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Abstract

This note reexamines the connection between the asymmetric Nash bargaining solu-
tion and the equilibria of strategic bargaining games. Several papers in the literature
obtain the asymmetric Nash bargaining solution as the unique limit of subgame per-
fect equilibria in stationary strategies when the breakdown probability approaches
zero. This note illustrates by means of two examples that this result depends cru-
cially on the differentiability of the boundary of the set of feasible payoffs. In the
first example the game has a unique stationary subgame perfect equilibrium that
fails to converge to the asymmetric Nash bargaining solution. In the second example
the game has two stationary subgame perfect equilibria that converge to two dis-
tinct limits as the breakdown probability vanishes. This example demonstrates that
without differentiability of the set of feasible payoffs there is not even asymptotic
uniqueness of stationary equilibria in the bargaining model.
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1 Introduction

The theory of non-cooperative bargaining has resulted in a substantial body of research
following the seminal contribution of Rubinstein (1982). We are interested in the gener-
alization of this model to the case with n players. The main characteristics of the model
are that n players bargain about an n–dimensional convex set of feasible payoffs, decision
making requires the consent of all the players involved, and bargaining takes place in an
alternating offers style. At the beginning of each period, some player is selected as the
proposer and makes a proposal, followed by an accept or reject decision of the other play-
ers. In case of rejection by at least one player, there is some probability that negotiations
break down. Otherwise, bargaining proceeds in the next period with the selection of a new
proposer, and so on, and so forth.

The existence of a subgame perfect equilibrium in stationary strategies in this model
follows from the results of Banks and Duggan (2000). A number of papers shows, un-
der increasingly weaker assumptions, that in the limit, when the breakdown probability
converges to zero, the equilibrium converges to the Nash bargaining solution. Binmore,
Rubinstein, and Wolinsky (1986) show that the unique subgame perfect equilibrium of the
2–player game of bargaining with alternating offers as in Rubinstein (1982) converges to
the Nash bargaining solution as the time interval between two consecutive rounds of bar-
gaining vanishes. The stationary subgame perfect equilibria in the bargaining procedure
of Hart and Mas-Colell (1996) converge to the Nash bargaining solution in the n-player
case when applied to the special case where decision making requires unanimous approval,
and Kultti and Vartiainen (2007) show convergence to the Nash bargaining solution for
the n-player case when players rotate in making offers.

Miyakawa (2006), Laruelle and Valenciano (2008), Britz, Herings, and Predtetchinski
(2008) give a non–cooperative foundation for the asymmetric Nash bargaining solution in
the case of n players. Miyakawa (2006) and Laruelle and Valenciano (2008) consider a
bargaining game with time–invariant recognition probabilities and show that, as the prob-
ability of breakdown of negotiations becomes small, the stationary subgame perfect equi-
libria approach the asymmetric Nash bargaining solution, with the weights corresponding
to the players’ recognition probabilities. Britz, Herings and Predtetchinski (2008) establish
a similar convergence result in a game where the selection of the proposer is determined
by a Markov process, thereby covering both time–invariant recognition probabilities and
rotating offers as special cases. The weights in the asymmetric Nash bargaining solution
are now given by the probabilities of the stationary distribution of the proposer selection
process.

Such convergence results are desirable for at least two reasons. They imply that bargain-
ing equilibria are asymptotically unique and that it is rather straightforward to compute
what the limit equilibrium looks like. Apart from asymptotic uniqueness of bargaining
equilibrium, there are few general uniqueness results for the n-player case with unani-
mous approval. The main result is in Merlo and Wilson (1995), who show that bargaining
equilibria are unique when the best response function has a contraction property. The
contraction property is shown to hold when the set of feasible payoffs is derived from linear
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utility functions, or from separable concave utility functions with deterministically chosen
proposers.

All the papers on multilateral bargaining that give convergence results to the Nash
bargaining solution do so under the assumption that the convex set of feasible payoffs has
a boundary that is non–level and differentiable. The non–levelness of the boundary means
that each weakly Pareto–efficient payoff vector is also Pareto efficient. The assumption
of differentiability of the boundary means that the normal vector to the set of feasible
payoffs is unique up to a multiplier. Since general convex sets of feasible payoffs can be
approximated by differentiable ones, one may conjecture that the asymptotic uniqueness
of bargaining equilibria and their convergence to the Nash bargaining solution carries over
to the general convex case. This intuition is reinforced by the fact that a general result
holds for the case with two players.

Nevertheless, this note demonstrates that the differentiability assumption is crucial. To
do so we construct two examples with three players where the payoff set satisfies all of the
standard assumptions except for the differentiability assumption. The main feature of our
first example is that the unique stationary subgame perfect equilibrium does not converge
to the Nash bargaining solution. A similar example, though not satisfying non–levelness,
was developed independently in Kultti and Vartiainen (2007). The main feature of the
second example is that there are two distinct stationary subgame perfect equilibria that
converge to different limits as the breakdown probability becomes small. This example
therefore shows that the uniqueness result of Merlo and Wilson (1995) does not hold
for general convex sets of feasible payoffs and that asymptotic uniqueness of bargaining
equilibria may fail when the set of feasible payoffs has a non–differentiable boundary.

These findings are particularly surprising in light of the existing literature on one–
dimensional bargaining. In a one–dimensional bargaining model the players negotiate over
the choice of an alternative represented by a point in an interval. In such a game the set of
attainable payoffs is one–dimensional and therefore is neither comprehensive nor convex.
The asymptotic uniqueness of stationary equilibria has been established for a number of
variations of the one–dimensional model of bargaining, see Cho and Duggan (2003), Car-
dona and Ponsat́ı (2007), Predtetchinski (2007), and Herings and Predtetchinski (2009).
In the one-dimensional model, for asymptotic uniqueness, it is important that utility func-
tions be continuous and concave, but may well have points of non–differentiability. Non–
differentiability of utility functions gives rise to a kink in the set of feasible payoffs, but this
does not destroy the asymptotic uniqueness of stationary equilibria. This is in contrast to
the examples presented in this paper, which show that when the set of payoffs is convex
and comprehensive, the kinks may well lead to asymptotic multiplicity of equilibria.

2 The Bargaining Game

Given a continuation probability δ ∈ [0, 1), define the n–player bargaining game Γ(δ) as
follows. The game starts in period zero. At the beginning of each period one of the players
is randomly drawn to make a proposal. Player i is chosen with probability μi > 0. The
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chosen player proposes an alternative x from the set V of feasible payoffs. All players
(including the proposer) respond sequentially, with the sequence of responses being fixed
throughout the game. Each responder can either accept or reject the current proposal. If
all players accept the proposal, the game terminates and the proposal x is implemented,
with player i receiving a payoff of xi. Otherwise, the next period begins with probability
δ, whereas negotiations break down with probability 1− δ.

(A1) The set V is a closed, convex, and proper subset of R
n containing the point 0 in its

interior.

(A2) The set V is comprehensive from below: If x ∈ V and y ∈ R
n are such that yi ≤ xi

for each i, then y ∈ V .

(A3) The boundary ∂V of the set V is non–level: If x and y are points of ∂V such that
xi ≤ yi for each i = 1, . . . , n, then x = y.

We shall restrict our attention to pure stationary strategies by which we mean strategies
such that (a) the proposal of any player is independent of the history of play and (b) the
response of a player to a proposal only depends on the proposal itself. Thus a stationary
strategy of player i consists of a proposal pi ∈ V and an acceptance set Ai ⊂ V . Player i
proposes the point pi whenever player i is chosen to be a proposer and he accepts a proposal
x if and only if x is an element of the set Ai. Theorems 1 and 2 below are well–known
results.

Theorem 1 Suppose (A1)–(A3) are satisfied. Each subgame perfect equilibrium of the
game Γ(δ) in stationary strategies is a no–delay equilibrium. That is, pi ∈ ∩n

j=1Aj for each
i = 1, . . . n.

Since each equilibrium proposal is implemented without delay, the expected payoffs in
a stationary subgame perfect equilibrium can be computed as r = μ1p1 + · · · + μnpn.
Furthermore, the expected payoff to any player in any Nash equilibrium of Γ(δ) is non–
negative, since a player can attain a payoff of zero by rejecting all proposals.

Theorem 2 Suppose (A1)–(A3) are satisfied. Let p1, . . . , pn be points of V . There exists a
subgame perfect equilibrium of the game Γ(δ) in stationary strategies with pi the equilibrium
proposal of player i if and only if each pi is an element of ∂V and there exists a vector r
such that for each i and j

pij =

⎧⎨
⎩
1− δ + δμi

μi
ri if i = j

δrj otherwise.

The vector r in Theorem 2 coincides with the vector of expected payoffs.
We now turn to the asymptotic behavior of stationary subgame perfect equilibria as

the continuation probability approaches one. Theorem 3 below shows that, under a differ-
entiability assumption on the set V , the subgame perfect equilibria in stationary strategies
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are asymptotically unique: along any sequence of stationary subgame perfect equilibria as
δ tends to one, the equilibrium proposal of each player converges to the asymmetric Nash
bargaining solution.

The asymmetric Nash product with weights μ is the function ρ : V −→ R defined by

ρ(x) = ×n
i=1(xi)

μi .

The point x of V is the asymmetric Nash bargaining solution with weights μ (μ-ANBS) if
it maximizes the function ρ on the set V . Theorem 3 relies on the additional assumption
of differentiability of the boundary of the set V .

(A4) The normal vector to V is unique up to a multiplier at any v ∈ ∂V. Equivalently, the
set ∂V is a C1–manifold.

Theorem 3 Suppose (A1)–(A4) are satisfied. Let δk ∈ [0, 1) be a sequence of contin-
uation probabilities converging to 1. For each k let (pk

1, . . . , p
k
n) be the players’ proposals

in a stationary subgame perfect equilibrium of the game Γ(δk). As k goes to infinity each
sequence pk

i converges to the asymmetric Nash bargaining solution with weights μ.

This result has been established by Hart and Mas–Colell (1996) in the case of equal
recognition probabilities, Miyakawa (2006), Laruelle and Valenciano (2008), and Britz,
Herings, and Predtetchinski (2008). We remark that when n = 2 the conclusion of Theorem
3 is true under the assumptions (A1)–(A3). For the two–player game where proposers
are chosen with equal probability, Binmore, Rubinstein, and Wolinsky (1986) show the
convergence of equilibria to the symmetric Nash bargaining solution. There is no difficulty
in extending this result to the case with general recognition probabilities μ.

3 Two Examples

We give two examples highlighting the role of the differentiability assumption (A4) for
the asymptotic uniqueness of equilibria. Both examples satisfy Assumptions (A1)–(A3)
but not (A4). The main feature of the example in Subsection 3.1 is that the game Γ(δ)
has a unique stationary subgame perfect equilibrium for each continuation probability, but
the equilibria converge to a point different from the asymmetric Nash bargaining solution.
A similar example, not satisfying (A3), has been developed independently in Kultti and
Vartianen (2007). The main feature of the example in Subsection ?? is the asymptotic
multiplicity of equilibria: for each δ the game Γ(δ) has at least two distinct equilibria
converging to two distinct limits as the continuation probability tends to one.

3.1 Equilibria do not converge to ANBS

Consider a 3–player game with recognition probabilities μi = 1/3 for each i. The set V is
the intersection of two halfspaces as depicted in Figure ??:

V = H1 ∩H2,
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where
H1 = {x ∈ R

n|2x1 + x2 + 3x3 ≤ 15},
H2 = {x ∈ R

n|x1 + 2x2 + 3x3 ≤ 15}.
By Theorem 2 the equilibrium proposals are related to the expected payoffs r as depicted
in the following table.

p1 (3− 2δ)r1 δr2 δr3

p2 δr1 (3− 2δ)r2 δr3

p3 δr1 δr2 (3− 2δ)r3

Table 1: Equilibrium proposals.

The equilibrium proposal of each player lies in the boundary of the set V . A point
x ∈ R

n belongs to the boundary of the set V if and only if h(x) = 15, where the function
h is defined by

h(x) = max{x1 + 2x2 + 3x3, 2x1 + x2 + 3x3} = x1 + x2 + 3x3 +max{x1, x2}.
Therefore

15 = h(p1) = (3− 2δ)r1 + δr2 + 3δr3 +max{(3− 2δ)r1, δr2}
15 = h(p2) = δr1 + (3− 2δ)r2 + 3δr3 +max{δr1, (3− 2δ)r2}
15 = h(p3) = δr1 + δr2 + 3(3− 2δ)r3 +max{δr1, δr2}.

Subtracting the first equation from the second we obtain

3(1− δ)r1 +max{(3− 2δ)r1, δr2} = 3(1− δ)r2 +max{δr1, (3− 2δ)r2}.
Now suppose r1 < r2. Then max{(3 − 2δ)r1, δr2} < (3 − 2δ)r2 ≤ max{δr1, (3 − 2δ)r2},
implying that the left–hand side of the above equation is smaller than the right–hand side,
a contradiction. Similarly, one shows that r2 < r1 is impossible. We have thus established
that r1 = r2. The system above reduces to the following:

15 = 3(2− δ)r1 + 3δr3

15 = 3δr1 + 3(3− 2δ)r3.

Solving the system, we obtain the following values for the expected payoffs:

(r1, r2, r3) = (15, 15, 10)/(6− δ).

As δ tends to one, the expected values converge to the vector (3, 3, 2). It is clear that also
the equilibrium proposal of each player converges to the point (3, 3, 2). The asymmetric
Nash bargaining solution can be easily computed to be (10/3, 10/3, 5/3). Thus the unique
equilibrium of the game Γ(δ) fails to converge to the asymmetric Nash bargaining solution
as δ tends to one.

6



0

10

10

10

15

15

Figure 1: The set V in the example of Subsection 3.1. The vertical axis represents the
payoff to player 3.

3.2 Asymptotic multiplicity of equilibria

Consider a 3–player game with recognition probabilities μi = 1/3 for each i. The set of
feasible payoffs, denoted by W , is the intersection of the set V as defined in the previous
subsection and the halfspace H3:

W = V ∩H3,

where

H3 = {x ∈ R
n|(2− 5ε)x1 + (2− 5ε)x2 + (3 + 4ε)x3 ≤ 3(2− 5ε)(3 + 4ε)},

and ε ∈ (0, 1/60). We show that for δ large enough the game Γ(δ) has multiple equilibria.
Moreover, one equilibrium converges to the point (3, 3, 2) and the other one to the point
(3 + 4ε, 3 + 4ε, 2− 5ε).

Equilibrium 1. We argue that the equilibrium of the game with set of utilities V =
H1 ∩H2 as considered in the preceding section remains an equilibrium in the game W for
δ large enough. In fact, using Theorem 2 we only have to verify that the players’ proposals
p1, p2 and p3 in the bargaining equilibrium of the game V belong to the half–space H3.
To see this recall that the proposals p1, p2 and p3 converge to the point v = (3, 3, 2). The
point v belongs to the interior of the half–space H3 provided that 0 < ε < 1/60. But this
implies that the proposals p1, p2 and p3 lie in the half–space H3 for δ large enough, as
desired.

Equilibrium 2. Consider first the game where the set of feasibly utilities is the entire
half–space H3. It follows from the results in Merlo and Wilson (1995) that such a game
has a unique bargaining equilibrium, and that the equilibrium proposal of each player
converges to the Nash bargaining solution of H3 as δ tends to 1. The Nash bargaining
solution of H3 is the point w = (3 + 4ε, 3 + 4ε, 2− 5ε).

Let p̄i be the equilibrium proposal of player i in the bargaining equilibrium of H3. We
argue that the bargaining equilibrium of the game H3 is also an equilibrium of the game
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W . In fact, using Theorem 2 one only has to verify that the players’ proposals p̄i all
belong to the half–spaces H1 and H2. The point w can be seen to be in the interior of both
half–spaces H1 and H2 provided that ε > 0. It follows that for δ large enough the players’
proposals p̄i also belong to the half–spaces H1 and H2, as desired.
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