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Abstract

Following Vartiainen (2007) we consider bargaining problems in which no
exogenous disagreement outcome is given. A bargaining solution assigns a
pair of outcomes to such a problem, namely a compromise outcome as well
as a disagreement outcome: the interpretation is that the latter results if
the compromise outcome is not accepted. For this framework we propose
and study an extension of the classical Kalai-Smorodinsky bargaining so-
lution. We present a characterization with an axiom of Independence of
Non-Utopia Information as the main condition.

JEL-classification: C78, D74

Keywords: Axiomatic bargaining, endogenous disagreement outcome, extended
Kalai-Smorodinsky solution

1 Introduction

In the bargaining problem of Nash (1950) each player can unilaterally enforce
the disagreement outcome if negotiations fail. In some cases, however, it may
not be clear what the disagreement outcome is or whether the players can, or
want to, enforce it if agreement is not reached. In the classical example of
employer-union wage negotiations the union can call out a strike if it is not
satisfied with the wage offered by the employer. But how long should the strike
last? What will be its consequences? Will all workers join? Are there perhaps
different and better ways to put pressure on management? Also, which outcome
can the employer enforce, if any, in case no agreement is reached?

In this paper, following Vartiainen (2007), we assume that the disagreement
outcome is determined endogenously, namely by the bargaining solution. A

∗This paper owes much to Valkengoed (2006).
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natural interpretation of this approach is to assume that there is an arbitrator
who proposes a pair of outcomes, namely a compromise outcome and a dis-
agreement outcome. If both players accept the compromise outcome then this
is implemented; otherwise, the disagreement outcome results.

Within this framework, Vartiainen (2007) proposes and axiomatically char-
acterizes a bargaining solution which extends the classical Nash bargaining so-
lution for bargaining problems with fixed disagreement point. That solution
maximizes the Nash product, i.e., the product of the gains of the players from
the compromise outcome over the disagreement outcome.

By contrast, the solution proposed in our paper depends explicitly on the
utopia point and extends the solution of Raiffa (1953) and Kalai-Smorodinsky
(1975) for classical bargaining problems. This extension works as follows. First,
the assigned compromise point is indeed the classical Kalai-Smorodinsky (KS)
outcome for the assigned disagreement outcome. That is, it is the Pareto optimal
point on the straight line joining this disagreement outcome and its associated
utopia point. Second, the assigned disagreement outcome is the point on the
straight line joining the assigned compromise point and the associated ‘anti-
utopia point’, obtained by taking the minimum utilities of the players below
the compromise point; it is, thus, a ‘converse’ KS outcome. We present a
characterization of this solution in which, indeed, the crucial axiom is a condition
of Independence of Non-Utopia information.

Another extension of the Kalai-Smorodinsky solution to bargaining problems
without fixed disagreement point is proposed in Vartiainen (2002), but this
solution is quite different from our extension.

The framework in our paper and in Vartiainen (2007) is similar to the one in
Thomson (1981), who also considers bargaining problems without disagreement
point. So, a bargaining problem is defined merely as a utility-possibility set.
Thomson introduces the notion of reference point as a function of the bargain-
ing problem. The key difference to the classical disagreement point is that no
player can unilaterally enforce the reference point. It may thus serve, rather,
as a hypothetical outcome to which the players compare proposals made during
negotiations. In situations where an arbitrator, or a mediator, makes choices for
the players (cf. Luce and Raiffa, 1957), the reference point can be the outcome
to be implemented when players do not agree on the solution proposed by the
arbitrator, or a comparison point to which the players or the arbitrator compare
any bargaining outcome. The first is the case when arbitration is binding: the
players either unanimously accept the proposed solution, or the reference point
results.

In the next section we show that the extended KS-solution is non-empty
valued and we characterize the domain of bargaining problems for which it is
single-valued. In Section 3 we present an axiomatic characterization of the
solution on domains where it is single-valued.

Notation For x, y ∈ R
2, x > y means xi > yi and x � y means xi � yi for

i = 1, 2. Similarly for < and �. By [x, y] we denote the line segment with
endpoints x and y. The cardinality of a set X ⊆ R

2 is denoted by |X |. For
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a, x ∈ R
2, ax := (a1x1, a2x2), aX := {ax | x ∈ X}, and a+X := {a+x | x ∈ X}.

The set (−1,−1)X is also denoted by −X . By R
2
+ we denote the (strictly)

positive quadrant of R
2.

2 Bargaining problems and the extended Kalai-

Smorodinsky solution

A bargaining problem U is a compact and convex subset of R
2 such that x > y

for some x, y ∈ U . Elements of U are called outcomes and represent the utilities
of two players. By U we denote the set of all bargaining problems. A classical

bargaining problem is a pair (U, d), where U ∈ U and d ∈ U ; the outcome d
is called the disagreement outcome, and it results if the players do not reach
agreement. By B we denote the set of all classical bargaining problems.

A bargaining solution or, briefly, a solution is a correspondence f : U →
R

2 × R
2 such that s, r ∈ U and s �= r for all U ∈ U and (s, r) ∈ f(U). For a

pair (s, r) ∈ f(U), we call s the compromise outcome and r the disagreement

outcome. The interpretation is that either the players reach the compromise s
or, otherwise, r results – where these points are possibly proposed by a mediator.
A classical bargaining solution is a map F : B → R

2 with F (U, d) ∈ U for all
(U, d) ∈ B.

For a bargaining problem U ∈ U , the Pareto optimal set is the set

P (U) := {x ∈ U | for all y ∈ U , y � x implies y = x}
and the anti-Pareto optimal set is the set

AP (U) := {x ∈ U | for all y ∈ U , y � x implies y = x}.
For (U, d) ∈ B the utopia point is the point

u(U, d) := (max{x1 | x ∈ U, x � d}, max{x2 | x ∈ U, x � d}).
In this paper we focus on a particular solution, which extends the classical

Kalai-Smorodinsky bargaining solution (Raiffa, 1953; Kalai and Smorodinsky,
1975). The latter solution assigns to each classical bargaining problem (U, d) the
unique point KS(U, d) ∈ P (U) on the straight line through d and u(U, d). The
extended Kalai-Smorodinsky solution is the correspondence k : U → R

2 × R
2

defined by

(s, r) ∈ k(U)⇔ s = KS(U, r), r = −KS(−U,−s) and s �= r

for all U ∈ U and s, r ∈ U . Thus, (s, r) ∈ k(U) exactly if the following three
conditions are satisfied: (i) s �= r; (ii) s is the classical Kalai-Smorodinsky
outcome when r is viewed as the disagreement outcome; and (iii) r results
similarly from s when we reverse the problem or, equivalently, r is the unique
point in AP (U) on the straight line through s and the anti-utopia point

a(U, s) := (min{x1 | x ∈ U, x � s}, min{x2 | x ∈ U, x � s}).
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Our first result is that the extended Kalai-Smorodinsky solution is non-
empty valued. The proof is based on an elementary fixed point argument,
slightly complicated by the fact that the Pareto and anti-Pareto optimal sets of
a bargaining problem U may have one or both endpoints in common. Clearly,
in that case, by definition of k – in particular the condition s �= r – such an
endpoint cannot be the solution outcome.

Theorem 2.1 k(U) �= ∅ for all U ∈ U .

Proof. Let U ∈ U . Then AP (U) is the graph of a strictly decreasing convex
function g on an interval [α, β] with (α, g(α)) and (β, g(β)) the points of AP (U)
with minimal and maximal first coordinates, respectively. If α = β (so that
AP (U) consists of a unique outcome) then {(KS(U, (α, g(α))), (α, g(α)))} =
k(U) and we are done. From now on we assume α < β. Define the function
ϕ : [α, β] → [α, β] by ϕ(γ) = −KS(−U,−KS(U, (γ, g(γ)))). Observe that if
ϕ(γ∗) = γ∗ for some γ∗ ∈ [α, β] and KS(U, (γ∗, g(γ∗))) �= (γ∗, g(γ∗)) then
(KS(U, (γ∗, g(γ∗))), (γ∗, g(γ∗))) ∈ k(U).

Of course, ϕ(α) � α and ϕ(β) � β. Suppose that (α, g(α)) ∈ P (U). Then
ϕ(α) = α, but (KS(U, (α, g(α))), (α, g(α))) /∈ k(U) since KS(U, (α, g(α))) =
(α, g(α)). Below, however, we will prove:

There is ε1 > 0 with ϕ(γ) > γ for all γ ∈ (α, α + ε1]. (1)

Similarly, if (β, g(β)) ∈ P (U) we have:

There is ε2 > 0 with ϕ(γ) < γ for all γ ∈ [β − ε2, β). (2)

Clearly, we can then take ε1 and ε2 in (1) and (2) such that α + ε1 < β − ε2.
Now define the interval [α′, β′] by α′ = α if (α, g(α)) /∈ P (U) and α′ = α +
ε1 if (α, g(α)) ∈ P (U), and β′ = β if (β, g(β)) /∈ P (U) and β′ = β − ε2 if
(β, g(β)) ∈ P (U). Then, since ϕ is continuous, the intermediate value theorem
implies that in all cases there is a point γ∗ ∈ [α′, β′] with ϕ(γ∗) = γ∗ and
KS(U, (γ∗, g(γ∗))) �= (γ∗, g(γ∗)) and, thus, k(U) �= ∅.

We are left to prove (1) and (2). We only show (1), the proof of (2) is
analogous. So suppose z := (α, g(α)) ∈ P (U). See Figure 1 for an illustration
of the remainder of the proof.

Let m and � be the supporting lines of U at z as drawn in Figure 1. (That
is, m is the limit of supporting lines at P (U) and � is the limit of supporting
lines at AP (U).) Let μ be the absolute value of the slope of m and let λ be the
absolute value of the slope of �. Then λ > μ.

For x ∈ AP (U) \P (U) let σ(x) denote the slope of the straight line through
x and u(U, x). Let c[x] denote the line segment with endpoints (x1, u2(U, x))
and (u1(U, x), x2). Then σ(x) is equal to the absolute value of the slope of c[x].
Therefore, σ(x) converges to μ if x ∈ AP (U) converges to z.

For y ∈ P (U) \AP (U) let τ(y) denote the slope of the straight line through
y and a(U, y). Let c[y] denote the line segment with endpoints (y1, a2(U, y))
and (a1(U, y), y2). Then τ(y) is equal to the absolute value of the slope of c[y].
Therefore, τ(y) converges to λ if y ∈ P (U) converges to z.
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Figure 1: Illustrating the proof of (1)

We conclude that τ(y) > σ(x) for y ∈ P (U) and x ∈ AP (U) close to z. This
implies the existence of an ε1 as in (1). �

Observe that k does not have to assign a unique pair of outcomes to a
bargaining problem. For instance, let U be the convex hull of the points (6, 0),
(8, 0), (0, 6), and (0, 8). Then it is not difficult to check that

k(U) = {((s1, s2), (r1, r2)) | 2 � s1 � 6, r1 = s1 − 1, s1 + s2 = 8, r1 + r2 = 6}.
In this example the Pareto optimal and anti-Pareto optimal sets are parallel
line segments. In fact, a sufficient but not necessary condition for k to assign a
unique pair of outcomes to a problem U is that P (U) and AP (U) do not contain
parallel line segments. Theorem 2.2 below provides an exact description of the
class of all bargaining problems on which k is unique. We first introduce some
additional terminology.

For x �= y and x′ �= y′ the line segments [x, y] and [x′, y′] are parallel if the
straight lines � and �′ containing these line segments are parallel. In that case,
the vertical distance between [x, y] and [x′, y′] is the number v = |z2 − z′2| for
(any) z ∈ � and z′ ∈ �′ with z1 = z′1; v is infinite if � and �′ are vertical. Similarly,
the horizontal distance between [x, y] and [x′, y′] is the number h = |z1− z′1| for
(any) z ∈ � and z′ ∈ �′ with z2 = z′2; h is infinite if � and �′ are horizontal.

Now let Dk denote the set of bargaining problems U with |k(U)| = 1.

Theorem 2.2 Let U ∈ U . Then U ∈ Dk if and only if there are no parallel

line segments [x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) with x̄1 < x1 and ȳ1 < y
1

and

such that the vertical distance v and horizontal distance h between these line

segments satisfy the following conditions:

(i) 1

2
v = ȳ2 − x̄2 = y

2
− x2,
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(ii) the lengths of [x̄, x] and [ȳ, y] both exceed
√

h2 + v2.

A proof of this theorem is provided in the appendix. See also Figure 3 (in
the appendix) for an illustration. The theorem implies that we do not lose much
generality if we restrict attention to domains of bargaining problems within Dk.
We conclude this section with a corollary to Theorem 2.2, listing some domains
on which k is single-valued.

Corollary 2.3 The extended Kalai-Smorodinsky solution k is single-valued on

each of the following domains:

(a) {U ∈ U | U is strictly convex}.
(b) {U ∈ U | AP (U) or P (U) contains no line segment}.
(c) {U ∈ U | there are no parallel line segments S and S′ with S ⊆ AP (U)

and S′ ⊆ P (U)}.

3 An axiomatic characterization of the extended

Kalai-Smorodinsky solution

In this section we give an axiomatic characterization of the extended Kalai-
Smorodinsky solution k on domains which are minimally rich (defined below,
see also Remark 3.4) and on which k is single-valued.

A bargaining problem U ′ ∈ U is a positive affine transformation of a bar-
gaining problem U ∈ U if there are a ∈ R

2
+ and b ∈ R

2 such that U ′ = aU + b.
A bargaining problem U ∈ U is symmetric if U = {(x2, x1) | (x1, x2) ∈ U}. Let
Ds

k
denote the set of all symmetric polytopes1 in Dk and their positive affine

transformations. A domain of bargaining problems D ⊆ U is minimally rich if
Ds

k
⊆ D.
We formulate our conditions for a solution f defined on a minimally rich

domain D ⊆ U with |f(U)| = 1 for all U ∈ D. Instead of f(U) = {(s, r)} we
write f(U) = (s, r) and regard f as a function rather than a correspondence.

The first condition is an extended version of the usual Pareto optimality
condition.

Extended Pareto Optimality (EPO): For each U ∈ D, f(U) ∈ P (U)×AP (U).

In particular from a normative view point it is natural to require Pareto op-
timality of the compromise outcome. Requiring anti-Pareto optimality of the
disagreement outcome reflects that we wish this outcome to be as severe as
possible in order to induce acceptance of the compromise outcome.

The following two conditions are standard in classical axiomatic bargaining
theory. They have similar justifications in the present model.

1A polytope is the convex hull of finitely many points.
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Symmetry (SYM): For each symmetric U ∈ D, if f(U) = (s, r) then s1 = s2

and r1 = r2.

Scale Invariance (SI): For all U ∈ D and a ∈ R
2
+, b ∈ R

2 with aU + b ∈ D, if
f(U) = (s, r) then f(aU + b) = (as + b, ar + b).

The fourth and final condition extends and modifies similar conditions used
in characterizations of the classical Kalai-Smorodinsky solution.

Independence of Non-Utopia Information (INU): For all U, V ∈ D, if f(V ) =
(s, r) ∈ P (V )×AP (V ), f(V ) ∈ P (U)×AP (U), u(U, r) = u(V, r) and a(U, s) =
a(V, s), then f(U) = (s, r).

This condition says that if f(V ) = (s, r) ∈ P (V ) × AP (V ) and we consider
a problem U such that s and r are still Pareto and anti-Pareto optimal in U
and also the associated utopia and anti-utopia points do not change, then the
solution does not change: f(U) = (s, r) as well. Together with the other three
axioms this condition uniquely characterizes the extended Kalai-Smorodinsky
solution on any minimally rich subdomain of Dk.

Theorem 3.1 Let D ⊆ Dk be minimally rich and let f : D → R
2 × R

2 be a

solution satisfying |f(U)| = 1 for all U ∈ D. Then the following two statements

are equivalent:

(a) f satisfies EPO, SYM, SI, and INU.

(b) f(U) = k(U) for all U ∈ D.

Proof. Clearly, k satisfies the four conditions in (a) on the domain D ⊆ Dk.
We now prove the converse implication (a)⇒ (b).

Suppose f satisfies the four conditions and let U ∈ D. We have to prove
that f(U) = k(U). Let k(U) = (s, r) ∈ P (U)×AP (U). Then s > r (this follows
from the requirement that there must be x, y ∈ U with x > y). Let V be the
convex hull of the six points s, r, (s1, a2(U, s)), (a1(U, s), s2), (u1(U, r), r2), and
(r1, u2(U, r)). We will prove that V ∈ D and f(V ) = (s, r). This will conclude
the proof of the theorem, since by INU, f(V ) = (s, r) implies f(U) = (s, r) and,
thus, f(U) = k(U).

Consider the positive affine transformation

(x1, x2) �→ (ϕ1(x1), ϕ2(x2)) :=

(
x1 − r1

s1 − r1

,
x2 − r2

s2 − r2

)

which maps r to (0, 0), s to (1, 1), and V to some set V ′. Then it is not hard to
check that V ′ is a symmetric polytope, and it is sufficient to prove that V ′ ∈ Dk:
for this implies V ∈ D by minimal richness of D; and by SYM and EPO, we
have f(V ′) = ((1, 1), (0, 0)) and thus, by SI, f(V ) = (s, r).

We are left to prove that V ′ ∈ Dk, i.e., that |k(V ′)| = 1. Consider Figure 2
with notations as there. For k(V ′) to be non-unique there are, in view of
Theorem 2.2, two possible cases to examine: (1) a is parallel to d and (2) a
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(0, 0)

(1, 1)
(0, β)

(β, 0)

(1, α)

(α, 1)

V ′
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b
c
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�
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�
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�

�

Figure 2: Illustrating the proof of Theorem 3.1. The letters a, b, c, d denote line
segments, α = ϕ1(a1(U, s)) = ϕ2(a2(U, s)), and β = ϕ1(u1(U, r)) = ϕ2(u2(U, r))

is parallel to c. (The cases involving b are analogous.) In case (1) we must have
β = 1 − α > 1. Denote the vertical and horizontal distances between a and
d by v and h, then the length of a is equal to

√
1 + α2 whereas

√
v2 + h2 >√

β2 + β2 >
√

1 + α2, so that a does not satisfy condition (ii) in Theorem 2.2.
In case (2) we must have β = 2 and α = −1. In particular, AP (V ′) is the line
segment [(−1, 1), (1,−1)] and P (V ′) is the line segment [(0, 2), (2, 0)], so that
again condition (ii) in Theorem 2.2 is violated. �

We conclude with a few remarks.

Remark 3.2 The characterization in Theorem 3.1 is tight, at least on the do-
main Dk. The following examples serve as proofs.

(1) For U ∈ U let u(U) = (max{x1 | x ∈ U}, max{x2 | x ∈ U}) and
a(U) = (min{x1 | x ∈ U}, min{x2 | x ∈ U}) be the global utopia and anti-
utopia points of U . Define the solution f1 by f1(U) = (s, r) such that s is the
Nash bargaining solution outcome of (U, a(U)) and −r is the Nash bargaining
solution outcome of (−U,−u(U)). This solution satisfies EPO, SYM, and SI,
but not INU on the domain Dk.

(2) Define the solution f2 on Dk by f2(U) = (3

4
s + 1

4
r, 1

4
s + 3

4
r), where

(s, r) = k(U). This solution satisfies SYM, SI, and (trivially) INU, but not
EPO.

(3) Define the solution f3 in the same way as k but now based on a non-
symmetric version of the KS-solution (cf. Peters and Tijs, 1985). Such a solution
satisfies EPO, SI, and INU, but not SYM.

(4) Define the solution f4 by f4(T ) = ((3, 1

2
), (0, 0, )) where T is the convex

hull of (0, 0), (4, 0), and (0, 2); and by f4(U) = k(U) for all U ∈ Dk with U �= T .
Then f4 satisfies EPO, SYM, INU, but not SI.

Remark 3.3 A partial characterization of the extended Kalai-Smorodinsky so-
lution on the whole domain U is provided in Valkengoed (2006), at the expense
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of rather technical conditions. As already mentioned, restricting ourselves to
the domain Dk is without much loss of generality.

Remark 3.4 Variations on the characterization of k can be obtained by impos-
ing different conditions of ‘minimal richness’. For instance, Theorem 3.1 would
still hold – with a slight modification of the proof – on some subdomains of Dk

that contain all strictly convex bargaining problems.
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A Appendix: proof of Theorem 2.2

For the only-if part, suppose that [x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) are as in
the Theorem. Let r̄ ∈ [x̄, x] with r̄1 = ȳ1 and r ∈ [x̄, x] with r2 = y

2
. For each

r ∈ [r̄, r] let s(r) ∈ [ȳ, y] with s(r)2 − r2 = v/2. Then it is straightforward to
check that (s(r), r) ∈ k(U) for each r ∈ [r̄, r]. Thus, U /∈ Dk. See Figure 3 for
an illustration.

We now prove the if-part. Assume U /∈ Dk, i.e. |k(U)| > 1. We will construct
[x̄, x] ⊆ AP (U)] and [ȳ, y] ⊆ P (U) as in the theorem.

For any x ∈ AP (U) let σ(x) denote the slope of the straight line through x
and u(U, x) (as in the proof of Theorem 2.1). Since σ(x) is equal to the absolute
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Figure 3: Illustrating the proof of Theorem 2.2

value of the slope of the line segment c[x] connecting the points (x1, u2(U, x))
and (u1(U, x), x2), and the absolute values of these slopes weakly increase if x1

increases – the line segments c[x] are chords of the weakly decreasing concave
function the graph of which contains the Pareto optimal set of U – we have that
σ(x) weakly increases if x1 increases. (∗)

Similarly, for any y ∈ P (U) let τ(y) denote the slope of the straight line
through y and a(U, y) (again as in the proof of Theorem 2.1). Then by an
analogous argument τ(y) weakly increases if y1 decreases. (∗∗)

Let (s̄, r̄) and (s, r) be the elements of k(U) with maximal and minimal
second coordinates, respectively. By definition of k we have τ(s) = σ(r) for
all (s, r) ∈ k(U). Therefore, by (∗) and (∗∗) we must have σ(x) = τ(y) for
all x ∈ AP (U) with r̄1 � x1 � r1 and all y ∈ P (U) with s̄1 � y1 � s1.
In particular, σ(x) is constant for r̄1 � x1 � r1, which implies that the line
segments c[x] for x ∈ [r̄, r] are parallel; but this means that they must be on the
same straight line m through s̄ and s. Let ȳ be the upper endpoint of c[r̄] and let
y be the lower endpoint of c[r]. Then [ȳ, y] ⊆ P (U), ȳ1 = r̄1 and y

2
= r2. See,

again, Figure 3 for an illustration. Similarly, let � be the straight line through
r̄ and r, then [x̄, x] ⊆ AP (U), where x̄ is the point of � with x̄2 = s̄2 and x is
the point of m with x1 = s1. Now it is straightforward to check that [x̄, x] and
[ȳ, y] satisfy the conditions in the theorem. �
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