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Abstract

We characterize optimal investment and coropensation strategies in 8 model of
an investmment opportunity with managerial incentive problems, caused by asym-
metric information over investment costs and the manager's desire to consumse
slack, and flexibility over the timing of its acceptance. The flexibility over tim-
ing consists of the opportunity to invest immediately, delay investment for one
period, or not invest at all. The timing option provides an opportunity to inveat
when circumstances are most favorable. However, the timing option also gives the
manager an incentive to influence the timing of the investment to circumstances
in which he gets more slack.

Under the sssumption that investment costs are distributed independently
over time, the optimal investment policy consists of a sequence of target costs,
below which investment takes place and above which it doss not.

The timing option reduces optimal cost targets, relative to the case when ne
timing option is present. The first cost target is lowerad because the compensation
function calls for the payment of an amount equal to the manager's option to

generate future slack, ahould investment take place. This increases the cost of



investing at the first opportunity, thus reducing its attractiveness. In order to
ease the incentive problem at the initial investment opportunity, the second target
cost is also lowered, even though no further timing options remain.

Making the sdditional assumption that costs are uniformly distributed, we
generate additional insights. We find circurnstances in which the probability of
investing initially exceeds the probability of investing at the seccnd opportunity,
a result that is impossible in the first-best context. Second, we identify eircum-
stances under which the initia! target cost is increased by incentive effects. Third,
we identify the conditions under which the option to wait is effectively shut down
when incentive problems exist.

The implications of relaxing several key assumptions, such as investment cost
independence, the owner's commitment to the manager and not to renegotiate,

are explored.



0.1. Introduction

The purpose of this paper is to explore the effects of incentive problems, dis-
persed information and opportunities to time investment. Many modern theories
of investment decision-making stress the flexibility embedded in investment op-
portunities. Embedded opportunities for fiexibility are called real optiona. Real
options include the opportunity to time the acceptance of an investment, to tem- _
porarily or permanently shut down a project subsequent to its acceptance, or to
make adjustments to key operating parameters such as production levels. 1
Amongst Teal options, perhaps the one that hes attracted the most attention
has been the opportunity to time the acceptance of an investment. Hoss 1895,
101] states that '... when evaluating investments, optionality is ubiquitons and
unavoidable.’ Dixit and Pindyck (1994, 8] argue that ‘... irreversibility end the
possibiiity r;*j' delay sre very important characteristics of most investments in re-
ality.” {emphasis added) The owmer of the opportunity to time the acceptance
of an investment opportunity is said to possess a timing optien For example, a
shopping mall can be built on a parcel of real estate now or later, but not both.
Investment in production facilities to exploit new technologies can be made now

or later, but not both. These examples stress the mutual exclusivity of investing



now or later.

The literature on decision-making about investments that include & timing op-
tion ignores incentives and information imues. Thia may not be so important for
passive investments undertaken in market contexts. However, for investments un-
dertaken within Arms, where information may be dispersed among managers who
also play & role in implementation, ignoring incentives and dispersed information
does not seem wise. A lot of research on investment decision-making empha-
gizes the effects of incentive and information problems on both socinl welfare and
optimal investment policiea? For example, in & single pariod model, Antle and
Eppen [1985] show that limiting the information rents paid to & manager who
possesses private information about an investment's profitability involves limiting
investment by setting hurdle rates higher than the coat of capital® Antle and
Fellmgham [1990] show how incentive problems can render optimal Linking oth-
erwise separate investment decisions that occur at two points in time' Antle,
Bogetoft and Stark [1999] and Arya and Glover [2000] are the analyses cloeest to
ours. They focus an the advanteges of combining investments into pools, which
implicitly includes delaying investments. We know of no analysea, however, that
directly address the interaction between incentive problems and the timing of the

accepiance of investment opportunities. The purpose of this paper is to begin to



fill this void.®

The effects of timing options on investment decisions are not clear when there
are management control problems. In the presence of incentive problems, a timing
option might benefit a manager intent on pursuing his or her self-interest at the
expense of the interests of the owner, especially if the manager posseases private
information relevant to the exercise of the timing option. Investigating how to
control the managerial wse of timing option flexability then becomes of interest.

To investigate these effects, we analyze an investment opportunity that can be
accepted at two possible points in time, if it is to be accepted at all. The owner of
the project employs & manager to, if necessary, irnplement the project. We assume
that the interests of the owner and manager are inextricably linkad over the period
covering the availability of the project and, bhence, they are committed to each
other. The manager possesses informational advantages over the gwner of the
project in terms of knowing precisely, at each point in time at which the investment
opportunity can be accepted, the cost of implementing the project. The owner
never has such precise knowledge. An incentive problem is present because {i) the
manager haa a preference for slack consumption; (ii) glack consumption represants
a wasteful use of resources from the point of view of the owner; but (iii} the

owmer is unable to monitor the manager’s slack consumption. Slack is acquired



by the manager as & result of being given more resources by the owner than
are necessary to implement the project. Given the set-up sketched above, our
nalysis can examine the impact of incentive problems on the timing of investment
opportunities,

The remainder of the paper is organized as follows, Section 2 pregents the
model. Section 3 analyzes the model’s solution. Section 4 presents benchmarks
against which the investment strategies identified in Section 3 can be evaluated.
Section 5 provides comperisons that display the economic effects of incentives
and the timing option. Section 6 analyzes the effect of relaxing some of the key
assumptions of our model. Section 7 provides further results besed upon the
assumption that costs are uniformmly distributed. Section 8 provides concluding

remarks and directions for additional research.

0.2. Model

A Tisk neutral owner can invest now or one period from now. The investment
project has a preeent value of $1 when undertaken, There is only cne project, 8o
the opportunities to invest now or later are mutually exclusive. The abandenment
value of the project is assumed to be so low that abandonment is never optimal

after an investment has been made.®



The investment must be implemented by a manager.” The manager knows
the investment required if the project is started immediately, and be will lsarn
the investment required if the project is delayed one period.* The owner knows
the joint distribution governing the investment costs in both periods. We assume
that the cost if the project is implemented now is independent of the cost if
implemented one period from now, Also, the owner and the manager agree on
the distribution of future costs.

To formalize these ideas, let the two points in time at which an investment can
take place be denoted by #y and ¢, where {5 is ‘now’. Let ¢ and ¢, be the costs
required tc produce the project if the investment occurs at ip or t, respectively. If
implemnented, the project has a present value of $1 at the time of implementation.

At ty, the manager knows ¢g. The owner believes ¢ is drawn from a probability
distribution on [c&,eY]. Let Fo(co} and foico) denote the cumulative distribution
and density functions, respectively, of the probability measure. At ¢, both the
owner and manager believe ¢, is distributed on [cf, ¢}], with curnulative distribu-
tion Fy{c,) and density fi{r:), independent of ¢g. We assume that costs at ¢, are
independent of those at {5 in order to achieve tractability.® At t;, the manager
observes c;. %mumethatﬁ%‘ md-‘;f{fﬂ are increaging in ¢ and ¢; over their

respective supports. For simplicity, we omit subsequently the subscripts on the



probabilities, and let their argument identify the distribution. Thus, from now
on, Fa{ce) = Flep) and Fife,) = Fla).

The owner must transfer to the manager the funds required to carry out the
investment. Let y denote the total amount the owner turns over to the manager.
To create an incentive issue in the model, we first assume the manager can con-
sume any funds transferred from the owner in excess of those required to carry out
the investmment. For example, if the investment is to be made at {p with attendant
cost cg and the owner provides resources of yo, the manager consurnes the excess,
yo - c0. This excess ia ‘slack’. Second, we asswwe the owner cannot rmonitor the
managet’s slack consumption. Further, slack must always be non-negative, im-
plying that the manager is not allowed to fund investment from his or her own
resources,

It will be useful for us to break up the resources the owner provides to the
manager into the cost of the investment at time ¢, c, and the menager's slack,
% = y — Cq, at time t. Therefore, we model the owner ms paying the cost of the
investment, ¢;, and the manager's slack, s;. Slack plays the role of compensation
in our model, and we refer to alack as compensation from now on.'®

At 1y, the owner asks the manager to report the cost that would be incurred

:f the investment were to be undertaken now. If the option to invest is kept open
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at £p, the owner asks the manager to report the cost of the investment et 1, after
he learns it. We assume the owner can commit to contracts, 80 he can carry out
the resource allocation decision by constructing & menu of contracts from which
the manager must choose.!' The menu gives the resources allocated and whether
the investment is to be undertaken at each point in time as 2 function of the
manager's communication about coet.'? Without loss of generality, the menu is
designed to induce the manager to communicate truthfully the cost. 1

The owner's objective is to maximize the expected net present value of the
opportunity. His cost of capital is ¢ > 0, with corresponding discount factor
k = 1/(1+ p} < 1. The choice variables are the functions describing the men-
ager’s compensation and whether the investment is undertaken depending on the
manager's cost report. Let #5 be a function mapping the set of possible costs at to,
[k, c§], into the non-negative reals; i.e., sy [ck, 4] — R*. g gives the manager's
#, compensation as a function of his cost message. Let 5, be function mepping
the set of possible pairs of costs, [cf, cf] = lek, '], into the non-negative reals;
ie., 8 [, &) x [¢F, ¥] — R*. 2 gives the manager's time ¢, compensation as
a function of his &y and t; cost reports.

We model the decision to undertake the investment with an indicator function.

Let dg be a function mapping |cf,cf) into {0,1}, with do{co) = O representing



no investment at #; and do{co} = 1 representing investment at ;. Let d; be a
function mapping (¢§,<f] % [ef. ¢f] into {0,1}, with d; (g, ¢1) = C representing no
investment at £ and d;(co,c1) = 1 representing investment at ;. The mutually
exclusive nature of the investment implies the decision rules must satisfy the
conatraint do{eo) + dy{ep, &) € 1 ¥y, €.

Using this notation, the cwner’s problem is to choose dal-}, dif:, (), and

81(-,+) to maximize his objective function:
jj /f (da(ea)(1 ~ €o) ~ &o{ce) + k{di{co,e1)(1 — €1) — &1 (co, &1 )))f (50} ] (e1)deadey

subject to constraints guarenteeing:

1. The manager's compensation is non-negative: !
a3(cq) 2 0 Yoo (1)

and

s1(co, 1) 2 0 ¥eo, 1. (2)

We assume that the manager requires the present value of slack received
across the two periods to be non-negative (i.e., the manager’s two-period
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reservation utility is zero). Constraints (1) and {2} assure that this is the case
and, hence, no separate constraint is required to ensure that the manager is

willing to initially accept employment from the owner !5

. The manager has incentives to report truthfully the cost at each point he

may be required to report:'®
& [cﬂ'l C]] :3 ’1(":{'1'&]} + dl{m! E‘l}{él - ﬂl) ‘?’Cﬂ. C1, El {3}

and

Sn{nn}+kjjs:(vu,c1)f{c:)dc:
> solEa) + dolée) (0 = o) + k/j #1{é, c1) f{e1}dey Veu, Co. (4)

. The decision function respects the invest/do not invest nature of the prob-

lemn:

do{co) € {0,1} Voo (%)

di{co. 1) € {0,1} Yoy, 1. (6)



4. The decision function respects the mutusl exclusion of investing at ¢; or ¢;:

dolco) + dy (0,01} £ 1 Yep, 1. (")

We now characterize the solution to this model.

0.3. Analysis

The optimal sclution to the owner’s problem, in terma of investrnent atrategy,
takes the form of target costs, below which the project is undertaken and above
which it is not. Further, the target cost at ¢, is independent of the cost outcome at
to. We have the following propogition which characterises this investment strategy,

together with the associated compensation strategy.

Proposition 1, The optimal investment strategy, should it exdst, has target costs

at to and {1, cf and c} respectively, such that:

dplco) = 0 Voo > cpp = 1 ¥y < oy,

di(co,01}) =0V £ g
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and

di{ce,c1) = 0 ¥ep > ¢ and ¢y > ¢5;m 1 Voo > cf and ¢; < ).

Further, an optirnal compenssation schedwe for the optimal pair of target costs

(c5.3) is:
silen) = (65 = o)+ & [ (65 ~ c1)f{er)der if o < 5= O otherwise

and

ailco, t1) = (c] — ;) if co > ¢ and ¢ £ c);= 0 otharwise.

Thus, the optimal decision rules involve two target costs, one for each period.
The first parilod project is funded if and only if the reported cost is below the first
period target. The second period project is funded if and only if the reported cost
is below the second period target and no investment was undertaken in the firat
pericd.

The optimeal managerial cornpensation at t; for a target-cost decision rule takes
a simmple form, If the manager reports any cost above the target, his compensation
is zero, [f the mansger reports any coet below the target at £, assuming no

investment has been undertaken at i, his compensation is the difference between
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the target cost, ¢}, and the reported cost, c;. That is, if ¢ i8 such that no
investment has taken place st ¢, and ¢, is such that investment will take place at
ti, 83(co, €1) = &)= &1

The manager's compensation at £ is more complex. If the reported cost is
such that investment takes place, the manager’s compensation reflects two effects.
One is the value of the manager's observation of cost. This effect is no different
than that which gives rise to non-zero t; compensstion when no investment has
taken place at tp. The second effect is the manager’s value of the opportunity to
invest at t,. If investment is made at g, it cannot be made at ¢;. This deprives the
manager of his option on future information remte, and he must be compensated
for this loss if he is to report truthfully 17

Put another way, the flexibility afforded to the owner over the timing of in-
vestment also affords the manager flexibility over the timing of compensation pey-
ments. The manager possesses a timing option too. This complicates the design
of an incentive system designed to align, as much as is poasible, the preferences

of the owner and manager over the timing of investment.
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The results in Proposition 1 aliow us to reduce the owner's problem to one of

choosing the target costs, o and ¢], to maximize:

F(e)(t — cg) + k(1 ~ Flgg)F(e)(1 — ) — #Ftﬁi}fj{ﬂi - e1)f(er)des. (OF)

After some manipulation and rearrangement, the first-order conditions for

optimal (interior) solutions are:

1. The partial derivative with respect 10 ¢ equals 0, which produces;
F{ '}) it
sm - —k f - dey. 8
g=1- (59 -k [fu-ar e ®

2. The partial derivative with respect to ¢] equals 0, which produces:

(1= Fle)) (1 - &) - (%"’—‘)]) 0. (®)

We examine these first-order conditions to gein inmight into the effects of the
timing option and the incentive problem on the target costs. By comparing the
canditions with appropriate benchmarks, we can display the economic effects of

these two mepects of the investment problem.
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0.4. Benchmarks

In understanding the properties of the target costs derived above, we need to
understand the separate contributions to each cost target of incentive and timing
option issues. First, we compare ¢f and ¢} with the target costs at i and f; that
would hold if there were no incentive issues but a timing option exists. Second,
we compare the target costs to the target costs if there are incentive issues but
there is no timing option and the investment opportunity is a one-shot deal at

either iy or t;.

0.4.1. The First-Best Solution in the Presence of a Timing Optlon

The first-bast version of the owner's problem is obtained by firat obeerving that,
when the manager’s two-period reservation utility is zero, the optimal compensa-
tion to the manager is identically zero. Second, it is clear thet the appropriate
first-best target coet st t; in 1, or is cf if ¢’ < 1. Denoting the optimal first-best
(No Incentives - NI) target costs at times g and {, by ¥l and o}/, reapectively,
then

& Min[c 1], (10}

14



The optimal g’ is given by the first-order condition given in equation (11):
Minel )
1-c = kfcf (1 = 1) f{cy )des. (11)

unless such & cost target exceeds cb or is exceeded by cf. Thus, generally, the
optimal ¢, target coat ia the mazimum of ¢§ and the minimum of the cost target
given by equation (11) and <f.

The first-order condition given in equation (11) weighs the net present value
produced by investing at tg, 1 — ¢, against the discounted value of the expected

net present value from keeping open the investment option until {,,

el 1]

£ - eftede

Thia discounted value of expected net present value iz non-negative. Therefore,
the timing option reduces the first-best target cost at tp below 1, even if c§ > 1,
Intuitively, the target cost is reduced to take account of an eadditional cost of
inveeting at £o: the opportunity cost of foregoing invewtment at 3. The reduction
in the target cost is only affected by the distribution of costs at t; - the distribution

of costs st iy is irrelevant to the terget cost at ip in the first-best situation.
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0.4.2. The Second-Best Case in the Absence of a Timing Option

In the one period case where there are incentive but no timing issues (No Option
- NO}, it is straightforward to demonstrate that the optimal .t‘.arget cost, £9, is

generally determined by the following first-order condition:'®

woms (222,

70) (12)

In our case, we have benchmerks from the static case which can be applied at

to and ¢,, We refer to these benchmarks as cf'® and ¢f'®.

0.5. Comparisons

Given the benchmark target costs established above, we are in & poeition to ini-

tially analyse the properties of ¢} and ¢;. We consider the effects at ¢, first,

0.5.1. Effects at 1,
We express the effects at t; in the form of a proposition.

" Proposition 2. Assuming that ¢}, ¢! and +'C are arrived at by solving the ap-
propriate frst-order conditions, the target cost st ¢, in the presence of incentive
problems and timing issues, ¢}, is less than or equal to the target cost, of'®, if

16



the opportunity at t; is & one-shot opportunity to ipvest with incentive problems,
which is, in turn, less than or equal to the target coet, M, if the opportunity
at ¢, has no incentive problems but & timing option exists at tp. Io symbols, we
have:

¢ < % < cff! = Minlef, 1},

The normal motivation for {weakly) reducing the taxget cost when a one-shot
investment opportunity is under consideration in the presence of an incentive
problem is to reduce the manager's information rents. Therefore, o g =
Min]|cV, 1. Now, note that if {, is reached without investment having taken place,
the investment opportunity there appears to be & one-shot deal. The key result
here, however, is that ¢} < cf'“. Iri other words, the presence of the timing option
at ¢; has an impact on the optimal target cost at i, (inspection of equation {9)
suggests that the inequality will hold strictly unless ¢§ = ¢f, that ia, unless the
investrnent option is never exercised at to).

‘The reason for this result is that the manager possesses a timing option at ¥y
on compensation to be received at 2y, the size of which iz determined by the target
cost Bt ;. Lowering the ¢; target decreesss the expected value of the manager's

compensation at #;. Other things being equal, the manager is less tempted to
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report a high cost at ty, forego investment at ip, and preserve the option on
his compensation at ;. Therefore, lowering the target cost at t; is helpful in
meintaining incentives for truthful repocting et ¢;. Thus, the ¢, target cost is
only disturbed because of the incentive problem, but the amount by which it is
disturbed is affected by the presence of the timing option. The total effect is the

joint product of timing and incentive effects.

0.5.2. Effects at i;

Again, we state these effects in the form of a proposition.
Proposition 3. Assuming that ¢}, ¢ and c'? are arrived at by solving the ap-
proprizte first-order conditions, ¢, is less than or equal to the target cost, cff'°,

that would obtain if the investment opportunity is a one-shot deal in ihe presence

of an incentive problem at 1. In symbols, we have:

g S cp°

The intuition here is that a timing option at {p introduces banefita from waiting
which are available to both owner and manager. As & consequence, the target

cost is weakly reduced below what it would have been in the absence of a timing
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option. This is refiected in the third term on the right hand side of equation (8)
which represents the social value of the timing option, given a target cost of cj,
as opposed to the value of the timing option to either the owner or the manager
separately.”” Indeed, the reduction in the target cost is strictly positive unless
¢! = cb, that is, unless the option to wait is effectively shut off. We analyze

circomstances in which this is the case below.

0.6. Changing Key Assumptions of the Analysis: Indepen-

dent Costs and Renegotiation

The propositions above have established many of the eflects of & timing option on
target costs in the presence of an incentive problem. Our formulation and results

have employed at least three assumptions thet merit further examination:

'1. the costs 8t ¢y and ?;are independent;

9. the owner and manager are tied together inextricably across the two pericds
. the owner is unwilling or unsble to fire the manager after one period if

investment does not take place at fp;

3 the owner and manager both resist the temptation to remegogiate before the

investment decision is taken at t; if investment has not talken place st fp.
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We now examine the impact of relaxing these assumptions. I[nitially, we relax
the assumption that costs are independent. Then, we consider the possibility that
the owner may want to fire the managey if investment does not occur at tp. Finally,
we analyze the effects of allowing renegotiation. We relax these assumptions one

at a time, not in combination,

0.6.1. Correlated Costs

In prior sections, we have restricted our sttention to the case where investment
couts are independently distributed at 2p and t;. Now we briefly consider the case
where these costa are not neceaserily independent. As a consequence, we represent
the cost distribution at ¢; by f(c, | co). In this case, the objective function and
constraints must be modified to acknowledge the dependence of the distribution

of cyon 5. The objective function becomes:
E ff [do(co)(1~co) —so(ca)+(ds (cor €1 (1 cr)—ar(ean 1)) (62 [ cn)fleodderdeo
Constraint {4) becornes:

20(co) + £ ﬁ #1(em e} (1 | coddey



> 85{fo) + dolés){éo — co) + ﬂ‘f a1 (&, c1) fie | coder Yiop, Eo. (13)

In describing the sclution to this problem, it is useful to interpret our solution
to the original problem in a different way. A different way of looking at our sohition
in the case of uncorrelated coets is that the owmer announces 1o the manager that,

if investment takes place at ¢y, an amount, yo, given by:
L] L] ¢? [ ]
v =g+ k [ (6 - ef(er)de
£y

is transferred to the manager out of which the cost of investment must be funded

and, if investment takes place at i, an amount, t, given by:
v =

is transferred. The investment decision is then delegated to the manager and any
excess over the amonnt transferred and that required to fund investment is kept
by the manager for personal consumption. It i easy to demonstrate that the
manager will only invest if cp < ¢} at &y and, if investrment hax not taken place at
tp, will only invest at ¢y if o < of. In cther words, the hurdle rate characteristic

is reproduced. Further, the payoffs to the manager, in teyms of excess resources,
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are identical to those specified in Proposition 1.

In the case of non-independant costs, some of this structure is carried over
to the solution. In particular, the owner still chocses resource transfers, 3
and ¢, that are handed to the manager if investment takes place at tp and £,
respeﬁtiwly.m The manager roust then fund the investment cost out of these
transfers but, again, may keep any excess. It can be shown that, if investment
has not taken place at ty, investinent will ordy take place at ¢ty if ¢y £ 41, In other

words, a hurdle rate strategy is maintained at i; and y; plays the same role as c}.

Put another way:

d}{co, ;) = D Vep such that djfce) = 1

and

d}{co,e1) = 0 {VYco such that dj(ep} =0 and ¢; > Y}

= 1 {Vcy such that dj(cy) = 0 and ¢; < y1} -
At ty, however, the investment strategy followed by the manager may be com-

22



plex. Investiment will only take place at #p if:
52 otk [ 65 —enfe | coldey
or, re-expressed:
o) = 1145 2 o+ k ] (45— @) ler | xhdes = 0 otherwise

What is changed here relative to the case of independent costs is that the invest-
ment strategy at to no longer automatically takes the hurdle rate form. That is,
the optimal investment region at time £y may oot be an interval of (small) cost
vajues. For some small cost values, investment may be deferred, and for some
highmatlevels,h:mtmmtmn}'beundmuken. The reason is that the value of
the slack option available to the manager by delaying investment may vary with
the observed investment cost at 1o, co, in & way that disrupts the neat tie between
optimal investments and ¢!

To summarize, with non-independent investment costs, the owner’s problem
remains that of identifying two optimal resource transfers associated with invest-

ment &t iy and ;. The transfers then imply an investment strategy that takes



a hurdle rate form at ¢; but does not necessarily teke such a form at &. The
transfers at fp implicitly must compensate the manager for the lost slack option if
any investment is to take place &t £, as in the case of independently distributed
costs. As a comsequence, little of principle is changed in the solution by imtroduc-
ing non-independent costs but, without making specific assumptions about the
nature of the dependence, closed form solutions characterising yj and 3} cannot

be obtained.

0.6.2. Cross-period Links between Owner and Manager

Now we relax the assumption that the owner and manager are tied together over
the two periods. Suppose the cwner dismisses the incumbent manager st £y if the
cost report leads to the deferral of the investment decision to ¢;. He then hires
another manager to provide a cost report at ¢,. In this case, a target cost strategy
is atill optimal. However, there is no need to provide the incumbent manager at &g
with a slack option to induce truth-telling - a key part of the incentive mechanism

identified in Section 3. The owner's objective then is to maximize:

F(c3)(1 — g} + k{1 = F(g))F{ei)(1 - &)
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Letting the target cost solutions to this problem be denoted by ¢ © and cf'®
(NC - no commitment to the manager), the Arst-order conditions for optimal

(interior) solutions reduce to:

e ~1- (Fr] ) - kit - )

and

F(ce
qo=1- (fgcf'ﬁl} )

We can note two aspects of the solution. First, c['¢ = YO - the target cost
et ¢, is identical to that which would hold if the investment were a one-shot
deal. ® Second, the target cost at iy is reduced by the value of the owner's option
to wait - kF(e’€)(1 = ¢/C). Here, the reduction is less than in equation (8)
by the amount of the slack option that has to paid when the same manager is
employed over both periods. Assuming all relevant cost targets are determined by
the appropriate first-order conditions, and uaing the same methods used to prove

the results in Proposition 3, we can show that:



Note that, in this case, the owner commits not to rehire the manager with
any positive probability. This, of course, ia a commitment strategy of another
type, the rationality of which relies heavily upon the existence of & rich and
frictionless market in ready-made replacements for the incumbent manager. If the
incurmbent can only be replaced at a cost or, alternatively, has a gkill advantage
over competing managers, it is difficult to sustain a commitment not to rehire
the incambent. Such a commitment would not automatically be economically

rational.

0.6.3. Renegotiation

We now turn to the case where renegotiation ia sllowed prior to the investment
decision being made at ¢, if investment has not taken place at tp. We assume after
the manager has acquired information about the cost of investing at t,before any
@egotatinn. If renegotiation is allowed, the optimal renegotiation-proof® target
cost at t;, which we denote by ¢i¥ (RP - renegotiation proof), equals ¢}'C -
the target cost that would hold if the project were a one-shot deal at ¢;. An n

consequence, the owner picke the optimal renegotiation-proof fo target cost, e,
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to maximize:

F(e)(1 — cg) + k(1 = F(G)F(e)'O)(1 - e)°) — kF(c5) ffa(ﬂfo — e1)f(e1)de

resulting in the following first-order condition for ef:

B - (?%';3’) k[0 a)f () e

Again using similar methods to those used to prove Proposition 3, and as-
suming all relevant cost targets are determined by the appropriate first-order

conditions, note that ¢t < ¢ because £} < cff?. As a consequence, we have:

< f®

" <

&

Thare are some commonalities involved in the effects of relaxing the two -
surmptions identified above. First, the fo target cost is still reduced relative to
that that would hold if there were no option to delay lrvestment, as in the anal-
ysis above., Bringing together the relationships for the various target costs at i

guggests that:
<< < df°
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Second, the target cost at ¢; is that which would obtain for a one-shot investment

opportunity at thet time, Therefore:

& < '€ m o = 0

Having analysed the effects of relaxing three key assumptions of our analysiz,
we revert to assuming that the costs are independent and that the owner wishes to
commit to employing the menager over both periods and not to renegotiate after
to if investrnent has not taken place. We rationelize maintaining these assumptions
on the following grounds. First, we believe further analysis of the independent cost
case is likely to be instructive. Second, we assume that, although undoubtediy a
replacemnent for the incumbent can be found, replacerent is st such prohibitive
cost {as a consequence of, for example, the need for training in (unmodelled} firm-
specific skills necessary to fulfill job responsibilities) as to effectively rule out such
8 course of action. Third, we assurne that the owner can contract, at sufficiently
low cost, with a third party such that, should renegotiation take place after #;,
the terms of the contract require the third-party to 'fine’ the owner an amount
large enough to discouzage such renegotiations. Note that, given the results of

Propositions 2 and 3, this is a rational course of action to take at #p.
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0.7. Further Analysis Under the Assumption That Costs

Are Distributed Uniformly

Previous analysis left us unable to describe generally the effect of changing cost
distributions at either ty or ¢; on target costs. Further, it left open how the
presence or absence of an incentive problem affects target costs at &p when a
timing option exists (i.e., the relationship between cj and ¢}'/). Additionally, we
were not in a position to identify general circomstances under which the timing
option is valueless in the presence of an incentives problem and make comparisons
between these circumstances and those under which the timing option is valueless
in the absence of incentive problems. To gain insight into these issues, we now
meke sorne specific distributional assumptions. In particular, we assume that

costs are independent and uniformly distributed in both periods.?

0.7.1. Some Comparative Statics of the Effecta of Changing Cost Dis-

tributions

We begin by examining the effects of changing coat distributions on the optimal
target coats at to and t,. We compare these effects with those that occur in the

absence of incentive problems. By so doing, we are able to identify the important



economic forces that incentive problems add to investment decision-making in the
presence of a timing option.

We analyze the case where ¢ ~ U[0,&] and ¢, ~ U{0,5), with & > 1 — 3
and & > 1. The lower bounds on & and &, ensure that cff?, ¢’ and i’/ are all
determined by the appropriate first-order conditions and, hence, 8o are ¢ and cf.

Under these circurnstances, the first-order conditions identified above for ¢§ and

¢] reduce 10

28 (1 —2c5) = kej(2 - ) = 0 (14)
and

bo(l —26}) — (1 — 1) =0 (15)
respectively.

We wish to identify the effects of varying &, ¢, and k on the target costs. Let
z represent An arbitrarily chosen parameter from the previously mentionad three.
Let the left hand sides of equations (14) and {15) be represented by the functions
A(cy(2),c}(2), 2) and B{cj(2), €i(2), z) respectively. Then, matrix equation (16)

" provides the basis for identifying the effecta of varying &, ¢ and k on the target



= 1 | Ba —Ax || —4s
o | T TT] (16)
"a-":‘ —"51 A] —Ba
where
A As
J =
B B

and A, (B,) is the partial derivative of A (B} with respect to the i'th argument of

the function. From this matrix equation, we can derive the follewing proposition.

Proposition 4. (i} ¢ decreases and ¢] increases as & increases; (i} o increases
and ¢, decreases as & increases; and (iii) cf decreases and c; increases as k in-

ClIEAases.

We can compare these results with those that hold when incentive problems

do not exist. Specifically,

and &/ = 1. Most interestingly for our purposes, we note that:

1. the target cost at &, is unaffected by varying & in the absence of incentive

problems whereas, in the presence of incentive problems, it is affected; and
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2, the target cost at ¢, is unaffected by varying any of &g, ¢; and k in the absence
of incentive problems whereas, in the presence of incentive problems, it is

affected by these factors.

We provide intuition for these outcomes in the following way. First, the fact
that increasing &q decreases ¢ but leaves ¢’ unaffected ie a consequence of the
incentive problem being increased at tg because of the increase in &g, Increas-
ing &g increases the spread of the uniform distribution from which the #; cost is
drawn, thereby increasing the cost of ensuring truth-telling at that time.?® As
a consequence, investment at ¢g is rendered less attractive relative to investment
gt ¢;, resulting in a reduction in . Ohiom]y, these effects do not exist when
considering an optimal . Whereas the first-beet £y target cost onty reflects
the cost distributicn at t;, the second-best iy target cost will, additionally, reflect
the relative strength of the incentive problems at ¢y and ¢, induced by the coat
distributions of ¢ and ¢,.

Second, for similar reasons to those in the previous paragraph, the second-best
t, target cost will also reflact the relative strength of the incentive problems at
i, and il. Hence, ¢} is positively associated with &, because an increase in &
increases the coat of ensuring truth-telling at iy, whereas the first-best ¢, target
coet hurdle ie unaffected by the cost distribution at . Further, increases in &,
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increase the costs of truth-telling at ¢;, leading to & decrease in the attractiveness
of inveatment at t;. This results in & dacrease in c}. It is only incentive problems
to which these influences on ¢} can be attributed. :

Thisd, the effect of k on the target cost at ¢, can be explained in the foliowing
way. Increases in the discount factor, ceteris paribuy, increase the present value
of the slack opticn paid to the manager at to should investment take place them.
This decreases the attractiveness of investment at time tp and results in a decrease
in ¢} and the attendant probability of investment at fg. Nonetheless, because of
this decrease in ¢ and associated probability of investment at 2y, an increase in
¢! oceurs - again, an effect that cannot happen in the absence of an incentives
problem.

We now use the analysis above to illustrate a set of conditions involving the
upper bounds of the cost supports at ¢y and ¢, under which ¢y > ¢}, This result is
of interest because it is not possible for the #p cost target to be higher than that
at 2, under first-best conditions if & 2 1. The following Proposition illustrates

these conditions.

Proposition 5. F e ~ Ult,&] and ¢, ~ U[0,é1}, with & and ¢, 2 1, and

., _c(l=c")
f= {1—2c*} (17)
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&y = % (18)

and 2 — /3 < ¢ < .5, then ¢ = ¢ w ¢* and ¢}’ is interior. By Proposition 4, an
increase in the upper bound of the cost support at i, or 8 decrease in the lower
bound of the cost support at i, relative to those indicated in eguations (17} and

(18) will produce circumstances under which 5 > ci.

This proposition specifically illustrates the potential for the incentives problem
to shift the relative balance of investment from one point in time to the other,
as captured by the relationship betwsen cost targets at the two points in time.
In the first-best case, it is not possible for ¢’ to equal or exceed ¢}'7. In the
second-best case, the relative balance shifts in favour of earlier rether than later
investment, in the sense that the probability of investment at ¢g 18 higher, relative
to the conditional probability of investment at ¢;, in the second-best than in the
first-best case.™

Indeed, under certain circumstances, the ratio of these two probabilities in the
second-best case can excead 1 when both &, and &; are equal and exceed 1. This,

again, is something thet cannot happen in the absence of incentive problems. Let



the discount factor be given by:

_1-c)
T 2-¢)

with 252 < ¢* < .5, Then, using Proposition 3, both & and & exceed 1 and the
probability of investment at 4y equals the conditiopal probability of investment
at t,. By Proposition 4, a small decrease in & will produce an cutcome where
the probability of imestment at o strictly exceeds the conditional probability of

investment at #;.

0.7.2. Identifying 2 Class of Circumstances Where cf > o'’

As indicated above, the relationship between the second-best and first-beat target
costs is ambiguous in the presence of & timing option. The analysia above suggests
that incentive problems can produce a shift in the relative hkehhmd of investment
towards t;. This raises the poesibility that the balance of incentive problems
between ¢ and t;, when combined with the balance between expected cosis at
the two points in time, might combine to raise the second-best target coet at &
above that which holds in the absence of incentive problerra. This is a possibility

that does not exist for one-shot investment decisions.



We assume that ¢ ~ Ulch,cb), & < 1 - 35 < ¢, and 1 ~ U[0, &} Let

1) = B =L+ DA — 147 2)
@F - 1+7—GF

Now consider only those {cf,cl} pairs that satisfy

1-cf =r{2- f(r}) (19)

Then we can provide the following proposition.

Proposition 8. For a fixed r = 3, ¢§ > ' if (i} &, ©; and cf'! are deiermined
by the appropriate first-order conditions; (ii) ¢; ~ U[0,é;}, é > 1; and (iii)
co ~ Ulck,b], where [¢f,b] € [cf. ¢f] for some {5, oy} pair that satisfy equation

(19) and b > cf > 7 > .

This proposition thus defines conditions under which the existence of incentive
probiems increases the probahility of investing st fo. Easentially, it defines the
trade-offs that are possible between the upper and lower bounds of the support of
¢o which allow for the equality of ¢ and o' via equation (19). Hence, aquation
(19) defines a curve in (cf,<§) space, for & given distribution of ¢, such that
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points below the curve define lower and upper bounds of the uniform support of
cp that, as long as cjj and c] are identified as a result nfthaﬁrsb—ordurmndjtinm.
produce the outcome: &f > ¢’

We illustrate {c§,cf'} pairs which satisfy equation (19) for a particular value
of r for which & = .9 and &, == 1. Thus, r = 45. Here, ¢! = 1— .45 = .55, Table

1 illustrates a number of such pairs.



Table 1

Upper and Lower Bounds on the Support

of First Period Costs That Allow cf > o

o o
404 1
399 .95
393 9
384 .83
371 8
35 .75
318 7
268 .65

194 6




Table 1 illustrates that situations in which ¢) = ¢}’ for k = S and & =
are characterised by lower uncertainty at i relative to |, as characterized by the
relative spread of costs. Nonetheless, the mean expected cost at £y can be lower or
higher than the mean expected cost at t, without the result becoming impossible.
As a consequence, it is difficult to say much about the likelihood of the types of
situations llustrated by Proposition § occurring in empirical situations. All that

can be said ia that such situations are not impossible g priori.



0.7.3. When is the Timing Option Valueless in the Presence of Incen-

tivas Problema?

We now turn to the issue of when the value of the timing option is zero in the
presence of incentives problems. We confine ourselves initially to the consideration
of cases where ¢} and ¢} are arrived at by solving the appropriate first-order
conditions and ¢] = cf. If cf = cf, investment never takes place at ¢; and,
hence, the timing option is valueiess. We present the following propesition which

iltustrates a class of circumstences in which such is the case.

Proposition 7. Assuming that (i) eo ~ Ulck,¢f) and o1 ~ Ulcf, cf'); and (i)
cp and ¢} are arrived &t by solving the eppropriate first-order conditions, then

¢} = cf if
vy {1 +¢f)
f 2

and the uniformm cost distributions at tg and ¢y are reiated in the following way:

k(1 —cb)?

% <1-r—h

Further, under these conditions, ¢’ is not interior and equais cf -



It is worth briefly discussing the reaults of Propasition 7. The first order condi-
tion given by equation (9) makes it clear that if ¢, costs are uniformaly distributed
and ¢ = cf then F(c}) = 1 and, hence, ¢ = cf. Therefore, if the timing option
is valueless, the problem reduces to a one-shot deal with investment always tak-
ing place.?” When costs are uniformly distributed at #g, if ¢)'© is interior then it
equals O%Ft), Therefore, cf must also equal &5 < 1. Nonetheless, if £, costs
are distributed in this way, the solution cf = ¢§ and ¢] = ¢f olwoys satisfies the
first-order conditions for the owner's problem given by aquations (8) and (9). Asa
consequence, the second condition in the Proposition comes from the appropriate
gecond-order condition for this particutar solution to be a maximurn,

We provide some examples of the relationship between the cost distributions
implied by the Proposition. Let ¢ ~ U[0,.5 and k = 8. Table 2 provides
same possible combinations of ¢f and cf that lead to the equality of ¢ and

-k :::f]:, Increasing ¢} above the value indicated in the table will certainty
produce circumstances where the value of the timing option is zero, given the

other characteristica of the situation.®



Table 2

Upper and Lower Bounds on the Support of Second Period Costs That

Allow the Option to Wait to Be Shutoff in the Presence of Incentive Problems

2 T

3 741

6 T4



Table 2 illustrates nicely the trade-offs between the balance between expected
costs and incentive problems. The spread of costs decreases as we move down
Table 2, reducing incentive problems at ¢;, and, hencs, all other things being
equal, increasing the value of the timing option. But, other things are not equal.
Expected costs are increasing as we move down the table reducing the value of
the timing option. The two effects cancel out, leaving the timing option consis-
tently valueless. Obviously, increasing ¢} above the figure indicated in the Table
increases both expected costs and incentive problems at t), keeping the value of
the timing option at 2ero.

A further conclusion to be drawn from the proposition is that if incentives
problems cause the shutting-off of a timing option that is valuable in their ab-
sence, and costs are uniformly distributed at ¢ and ¢,, it must arise from problems
in which the first-crder conditions do not determine the optimal second-best tar-
get costs, Examples of such problems can be easily conatructed. Comsider the
following. Let co ~ ULT, 8], &2 ~ U[0,1]), and k = 1. Here, f’ = .7 and
¢! = 1. In the presence of an incentive problem, q = B2 This cost target
is not the outcome of solving the first-order conditions for the problem. The in-
centive problem, however, effectively shuts off the timing option in a situation

where, in the first-best world, the timing option is the only source of value for
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the opportunity. In the first-best world, the spread of costs et ¢, gives sufficient
chance of low costs to make waiting attractive. In the second-best warld, this suf-
ficient chance of low costs has to be traded-off against the impact of the incentive
problem caused by the large spread of costs at ¢; compared with that at fp. Here,
the incentive problems outweigh the possibility of low costs and waiting has no
value. As a consequence, although in the first-best world flexibility to time the
acceptance of the investment opportunity provides economic benefits, it does not

do so in the second-best warld,

0.8. Conclusion

We characterize the optimal investment and compensation strategies in a model] of
an investment opportunity with managerial incentive problems and flexibility over
the timing of its acceptance. Acceptance is possible st two points in time. In the
first-best world, such flexibility is viewed as potentially providing real economic
benefits. The investment opportunity has & real option embedded within it - the
opportunity to wait to invest,

In the second-best world, as in the first-best world, the optimal investment
policy consista of target costs, below which investment takes place and above
which it does not. We show how timing and incentive effects interact to affect
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these target costs. The interaction of these effects is fairly intricate. The exis-
tence of the timing option reduces optimal cost targets at both points in time.
The to target is lowered because the compensation function at £ calls for the pay-
ment of an amount equal to the manager's option to generate slack at ¢;, should
investment take place. This increases the cost of investing at fo, thus reducing
its attractiveness. The target cost is also lowered at £; when no further timing
options remain. Lowering the target cost in the final period reduces the value of
the agent’s option on slack, which eases the incentive problem at tg.

By making the assumptions that costs are uniformly distributed, we are able to
generate additional insights. First, circumstances are identified in which not only
does the cost target at tp exceed that at £, but also the probability of investing
at 1o exceeds the conditional probaebility of investing at t;, results impossible
in the first-beat context. Here, relatively speaking, incentive problems ghift the
probability of investroent away from ¢, towards &p. Second, incentive problems are
generally thought to reduce target costs, relative to opportunitiss with no incentive
problerms, in order to limit the manager’s slack on lower cost projects. Incentive
problems, however, have more complex effects in the opportunity analyzed here,
An a result, we are able to identify circumstances under which the target coat at

¢, way be increased by incentive effects, relative to the target cost that exists in

42



the absence of incentive problems. Third, we are able to identify the conditions,
derived from the firat-order conditions for the problem, where the aption to wait is
effectively shut down when incentive problems exist. Under these conditions, the
option to wait ig also shut down in the first-best world. Nonetheless, an example
is given, where cost targets are not identified from the first-order conditions,
illustrating that it is possible for incentive problems to shut down a timing option
that is valuable in the absence of such problems. As a consequence, we illustrate
that incentive probiems can render a timing option thet is veluable in the pbsence
of incentive problems valueless in their presence.

In generating the results indicated sbove, we make important assumptions
concerning the opportunity sets of owner and manager. Essentially, we link the
opportunity sets of the owner and manager across periods and, as a consequence,
increase incentive costs by giving the menager an option on future information
rehts generated by linking with the owner. As a consequence, we examine how
alternetive assumptions about the relationship-specific capital, in particular how
the owner’s and manager's opportunity sets evolve over time, affect investment
etrategies.

The mode] presented in this paper can be used as the basis for many addi-

tional analyses. For example, information systemn design can be analyzed in a
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model with incentive and timing eflects.3 Further, we ignore the poasible exis-
tence of either follow-up investment optione {i.e., investment opportunities only
accessible as a consequence of investing mow) or abandonment options (i.e., the
opportunity to dispose of an investment opportunity once acquired). Both these
options are linked in with the original decision and give rise to potential further
slack options for the manager. As a consequence, auch linked opportunities will
further complicate the manager’s compensstion scheme and, ultimately, invest-

ment decision-making.



0.9. Appendix

Proof of Proposition 1

First, we prove that if investment takes place at ¢; for a cost ¢; then it will
also take place if the cost is & < ¢,. Assurne 3 ¢p, &y, and ¢; with é; < ¢, such
that d,{co, &) = O while dy(cg,¢1) = 1.3 Then the constraint in the second set

under (2) that guarantees ¢; will be reported instead of ¢, when the cost is ¢; =

31("01 Cl) :_" Sltﬂﬂm EI}‘

But the constraint under (2) that guarantees £; will be reported instead of ¢,

when & is the true cost provides:
ailco, &1) 2 s1{co, 1) + (o1 — &1).
Collecting these results and using that &, < ¢; gives:
ai(ce.€1) 2 mico, &) 2 nilen, ) + (&1 — &1} > miep,a1),
- & contradiction.
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Second, we prove that if investment takes place at £, for a cost ¢g then it will
also take place If the cost is 3y < ¢o. Assume 3 ¢ and & with & < co such that
do(&g) = 0 while do{cp) = 1. Then the constraint in the second set under (2) that

guarantees & will be reported instead of ¢y when the true cost is & implies:

soleo) + k [ au(Ea,cr) (en)der > sofeo) + (eo — o) +k [ s1(eo, 1) en)den.

Because &g < cp, We have:

o/ <
solco} + (co — &) + k_/; #1{co, €1} (e1)der > ao(eo} + kf.,-n 8:{co, &1 ) f{ex)dey.

The constraint in {2) that guarantses ¢q will be reported inatead of é; when & ie

the true cost gives:

sofea) + 7 e, (s 2 aol) + [ awensiende

&

Collecting the inequalities produces:

sa(éo) + & f: & (8g,01)flcy)dey > soldo) + k [: &1 (&, &1 ) f {1 )der



- a contradiction.

The results above imply that there is & single cost target at ¢, ¢j, and a
possible range of cost targets at ¢; contingent on the cost reported at to. We denote
this range by ¢F (¢o). We start by deriving some results about the properties of the
commpensation payments, s(.) and #,{,,.}. We begin the argument at ;. Suppose

g > ¢ end 1, & < ¢f (cp). The truthtelling constraints at t, imply:
8{co,c1} 2 8(co,&y) + (& — ki

and

S{ﬂn,éﬂ > ’{‘:D!cl] + {cl - el]*

Teken together, these constraints imply:
&(co, 1) — 8 {co, &1} = (& — &)
Therefore, the contract can be written as:

a(co,€1) = a{eg) + (€] (¢o) — @) ¥eo > f and 1 < 5 {eo)-
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Now suppose ¢g > ¢a and £; > & (&), The truthtelling constraints for ¢; and

cf (o) yield:

8 (cs,c1) = a(co) + (c] {c0) — c1);

and

a(co) 2 (e, c1).

This implies:

alco) 5 (co, 1) 2 alco} + (] {eo) — ¢1) Veo > ¢f and ¢ > ¢f (ca)-

Taking the limit as ¢; approaches cf (¢g), we have:

afeg,01) = afep) Veo > c; and ¢ > ¢f (co).

Constraints (3), which require that all resources come from the owner, imply:

a{co) = 0 Ve > .

Now consider the case when ¢p < ¢} . By the similar use of truthtelling constraints,



it can be shown that:

a(ca, c5) = bleg} Yoo € 67, 1.

Now turn to the truthtelling constraints at t for two cogts, cq, & < ¢. We have:

s{ce} + kb(co} 2 a(2g) + {&o ~ co) + kbl{ia);

and

s(ée) + kb(2g) 2 s(co) + (co — €o) + kbleo).

Teken together, these constraints imply:

a(co) + kb{eo) — a{éa) — kb{Bo) = {& — co).

Because this equation must hold for all pairs of costs no greater than the target,

we have far some constant, e:

sle) + kb(co) = e + (¢ — co).

The truthtelling constraints for a cost greater than the target, co > cf, and the
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target cost, o, itself give:

s{co) + Kla{co) + j; (o) — 1) fler)der] 2 e+ {F — &)

and

e 2 afe)+ Klalen) + [ (ef(en) = ) (er)dn).

Taken together, these constraints imply:
e (ca} .
e > s{eo) + kaleo) + & [ (e {ca) = e)ften)dey 2 e+ (cf — ca).
1
Teking the limit as the cost, g, approachea the target, ¢f, from above, we have:™
el (cd}
em o) +ha(cd) 4k [ () - e)flen)den
'-'1

Using these reaults allows the objective function to be written as:

j = (1= &) f (co)deo
P (s + b+ [ () - e
s [F ([0 - dnses ) feis

Tt-:n
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—jj (alco) + k{aleco})} fleo)dey.

The first two lines of this formulation of the objective function express the probahility-
weighted value of investing &t i whereas the second two lines represent the
prabability-weighted value of investing at t,.

Now suppose we set
a{cg) = a{cg) = 0 Ve > ¢ and a{cy ) = 0.

To maintain incentives to tell the truth at fp, we must have that ¢f (o) is 2
constant with respect to c, which we shall denote by ¢]. Further, set ¢} (¢]) = ¢f.
Is this optimal? Any increase in s{cg) or a{co) must be associsted with & reduction
in ¢ (co) below ¢l to maintain truth-telling constraints. But, as long es a <1,
reducing 7 (o) below € is not in the interests of the owner because the owner
values additional production. Hence, setting s{co) = alcp) = 0 Voo > ¢ and
having a single cost target at ¢ is optimal from the owner’s point of view. Further,
it ig clearly optimal to set a(cd ) = 0 as the economizing solution.

In addition, {co) does not appear in the objective function and, hence, can be
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arbitrarily set equal to 0. Given the above, we get:

8(co,¢1) = (¢ — ¢} Ve, < &F and Ve > cf ;

and
s{cp, c1) =0 ¥ey > ¢] and Veg > s
and
s{cp, 1) = O Yoo < o and ¢
and

of
s(eo) = {cg — o} + kL (cT — ex)fler)der Yeo < €5

These are the forms of the optima) compensation functions given in the proposition.®®
Given that these compensation functions must hold for arbitrary ¢f and 7,
they must also hold for the optimal target costs, ¢ and cj.
Proof of Proposition £

For interior ¢ and c, ¢f is determined by solving:

(1= FE)1 - ) = (?—g.'%) .
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An interior cf'? is determined by solving:

== (T

For an optimal cj derived from the first-order conditions:
1- Fg) <1

Given that %fﬁ i& increasing in ¢; it must be the case that ¢f < c¥9. Further,
V0 < Min[el, 1) = .

Proof of Proposition §

For cj and ¢} derived from the appropriate first-arder conditions, ¢y is deter-
mined by solving:

ch=1— (-?%) " kf;{l ~ e)f (c))dey

An optimal ¢)'C derived from first-order conditions is determined by solving:

()



c} 2 ¢f, therefore:

[ 0= c)fte)de 20.

Given that 743 is incressing in co it must be the case that ¢§ < /. If the target
cost in the absence of a timing option is determined by the first-order condition,
' < Minlef 1} =

Proaf of Proposition §

From the text, we have:

% _ 1 ByAy+ AuBy)

dz |J’l
and
de; 1
P m(ﬂu'la ~ Ay Ba)

where A3 and By are the partial derivatives of A(c3{z), ¢}(2), z) and B(cj(z), ¢}(2), 2)
with respect to the parameter of interest, z. We now prove that | J |> 0. From

the first order conditions:

A] - —4&1

Ay = =2K{1~¢])



B, = '[1""‘:;}

By = {gg= 2]
Therefore, using the first-order conditions, we get:
| J |= 2&1{48g — 1) — k(2 — 6c] + 3:;2}

Using differentiation, it can be shown that | J | is increasing in ¢} for ¢f < 1.

Evaluating | J | 8t ¢} = 0 suggests that | J |> 0 if:

1,k
“>37

Giventhat k< land & > 1,

&g =

BN =

is sufficient to ensure that | J | is positive, Note that the requirement in the
proposition that:

51—
“ 23,

ensures that this is the cose.



Given thaet | J |> 0, we have:

39“[ ] = Sgn|—B;As + A2 B

and

59"[ ] = Sgn[B, Ay ~ A, B

As & preliminary, note that for ¢/ and £)¥© derived from first-order conditions,
5 =¢cl% > ¢yand 5 = ¢ > ¢f. Now, the expressions for the signs of the

various derivatives produces:

Sgn(5E5] = Senl-24(1 ~ c3)(1 - 2e])] = =ve

Sgn[%] = Sgn(dd;(1 — 2c})] = +ve
SanlZ) = Sgnl-2(-2%0 + )1 - 25)] = +ve
dej . .
Syn| d&ll = Sgn[—2(1 - ¢])(1 - 2c5)] = —ve

Son3%] = Sgnl—ci(2t0 - 3)(2 — o) = —ve



and

kl
Senl ] = Seniei(1 - 1)z - &) = e

This establithes the results in the Propesition.

Proof of Proposition §

Equations (17) and (18) straightforwardly erise from setting ¢ = ¢] = ¢
in eguations {14) and {15) and solving. For an interior ¢f”/, we require that
el =] - ﬁ: < 1, or k > 2¢). Using this inequality produces the condition that
0> c?—~dc*+1or{c - (2~ /)" + (2~ +3)) < 0. Thus, we require that
¢ >2-/3

Proof of Proposition §

If co ~ Ulck, cf) and ¢ ~ U0, &), & 2> 1, then the first-order condition for ¢}

Using this expression in the first-order condition for ¢y produces:

suggests that:

e 2] [
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re
22,
Then
cﬁ"-l-r
If we require
="

then using ¢ = 1 — r on both sides of the equation for & above produces an
equation relating values of r, cf and ¢} that result in the equality of ¢} and ¢f'’.

Letting

Fir) = {ef — 14 )3y = 1 +r = 2¢c5)
(2ef — 147 ~cf)?

this equation is:

l—cg=r(2 - f(r))

Using the same methods as in Proposition 4, we can then demonstrate thet re-
ducing & will reault in an increase in c§ but not '/, thus producing the result.
Proof of Proposition 7
First, if ¢} = c¥, note that equation (9) implies that cf = ¢f . Second, note that
equation (8) reduces to the equation for solving for the cost target for a one-shot
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deal. For a target cost solution to this equation,

. (L+ef)
cp= )
Therefore
_ (1+c5)
Egl - 2

Now consider the general case where ¢ ~ Ulck, @] and ¢, ~ Uled,ef']. The

first-order conditions become;
eV —cf)1+ch —2¢5) —klct —ef)(2—cf —¢]) =0

and

(1 +cg — 2){1 +¢5 — 2¢]) — 2c5 = ) (c] — ey} =D

Note that ¢} = ¢} and ¢} = ¢ are always solutions of the two first-order condi-

tions. The condition:
k(1 -eb)’
% <1-7p=k

is derived from applying the second-order condition for & maximurn, It then can



be proved formally by simple integration that ¢’ is not interior snd hence:

1+¢)
R i)
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Notes

1For comprehensive and authoritative coverage of the real options approach to investment

decision-making, see Dixit and Pindyck [1994] and Trigeorgis [1996).
2See Antle and Fellingham [1997) for a selective review of this literature.

*Related resuits can be found in Harris and Raviv [1996], Holmstrom and Weiss [1983],

Rees [1986], and Sappington {1983].

4Their model is also applicable to two, nonmutually exclusive investment opportunities avail-
able at the same point in time, provided that the manager only knows the rate of return on

one st the time of contracting and will learn the rate of return of the other later.

$Multiperiod agency models are relevant to our work. For m:amr::le, Lambert {1984] studies
a model in which an agent takes an action in each of two periods, and shows how real income
smoothing can arise in equilibriurn. Datar and Rajan [1995]) analyze a sequential problem in
which a manager takes an action at each stage. The second stage action could Jessen a bottieneck

problem, which is akin to expanding production options.
61n other words, the investment opportunity iz irreversible.

7Because there is only one manager, coordination problems do not arise. See Kanodia [1993]
for an analysis of a model involving coordinaticn,

#mplicitly, we assume that the manager has unique skill in implementing the project, and
cannot be profitably replaced. See Section 6 below for & discussion of this issue. This assumption
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precludesanymemingfulma]ysiaofthensignmentddmﬁmrighu,udemmdeajan

[1995).

We also assume that the manager knows the coet at the time of any communication instead
of simply being better informed that the owner but still uncertain. For analyses where com-
munication takes place without the manager being completely informed, see Christensen [1982]

and Kirby et a! [1901].
9We explore the effects of relaxing this assumption in Section 6.

10 Although slack comsumption is the source of the incentive problem in the model, similar
results can be obtained by assuming the manager has direct preferences for more investment (as

in Harris and Raviv [1996]) or has a preference for the use of specific technologies.

11The owner's ability to commit and the absence of a moral hazard problem on his part imply
he cannot benefit by assigning the rights to decide on the project entirely to the manager. For

an analysis of the problem of assigning decision rights, see Baiman and Rajan [1995].

_“Wenssumethemmagerwiﬂdwaystmmtumemthnpmnudaohheimutmtiﬁt

is underteken.

13The owner's ability to commit allows the application of the Revelation Princple (see

Harris and Townsend [1981] and Myerson [1979)).

‘I‘ThmmdMMmbemweduimplﬁngthnlhnimdﬁﬂﬁmyhddsﬂboth

to and ¢;. An alternative set of constraints is:



so(cg} 2 0; and

so{ca) + s1{co, 1) 2 O.

We do not upe this formulation for two reasons. First, we regard slack as only consum-
able at the time it is provided - it is not storable. Interpreting slack as a lack of effort is
consistent with this view. Second, as indicated above, we require that at no point in time
can the owner insist that the manager use personal resources to fund investment. Hence,

the manager always needs the owner to fund investment.

15The general constraint that ensures that the manager’s compensation is sufficient to over-

come his opportunity cost of working for the owner s

!

so{co) + kj:] 81{co, 1) f(e1)dey 2 U Vo,

where we assume that I is the reservation utility of the manager for a two-period contract. If

U = 0 then, clearly, requiring that sg{co) = 0 and s;{cp,c1) > 0 is sufficient to ensure this is so.

We assume that the manager’s reservation utility is zero because if, alternatively, the man-
ager’noppwtunitymnti:myhigh,jmtfnlﬁﬂingitwoulquuirelﬂthem::ﬁufromthe
imvestment be given to the manager. In such a case, the manager internalizes all the ex-

ternalities associated with the effects of his cost message on investmment, and there are no
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incentive issues. We concentrate on cases in which there is & costly incentive problem by
restricting U/ to be equal to zero. The solution will then refiect a costly tradeoff between

distribution and efficiency, i.e., a costly incentive problem.

The same is true for the resource allocation models in Antle and Eppen [1985] and An-
tle and Fellingham {1990, 1995]. For example, in Antle and Eppen's one investment model,
there is no rationing or elack if the n;a.nage:r’s opportunity cost is 80 high as to require he
get all the rents. For an extensive discussion of the tradeoff between distribution and effi-

ciency in a one period model, see Antle and Fellingham [199%).

We assume the manager’s discount rate is the same as the owner’s. This assumption im-
plies neither party has a comparative advantage in storage, and helps isolate the effects of

incentives and timing options.

16The first set of constraints ensures that the manager will report truthfully at ¢; regardless of
his o report. The second set of constraints ensures that the manager will report truthfully at g,
assuming the manager reports truthfully at ¢,. These two sets of constraints are equivalent to the

full set of constraints guaranteeing that the truthful reporting strategy is optimal for the man-

ager.

171t ig here that the assumed independence of costs across the two periods is crucial to the
relatively simple form taken by the compensation function. Because of independence, the
value of the manager’s option on future information rents does not depend on the cost re-
ported at tg. If there were some form of interdependence between costs acroes the two periods,

the specification of the optimal compensation function becomes substantially more detailed,
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a5 we see below.

187his condition follows from Axntle and Eppen’s [1985] analysis of a cne period, discrete
model. Using a target cost policy, the principal maximizes F{c)(1 ~ c) over ¢. Equation (12)

is the first-order condition for this problem.

19 Another comparison we could make is with the situation in Antle and Fellingham {1990]
who analyze a two-period model in which an investment can be made each period. Their
model is slightly different from ours with the mutual exclusivity of investment constraint re-
moved. Whereas we have a continuous set of possible costs and a discrete, produce or do oot
produce, investmment decision, Antle and Fellingham [1990] require the set of possible cosis to
be finite and they allow fractiona] investments. Nometheless, the economic substance of their
analysis in ow model is clear. If the owner can make two investments, Antle and Felling-
ham [1990] show he can increase the expected net present value of profits by linking the two
decisions together. In particular, the owner can roll the manager's {9 compensation for iow
co’s forward to t;, preserve its expected value, and reduce the costs of the incentive problem
at t; by loading the compensation only on low cy's. This allows the owner to raise the ¢,

target above what it would otherwise have to be.

Rutrictingthemm‘tuinmtonlyutnmtlrmmynhilitytuuaetgmmpmmﬁon
to enhance expected profits at ¢;. Gampmnﬁanisunly;mnmdnt_tniﬁmutmtiamdeu
0. But making the investment at {o precludes making it at f,. Therefore, in comparison to the

71



20Proafs available from the authors.

271 A hurdle rate form occurs if:

¥i
wt+k [ i —efla ] w)e

is weakly increasing in cg. This will occur, for example, if:

df{(:qu cg) > 0,Vcg and ¢; € of, ¥i)-

This condition implies, in particular, that F(z | co) is increasing in co ¥ ¢1 € {5, 41, ie., the
higher are costs at tg, the higher the probability that costs will be lower than any ¢ for any
¢1 € [ek,y}}. This is & form of negative correlation of costs. Nonetheless, this condition is
stronger than is necessary to ensure a hurdle rate research. Identifying more specific conditions

is hampered by the absence of easy solutions for 35 and y;.

WObaezwtha.titmak&mdjﬂemnmwheth&tornmitiammdthstthemmmmit

ts an investment strategy at ty at ip.

”Whenrmegoﬁaﬁmispoeﬁbh,itmbeshownthsttheopﬁmﬂmgetmuMdbe
those that would survive a renegotiation. Th;tis,theopﬁmnltugetlmtbmethatmdd

bemnﬁmed,mhﬂthmmﬁmd,byrmegoﬁaﬂm. This makes them “renegotiation-proof.”

“Theanﬂy:hinthhmtionmmuchmthemgguﬁumofmeoﬁhewm.
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B The use of uniform distributions makes it relatively easy to link the costs of truth-telling

with the characteristics of the cost distributions.

#Note that, under the conditions of the proposition, when ¢} = ¢} = ¢* the ratio of the prob-
ability of investment at to to the canditional probability of investment at ? is ((1- ,57)&)
in the first-best case, whereas it is merely (ﬂ) in the second-best case. Naturally, the abso-

lute size of the probabilities might be decreased in the second-best relative to the first-best case.

27¢r = cb not implying F{cj) = 1 requires identifying a distribution for costs at ¢, such that

lim 424 > 0. This then requires that Lim_ f(c1) = Obut that lim H24 > 0.

[ 3] —-c] [ —l-l.‘.l &1 —IE

28 A rithmetic calculation also suggests that, subject to rounding errors, the intervals indicated

by the table will also induce the shutting off of the option to wait.

9]¢ is straightforward to demonstrate that if the cost target at tg is set equal to c§, then the
cost, target at t; will be set equal to ¢f. This action is taken because any cost target above that
wastes value (see (OF)). As a consequence & necessary condition for the cost target to be set equal
to cf is that 6OF /6cg > 0 when evaluated at ¢ = cf. It can also be observed that 5OF/écj de-

CTeases as cg increases. U cp ~ Ulck, k], with ¢f < 1, this condition reduces to:
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3We do not study when an incentives problem creates a valuable timing option (i.e., the
timing option has zero value in the absence of an incentives problem but has strictly posi-
tive value in the presence of an incentives problem). Arya and Glover [2000] study this is-

sue in a related but different setting.

3 Antle and Fellingham {1995] address the value and effects of information in a one period
model. Antle, Bogetoft and Stark [2000] take an initial look at this issue in & model with

incentive and timing effects.

32The assumption that dp{cp) = 0, i.¢., with ¢p the investment is not undertaken in the firat

period, is implicit in the assumption d){cs,¢1) = 1.

33The independence assumption is implicit in the densities under the integrals. Independence

is used for the last weak inequality in the proof.

MWe define a(c]) as the limit of a{cp) as cp tends to c§ from above and cf (cf') as the limit

of ¢f (co) as co tends to ¢f from above.

33Recause of the arbitrary choice of b{cg), they are not unique.



