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1 Introduction

Modeling the beliefs of an economic agent, whether fully rational or boundedly rational

is, many decades after the seminal work of Simon (1955), still a fundamental question

open to debate. Typical beliefs of a boundedly rational agent can exhibit delusion or

unawareness, while the beliefs of a rational agent are exempt of such phenomena.

We can distinguish two roots to the agent’s beliefs: direct observation, which consists

of the agent’s experiences in different states of the world, and reasoning, which is the

process through which the agent completes his system of beliefs using logical deductions.

It is apparent from everyday experience that the same agent can be either aware or

unaware of the same facts depending on circumstances, and that in most situations, the

same agent is both aware of some facts and unaware of others. Hence, awareness and

unawareness are not the outcome of distinct reasoning abilities, but rather of distinct

experiences. Since the same cognitive capacities are compatible with both awareness and

unawareness, a unified reasoning process for both the aware and unaware agents has to

be the backbone of a model that accounts for these phenomena.

All models previously introduced in the literature by Modica and Rustichini (1994,

1999), Halpern (2001), Halpern and Rêgo (2008), Heifetz et al. (2006, 2008) and Li (2009)

rely on distinct reasoning processes depending on the agent’s awareness, or unawareness.

We find this problematic since, in order to describe an agent’s state of mind in these

models, one first needs to start by specifying which propositions the agent is aware or

unaware of, then define the agent’s reasoning process accordingly, and finally complete

the system of the agent’s beliefs with the direct observation of phenomena by the agent.

This is as if awareness preceded reasoning and direct experience, whereas it should arise

as the product of the combination of these.

The aim of this paper is to introduce a model which encompasses both the rational and

boundedly rational agent, with the following important features: The reasoning process

is the same for the aware and unaware agent. This unified reasoning process not only

is compatible with the agent’s awareness or unawareness, but also brings them natural

properties. The model is both simple and tractable, in the sense that it is easy to describe

and easy to work with. Finally, it has low complexity, meaning that the agent’s beliefs

can be fully described using a limited number of parameters.

In our approach, the agent’s beliefs can be of two types: universal, or contingent.

Universal beliefs are state independent, such as belief in the rules of logic. Contingent

beliefs arise from direct observation, and are state dependent. We say that the agent has
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faith in a proposition if he universally believes this proposition. A key assumption in our

model is that the agent has faith in his introspection capacity. This means that the agent

has faith in the fact that when he believes a proposition, he also believes that he believes

in it (positive introspection), while if he disbelieves a proposition, he also believes that he

disbelieves it (negative introspection). Introspection is a strong assumption, one which,

for instance, is incompatible with unawareness. Our assumption, however, is distinct,

and in fact much weaker than introspection, as it only states that the agent has faith in

introspection, while introspection itself may or may not hold.

Studying the system of propositions the agent has faith in, we show that faith in

introspection for all propositions is equivalent to faith in introspection for primitive1

propositions only. This result allows us to interpret faith in introspection as the assump-

tion that the agent believes in his own familiarity with the relevant primitive phenomena

describing his environment.

This first result has interesting implications: Consider the state space in which the

agent has faith in introspection on primitives and in being non-delusional2 about these

primitive propositions, and also is actually capable of introspection for primitive proposi-

tions. We show that this state space coincides with Ω5, the benchmark state space for the

rational agent (see, for instance, Aumann (1999) or Chellas (1980)) in which the agent

is capable of introspection and is non-delusional on every proposition, including all epis-

temic propositions. Thus, introspection extends from the relatively small set of primitive

propositions to the whole set of propositions. This shows that introspection does not need

to be a mental process per se: It is the natural consequence of 1) the agent’s familiarity

with the environment 2) the agent assuming his own familiarity with the environment and

3) the agent’s deductive process. This result thus brings a foundation for introspection,

which is a central assumption in the literature (Aumann, 1999).

We now turn to the more general case in which the agent has faith in introspection,

while introspection may or may not hold. Recall the two main notions of unawareness from

the literature: According to Modica and Rustichini (1994, 1999), the agent is unaware

of a proposition if negative introspection fails for this proposition, i.e., if the agent does

not believe in the proposition, and also does not believe that he disbelieves it. A stronger

unawareness concept was introduced by Dekel et al. (1998): The agent is unaware of

1Primitive propositions are those that do not involve the agent’s belief. Notice that our terminology is
slightly non-standard, as the set of primitives that we consider is closed under the negation, conjunction
and disjunction, e.g., the proposition “Ann has blue eyes or it is raining in New York” is a primitive.

2Meaning that whenever the agent believes a primitive proposition is true, this proposition is indeed
true.
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a proposition if he does not believe in any sequence of “I believe in” and “I disbelieve

in” followed by the proposition. This stronger concept formalizes a complete lack of

recognition of the proposition, as for instance the agent who is unaware of a proposition

cannot believe that he disbelieves that he believes in this proposition. We show that

whenever the agent has faith in introspection, the two notions are necessarily equivalent,

namely, a failure of negative introspection on some proposition is necessarily accompanied

by, and can only be explained by, a total failure of recognition of this proposition.

We study the state space Ωu, superset of Ω5, in which the agent has faith in intro-

spection, while positive introspection (a much better accepted assumption than negative

introspection) holds. We show (in Proposition 2) that for states in Ωu only two cases may

arise: Either introspection holds for every proposition, or there exists a primitive propo-

sition that the agent is unaware of. Thus, our state space encompasses both the standard

rational agent, for whom introspection holds on every proposition, and the boundedly

rational one, who exhibits unawareness on some primitive propositions. The model is also

tight as no other possibilities may arise.

It is important, for practical and tracatability reasons, to know how complex the

description of the agent’s beliefs is in the state space Ω5. Halpern (1995) showed that

elements of Ω5 have a simple description, as every state in Ω5 is entirely described by the

values of primitive propositions and the agent’s beliefs on primitive propositions at that

state. Meanwhile, Ωu being larger than Ω5, and allowing for unawareness, one expects

the description of elements of Ωu to be more complex than in Ω5. This is indeed the case,

but elements of Ωu also have simple description: In Ωu, a state is described by the values

of primitive propositions and the beliefs of the agent on any proposition that contains at

most once the belief operator. This implies in particular that Ωu has bounded cardinality

if the set of propositions is constructed starting with a finite set of primitive propositions.

An alternative, and rather natural, description of elements of Ωu relies on the set of

propositions the agent is aware of: A state in Ωu is given by the values of the primitive

propositions, the agent’s beliefs on these primitives, and by the set of propositions the

agent is aware of at this state.

Our primary model is a syntactic one, in the tradition of Chellas (1980) and Aumann

(1999). Syntactic models explicitly represent the agent’s reasoning and belief construction

processes. Semantic models, (Hintikka, 1962; Aumann, 1976; Geanakoplos, 1989; Dekel et

al., 1998) represent the outcome of this process in the form of a possibility correspondence

that assigns to each state of the world the set of states that the agent considers as possible.
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In Section 6, we construct a semantic model which is equivalent to our syntactic model.

An alternative way to look at the syntactic model is its semantic form, which retains

all the same properties concerning in particular unawareness and the role of primitive

propositions.

The paper is organized as follows: Section 2 recalls the model of syntactic beliefs.

Section 3 motivates the main questions through an example. We introduce our approach

of universal beliefs versus contingent beliefs in Section 4, and study the properties of

unawareness in our model in Section 5. We present the model of semantic beliefs in

Section 6, and conclude with a discussion in Section 7.

2 Propositions

We recall the syntactic model of belief from Aumann (1999), Chellas (1980), and Fagin

et al. (1995). We start with a set of primitive propositions, Φ0, which describe facts about

the world that do not involve the agent’s belief. Examples of primitive propositions are

“it is raining” or “Ann has blue eyes”.

The symbols ¬, ∨ and ∧ express negation, disjunction and conjunction, i.e., ¬φ stands

for “not φ”, (φ1 ∨φ2) stands for “φ1 or φ2” and (φ1 ∧φ2) stands for “φ1 and φ2”. The set

of primitive propositions Φ0 is closed under these operations: φ1 ∨ φ2, φ1 ∧ φ2 and ¬φ1

are primitive propositions whenever φ1, φ2 are.

The symbol β expresses belief: βφ stands for “the agent believes φ”.

The set of propositions Φ is the closure of Φ0 under β, ∨, ∧ and ¬. It is the smallest

set of propositions that can be constructed from Φ0 using these operations. For instance,

β(φ1 ∨ φ2) ∧ β¬φ3 is a proposition whenever φ1, φ2, φ3 are. Non-primitive propositions,

such as φ1 ∨ βφ2, are called epistemic.

The proposition “φ1 implies φ2” is denoted by (φ1 → φ2) and is an abbreviation for

(¬φ1 ∨ φ2); “φ1 if and only if φ2” is denoted by (φ1 ↔ φ2) and is defined as (φ1 →
φ2) ∧ (φ2 → φ1).

For a proposition φ, we say that “the agent satisfies positive introspection for φ” to

denote the proposition (βφ → ββφ), and “the agent satisfies negative introspection for

φ” denotes the proposition (¬βφ→ β¬βφ). As usual, we interpret positive introspection

as the agent’s belief of his own beliefs, and negative introspection as the agent’s belief of

what he disbelieves. Finally, the expression “the agent satisfies the truth axiom for φ”

stands for (βφ→ φ).
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3 Motivating example

We recall the example from Conan Doyle’s short story “Silver Blaze”. A dialog takes

place between the famous detective Sherlock Holmes and the Scottland Yard detective

Gregory:

Gregory: Is there any other point to which you would wish to draw my attention?

Holmes: To the curious incident of the dog in the night-time.

Gregory: The dog did nothing in the night-time.

Holmes: That was the curious incident.

From noticing that the dog did not bark in the night-time, Holmes infers that no one

intruded in the house. On the other hand, Gregory, who was able to make the same

observations as Holmes did, failed to reach this conclusion. This example has received

considerable attention in the epistemology literature (see for instance Geanakoplos (1989),

Dekel et al. (1998)), and is in particular used to illustrate the implications of unawareness.

Our first exercise, which, surprisingly enough, has not been filled in the literature, is to

detail the mental process through which Holmes reaches his conclusion. We then discuss

the several steps where Gregory may fail to follow Holmes’ mental process, as well as

modeling questions arising from this example.

3.1 Holmes: The rational benchmark

We decompose Holmes’ reasoning process in two parts. The first part allows to reach

the conclusion that the dog did not bark, while the second part comes to the conclusion

that no intruder entered the house.

For the first part, let B denote the proposition “the dog barked”, and βH Holmes’ belief

operator. The first premise is that Holmes did not observe the dog barking: ¬βHB. The

second is that negative introspection applies βH¬βHB. Next, one needs to assume that

Holmes believes that, had the dog barked, he would have heard it: βH(B → βHB). Using

propositional calculus (in particular, the contraposition), Holmes believes that, if he did

not believe that the dog had barked then the dog indeed did not bark: βH(¬βHB → ¬B).

From this, Holmes infers that the dog did not bark: βH¬B.

As for the second part, let I denote the proposition “there was an intruder in the

house”. Holmes assumes that, had an intruder come into the house, the dog would have
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barked: βH(I → B). Using propositional calculus, Holmes believes that if there was no

barking, there was no intruder: βH(¬B → ¬I). Finally, Holmes combines his belief in

this implication with his belief in the absence of barking to reach the conclusion that no

intruder came in the house: βH¬I.

3.2 Gregory: The boundedly rational agent

Gregory’s reasoning may fail to follow that of Holmes in several points. Let βG denote

Gregory’s belief operator. An immediate possibility is that Gregory fails to use the rule of

inference adequately: We could have in this case βG(¬B → ¬I), βG(¬B), but at the same

time ¬βG(¬I). A second possibility is that Gregory is not capable of following the rules

of propositional calculus, as for instance is the case if βG(I → B) and ¬βG(¬B → ¬I).
A third possibility is that Gregory does not have the same understanding of the world as

Holmes, and does not believe that the presence of an intruder would have the dog bark:

¬βG(I → B).

Finally, the most interesting possibility, and most likely, the one which is implicit in

the story, is that Gregory is not aware of the possibility of the dog barking: ¬βGB, while

¬βG¬βGB.

3.3 Modeling questions

We aim at developing a model which can encompass both the rational agent (Holmes)

and the boundedly rational one (Gregory), while retaining tractability. Let us admit that

in the example, the fundamental distinction between Holmes and Gregory is their ability

to apply negative introspection to the proposition “the dog barked”. This means that we

have in mind a model in which negative introspection does not necessarily hold for all

propositions, or for all agents. This opens several modeling questions.

First, should introspection be interpreted as a mental process per se? If the answer is

yes, it may be difficult to justify that the same agent (e.g., Gregory) is capable of applying

this process to some propositions, and incapable of applying it to some others. A good

model of beliefs should, as much as possible, explain why introspection can hold for some

propositions and not for others, or at least provide a clear interpretation for this fact.

Second, in the case of Holmes, it looks natural that he is aware of a proposition such

as “I believe that the dog did not bark”, given that he is aware of the dog barking or

not. Note that, however, awareness of such a proposition is not used in the reasoning
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process we described for Holmes, and can a priori fail in a model where introspection

does not necessarily hold for every proposition. A desirable property of a belief model is

that awareness (or introspection capacities) between propositions should be related. This

type of relations should be the consequences of natural assumptions of the model, and

should not be part of the assumptions themselves.

As we see, having a model in which introspection can hold for some propositions

without holding for others – and in which the structure of the set of propositions for

which introspection holds has a clear and intuitive structure – is not a straightforward

task. We present our approach in the next section.

4 Our approach: Universal beliefs and contingent be-

liefs

We are ultimately interested in devising a state space, where each state describes

the truth value of every proposition, including the agent’s beliefs. In our approach, the

agent’s beliefs can be of two types: Universal or contingent. Universal beliefs consist of

beliefs in propositions that are not dependent on any particular state. For instance, belief

in a proposition such as “a cat is mortal, or it is not” is universal, as belief in such a

proposition is derived from rules of logic, and entails no beliefs about the nature of a cat,

or the meaning of being mortal. On the other hand, belief in a proposition such as “it is

raining in New York”, is contingent by nature. Belief in such a proposition arises from

particular observation, at particular states of nature, about the weather in New York, and

can differ from one state of nature to the other.

We describe the agent’s universal beliefs in Section 4.1, and the state space is presented

in Section 4.2.

4.1 Faith: Universal beliefs

We describe the set F of propositions that the agent has faith in. When considering a

state space model, these propositions will be assumed to be believed by the agent at all

states (see Section 4.2).

The set F is constructed from a basic set of propositions using inference rules. The

basic set of propositions, else called assumptions, is the set A consisting of the following

propositions:

8



(A0) All tautologies of propositional calculus

(AI) β(φ1 → φ2) → (βφ1 → βφ2), for every φ1, φ2 ∈ Φ (Axiom of distribution)

(A1) β(φ1 ∧ φ2) ↔ (βφ1 ∧ βφ2), for every φ1, φ2 ∈ Φ (Conjunction of belief)

(A2) (βφ1 ∨ βφ2) → β(φ1 ∨ φ2), for every φ1, φ2 ∈ Φ (Disjunction of belief)

(A3) βφ→ φ, for every φ ∈ Φ0 (Truth axiom on primitive propositions)

(A4) βφ→ ββφ, for every φ ∈ Φ0 (Positive introspection on primitive propositions)

(A5) ¬βφ→ β¬βφ, for every φ ∈ Φ0 (Negative introspection on primitive propositions)

(A6) βφ→ ¬β¬φ, for every φ ∈ Φ (Consistency of belief)

The first axiom (A0) refers to obvious propositions, such as
(
(φ1 → φ2) ↔ (¬φ2 → ¬φ1)

)
,

which are logically true. The axiom of distribution says that if it is believed that φ1

implies φ2 and it is also believed that φ1 is true, then it is necessarily believed that the

logical consequence φ2 is also true. Conjunction says that “φ1 and φ2” is believed if and

only if both propositions are believed. Disjunction states that “φ1 or φ2” is believed if at

least one of the propositions is believed. Consistency says that the agent cannot believe

a proposition and its negation simultaneously.

The truth axiom says that the agent is confident that his own beliefs are right, i.e., if

he believes a proposition then this proposition is true. Positive and negative introspection

are also assumed to be part of the agent’s faith for primitive propositions. This means that

the agent assumes sufficient familiarity with his own environment: He is confident that he

is capable of forming correct beliefs about his own beliefs about primitive propositions,

which describe the relevant parameters of his environment.

The inference rules through which propositions in F are constructed from other propo-

sitions in F , are the following:

(RI) If φ1 ∈ F and (φ1 → φ2) ∈ F , then φ2 ∈ F (Modus Ponens)

(RF ) If φ ∈ F , then βφ ∈ F (rule of necessitation)

Modus Ponens requires that the agent is capable of making inferences on the set of

propositions he has faith in. Together with A0, it implies that the agent has faith in

(φ1 ∧ φ2) if and only if he has faith in both propositions.
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The rule of necessitation states that the agent has faith in believing everything he has

faith in, i.e., if the agent has faith in some proposition, then he has also faith in the fact

that he believes this proposition.

Definition 1. The set F of propositions the agent has faith in is the smallest set con-

taining all propositions in A which is closed under RI and RF .

Formally, A together with the rules RI and RF form a system of modal logic, as in

Chellas (1980) or Fagin et al. (1995). Elements of A are called axioms, while RI and RF

are inference rules, and the elements of F are called the theorems of the system of modal

logic. The elements of A and the inference rules that we use are standard in modal logic

except for A3−A5 which are a weakening of the standard axioms: The benchmark Modal

Logic system, which is called S5 and used to represent a logically omniscient agent, is

defined by our set of axioms and inference rules, where A3 −A5 are strengthened in that

they are taken as axioms for every proposition, not just for primitive ones.

The following theorem shows that faith in introspection and the truth axiom for prim-

itive propositions extends to the whole set of propositions.

Theorem 1. The agent has faith in the truth axiom and introspection for every proposi-

tion: For every φ ∈ Φ

1. (βφ→ φ) ∈ F

2. (βφ→ ββφ) ∈ F

3. (¬βφ→ β¬βφ) ∈ F

The proof of Theorem 1 can be found in Appendix A.1.

A consequence of the previous result is that the system of modal logic defining F is for-

mally equivalent to the system S5 of a logically omniscient agent. Theorem 1 shows that,

in S5, it is enough to assume the truth axiom and introspection on primitive propositions

rather than on all propositions.

It is important to keep in mind that we do not take for granted that introspection

holds for every proposition, or even for every primitive proposition. In that case, we would

interpret elements of F as properties that necessarily hold at every state of the world. In

other words, we would assume that the agent is logically omniscient. Rather, we interpret

F as a set of propositions the agent has faith in, hence we have in mind an agent who

has faith in his own logical omniscience. Whether or not he is right having faith in all
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propositions in F , i.e., whether all propositions in F hold at a given state of the world,

is a question studied in Section 4.2. This distinction will appear to be of considerable

importance, in particular with respect to the question of unawareness.

4.2 States of the world: Contingent beliefs

The agent’s beliefs at some state are of two types, faith – which consists of belief

in propositions of F – and contingent beliefs, which consist of beliefs about all other

propositions. Faith is universal in the sense that belief in F holds at every state. On

the other hand, contingent belief is state-dependent. Consider for instance the primitive

proposition φ, which stands for “it is raining in New York”. Obviously no element of F

can provide information to the agent about the truth value of φ, and therefore the beliefs

that the agent holds about φ depend on what he observes at every state, i.e., on whether

he has credible information that it is raining. Hence, the truth value of βφ may differ

across states.

Following Aumann (1999), a state ω assigns a truth value to every proposition in Φ.

A state thus provides a complete description of the facts (primitive propositions) and

the agent’s beliefs (epistemic propositions). It is a mapping from Φ to {0, 1}, with the

interpretation that φ is true at ω when ω(φ) = 1 and false otherwise. We identify ω with

the set of propositions that are true at ω, and we write φ ∈ ω when φ is true at ω. Thus,

we write ω = {φ ∈ Φ : ω(φ) = 1}. A state space is a collection of such states ω. We

restrict attention to states that satisfy the basic rules of logic, so we let Ω0 be the set of

such mappings ω, such that for every φ, φ′ ∈ Φ:

• φ ∈ ω, if and only if ¬φ /∈ ω

• φ ∧ φ′ ∈ ω, if and only if φ ∈ ω and φ′ ∈ ω

• φ ∨ φ′ ∈ ω, if and only if φ ∈ ω or φ′ ∈ ω

We have in mind an agent who is capable of reasoning and believes in all propositions

of F .

Definition 2. Let Ωr be the subset of Ω0 containing all states ω such that

(AI)
(
β(φ1 → φ2) → (βφ1 → βφ2)

)
∈ ω, for every φ1, φ2 ∈ Φ

(A1)
(
β(φ1 ∧ φ2) ↔ (βφ1 ∧ βφ2)

)
∈ ω, for every φ1, φ2 ∈ Φ

(A2)
(
(βφ1 ∨ βφ2) → β(φ1 ∨ φ2)

)
∈ ω, for every φ1, φ2 ∈ Φ
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(BF ) βφ ∈ ω, for all φ ∈ F

The property BF states that the agent believes in all propositions in F , i.e., the agent’s

contingent beliefs cannot contradict the agent’s universal beliefs. In other words, the belief

in some element of F is constant across states, e.g., the agent has faith in the fact that his

beliefs are correct3, implying that he has faith in himself satisfying A3, and therefore he

believes in the proposition “it rains in New York whenever I believe so”: β(βφ→ φ) ∈ ω,

for all ω ∈ Ωr.

The restriction BF is quite reasonable, as the agent himself has proven – or assumed

– these propositions, and therefore as long as he is confident that what he has assumed is

true, he must also be confident that the conclusions he has reached are also true. However,

the fact that the agent believes all propositions in F does not necessarily mean that he is

always right when doing so, i.e., he may wrongly believe some of the propositions he has

faith to. Recall the example from the previous paragraph: The agent believes that every

time he receives credible information about raining in New York, then this information is

necessarily true. However, this need not be the case, as it would rule out the possibility

that even though he believes his source, the information provided to him is wrong.

The wrong beliefs that the agent may have at some state are not arbitrary: The agent

does not wrongly believe that he is capable of reasoning, i.e., we restrict our focus to

states satisfying the main principles of belief, as expressed by A1, A2 and AI .

A model in which the agent’s faith is potentially delusional is very interesting from

the bounded rationality point of view. It provides a framework in which all agents –

whether fully or boundedly rational – have faith in the same system of propositions F ,

and what distinguishes them is whether their assumptions on the world are satisfied or

not. Bounded rationality is therefore contingent, and the reasoning processes of both the

rational and boundedly rational agents are the same.

Situations of delusional faith are studied extensively in Section 5. We conclude this

section by showing that delusional faith can only arise when the agent’s assumptions

A3 − A5 on primitives are not satisfied.

Definition 3. Faith in φ is well founded at ω if φ ∈ F implies φ ∈ ω. Faith is well

founded at ω if it is well founded for all propositions at ω.

Theorem 2. Faith is well founded at ω ∈ Ωr if and only if A3 − A5 are satisfied for all

primitives at ω.

3Feinberg (2004) imposes the same assumption, i.e., the agent (possibly wrongly) believes that he
satisfies the truth axiom.
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The “only if” part of the theorem is obvious, as propositions in A3 −A5 all belong to

F , by definition. The “if” part shows that, if the agent’s assumptions on his introspection

capacities on primitives are correct, so are the logical conclusions he derives from them.

In particular, Theorem 2 shows that, whenever introspection holds on primitive propo-

sitions, it holds for every proposition. It provides a foundation for the introspection ax-

ioms, which are central in the literature (Samet, 1990), and allows to decompose these

axioms into introspection for primitive propositions, which can be understood as the prod-

uct of the agent’s familiarity with these propositions, and the agent’s deductive process,

leading to introspection for all other propositions.

The subset Ω5 of states in Ωr at which every proposition in F holds, is the canonical

state space for the modal logic system S5.

5 Unawareness

The aim of this section is to study situations where the agent has faith in his own

reasoning ability, i.e., he correctly believes at all states that he has faith in A0 − A5 and

AI , but he may wrongly believe some of the propositions in F which are related to the

truth axiom and introspection. Furthermore, we examine how these wrong beliefs are

connected with the notions of unawareness and delusion.

5.1 A state space with unawareness

Unawareness about a phenomenon corresponds to a strong form of ignorance about this

phenomenon, in the sense that the agent fails to recognize his own ignorance. Following

Modica and Rustichini (1994, 1999), we define unawareness of φ as the conjunction of

the ignorance of φ together with the ignorance of this ignorance: we let uφ stand for

¬βφ ∧ ¬β¬βφ.

The definition for unawareness is relatively weak, in that uφ is compatible for instance

with the agent believing that he does not believe that he does not believe believe φ.

Following Dekel et al. (1998), a stronger definition of unawareness requires the agent to

disbelieve any proposition made by a sequence of “the agent believes” or “the agent does

not believe” and ending in φ: ¬βφ′ for all φ′ ∈ B(φ), where B(φ) is the closure of {βφ}
with respect to the operations ¬ and β. Our next result shows that, in every state where

the agent has faith in every proposition in F , both definitions are equivalent:
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Proposition 1. Let ω ∈ Ωr be such that the agent believes every proposition that he has

faith to: βφ ∈ ω for every φ ∈ F . For every proposition φ ∈ Φ, the agent is unaware of

φ at ω if and only if ¬βφ′ ∈ ω for all φ′ ∈ B(φ).

Proposition 1 shows that in Ωr, failure of negative introspection on a proposition φ

is necessarily accompanied by unawareness in the strong sense that the agent completely

ignores φ, e.g., the agent cannot be aware of a primitive φ, while being unaware of his

belief of φ: We cannot have ¬uφ and uβφ at the same ω.

One advantage of using the weaker definition of unawareness is that uφ is a well defined

proposition in Φ. As shown by Proposition 1, it is equivalent to the stronger unawareness

notion that is defined through the conjunction of an infinite family of propositions.

Since unawareness is a violation of negative introspection, we study states where neg-

ative introspection is relaxed. We consider states in which the agent believes in F , and

in particular believes in negative introspection, but negative introspection may or may

not hold. We also relax the truth axiom, since keeping the truth axiom would imply

automatically that everything believed by the agent – including negative introspection –

holds. On the other hand, we assume positive introspection, which is not considered as a

problematic axiom (Samet, 1990; Lipman, 1995).

Definition 4. Let Ωu be the set of states in Ωr in which positive introspection holds for

every proposition.

In Ωu, the agent is capable of reasoning, believes in every proposition in F and is

capable of positive introspection. Compared to Ω5, negative introspection and the truth

axiom do not necessarily hold in Ωu.

Now we relate unawareness to unawareness of primitive propositions:

Proposition 2. If the agent is unaware of some proposition at ω ∈ Ωu then he is unaware

of some primitive proposition.

Proposition 2 shows that in Ωu, the only possible source of unawareness is unawareness

of a primitive proposition.

The next result characterizes F as the set of propositions that are universally believed

in Ωu, i.e., the propositions φ such that βφ ∈ ω for every ω ∈ Ωu.

Proposition 3. F is the set of propositions that are universally believed in Ωu.

14



5.2 Complexity of the state space

As in e.g. Aumann (1999), we define the epistemic depth of a proposition φ as the

number of nested belief operators found in this proposition. It is 0 for primitive proposi-

tions, the depth of ¬φ is the same as the depth of φ, the depth of φ1 ∨ φ2 and φ1 ∧ φ2 is

the maximum of the depths of φ1 and φ2, and the depth of βφ is equal to the depth of φ

plus one. Let Φn denote the set of propositions of epistemic depth at most n. Formally,

we define Φn as the closure of the set {φ, βφ | φ ∈ Φn−1} with respect to ¬, ∨ and ∧.

As shown by Halpern (1995), states in Ω5 have an easy description. That is, two

distinct states in Ω5 must differ in the truth value of the primitive propositions, or in the

primitive beliefs. This is particularly interesting as what the agent believes about any

proposition depends only on what he believes about the primitives, and therefore a state

is determined by the primitive propositions and the primitive beliefs.

Proposition 4 (Halpern (1995)). Let ω, ω′ ∈ Ω5. If ω(φ) = ω′(φ) and ω(βφ) = ω′(βφ)

for every φ ∈ Φ0, then ω = ω′.

Remark 1. Note that the values of the primitive propositions do not place any restrictions

on the relationship among epistemic propositions, i.e., beliefs are determined inductively

by beliefs (of lower or equal depth), and not by the truth values of the primitive. /

The following example illustrates the relationship between primitive beliefs and states

in Ω5.

Example 1. Suppose all propositions are derived from one primitive φ, i.e., Φ0 = {φ,¬φ}.
From Proposition 4, it follows that the rational agent’s state space is Ω5 = {ω1, ..., ω4}
where:

ω1 = {φ, βφ,¬β¬φ, ...},

ω2 = {¬φ,¬βφ, β¬φ, ...},

ω3 = {φ,¬βφ,¬β¬φ, ...},

ω4 = {¬φ,¬βφ,¬β¬φ, ...}.

Why is the value of every proposition ψ fixed at every ω ∈ {ω1, ..., ω4}? We illustrate the

mechanics underlying Proposition 4 for several such propositions.

First, note that the value of every such ψ is determined by the value of primitives

and the agent’s beliefs. Remark also that the belief in any ψ of the form ψ = ψ1 ∧ ψ2, is

equivalent to belief in both ψ1 and ψ2.
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How about belief in φ∨βφ? Lemma 4 (in the appendix) together with (βφ↔ ββφ) ∈ ω
shows that for every ω ∈ Ω5,

(
β(φ ∨ βφ) ↔ βφ

)
∈ ω. Hence β(φ ∨ βφ) holds in ω1 only.

Lemma 4 also shows that
(
β(φ ∨ ¬βφ) ↔ (βφ ∨ ¬βφ)

)
∈ ω for ω ∈ Ω5, hence

β(φ ∨ ¬βφ) ∈ ω for all ω ∈ Ω5.

Similarly
(
β(¬φ ∨ βφ) ↔ (β¬φ ∨ βφ)

)
∈ ω for ω ∈ Ω5. Thus β(¬φ ∨ βφ) holds in ω1

and ω2, but not in ω3 or ω4.

More generally, it can be shown by induction that in Ω5, beliefs on propositions in Φn

are determined by the belief on propositions in Φn−1. /

Next theorem shows that, in Ωu, beliefs are determined by the truth value of the

primitives and the beliefs about every proposition of epistemic depth at most one.

Theorem 3. Let ω, ω′ ∈ Ωu. If ω(φ) = ω′(φ) and ω(βφ) = ω′(βφ) for every φ ∈ Φ1, then

ω = ω′.

Remark 2. As in Ω5, beliefs are determined inductively by beliefs of lower or equal depth,

and not by the primitives. /

Theorem 3 shows that, although allowing for a very rich environment including possi-

bilities of unawareness, the state space Ωu still remains tractable. The driving force is that

structure is provided through the faith system: Through a process of deductive reasoning,

the agent is able to derive all higher order beliefs from beliefs about propositions of depth

at most one.

In particular, Theorem 3 implies that Ωu is finite if all propositions are constructed

from an initial finite set of primitive propositions.

Example 2. Suppose as in Example 1 that all propositions are derived from a primitive φ,

i.e., Φ0 = {φ,¬φ}. In this case, Ωu can be described as Ωu = {ω+
1 , ..., ω

+
9 } ∪ {ω−1 , ..., ω−9 },

where in φ holds in states ω+
i , ¬φ holds in states ω−i , and all the agent’s beliefs are the

same in states ω+
i and ω−i . An agent’s “state of mind”, which is the same in ω+

i and ω−i ,

can be written as ω̃i = ω+
i ∩ ω−i . It is straightforward that both ω+

i and ω−i are known

once ω̃i is, so that the description of the state space can be completed by the description

of the agent’s “states of mind” ω̃1, . . . , ω̃9.
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• States of mind in which the agent is aware of φ and ¬φ

ω̃1 = {βφ,¬β¬φ, ββφ, β¬β¬φ, β(φ ∨ β¬φ), β(¬φ ∨ βφ), . . .}

ω̃2 = {¬βφ, β¬φ, β¬βφ, ββ¬φ, β(φ ∨ β¬φ), β(¬φ ∨ βφ), . . .}

ω̃3 = {¬βφ,¬β¬φ, β¬βφ, β¬β¬φ,¬β(φ ∨ β¬φ),¬β(¬φ ∨ βφ), . . .}

States {ω+
1 , ω

−
2 , ω

+
3 , ω

−
3 } coincide with ω1, . . . , ω4 ∈ Ω5. In states ω−1 and ω+

2 , the

agent exhibits delusion, since either φ or ¬φ is believed but doesn’t hold.

• States of mind in which the agent is unaware of ¬φ and is aware of φ:

ω̃4 = {¬βφ,¬β¬φ, β¬βφ,¬β¬β¬φ,¬β(φ ∨ β¬φ),¬β(¬φ ∨ βφ), . . .}

The fact that ¬β(¬φ ∨ βφ) ∈ ω̃4 is straightforward: Suppose otherwise. Then,

β(¬βφ → ¬φ) ∈ ω̃4 contradicts ¬βφ ∈ ω̃4, because of AI . The fact that ¬β(φ ∨
β¬φ) ∈ ω̃4 also follows by contradiction: Otherwise, it follows from A4 and AI that

β(β¬β¬φ → βφ) ∈ ω̃4. Then, it follows from A0 that β(¬βφ → ¬β¬β¬φ) ∈ ω̃4,

and again from AI it follows (β¬βφ → β¬β¬β¬φ) ∈ ω̃4, which contradicts the

unawareness of ¬φ.

• States of mind in which the agent is unaware of φ and is aware of ¬φ:

ω̃5 = {¬βφ,¬β¬φ,¬β¬βφ, β¬β¬φ,¬β(φ ∨ β¬φ),¬β(¬φ ∨ βφ), . . .}

The arguments regarding the beliefs about φ∨β¬φ and ¬φ∨βφ at ω̃5 are the same

as in ω̃4.

• States of mind in which the agent is unaware of both φ and ¬φ:

ω̃6 = {¬βφ,¬β¬βφ,¬β¬φ,¬β¬β¬φ, β(φ ∨ β¬φ), β(¬φ ∨ βφ), . . .}

ω̃7 = {¬βφ,¬β¬βφ,¬β¬φ,¬β¬β¬φ,¬β(φ ∨ β¬φ), β(¬φ ∨ βφ), . . .}

ω̃8 = {¬βφ,¬β¬βφ,¬β¬φ,¬β¬β¬φ, β(φ ∨ β¬φ),¬β(¬φ ∨ βφ), . . .}

ω̃9 = {¬βφ,¬β¬βφ,¬β¬φ,¬β¬β¬φ,¬β(φ ∨ β¬φ),¬β(¬φ ∨ βφ), . . .}

Simultaneous unawareness of both φ and ¬φ allows any beliefs for φ ∨ β¬φ and

¬φ ∨ βφ, e.g., ω̃6 and ω̃7 differ in the beliefs of φ ∨ β¬φ, implying that primitive
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beliefs and awareness about the primitives do not suffice to characterize a state.

Instead, some more information is needed (see Theorem 4 below).

Two things become clear from this example, which provide an illustration of our

previous results: First, whenever the agent’s beliefs do not coincide with beliefs in Ω5, the

agent is unaware (see Proposition 2) or delusional of at least one primitive, and second,

unlike in Ω5, primitive beliefs alone do not suffice for characterizing the agent’s state of

mind in Ωu (see Theorem 3).

Finally, note that imposing (uφ ↔ u¬φ) ∈ ω, like Modica and Rustichini (1994),

would eliminate the states of mind ω̃4 and ω̃5, but not the other states. In particular, our

model is compatible with such a restriction, even if, for the sake of generality, we do not

impose it. /

Now we present an alternative description of states in Ωu in which a state is described

through primitive and beliefs on primitives as well as agent’s awareness of propositions of

depth at most one.

Theorem 4. Let ω, ω′ ∈ Ωu. If ω(φ) = ω′(φ) and ω(βφ) = ω′(βφ) for every φ ∈ Φ0, and

ω(uφ) = ω′(uφ) for all φ ∈ Φ1, then ω = ω′.

This last theorem has a natural appeal: In order to describe the agent’s beliefs, it

is enough to describe the agent’s beliefs on primitive propositions, as well as the set of

propositions the agent is aware of. If at some states ω and ω′, the agent is aware of the

same propositions and has the same beliefs on primitive propositions, then the agent’s

beliefs on every proposition is the same at ω and at ω′. Furthermore, the theorem shows it

is enough to restrict attention to awareness of propositions of depth at most 1: All beliefs

are fully described by beliefs on primitive and awareness of propositions of depth at most

one. In particular, two states in which the truth value of primitives, the agent’s beliefs

on primitives, and the awareness of propositions of depth one are the same, coincide.

6 Semantics

The state space models introduced in Sections 4 and 5 are syntactic: Each state

corresponds to a truth assignment for every proposition, including the agent’s belief.

Semantic models offer an alternative representation of the agent’s beliefs.

Formally, a semantic model is a tuple (Ω, P ), where Ω is the state space and P : Ω → 2Ω

denotes the agent’s possibility correspondence: at state Ω, P (ω) is the set of states that

the agent considers as possible.
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It is common to define a belief operator B from the possibility correspondence by the

relation:

BEφ := {ω ∈ Ω : P (ω) ⊆ Eφ}

where Eφ := {ω′ ∈ Ω : φ ∈ ω′}. The relation ω ∈ BEφ reads “the agent (semantically)

believes φ at ω”, and holds whenever φ is true at all states in P (ω).

Each syntactic model has a natural semantic counterpart: On a syntactic state space

Ω, define a possibility correspondence P by

P (ω) := {ω′ ∈ Ω : b(ω) ⊆ ω′}

where b(ω) := {φ ∈ Φ : βφ ∈ ω}.
Aumann (1999) shows that Ω5 has a semantic representation, i.e., with the possibility

correspondence P and the semantic belief operator B defined as above, the syntactic

and the semantic beliefs coincide at all states in Ω5. Formally, BEφ = Eβφ for every

proposition φ. This result is very useful, as it allows to work equivalently using either the

semantic or the syntactic model, and semantic models can often be manipulated more

easily than syntactic ones.

We extend Aumann’s result to Ωu. In order to do so, we rely on the possibility

correspondence P defined as above, but use a different definition of semantic beliefs. Let

AEφ := {ω ∈ Ωu : ¬uφ ∈ ω} be the set of states at which the agent is aware of φ, and

BEφ := {ω ∈ Ω : P (ω) ⊆ Eφ} as above. We define the belief operator Bu by:

BuEφ := AEφ ∩BEφ.

According to this definition, in order for the agent to (semantically) believe φ, it does

not suffice that φ holds everywhere in P (ω). We also require that the agent is aware of

φ. This requirement is aligned with the idea of implicit and explicit belief, introduced by

Fagin and Halpern (1988), which is further discussed in Section 7.1.

The following result formalizes the equivalence between the syntactic beliefs in Ωu,

and semantic beliefs induced by Bu.

Theorem 5. BuEφ = Eβφ.

The following result shows that our definition of Bu is indeed semantic, i.e., BuE does

not depend on the particular proposition φ such that E = Eφ.

Proposition 5. If Eφ1 = Eφ2, then BuEφ1 = BuEφ2.
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Note that if the set of primitive propositions is finite, then every subset of Ωu cor-

responds to some proposition in Φ, and therefore BuE is defined for every subset E of

Ωu.

The following consequence of Theorem 5 shows that if a proposition is true in every

state of Ωu, i.e., it is a tautology of Ωu, the agent believes it in every state of Ωu.

Corollary 1. BuΩu = Ωu.

To prove the Corollary, observe that tautologies of the form βφ, φ ∈ F , are believed

at every state in Ωu. Proposition 5 shows that this is actually the case of every tautology,

i.e., if φ is a tautology of Ωu, it is believed by the agent at every state of Ωu.

The Corollary has the desirable, natural implication that Ωu is a complete representa-

tion of the modal logic system F . Furthermore, since F coincides with S5 (see Theorem

1), one obtains the result that propositions in S5 are believed at every state of Ωu:

Corollary 2. BuΩ5 = Ωu.

This last corollary emphasizes the fact that, at all states in Ωu, including those not

belonging to Ω5, the agent perceives Ω5 as the “actual” state space. This is in line with

the main idea of the paper that the agent reasons “as if” the state space was Ω5, even in

states outside Ω5. We further discuss this point in Section 7.5.

7 Discussion

7.1 Explicit and implicit beliefs

The notion of unawareness was first formalized, in the context of Modal Logic, by

Fagin and Halpern (1988). Their paper introduces separate modalities for explicit belief

– which is equivalent to the standard notion of belief – and for implicit belief, which can

be thought as the set of logical consequences of the explicitly believed propositions. A

proposition is explicitly believed whenever the agent implicitly believes it and is aware

of it. The relationship to our model becomes more transparent when one looks at the

semantic representation in Section 6. In this semantic model, implicit belief corresponds

to the usual semantic belief operator: φ is implicitly believed at ω when P (ω) ⊆ Eφ. Our

notion of belief in the semantic model requires both implicit belief and awareness, it is

therefore a notion of explicit belief. Since belief in the syntactic model is equivalent to

implicit belief and awareness in the semantic model, it is also to be thought of as explicit

belief.
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7.2 Reasoning, unawareness and knowledge

Modica and Rustichini (1994) show that, when modeling knowledge (i.e., assuming

the that every proposition believed by the agent holds) and positive introspection holds,

then negative introspection is equivalent to the symmetry axiom4, implying that unaware-

ness cannot be modeled using knowledge unless either symmetry or reasoning is relaxed.

Although in their followup paper (Modica and Rustichini, 1999) they acknowledge the

desirability of a unified reasoning process by mentioning that “it is not at all the case

that a subject who is aware of fewer things than another must necessarily be less capable

of logical reasoning than the latter”, they defend the idea that the agent’s reasoning must

be relaxed in order to model unawareness.

Following Modica and Rustichini (1999), a strand of literature (Heifetz et al., 2006,

2008; Li, 2009) studies models of unawareness in which the agent can reason only about

the propositions he is aware of.

Our model departs from the above mentioned literature in that we consider (confident)

belief, instead of knowledge. Modeling unawareness in a belief model was already pointed

out by Modica and Rustichini (1999) as in important question. To quote them:

Knowledge excludes the possibility that the agent “knows” or, better, “believes”,

something which is false. This distinction opens a question: the one of defining

and analysing awareness with belief, rather than knowledge. This would consist in

dropping the truth axiom from our system. This is an important question, that we

do not discuss here.

7.3 Canonical states

Our approach follows that of Aumann (1999) and Samet (1990) in that a state assigns

a truth value to all propositions, including those concerning the agent’s beliefs about his

own beliefs, and so on. Several papers – including, for instance, Modica and Rustichini

(1994), Halpern (2001) and Heifetz et al. (2006, 2008) – restrict their study to so called

“canonical states” by making the additional assumption that two states that coincide

on primitives and on the agent’s beliefs on primitives necessarily coincide. As shown by

Proposition 4, this is without loss in generality when considering states in Ω5. On the

other hand, distinct states on Ωu may agree on primitives and on the agent’s beliefs on

primitives, as these do not suffice to describe a state in Ωu. This can be see for instance

in Example 2.

4According to the symmetry axiom, the agent is aware of φ if and only if he is aware of ¬φ.
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Theorems 4 shows, on the other hand, that beliefs of propositions of high epistemic

order are unnecessary to describe a state, as two states that coincide on primitives and

on beliefs of propositions of epistemic depth at most one necessarily coincide. This shows

that, in the state space with unawareness, the appropriate notion of a canonical state is a

description of primitives together with beliefs of propositions of epistemic depth at most

one.

7.4 Awareness properties

Several properties of awareness have been previously introduced and studied, and are

considered by some authors as desiderata for an awareness notion. The model introduced

by (Heifetz et al., 2006, 2008) is constructed in order to fulfill these properties. Our

approach is more agnostic on the properties of unawareness, and tries to derive these

properties from a natural representation of the agent’s mind rather than imposing them.

Note however that, as shown by Example 2, it is always possible to restrict attention to

subsets of Ωu where some extra structure on awareness (such as symmetry, for instance)

is imposed.

7.5 States and perceived states

In our model there exist states (from the modeler’s point of view) in which the agent

is unaware of some primitive propositions, but the agent does not consider such states as

being possible. The distinction between the states deemed as possible by the agent and

those which may actually arise is not new in the literature. For instance, Geanakoplos

(1989) shows that apparent failures of rational information processing can be explained if

the agent considers as possible states of the world that the agent ignores. More recently,

in their fundamental work showing some of the main difficulties arising when modeling

unawareness, Dekel et al. (1998) show that this distinction is necessary in order to capture

any meaningful notion of unawareness.

The distinction between the states of the world arising and those considered as possible

by the agent can be best seen in the semantic model of Section 6. States belong to two

categories. The states in Ω5 are the states in which the agent is aware of every proposition.

As in Bacharach (1985) and Samet (1990), the agent’s possibility correspondence defines

a partition of the states in Ω5. The agent does not consider states outside of Ω5 as being

possible. At such states, the only states the agent considers as possible belong to Ω5,
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hence the agent exhibits delusion.

7.6 Extensions

Our model explicitly distinguishes beliefs arising from two different sources: Universal

beliefs, which follow from faith, and contingent beliefs, which follow from observation at

every instance. We show that this distinction provides a natural rationale for unawareness

and delusion, while maintaining the agent’s reasoning process.

Alternative models can be obtained under variations of the faith system, or under

different assumption on contingent beliefs. The exploration of these variations can provide

a fruitful direction for future research.

7.7 Final remarks

Unawareness has been a recognized phenomenon for several decades, and has formed

a long standing modeling puzzle in formal epistemology. Its importance in Economics

can be exemplified by recent work (see, e.g., Feinberg (2004) and Heifetz et al. (2009))

showing that unawareness allows to capture the agent’s behaviors in a way that differs

significantly from the classical framework of incomplete information à la Harsanyi (1967-

68). The model introduced in this paper provides a model of unawareness which is both

simple and has intuitive appeal. We hope that, by enhancing our understanding the

formation of agent’s beliefs, and by offering a tractable model, it will contribute to our

comprehension of the role of unawareness in economic contexts.

A Appendix

A.1 Proofs of Section 4

Definition 5. Let (φ1
F→ φ2) be a shorthand for the following statement:

if φ1 ∈ F then φ2 ∈ F.

Lemma 1. For φ1, φ2, φ3, φ4 ∈ Φ:

1. (φ1 → φ2)
F→ (¬φ2 → ¬φ1),

2.
(
(φ1 → φ2) ∧ (φ2 → φ3)

) F→ (φ1 → φ3),
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3. If φ1
F→ φ3 and φ2

F→ φ4, then (φ1 ∧ φ2)
F→ (φ3 ∧ φ4).

Proof . 1. It follows directly from the definition of the implication.

2. Consider the following sequence of tautologies:

(
(φ1 → φ2) ∧ (φ2 → φ3)

) F→
(
(¬φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ3) ∨ (φ2 ∧ ¬φ2) ∨ (φ2 ∧ φ3)

)
F→

(
(¬φ1 ∧ ¬φ2) ∨ (¬φ1 ∧ φ3) ∨ (φ2 ∧ φ3)

)
F→ (¬φ1 ∨ φ3)

F→ (φ1 → φ3).

3. The following relationships hold:

(φ1 ∧ φ2)
F→ φ1

F→ φ3,

(φ1 ∧ φ2)
F→ φ2

F→ φ4.

That is, if (φ1 ∧ φ2) ∈ F then (φ3 ∧ φ4) ∈ F .

Lemma 2. For some φ ∈ Φ, let the agent have faith in the truth axiom and introspection

for φ and ¬φ. Then, the agent has faith in the truth axiom and introspection for βφ and

¬βφ.

Proof . Truth axiom: It follows by hypothesis that (βφ→ φ) ∈ F . Thus,

(βφ→ φ)

(by AI)
F→ (ββφ→ βφ).

It follows from A3 that (βφ→ ββφ) ∈ F . Thus,

(βφ→ ββφ)

(by faith in A6 and Lemma 1)
F→ (βφ→ ¬β¬βφ)

(by Lemma 1)
F→ (β¬βφ→ ¬βφ).

Positive introspection: It follows by hypothesis that (βφ→ ββφ) ∈ F and (¬βφ→
β¬βφ) ∈ F . Thus,

(βφ→ ββφ)

(by AI)
F→ (ββφ→ βββφ),

and

(¬βφ→ β¬βφ)

(by AI)
F→ (β¬βφ→ ββ¬βφ).
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Negative introspection: It follows by hypothesis that (βφ→ ββφ) ∈ F . Thus,

(βφ→ ββφ)

(by Lemma 1)
F→ (¬ββφ→ ¬βφ)

(by faith in A5 and Lemma 1)
F→ (¬ββφ→ β¬βφ)

(by faith in A3 and RI)
F→ (¬ββφ→ β¬βφ) ∧ (β¬βφ→ β¬ββφ)

(by Lemma 1)
F→ (¬ββφ→ β¬ββφ).

It follows by hypothesis that (¬βφ→ β¬βφ) ∈ F . Thus,

(¬βφ→ β¬βφ)

(by Lemma 1)
F→ (¬β¬βφ→ βφ)

(by faith in A4 and Lemma 1)
F→ (¬β¬βφ→ ββφ)

(by faith in A4 and Lemma 1)
F→ (¬β¬βφ→ βββφ)

(by faith in A6 and AI)
F→ (¬β¬βφ→ βββφ) ∧ (βββφ→ β¬β¬βφ)

(by Lemma 1)
F→ (¬β¬βφ→ β¬β¬βφ),

which completes the proof.

Lemma 3. Let the agent have faith in the truth axiom and introspection for φ1 and φ2.

Then, the agent has faith in the truth axiom and introspection for φ1 ∧ φ2.

Proof . Truth axiom: It follows from A1 that
(
β(φ1 ∧ φ2) → (βφ1 ∧ βφ2)

)
∈ F . Then,

(
β(φ1 ∧ φ2) → (βφ1 ∧ βφ2)

) (by faith in A3)
F→

(
β(φ1 ∧ φ2) → (φ1 ∧ φ2)

)
.

Positive introspection: Likewise,

(
β(φ1 ∧ φ2) → (βφ1 ∧ βφ2)

)
(by faith in A4)

F→
(
β(φ1 ∧ φ2) → (βφ1 ∧ βφ2)

)
∧

(
(βφ1 ∧ βφ2) → (ββφ1 ∧ ββφ2)

)
(by Lemma 1 and faith in A1)

F→
(
β(φ1 ∧ φ2) → ββ(φ1 ∧ φ2)

)
.

Negative introspection: It follows from A1 and Lemma 1 that
(
¬β(φ1 ∧ φ2) →
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(¬βφ1 ∨ ¬βφ2)
)
∈ F . Thus,

(
¬β(φ1 ∧ φ2) → (¬βφ1 ∨ ¬βφ2)

) (by faith in A5)
F→

(
¬β(φ1 ∧ φ2) → β¬β(φ1 ∧ φ2)

)
,

which completes the proof.

Lemma 4. Let the agent have faith in introspection for φ1 and φ2. Then,
(
β(βφ1∨φ2) ↔

(βφ1 ∨ βφ2)
)
∈ F.

Proof . It follows from (βφ1 → ββφ1) ∈ F that
(
(βφ1 ∨ βφ2) → (ββφ1 ∨ βφ2)

)
∈ F .

Thus, it follows from A2 and Lemma 1 that

(
(βφ1 ∨ βφ2) → β(βφ1 ∨ φ2)

)
∈ F.

For the converse, it follows by definition that
(
β(βφ1∨φ2) → β(¬βφ1 → φ2)

)
∈ F . Thus,

(
β(βφ1 ∨ φ2) → β(¬βφ1 → φ2)

) (by definition)
F→

(
¬β(βφ1 ∨ φ2) ∨ β(¬βφ1 → φ2)

(by AI)
F→

(
¬β(βφ1 ∨ φ2) ∨ (β¬βφ1 → βφ2)

)
(by definition)

F→
(
β(βφ1 ∨ φ2) → (¬β¬βφ1 ∨ βφ2)

)
(by faith in A4 and Lemma 1)

F→
(
β(βφ1 ∨ φ2) → (βφ1 ∨ βφ2)

)
,

which completes the proof.

Lemma 5. Let the agent have faith in the truth axiom and introspection for φ1 and φ2.

Then, the agent has faith in the truth axiom and introspection for

1. βφ1 ∨ φ2, and

2. ¬βφ1 ∨ φ2.

Proof . 1. It follows from Lemma 4 that
(
β(βφ1 ∨ φ2) → (βφ1 ∨ βφ2)

)
∈ F .

Truth axiom: Thus,

(
β(βφ1 ∨ φ2) → (βφ1 ∨ βφ2)

) (by faith in A3 and Lemma 1)
F→

(
β(βφ1 ∨ φ2) → (βφ1 ∨ φ2)

)
.

26



Positive introspection: Thus,

(
β(βφ1 ∨ φ2) → (βφ1 ∨ βφ2)

)
(by faith in A4 and Lemma 1)

F→
(
β(βφ1 ∨ φ2) → (βββφ1 ∨ ββφ2)

)
(by faith in A2)

F→
(
β(βφ1 ∨ φ2) → ββ(βφ1 ∨ φ2)

)
.

Negative introspection: It follows from Lemma 1 that
(
¬β(βφ1 ∨ φ2) → ¬(βφ1 ∨

βφ2)
)
∈ F . Thus,

(
¬β(βφ1 ∨ φ2) → ¬(βφ1 ∨ βφ2)

) (by faith in A0 and Lemma 1)
F→

(
¬β(βφ1 ∨ φ2) → (¬βφ1 ∧ ¬βφ2)

)
(by faith in A5 and Lemma 1)

F→
(
¬β(βφ1 ∨ φ2) → (β¬βφ1 ∧ β¬βφ2)

)
(by Lemmas 1 and 3)

F→
(
¬β(βφ1 ∨ φ2) → β¬(βφ1 ∨ βφ2)

)
(by Lemma 4)

F→
(
¬β(βφ1 ∨ φ2) → β¬β(βφ1 ∨ φ2)

)
.

2. It follows from faith in A5 and Lemma 2 that
(
(¬βφ1 ∨ φ2) ↔ (β¬βφ1 ∨ φ2)

)
∈ F .

Then, the proof is identical to Case 1, when applied for (β¬βφ1 ∨ φ2).

Proof of Theorem 1. Recall that we define Φn as the closure of the set {φ, βφ | φ ∈
Φn−1} with respect to ¬, ∨ and ∧. It is straightforward verifying that Φ∞ :=

⋃
n≥0 Φn is

such that Φ∞ = Φ.

Thus, we prove the theorem by induction: We show that if the agent has faith in the

truth axiom and introspection for all φ ∈ Φn, then he also has faith in the truth axiom

and introspection for all φ′ ∈ Φn+1. This follows directly from Lemmas 2, 3 and 5.

Proof of Theorem 2. Let A3 − A5 be satisfied for all primitives at some ω ∈ Ωr. By

hypothesis, every proposition in A is satisfied at ω. Furthermore, the inference rules also

hold locally at ω:

• (φ1 ∧ φ2) ∈ ω, if and only if φ1 ∈ ω and φ2 ∈ ω

• If φ1 ∈ ω and (φ1 → φ2) ∈ ω, then φ2 ∈ ω

• βφ ∈ ω, for all φ ∈ F

27



Thus, applying the steps of the proof of Theorem 1, locally at ω, shows that the truth

axiom and introspection is satisfied for all propositions at ω. Therefore, all propositions

in F hold at ω, which completes the proof.

A.2 Proofs of Section 5

Consider any sequence β̃ = τ1, . . . , τn, n ≥ 1, where for every i = 1, . . . , n, τi = β

or τi = ¬β. For such a sequence β̃, we define its parity p(β̃) ∈ {0, 1} as the parity of

the number of occurrences of ¬β in β̃. For instance, p(¬ββ¬β) = p(β) = 0, whereas

p(β¬β) = p(¬β¬β¬β) = 1, i.e., p(β̃) = 0 if the number of negations in β̃ is even, and

p(β̃) = 1 otherwise.

Lemma 6. Let ω ∈ Ωu. For any two sequences β̃ and β̃′ such that p(β̃) = p(β̃′) and for

any proposition φ ∈ Φ, we have (β̃φ↔ β̃′φ) ∈ F .

Proof . It follows inductively from Theorem 1.

Corollary 3. Let ω ∈ Ωu. For any two sequences β̃ and β̃′ such that p(β̃) = p(β̃′) and

for any proposition φ ∈ Φ, we have β(β̃φ) ∈ ω, if and only if β(β̃′φ) ∈ ω.

Proof . It follows directly from Lemma 6 and AI .

Proof of Proposition 1. Let (¬βφ∧¬β¬βφ) ∈ ω, and suppose there is some φ′ ∈ B(φ)

such that βφ′ ∈ ω. By definition, βφ′ can be rewritten as ββ̃φ. If p(β̃) = 0 then

(βφ′ ↔ βφ) ∈ ω which contradicts ¬βφ ∈ ω, whereas if p(β̃) = 1 then (βφ′ ↔ β¬βφ) ∈ ω
which contradicts ¬β¬βφ ∈ ω. Hence, uφ ∈ ω implies ¬βφ′ ∈ ω for all φ′ ∈ B(φ). The

converse is straightforward.

Proof of Proposition 2. Suppose the contrary: The agent is aware of all primitive

propositions. Then, the proof is identical to the one of Theorem 2. Note that in order to

prove that introspection is well founded in Ωu, we do not require the truth axiom for the

primitive to be well founded.

Proof of Proposition 3. By definition, if φ in F , then βφ ∈ ω for every ω ∈ Ωu.

Assume that βφ ∈ ω for every ω ∈ Ωu, then βφ ∈ ω for every ω ∈ Ω5. Since the Truth

axiom holds on Ω5, this implies that φ ∈ ω for every ω ∈ Ω5. Therefore φ is a tautology

of Ω5, hence a theorem of S5, hence an element of F .
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Proof of Theorem 3. First we show that for every φ ∈ Φ there is another proposition

φ1 ∈ Φ1 such that (φ↔ φ1) ∈ F , and therefore if ω and ω′ coincide in the truth value of

φ1 they will also coincide in the truth value of φ – because of AI – which would suffice

for the proof.

It follows from Lemmas 3, 4 and 6 that for every φn ∈ Φn there is some φn−1 ∈ Φn−1

such that (φn ↔ φn−1) ∈ F . Continue inductively to obtain (φn ↔ φ1) ∈ F , which

completes the proof.

Proof of Theorem 4. Let φ ∈ Φ1. For any ω ∈ Ωu, there are two possibilities: either

uφ ∈ ω, implying ¬βφ ∈ ω, or aφ ∈ ω, implying (βφ ∨ β¬βφ) ∈ ω, and therefore

(βφ ∨ ¬βφ) ∈ ω. The truth value of ω(βφ0) for all φ′ ∈ Φ0 determines whether βφ ∈ ω

or ¬βφ ∈ ω. Thus, the truth value of ω(βφ1) is determined for all φ1 ∈ Φ1, and therefore

the proof follows directly from Theorem 3.

A.3 Proofs of Section 6

Proof of Theorem 5. First, we show that Eβφ ⊆ BuEφ. Let ω ∈ Eβφ, which – by

definition – is equivalent to βφ ∈ ω. Then, it follows from the definition of the possibility

correspondence that φ ∈ ω′ for all ω′ ∈ P (ω), implying ω ∈ BEφ. Furthermore, βφ ∈ ω

yields ω ∈ AEφ, as required.

Now, we show that Eβφ ⊇ BuEφ. Let ω ∈ BuEφ. It follows from ω ∈ Ωu that the

agent believes all propositions in F at ω, and therefore – by the definition of P – all states

ω′ ∈ P (ω) are well founded. Hence, P (ω) ⊆ Ω5. Furthermore, A4 is satisfied at ω. Hence,

P (ω′) ⊆ P (ω), for all ω′ ∈ P (ω) (Samet, 1990).

Now, suppose that ¬βφ ∈ ω. It follows from ω ∈ BuEφ that the agent is aware of φ at

ω, implying β¬βφ ∈ ω (see Proposition 1). Hence, we obtain ¬βφ ∈ ω′ for all ω′ ∈ P (ω).

It follows from Aumann (1999) that – since ω′ ∈ Ω5 – there is some ω′′ ∈ P (ω′), such

that ¬φ ∈ ω′′. Finally, from P (ω′) ⊆ P (ω), it follows that ω′′ ∈ P (ω), thus contradicting

ω ∈ BEφ, and therefore it also contradicts ω ∈ BuEφ, which completes the proof.

Proof of Proposition 5. For arbitrary φ1, φ2 ∈ Φ, let Eφ1 = Eφ2 , implying that (φ1 ↔
φ2) is a tautology in Ωu, and therefore also in Ω5. Hence, (φ1 ↔ φ2) is a theorem in S5,

implying that (φ1 ↔ φ2) ∈ F . Finally, it follows from RF that β(φ1 ↔ φ2) ∈ ω, and

therefore (βφ1 ↔ βφ2) ∈ ω for all ω ∈ Ω, which completes the proof.
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Proof of Corollary 1. It follows by definition that Ωu = Eφ∨¬φ. Hence,

BuΩu = BuEφ∨¬φ

(by Theorem 5)
= Eβ(φ∨¬φ)

(by BF )
= Ωu

which completes the proof.

Proof of Corollary 2. It follows directly from the fact that every Ω5-tautology belongs

to F , and therefore the agent believes it at all states in Ωu.
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