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Abstract

We show that synergies enhance bidding competition to such an extent that they are a
curse rather than a blessing for the bidders; they may even induce serious bankruptcy
problems.
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1 Introduction

A distinguishing characteristic of procurement auctions is their sequential nature: auctions
take place one after the other with time intervals between them. Construction contracts,
military procurement and the uncoordinated sequence of European spectrum auctions during
2000 and 2001 are examples of such sequential settings. Bidders may experience synergies
(cost benefits) by winning multiple contracts. These synergies can be material, for instance
owning specialized equipment, or intangible, such as expertise.

There is ample empirical evidence that presence of synergies affects bidding behavior and
auction outcomes (cf. Hendricks and Porter, 1988; Ausubel et al., 1997; De Silva, 2005).
Cramton (2002) argues that one reason for the enormous revenue in the spectrum auction by
the United Kingdom is that it was the first in the sequence of UMTS auctions throughout
Europe (see also Van Damme, 2002). Winners in the UK auction were well positioned for
subsequent auctions and hence bidders could view it as a foot-in-the-door to Europe.
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The theoretical literature on sequential auctions with synergies has mainly focused on
revenues and price trends. Branco (1997) and Jeitschko and Wolfstetter (2002) have shown
that synergies may induce a declining price trend and higher revenues for the auctioneer, which
appears positive for, for instance, government procurement. In addition to the consequences
for efficiency and prices, we focus on the impact of positive synergies on the bidders’ payoffs.
We analyze a sequential auction of two stochastically equivalent objects with positive synergies
and show that synergies are a curse rather than a blessing for bidders. Even in equilibrium,
bidders may face serious losses, and hence, bankruptcy problems. The negative economic
consequences caused by these bankruptcy problems are of importance for auction design
when synergies are present.

2 Model and equilibrium

We consider a private value auction with n ≥ 2 risk neutral bidders. Two stochastically equiv-
alent objects are auctioned sequentially using the second-price sealed-bid format. Bidders’
valuations are distributed according to the differentiable cumulative distribution function F (v)
with associated density function f(v) on the interval [0,∞). In particular, F (0) = 0, F is
non-decreasing, and limv→∞ F (v) = 1. We assume that the expected valuation is finite, thus
E(v) =

∫∞
0 vf(v) dv < ∞. Valuations are individually uncorrelated, drawn independently

from the same identical distribution at the start of each auction, and private information.
Although no bidder knows his valuation for the second object during the first auction, it

is common knowledge that winning the first auction increases this valuation by a factor s > 1.
This synergy factor only applies to the valuation for the second object, v2. Winning the first
auction then increases the second auction valuation from v2 to sv2, but does not have any
effect on the first auction valuation v1. Prior to the second auction, bidders learn whether
they won the first auction or not.

We write bki and vki for respectively the bid and valuation in auction k = 1, 2 of bidder
i = 1, . . . , n. In the second auction the winner of the first auction is denoted by w and bidder
` refers to one of the n−1 bidders that did not win the first auction. Because of symmetry, we
only have three different expected payoffs. By π̄1i we denote the expected payoff for bidder i
in the first auction, prior to the realization of the valuations for this auction. By π̄2w (π̄2`) we
denote the expected second auction payoff of the winner (a loser) of the first auction, prior to
the realization of the valuations for the second auction. The expected price of auction k, p̄k, is
also prior to the realization of the valuations and thus precisely the seller’s expected revenue
of that auction. The seller’s expected total revenue from the auction sequence is denoted by
R̄ and the expected total payoff for bidder i is denoted by µ̄i.

Proposition 1. The bidding strategies given by

b∗1i = v1i + ∆ with ∆ = π̄2w − π̄2`
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and

b∗2i =

{
v2i if the first auction is lost;

s v2i if the first auction is won.

constitute a symmetric linear subgame perfect Bayesian Nash equilibrium.

In the second auction, the bidders bid their true (synergy-adjusted) valuation. In the first
auction all bidders mark up their stand-alone valuation in the first auction with the difference
in expected payoff between entering the second auction as a winner and a loser. We refer to
this mark-up as the option value of winning the first auction.

3 The impact of synergies

In this section the impact of synergies on bidding behavior and economic performance is
investigated. For the latter, we devote attention to respectively the bidders’ expected payoffs,
the probability by which losses are incurred, the seller’s revenue, and the induced price trend.

The first proposition learns that the synergy factor has a positive impact on the option
value and hence on competitiveness of bidding behavior in the first auction.

Proposition 2. (i) lims↓1 ∆ = 0; (ii) d∆
ds > 0; (iii) lims→∞∆ =∞.

Since all bidders upgrade their bid with a factor equal to the option value, they forego the
full potential benefit of entering the second auction as a winner already in competition for
this option value. Hence, the ex ante expected total payoff equals the sum of the expected
payoff of a single auction without synergies and the expected payoff in the second auction
when being a loser in the first auction: µ̄ = π̄ + π̄2`. This latter factor is decreasing in the
synergy factor since the probability to win decreases while the expected price to pay in case
of a win increases. The following proposition shows that the ex ante expected total payoff of
the bidders converges to the expected payoff of a single auction without synergies when the
synergy grows large.

Proposition 3. (i) lims↓1 µ̄ = 2 · π̄; (ii) dµ̄
ds < 0; (iii) lims→∞ µ̄ = π̄.

It is well known that (part of) a possible rent is dissipated during the competition for that
rent. However, in our model not only the possible rent is completely dissipated, bidders are
even worse off than in a setting without synergies. When the synergies are large, bidders have
half the ex ante expected total payoff they would have if there were no synergies. Given the
fact that the total surplus that is divided between the seller and the bidders is larger with
than without synergies, this observation is surprising. Instead of benefiting from the presence
of synergies bidders suffer from it. Positive synergies form a paradox in this setting in the
sense that bidders actually suffer from the presence of positive synergies, instead of having
benefit from them.
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The uncertainty concerning the benefits from synergies leads to an exposure problem in the
sequential auction. Bidders bid above their valuation in the first auction, and consequently
it is possible that the instantaneous payoff of the first auction is negative. The winner of the
first auction may not win the second auction, or win it but still not recover the loss of the
first auction. The total payoff of the sequential auction as a whole is then negative.

Let P (s) denote the ex ante probability that the winner of the first auction makes a loss
when the synergy factor is s.

Proposition 4. For all ε > 0 there is s̄ such that P (s) ≥ P{v < E(v)} − ε for all s > s̄.

Roughly, this proposition states that, for large synergy factors s, the probability that the
winner of the first auction makes a loss is at least P{v < E(v)}. Thus, the loss effect is
particularly severe for distributions where a bidder has a high probability of a relatively low
valuation, and a rather small probability to have an extremely high valuation, since this
guarantees the situation where a majority of the values is below the expected value.

In any case, the ex ante expected total payoff of the sequential auction is, of course,
nonnegative for bidders. Therefore, the losses that bidders can make in equilibrium are not
a major concern when these bidders enter many similar settings. However, large projects are
typically not auctioned regularly. Spectrum auctions, special military procurement, and large
building projects are all examples of this. In such a setting, losses made on one project can
hardly be recovered and bankruptcy problems are likely to occur.

The expected price in the first auction equals the sum of the expected price of a single
auction without synergies and the option value: p̄1 = p̄+∆. Consequently, the expected price
in the first auction is increasing in the synergy factor. In the second auction, the synergy has
an increasing effect on valuations and thus the expected price. Hence, the seller’s expected
revenue, R̄ = p̄1 + p̄2, is increasing in the synergy factor.

Proposition 5. (i) lims↓1 R̄ = 2 · p̄; (ii) dR̄
ds > 0.

The increase in the revenue of the seller is not only due to the increased surplus that is
divided. The seller also captures a part of the payoffs bidders originally had. The gain from
synergies for the seller is therefore more than the value of the synergies itself.

There is ample empirical evidence of declining price trends in sequential auctions (Ashen-
felter, 1989; Ashenfelter and Genesove, 1992; Beggs and Greddy, 1997). Branco (1997) was
the first to attribute the declining price anomaly to the presence of positive synergies, a theo-
retical finding that was extended to heterogenous objects by Jeitschko and Wolfstetter (2002).
For heterogeneous objects with discrete valuations Tang Sørensen (2006), on the other hand,
shows that prices can both be increasing or decreasing.

Proposition 6. p̄1 > p̄2 ⇐⇒
∫∞

0 f(v)
∫ sv
v

[
(n− 1)Fn−1(x)− (n− 2)Fn−2(x)

]
dx dv > 0;

There exists an s̄ such that p̄1 > p̄2 for all s > s̄.
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In case of uniformly distributed valuations, prices are unambiguously declining. However,
declining prices are in general not guaranteed.1 Nevertheless, for any distribution function
and number of bidders declining prices are found if the synergy factor is sufficiently large, as
the last proposition states.

Although the sequential auction is ad interim efficient for any synergy factor, ex post
inefficiencies may occur due to the fact that the first auction may select a socially undesirable
winner; something that does not occur in absence of synergies. This ex post efficiency is
caused by the uncertainty about the private valuations in the second auction during the first
auction. When the synergies become large, the probability of an ex post inefficient allocation
converges to n−1

n . Then an ex post efficient allocation is only attained if the bidder that wins
the first auction draws the highest valuation in the second auction.

4 Concluding remarks

Another auction environment where winners are known to be ‘cursed’ is the common value
auction. The option value in our setting may appear as a common value component in the
first auction. Despite the similarities in appearance, the two values are different. For common
value auctions the true value of the object is equal for all bidders but their information on it
differs. The option value in our setting is, in general, different for the bidders, though they
possess identical information on it prior to the auctioning.

Our findings indicate that, in presence of possible synergies, it may be profitable for the
auctioneer to announce future auctions well in advance. However, a transparent procurement
policy can be a two-edged sword. The winner of the first auction can make a loss and
consequently go bankrupt. Especially for large governmental procurement projects this can
be a severe problem.
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A Expressions

In this section we will provide explicit expressions for the expected payoffs and prices. Fur-
thermore, we will give three useful expressions for ∆.

A.1 Expected payoffs

In the first auction all bidders are symmetric. Without synergies (s = 1) the expected
instantaneous payoff of each auction is given by

π̄ =
∫ ∞

0
vFn−1(v)f(v) dv − (n− 1)

∫ ∞
0

vFn−2(v)f(v)(1− F (v)) dv.

When synergies are present, so s > 1, the expected instantaneous payoff for a bidder i is then
given by

π̄1 =
∫ ∞

0
vFn−1(v)f(v) dv − (n− 1)

∫ ∞
0

(v + ∆)Fn−2(v)f(v)(1− F (v)) dv.

The bidder of type w wins the second auction if his synergy-adjusted bid is higher than that
of all the other bidders and the price he has to pay is determined by the highest bid among
the n − 1 bidders of type `. Thus the expected instantaneous second auction payoff for the
winner of the first auction is given by

π̄2w =
∫ ∞

0
svFn−1(sv)f(v) dv − (n− 1)

∫ ∞
0

vFn−2(v)f(v)(1− F (v/s)) dv.

A bidder of type ` only wins if his bid is above that of all other losers and the bid of bidder
w. There are two possibilities to consider for the expected instantaneous second auction price
a bidder of type ` has to pay; one of the remaining n − 2 bidders of type ` has the second
highest bid (third term) or bidder w has the second highest bid (second term). Thus the
expected instantaneous second auction payoff for a loser is given by

π̄2` =
∫ ∞

0
vFn−2(v)F (v/s)f(v) dv −

∫ ∞
0

svFn−2(sv)f(v)(1− F (sv)) dv

− (n− 2)
∫ ∞

0
vFn−3(v)F (v/s)f(v)(1− F (v)) dv.

A bidder’s ex ante expected total payoff of the auction sequence is given by

µ̄i = π̄1i + 1
n π̄2w + n−1

n π̄2`.

This follows from the fact that all bidders are symmetric ex ante and hence bidder i wins the
first auction with probability 1

n .
The first auction winner pays, besides the price he would pay if there was only a single

auction, the difference in the expected payoff of the second auction between winning and
losing the first auction. This means that the ex ante expected total payoff, µ̄, of the auction
sequence as a whole equals the expected instantaneous payoff of a single auction without
synergies, π̄, plus the expected payoff in the second auction when the first auction has been
lost:

µ̄ = π̄1i + 1
n π̄2w + n−1

n π̄2` = π̄ − 1
n(π̄2w − π̄2`) + 1

n π̄2w + n−1
n π̄2` = π̄ + π̄2`.
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A.2 Option value

Since ∆ = π̄2w − π̄2`, we can substitute the above formulas for π̄2w and π̄2`. The result can
be rewritten to

∆ = s

∫ ∞
0

vFn−2(sv)f(v) dv + (n− 2)
∫ ∞

0
vf(v)Fn−3(v)F (v/s) dv

− (n− 1)
∫ ∞

0
vf(v)Fn−2(v) dv

(1)

or alternatively

∆ = s

∫ ∞
0

vFn−2(sv)f(v) dv − (n− 2)
∫ ∞

0
vf(v)Fn−3(v)(F (v)− F (v/s)) dv

−
∫ ∞

0
vf(v)Fn−2(v) dv.

(2)

We focus on the second term of this latter expression for ∆. This term can be rewritten as
follows.

(n− 2)

∫ ∞
0

vf(v)F n−3(v)(F (v)− F (v/s)) dv = (n− 2)

∫ ∞
0

vf(v)F n−3(v)

∫ v

v/s

f(x) dx dv

= (n− 2)

∫ ∞
0

∫ v

v/s

vf(v)F n−3(v)f(x) dx dv = (n− 2)

∫ ∞
0

∫ sx

x

vf(v)F n−3(v)f(x) dv dx

= (n− 2)

∫ ∞
0

f(x)

∫ sx

x

vf(v)F n−3(v) dv dx =

∫ ∞
0

f(x)

∫ sx

x

vdF n−2(v) dx

=

∫ ∞
0

f(x)

[
sxF n−2(sx)− xF n−2(x)−

∫ sx

x

F n−2(v)dv

]
dx

=

∫ ∞
0

f(x)sxF n−2(sx) dx−
∫ ∞

0

f(x)xF n−2(x) dx−
∫ ∞

0

f(x)

∫ sx

x

F n−2(v) dv dx.

Plugging this back into the expression for ∆ and canceling equal terms yields

∆ =
∫ ∞

0
f(x)

∫ sx

x
Fn−2(v) dv dx. (3)

A.3 Prices

In our setting all bidders increase their first auction bids with the aim of obtaining an advan-
tage for the second auction. The only change in the bids of the second auction is the increased
bid of the participant of type w. Therefore, it can be that the expected price is higher in the
first auction than in the second auction. The expected price for the first object equals the
expected second highest valuation plus ∆. The expected price in the second auction is the
sum of the expected payments made by each of the n − 1 bidders of type ` and the single
bidder of type w. The expected prices in both auctions are then

p̄1 = n(n− 1)
∫ ∞

0
(v + ∆)Fn−2(v)f(v)(1− F (v)) dv
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and

p̄2 = (n− 1)
∫ ∞

0
vFn−2(v)f(v)(1− F (v/s)) dv

+ (n− 1)
{∫ ∞

0
svFn−2(sv)f(v)(1− F (sv)) dv

+ (n− 2)
∫ ∞

0
vFn−3(v)F (v/s)f(v)(1− F (v)) dv

}
.

B The impact of synergies

Proof of Proposition 2 The third expression for ∆ in Appendix A reads

∆ =
∫ ∞

0
f(x)

∫ sx

x
Fn−2(v) dv dx.

This expression is strictly increasing in s. Moreover, it is clear that ∆ = 0 for s = 1.
For the limiting behavior, we separately analyze the three terms in the first expression for

∆ from Appendix A. Regarding the first integral, define the function G: [0,∞)→ [0,∞) by

G(v) =

{
0 if v = 0

vf(v) else.

Since F (0) = 0, and for any v > 0 the value sv becomes large when s becomes large, it can
be seen that vFn−2(sv)f(v) is non-decreasing in s and converges pointwise to G as s → ∞.
Thus, by Lebesgue’s Theorem of Monotone Convergence, we know that∫ ∞

0
vFn−2(sv)f(v) dv →

∫ ∞
0

G(v) dv = E(v) as s→∞.

Regarding the second integral, recall that F is continuous, non-decreasing, and F (0) = 0.
Thus, f(v)Fn−3(v)F (v/s) ↓ 0 pointwise as s→∞. Hence,∫ ∞

0
vf(v)Fn−3(v)F (v/s) dv → 0 as s→∞.

Finally observe that the third integral does not depend on s. The result now follows. �

Proof of Proposition 3 It is easily seen from the expressions in Appendix A that π̄2` = π̄

for s = 1.
For each loser in the first auction the probability of winning the second auction is de-

creasing in s. In addition, the expected price to pay in case the second auction is won is
increasing in s. Given that the own valuation is not affected by a change in s, it follows that
the expected payoff π̄2` is decreasing in s.

From Appendix A we know that

π̄2` =
∫ ∞

0
vFn−2(v)F (v/s)f(v) dv −

∫ ∞
0

svFn−2(sv)f(v)(1− F (sv)) dv

−(n− 2)
∫ ∞

0
vFn−3(v)F (v/s)f(v)(1− F (v)) dv

≤
∫ ∞

0
vFn−2(v)F (v/s)f(v) dv.
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Since π̄2` ≥ 0, and the latter expression converges to zero as s→∞ by Lebesgue’s Monotone
Convergence Theorem, we obtain that π̄2` → 0 as s→∞. �

Proof of Proposition 4 Notice that, due to the bidding strategies, the winner of the
first auction pays at least ∆. Now, suppose that bidder i won the first auction. When the
realization of valuations for bidder i is (v1i, v2i) and v1i + sv2i < ∆, bidder i certainly makes
a loss, no matter whether he wins or loses the second auction. Thus,

P (s) ≥ P[v1i + sv2i < ∆ | i wins the first auction ].

Consequently, it suffices to show that, given ε > 0,

P
[
v1i
s + v2i <

∆
s | i wins the first auction

]
≥ P[v < E(v)]− ε

for s sufficiently high. Take ε > 0. Since limv→∞ F (v) = 1 we can take V > 0 such that
F (V ) > 1 − ε. Then, P[v1i < V ] ≥ 1 − ε. Take s̄ such that, for all s > s̄, V

s < ε and
∆− V

s ≥ E(v)− ε. Then for s > s̄,

P
[
v1i
s + v2i <

∆
s | i wins

]
= P[v1i ≥ V ] · P

[
v1i
s + v2i <

∆
s | i wins, v1i ≥ V

]
+ P[v1i < V ] · P

[
v1i
s + v2i <

∆
s | i wins, v1i < V

]
≥ (1− ε) · P

[
v1i
s + v2i <

∆
s | i wins, v1i < V

]
≥ (1− ε) · P

[
V
s + v2i <

∆
s | i wins, v1i < V

]
= (1− ε) · P

[
v2i <

∆−V
s | i wins, v1i < V

]
= (1− ε) · P

[
v < ∆−V

s

]
≥ (1− ε) · P [v < E(v)− ε] .

The proof is complete once we observe that the probability P[v < E(v) − ε] converges to
P[v < E(v)] as ε→ 0. �

Proof of Proposition 5 From the expressions in Appendix A it is easily seen that p̄1 =
p̄2 = p̄ for s = 1.

The increase of p̄1 in s follows directly from ∆ being increasing in s. The vector of
synergy-adjusted values in the second auction is increasing in s. From this it follows that
the second-highest synergy-adjusted value is nondecreasing in s, though strictly increasing
in expectation. Since the expected price in the second auction p̄2 is precisely the expected
second-highest synergy-adjusted value, it follows that p̄2 is strictly increasing in s.

Proof of Proposition 6 From Proposition 2 it follows that p̄1 diverges as s→∞. However,
for any synergy factor s, p̄2 is smaller than or equal to the expected value of the highest valua-
tion in the single auction without synergies, that is, the expected value of the random variable
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maxi{vi}. To see this, observe that, for any realization (v21, . . . , v2n) in the second auction,
in case the winner of the first auction wins the second auction, we have p2 ≤ maxi{v2i} and
also in case another bidder, say j, wins the second auction we have p2 ≤ maxi{v2i}, because
p2 ≤ v2j . Finally, recall that in our model E(v) <∞. Now, the above statement follows from
the observation that E(maxi{vi}) ≤ nE(v). �

C Examples

In this section we illustrate our findings by means of three examples. First, we present the
typical example of valuations being uniformly drawn from the unit interval. Next, the second
example considers a (trivial) case where there are no losses possible, even though the synergy
induces increased competition in the auction for the first object. Finally, we present an
example in which an increasing price trend is observed.

C.1 Uniform distribution

Let for each bidder the valuation be a random draw from the interval [0, 1] according to
a uniform distribution. The symmetric linear equilibrium gives then rise to the following
specification:

b∗1i = v1i + (1
2 s−

n−1
n + 1

2
n−2
n

1
s ) π̄1i = 1

n(n+1) −
1
n (1

2 s−
n−1
n + 1

2
n−2
n

1
s )

b∗2i =

{
v2i if auction 1 is lost

sv2i if auction 1 is won
π̄2i =

{
1

n(n+1)
1
s if auction 1 is lost

1
2 s−

n−1
n + 1

2
n−1
n+1

1
s if auction 1 is won

p̄1 = n−1
n+1 + (1

2 s−
n−1
n + 1

2
n−2
n

1
s ) µ̄i = 1

n(n+1) + 1
n(n+1)

1
s

p̄2 = n−1
n −

n−1
n(n+1)

1
s R̄ = 1

2 s+ n−1
n+1 + 1

2
n−3
n+1

1
s .

It can easily be verified that the effect of the synergy factor, s, on the payoff in the second
auction, π̄2i, is positive in case the first auction is won, but negative if the first auction is lost.
Hence, the option value and the bids in the first auction are increasing in s. This implies
that the synergy enhances competition in the first auction and the expected payoff in the
first auction, π̄1i, is consequently decreasing in s. Moreover, we see that the overall payoff,
µ̄i, is decreasing in s, indicating that (in expectation) bidders suffer from the synergy. Both
auctions’ prices, p̄1 and p̄2, and consequently the auction revenue, R̄, are increasing in s.
Finally, the first auction’s price, p̄1, is always larger than the second auction’s price, p̄2, such
that for valuations uniformly distributed over the unit interval, prices are declining.

The payoff in the second auction, π̄2i, is decreasing in the number of bidders, n, regardless
of the outcome of the first auction. The option value, though, is strictly decreasing in n.
Consequently, the bidding in the first auction becomes less aggressive the more bidders are
present. The effect of n on the payoff in the first auction, π̄1i, is however ambiguous. For
instance, for s = 1.7 this payoff is decreasing when the number of bidders increases from 3 to
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4, but increasing when the number of bidders increases from 5 to 6. Despite this ambiguity,
the overall payoff, µ̄i, is decreasing in n. Where the expected price in the second auction,
p̄2, is clearly increasing in n, this is ambiguous for the price in the first auction, p̄1. The
derivative of p̄1 with respect to n is given by dp̄1

dn = 2
(n+1)2

− (1 − 1
s ) 1
n2 and can be negative

as well as positive. For instance, for s = 9 and n = 2 the derivative is equal to zero, such
that for any lower (larger) s the derivative is positive (negative). Nevertheless, the expected
revenue, R̄, is unambiguously increasing in n. This implies that the increase of p̄2 dominates
an eventual decrease of p̄1.

C.2 No losses

First, consider the trivial case with each bidder having a value of v, such that the winner of
the first object will win the second object with certainty. The excess surplus that a win of
the first object generates in the auction for the second object is then ∆ = (s − 1)v. In the
first auction all bidders upgrade their truthful bid of v with this option value effect, whereas
in the second auction they just bid their value. This guarantees a decreasing price trend
(p̄1 = sv and p̄2 = v). Moreover, all bidders end up with an overall payoff of 0. This means
that there is no bankruptcy problem and the seller roams off precisely the excess surplus (no
more and no less) that is generated by the synergy. All these properties, both qualitatively
and quantitatively, are independent of the number of bidders, n.

The absence of bankruptcy problems in this example is not driven by the fact that the
winner of the first object, wins the second object with certainty. Namely, in case the values
are drawn from the interval [v, v] with v < v < sv, the latter property is satisfied whereas
bankruptcies may occur. It is precisely the lack of uncertainty about current and future
valuations of all bidders, and hence the complete information structure, that guarantees
absence of bankruptcies.

C.3 Increasing prices

Let for each bidder the value be v with probability θ and v with probability 1− θ with v > v.
Moreover, let the synergy factor be such that v > s v, such that winning the first item does
not automatically lead to winning both objects.

The expected prices for the first and second object are given by

p̄1 = (1− θ)nv + nθ(1− θ)n−1v + [1− (1− θ)n − nθ(1− θ)n−1]v + ∆

and

p̄2 = (1− θ)nv + nθ(1− θ)n−1[ 1
nv + n−1

n sv] + [1− (1− θ)n − nθ(1− θ)n−1]v,

where ∆ indicates the expected benefit from having the synergy and is given by

∆ = θ (1− θ)n−1[(sv − v)− (sv − v)] + θ[1− (1− θ)n−1](sv − v) + (1− θ)n(sv − v)

= θ (s− 1) v + (1− θ)n−1 (s− 1) v.
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In expectation there is an increasing price trend if p̄2 > p̄1. This is the case if

sv < v < (1− θ)n−1[(n− 1)− 1
θ ]v.

A configuration for which both these inequalities are satisfied is: v = 0.5, v = 0.6, θ = 0.1,
n = 21, and s = 1.1.
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