a consequence, the owner needs to sirmultaneously think
about the highest cost at both iy and ¢; below which production will take place and
the partitioning of the cost space below these cost levels. We provide the following
theoremn on these issues.

Theorem 1 For given m and n, there exist af € (0,1] and ai € (0,1] which fully
characterize both the optimal information system design and the associated optimal
investment policy such that: -

ago = 0, Go,f‘:iaﬁ for §=1,..,.m—1, aom=1

and

With this theorem, we show that to characterize the owner’s most preferred over-
all information system and associated investment policy, we need specify only two
parameters, aj and a}. The interpretation of aj (al) is that it is the maximum cost
leading to investment at to (t1). We also show that the optimal information system
makes the highest production interval and the cost intervals below this production
interval equally wide at each point in time.

This is similar, but not identical, to the optimal information system and invest-
ment policy developed for the one period, static investment problem in Antle and
Fellingham (1995). In Antle and Fellingham (1995), the information regions are also
equally wide, but the size of the no-investment region (i.e. of (c3,1) or (¢,,1] in
our terminology) is as wide as the cost intervals. As will be illustrated below, we do
not get this last result here because the owner’s aim is not just to maximize profit at
t, but to minimize the associated slack as well. As pointed out above, in the static
case, minimization of slack is not desirable per se because the principal does not care
about incentive provisions in other periods.®

This difference between our analysis and that of Antle and Fellingham (1995)
with respect to optimal information system design and investment policy is crucially

81n the extreme case of n = m = 1, we revert to the case considered in Antle, Bogetoft and Stark
(1908b).
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dependent upon an aspect of our assumption of commitment. The aspect here is that
renegotiation does not occur after £o and prior to ¢;, should investment not occur at o.
Given our specification of the overall problem, which does not prevent the owner from
adopting the Antle and Fellingham (1995) information system design and investment
policy, clearly, such a design is not optimal, as evaluated at £o. Nonetheless, if rene-
gotiation were to take place, such a design would be adopted (i.e., the opportunity at
t, would be treated as a one-shot deal if renegotiation were allowed).” We justify our
assumption that no renegotiation takes place by assuming that the owner can credibly
endow a third-party with the authority to fine the owner should renegotiation take
place, and the size of the fine is sufficient to discourage such behavior.®

In our multiperiod model, the effects of allowing renegotiation in the absence
of the ability to commit are fairly straightforward, as indicated above. This is not
true in other settings, however. For example, a number of other papers (e.g., Arya,
Glover and Sunder, 1998; Demski and Frimor, 1999, and Gigler and Hemmer, 1998)
establish settings where accurate reporting of information is not necessarily desirable
at some intermediate stage in the multiperiod problem and as a consequence, reported
information is garbled. The rationale underlying these results is that the garbling
damps down the effects of renegotiation and the inability to commit to a multiperiod
contract.

Returning to the analysis, and given the results of Theorem 1, we have:

5 + Iy = aj(1 - %)

. (n 4+ 1)aj
and
o (m+ 1)ag

Inserting these expressions into equation (6) gives the following expression (OF) for
the value of the investment opportunity to the owner:

(m+1)
2m

i)+ ka1 - B kgt -F) @

OF = al(1 —

TWe assume in the argument above that both information system design and investment policy
are open to renegotiation. Nonetheless, an alternative approach would be to assume that information
system design is a particular form of commitment device {e.g., the design of an accounting system is
standardised in advance of its use) which then only leaves investment policy subject to renegotiation.

RGimilar arguments concerning commitments not to fire the manager at fo and not renegotiate
at 1, if investment does not take place at o can be found in Antle, Bogetoft and Stark (1999b).
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Therefore, af and a} are the joint solutions to the following first order conditions:

2 1) o) — kai(1 - By =0 ®

2+ 48) a1 - af)] =0 ©)

Further, to ensure that these joint solutions represent a maximum for the problem, the
second-order conditions need to be satisfied. Koo (1977) demonstrates that necessary
second-order conditions for a maximum are:

8°0OF/8a2,0°0F8at <0~~~

Straightforward further (partial) differention reveals that these conditions hold.? Koo
(1977) also demonstrates that a further sufficient condition for a maximum is that:

&#OF/(0ag  G°OF[Bozdat |
JOF/8al8a B'0OF/8a}?

We state the follov.r:mg lemma.

8OF/8ay = (1 -
O0OF/da; = k[(1 —

| J =]

Lemma 2 For the problem above, | J |> 0. Therefore, solutions to first-order con-
ditions given in equations [8] and [0/ represent a mazimum to the owner’s problem.

We then have the following theorem.

Theorem 8 The value of the investment opportunity increases with both m and n.
Purther, a} increases with m and decreases with n, whereas a] decreases with m and
increases with n. In addition, the overall probabulity of investment:

ag + a;{1 — ay)
increases with m.10

It is not particularly surprising that the value of the investment opportunity in-
creases with m and n. Clearly, the owner could replicate the result for an m-partition
by setting one of the intervals in an m + I-partition equal to the null set. The same

argument applies for n. As a consequence, the value of the opportunity must be at
least weakly increasing in m and n.

Y820F/8ay? = — {2l < 0;8P0F/Bay® = k(aj — i222) < 0.

10The first-order conditions also reveal that both a3 and a} are dependent upon k, the discount
ratc. The dependency of optimal investment policy at both points in time on the discount rate, in
the absence of information systems and in the presence of incentive problems, has been pointed out
by Antle, Bogetoft and Stark (1999b). This paper reveals that optimal information system design
at _both points in time is similarly dependent upon the discount rate. In Theorem 5, we show that
ded <0and G >0.
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We note that increasing the number of partitions at any point in time also in-
creases the (possibly conditional) probability of investment at that point in time and
decreases the (possibly conditional) probability of investment at the other point in
time. This result is not so obvious and is the result of a mumber of different effects,
some of which are partially offsetting.

Consider the situation at £ initially. Incressing m reduces the cost of investing
at g by reducing slack payments for any fixed ag, ceteris paribus. This suggests that
an increase in af could be attractive to the owner. Nonetheless, such an increase also
increases the expected payment resulting from motivating the manager to forego the
slack option if investment is to take place at ¢y - a feature that makes the increase
less attractive. To counteract this effect the owner can reduce the manager’s slack
option by reducing a}, although this also reduces expected profits at {;. Thus, there
are countervaling influences on the attractions of changing investment policy at either
point in time as a consequence of changing m. The net effect produces an increase in
a} with a reduction in aj to reduce the manager’s slack option.

Now consider the effect of increasing n. Here, the situation is similarly complex.
Ceteris paribus, increasing n reduces the value of the manager’s slack option. This
increases expected profits at £;. This makes investing at {, more attractive to the
owner and suggests that an increase in a] could be attractive. It also, however,
makes investing at £y more attractive because of the reduction in the manager’s slack
option. Nonetheless, increasing a] increases both expected profits and slack payments
at t;, holding n fixed. This last effect then increases the value of the manager’s slack
option, reducing the attraction of investing at t;. There are, again, countervaling
influences on the attractiveness of changing investment policy at either point in time
as a consequence of increasing n. The balance favours increasing a] and decreasing
ag.

Increasing m increases the overall probability of investment. Nonetheless, increas-
ing n has an ambiguous effect. The derivative of the overall probability of investment
with respect to n is given by the following expression:!!

. al _ 1 » 3“;2 =
GO)dn nglJl[k( 1-|-3€11 ]

Therefore, the mgn of the derivative with respect to n is given by the sign of k{—1 +
3aj — -L) + 1. From Theorem 2, as m gets la.rger, a} gets smaller. If a} gets small

enough and m large enough, then k{(—1+3a% — -5‘-) +- can be negative. An example
of this effect is when m = 10 and k = 1. In this case, merea.emgnfromlto:Zresults
in a decrease of af) from .742 to .593, an increase in a} from .205 to .449, and a fall
in the overall probability of investment from .795 to .775.

This is an interesting effect. In a one-period world, decreasing incentive problems
increases the probability of investment. Here, increasing n decreases incentive prob-

11 The expression on the right hand side is a result of substituting for the appropriate derivatives
given in the Appendix and a certain amount of rearranging using the first first-order condition.
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lems at ¢; but decreases the overall probability of investment. This is related to the
relative strength of the incentive problems at {p and t;. In particular, for the overall
probability of investment to decrease with n, incentive problems need to be much
decreased at t; relative to ¢;. In the example, a high value of m relative to n has
achieved this outcome.

5 Illustrative Examples and Further Results

We gain some idea of how a} and a} change as m and n increase, and the associ-
ated changes in the owner’s wealth and overall probabilities of investment, in Table
1. Further, the examples lead to a number of questions to which we respond with
additional theorems. For the examples, we set & = 1. It is worth bearing in mind
that, in the absence of incentive problems, investment would take place if {p cost is
less than .5, and, if investment has not taken place at to, would take place for all costs
at t;. Hence, the overall probability of investment is 1In this situation, the owner’s
wealth is .625. We can use these features of the first-best solution as benchmarks
when evaluating the results in the table below.

Table 1

Effect of m and n on Information System Design, Owner’s
Wealth, and Overall Probability of Investment (k = 1)

m ay n af Ouner’s Wealth Probability of Investment

1 341 1 397 .356 603
1 203 2 .586 414 707
1 275 3 .685 448 72
2 477 1 343 .396 657
3 554 1 308 418 .692
5 446 5 .735 .530 853
5 .426 10 .852 .562 915
10 491 5 .718 941 .856
10 466 10 .842 b7l 916
10 455 50 .965 .604 981
50 .504 10 .832 581 917
50 491 50 .962 613 981

As suggested by Theorem 3, as m increases, so does the overall probability of
investment. Further, increases in m or n, holding the other pararmeter constant, pro-
duce opposite effects in aj and a}. As m and n increase, the value of the opportunity
to the owner increases towards the first-best value. When m = n = 1, the value of
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the opportunity is less than 60% of the first-best value and the overall probability
of investment is just over 60% of the first-best value. When m = n =5, the value
of the opportunity has risen to over 80% and the overall probability to over 85% of
the first-best value. When m = n = 50, there are only small differences between the
investment policies followed and the first-best policies, with little difference between
the first- and second-best cases in terms of the value of the opportunity. We also note
that, although not shown explicitly, aj and a] do not split the top interval of their
respective information systems in half, as in Antle and Fellingham (1995).

The examples above make clear that it is not automatically the case that infor-
mation system design will be identical between periods, even if m = n. Therefore, we
now ask whether the information system specification can ever be identical between
periods when m = n. Given the theorems above, for this to be the case requires
ay = a}. Theorem 4 gives the answer.

Theorem 4 If m = n, then a}) # o} unless (m — 2)k* + 6k —4 =0.

The implication of Theorem 4 is that the information system is identical in both
periods only in special circurmnstances. An example of when identical information
systems in each period are optimal is when m = 3 and k = .605551Thie value of k
corresponds to a cost of capital of over 65%. In this case, a§ = a] = .5657. As can
be gathered by inspecting the condition in Theorem 3, as m increases, the value of k
which allows the optimality of identical information systems in each period decreases
and, hence, the implied cost of capital that must be in use to allow the optimality of
identical information systems in each period increases.

The examples also suggest that there are systematic differences in the changes to
the value of the opportunity to the owner as a result of increasing m versus n. In
particular, Table 1 suggests that if m = n the owner prefers to increase n rather than
m. We provide in Theorem 5 some general conditions under which the owner prefers
to increase n rather than m, or m rather than n.

Theorem B If m = n, for ‘high’ values of k, and low values of the cost of capital,
the owner prefers to increase n rather than m. For ‘low’ values of k, and high values
of the cost of capital, the owner prefers to increase m rather than n. The definition
of ‘high’ and ‘low’ depends upon the common value of m and n.

Theorem 5 gives some sense of in which period it is best to invest in a more detailed
information system, ceteris paribus. It states that if an equally detailed information
system (i.e., m = n) is in place at both points in time, the owner has a preference
for increasing the level of detail at £; rather than tg if & is sufficiently high. This is
the case in Table 1. Nonetheless, if the cost of capital is high enough and, hence, k is
low enough, this preference reverses. The intuition for this result is as follows. As k
decreases, the importance of the timing option becomes less, both as an alternative
investment opportunity to investing now and as a distortion to tg investment caused
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by the manager’s slack option. As a consequence, the owner becomes more and more
interested in investing at ¢y rather than ¢; and, hence, more and more interested in
acquiring more detail on costs at {p as opposed to t;.

6 Conclusion

In this paper we investigate the design of costless information systems in a setting
where a manager has superior information about the cost of an investment oppor-
tunity at an earlier point in time and, at a later point in time, receives superior
information about opportunity’s cost in this period. The project can only be ac-
cepted once. Within a principal-agent framework, we then explore the design of
information systerns which generate imperfect information about investment costs at
both points in time.

We identify the characteristics of the optimal information systems and associated
investment policies. In particular, restricting our attention to partitions of the sets
of costs at both points in time, we show that the information system and investment
policy at each point in time is completely characterised by a single parameter and the
number of intervals in the partition of the cost set. The parameter defines the highest
cost below which investment always occurs. The optimal information system results
in a partitioning of the cost into equal size intervals other that in the top interval.
Further, the highest production region at each point in time is of equal size to the
intervals below it.

We also study the effects of increasing the level of detail of the information system
at either point in time on the value of the opportunity to the owner, on the timing of
investment and on the overall probability of investment. First we show that increasing
the level of detail at either time strictly increases the value of the opportunity to the
owner. Second, we show that increasing the level of detail at a given point in time
increases the probability of investment at that time and decreases it at the other
point in time. Third, we show that increasing the level of detail at the first point in
time increases the overall probability of investment. Increasing the level of detail at
the later point in time, however, has an ambiguous effect on the overall probability
of investment.

We then derive the circumstances under which the optimal information system
and investment policy are identical at both points in time. The circumstances appear
specialized and unlikely to hold as & matter of course. As a consequence, optimal
information system design generally will differ between periods - a standardized sys-
tern is unlikely to be optimal. Further, we derive results relating to the question of
when it is more attractive to invest in an increassed level of detail at one point in time
versus the other. In particular, when the information systerns at both points in time
have the same level of detail then for low costs of capital it is best to increase the
level of detail at the later point in time, whereas for high costs of capital it is better
to increase the level of detail at the earliest point in time.
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In summary, the design of the costless information systems defines the relative
strengths of the incentive problems at both points in time and, hence, also defines
the desirability of investing at any particular point in time. Increasing the level of
detail of the information system at either point in time increases the welfare of the
owner. It is not clearcut, however, which period should be emphasised in terms of
the level of detail in the information system. This, even in the simple setting of the
current paper, depends upon interest rates. Further, information system design will,
in general differ from one period to the next, suggesting that such design issues are
highly contextual.

Obviously, our analysis of information system design in the context of an invest-
ment opportunity with real option features is highly simplified. It only features two
investment decision points. The only real option considered is the opportunity to time
the acceptance of an investment opportunity. Uncertainty about costs is independent
across the two points in time. Further, costs are distributed uniformly. Certainly,
the specific design of the information systems at both points in time depends upon
this latter assunption. As a consequence, further specific insights into the design of
information systems can be gained from studying expanded real options settings, in-
cluding the consideration of other real options. Nonetheless, the current paper makes
a start at investigating the design of information systems in real options settings.
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7 Appendix

Proof of Theorem 1

Proof. First, we prove that there is no rationing in an element of the partition at
either to or t; other than the highest. Consider Ip. Suppose 6o < ¢y < agi- Then
reduce all ag;’s, form -1 2 3 2> landc%;-'a, form > j > 2, by agy — ;. This
has no impact on the agent’s slack in either period nor the probability of production
in either period but improves o profit by reducing the costs of production. Given
equation (6), this increases the value of the project to the owner. Now consider the
second lowest interval. If there is rationing, follow the same procedure as above for
this cost interval and those above. If there is not, leave the cost target.and upper
interval bound unchanged. Repeat this process sequentially moving up the intervals
in the partition until the highest interval is reached. All rationing will have been
eliminated in all but the highest interval leaving the owner strictly better off with
the agent’s welfare unchanged. Similar arguments can be applied to I; to show there
will be no rationing in the any interval but the highest.

By implication then, there will be two values, aj and a] below which production
will take place at g and t; respectively and above which production will not take
place. Given these upper production bounds, the question then becomes, how should
the information system be designed to maximize the owner’s wealth. Consider an
arbitrarily chosen aj. Consider any given division and recall that production is fixed.
Hence, as implied by equation (6), the owner’s only remaining concern is to minimize
expected slack and thereby increase expected profit. Now, slack Sp is given by:

m—1
1 1, .
So = [,Z=1: E(G{Jj — agj1)] + -2'(0-0 — Gom-1)’
which by convexity and symmetry is clearly minimized by having equally wide pro-

duction regions. Therefore:

ﬂOD=U: aﬁj=ia;) fﬂr j=11“-1m—11 aﬂnlzl

J .
. = a’O or _—“1,...,
({’ m f J

Now consider an arbitrarily chosen a}. Again production at t; is fixed. Further, the
owner wishes to minimize slack at ¢; even if it has no effect on profit. Nonetheless,
minimizing slack also has the effect of increasing profit at ;, which the owner also
desires. Expected slack at ¢; is given by:

n-1
1 1, ,
Si=0)_ 515 — a15-1)°] + 5 (a1 - t1n-1)’

=1
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which, again, by convexity and symmetry is clearly minimized by having equally wide
production regions. Thus:

ajp =0, alj=%0; for j=1,..,n—1, aj=1

Ci; = ;al fOl' J =1,..,n
»
Proof of Lemma 232 . ,
OF/8ay 0O°OF/0ay0a3

Proof. | J |=| 320F/éa;§a5 3201{,/;‘:1;1 |. We have that

§°0F Joa = -2+ D

m
5 OF/8at = —k(ah — : 1y

B OF/8a30a = 8*OF/0a0a}, = —k(1 — a})

Therefore, by multiplying out, rearranging, and substituting from equation (8], we
have:

(m+1)(n+1) (m+1) .

I L g
Suppose | J |< 0. This implies that:
m 9 4 f; 4 (mlint1) m
™ > %
“=Tm+1) 3 Z m+1)

But, equation [8] suggests that feasible values of aj are bounded above by 7.

Hence, we have a contradiction and, therefore, | J |> 0. R
Proof of Theorem 8

Proof. The value of the opportunity to the owner is given by (equation [7]):

* * n+ 1 - . a3
ag) + kaz(1 — ( ™ )01) — kagai(l — '51)

Now note that:
dOF  OOF Oay + S0OF Bat N 80F G60F
dm ~ Baj dm ' Bal dm  8m  Om

because at the optimal values for a§ and a}, %; = % = 0. Similarly,

dOF _ OOF day + OOF Oaj + 00F O00F
dn = 8a dn = 8a} dn dn  On
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We then use the signs of 22E and %X as indicators of the impact of unit increases in
m and n. Note that althou,gh m and n can only take integer values, such a constraint
is not built into the functions describing the value of the opportunity and the first-
order conditions. Therefore, if BOF/0m and 8O F/8n are positive for all values of m
and n, the value of the opportunity will change by a strictly positive amount between
successive integer values for m and n. We then derive that:

BOF aag
Bm 2mi > 0, vm
and
w2

Now, we wish to identify the effects of varying m and n on aj and a}. The first-
order conditions for the optimal a8 and a} are given in the text in equations (8) and
(9) as:

00F /005 = (1 - TN gty — kai(1 - %"‘) =0
(n+1)

BOF/ba? = k{(1 — at) — a1 - a?)] =

Let z represent an arbitrarily chosen parameter from the two parameters. Let the left
hand sides of two first-order conditions be represented by the functions A(ag(2), a3(2), z)
and B(a}(2),a}(2), 2} respectively. Therefore, re-expressing aj and a] as ag(z) and
al(z) to recognise that these variables are functions of the parameters m and n, we
have:

BOF [Bap(2) = A(ag(2), 61(2), 2)

and
80F [8a}(z) = B(ag(2), 61(2), 2)

Let A; (B;) be the partial derivative of A (B) with respect to the i’th argument of
the function. Therefore:

_(m+1)

B, = °OF/8a!(2)? = —k(a} — (": 1,

Ay = By = 8°0F/8a3(2)8a}(2) = 8*OF/8a}(2)Bag(2) = —k(1 — a})

= BPOF/8a%(z)? =
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If 2z=m, then

whereas if z=n,
kaj
B3 = — 3

Now, using the chain rule (see, for example, Protter and Morrey, 1964, chapter 4), it
is the case that:

Alda" +A2da1 +A3=0

dz dz
| M;
Bldz +Badz 4+ B3=0

which leads to the matrix equation:

5 5] [8]-[=]

&
We observe that, in the notation of above, J can also be defined as
_ | A A
-5 &)

Therefore, the matrix equation above can be restated as:

| &]-[5]

‘Dividing’ both sides of this equation by J gives matrix equation [10] which below
provides the basis for identifying the effects of varying m and n on a; and aj:

EIEEYIEd @

Applying matrix equation [10], gives:

=Ty e >0
3‘:1;=|'7"|(1—a; % <o
i‘f=f—;f|—(l—a'{ 2 <o
?}=T’£'l(1+i)%”



The overall probability of investment is:
ap + aj(1 — ag)

Therefore, the impact of changing m on the overall probability of investment is:

( d GU da*

Using the expressions above for the derivatives shows that the overall probability of
investment increases with m. i

Proof of Theorem 4

Proof. Let m = n. If the constraint a = a] is imposed upon the solution to the two
first-order conditions from Theorem 3, then equality of the two first-order conditions
requires that:

L (1—k
o =ai = ﬂgi

Putting these expressions into one of the first-order conditions gives an expression
equal to:
((m — 2)k? + 6k — 4)
m(2 — k)?

It is only when the numerator equals 0 that the first-order condition will equal 0 and,
hence, identical information systems will be optimal. Otherwise, identical information
systems at both points in time will be sub-optimal. B

Proof of Theorem 5

Proof. First, we demonstrate the effect of k on aj, and a}Specifically, we prove that

%—E < 0 and TkL > 0. We use the same methods as in the Proof of Theorem 3.
Therefore:

da ay

U ‘Jl(l —"—ﬂo)ﬂl(l— ]){0
da" 1 ar
dk |J|(1#a’1)ﬂ'1(1“ 1)>0

Now let m = n. From Theorem 3, we know that:

O0F ap?
om 2'm2
and
80F  ka}’
on  2n?

24



Therefore, if m = n, whether 825 > 285 or vice versa, depends upon whether a3l >
kat?, or vice versa. From the first part of the Proof, we know that lowering k increases
a$ and decreases aj.

Now we prove that if k = 1, af < a} = ka},Vm = n. Let a§ = a] + z. Substi-
tuting for a in the first-order conditions, substituting one from the other and some
rearranging suggests that:

which gives the result.

Hence, for a given common m = n, as k is decreased, eventually the point will be
reached at which the situation switches from af? < kaj? to ag? > kai?. This point,
therefore, is at some k* < 1. k* defines the boundary between ‘high’ and ‘low’, for
the given common m = n. k*, as defined, will only be approximate as an indicator of
where the changeover occurs because, in looking at differentials, we are treating m and
n as continuous variables and considering an infinitessimally small increase in either,
whereas m and n are integer variables and we have to consider unit changes in them. @



