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Abstract

For successful trading in financial markets, it is important to develop financial mod-

els where one can identify different states of the market for modifying one’s actions. In

this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate

on Takagi–Sugeno (TS) probabilistic fuzzy systems that combine interpretability of fuzzy

systems with the statistical properties of probabilistic systems. We start by recapitulating

the general architecture of TS probabilistic fuzzy rule-based systems and summarize the

corresponding reasoning schemes. We mention how probabilities can be estimated from a

given data set and how a probability distribution can be approximated by a fuzzy histogram.

We apply our methodology for financial time series analysis and demonstrate how a prob-

abilistic TS fuzzy system can be identified, assuming that a linguistic term set is given. We

illustrate the interpretability of such a system by inspecting the rule bases of our models.

Keywords

Probabilistic fuzzy systems, fuzzy reasoning, fuzzy rule base, data-driven design, time

series analysis.

1 Introduction

Complex systems such as financial markets are characterized by changing process dynamics,

which manifest themselves in various ways like regime shifts and volatility variations. In the
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specific case of financial markets, it is important to recognize the ‘state-of-the-market’, so that

the market participants’ decisions (e.g. trading decisions) can be adapted to the prevailing mar-

ket conditions in order to safeguard success in the markets. Consequently, many financial mod-

els try to capture the changes in the market conditions. An example of such a model is the

so-called GARCH (Generalized Auto Regressive Conditional Heteroskedasticity) model [2],

which assumes that the volatility of the market returns is dependent on the past volatility.

The GARCH model is an example of probabilistic models, which are almost always used

in finance. Probabilistic models deal only with probabilistic uncertainty regarding the market

developments (e.g. return series). There is, however, often other types of uncertainty present,

such as fuzziness in the definitions of concepts and the linguistic uncertainty, which are related

to the perception of market participants. These other types of uncertainty should best be mod-

elled explicitly by using paradigms other than probabilistic modelling. Financial models should

then ideally combine different paradigms in order to deal with different types of uncertainty.

The advantages of this approach are two-fold. First, explicit modelling of different types of

uncertainty separates quantities that are conceptually different. Thereby, it improves the inter-

pretability of the models, since conceptually different quantities are treated separately. Second,

the adaptability of the models can be improved, since different types of information can be used

for the modelling purposes.

In this paper, we propose to use probabilistic fuzzy systems for financial modelling in gen-

eral, and for the analysis of financial time series in particular. Fuzzy systems (FSs) are widely

applied in fields like classification, decision support, process simulation, and control ([5], [3]).

Financial and marketing applications have also been reported regularly ([10], [11]). Original

applications of FSs have concentrated on their design from expert knowledge ([6], [7]). In

the past decade, however, data-driven techniques for designing FSs have gained much atten-

tion, partly due to the availability of large amounts of data from modern sensory, measurement

and computer systems. One important advantage of fuzzy inference systems is their linguistic

interpretability, whereby the results from the data-driven approach can be combined with or

compared to the knowledge available from experts. When applying FSs, one usually focusses

on this aspect by modelling fuzziness and linguistic vagueness using membership functions.

However, one has often ignored the probabilistic uncertainty, which is often also present. Prob-

abilistic fuzzy systems (PFSs) combine both types of uncertainty in order to provide “the best of

2



the two worlds.”

PFSs combine interpretability of fuzzy systems with the statistical properties of proba-

bilistic systems. We consider PFSs where the rules describe a stochastic mapping from the

antecedent space to the consequent space ([9], [8]). These PFSs can be considered as a general-

ization of deterministic rule-based fuzzy systems. In this paper, we concentrate on probabilistic

Takagi–Sugeno fuzzy systems and their design from data. We demonstrate how these systems

can be applied to financial time series modelling and illustrate how the resulting model can be

analyzed and interpreted.

The rest of the paper is structured as follows. In Section 2, we recapitulate the general

architecture of TS probabilistic fuzzy rule-based systems and summarize the corresponding

reasoning schemes. In Section 3, we mention relevant results from the theory of mathematical

statistics on fuzzy sets in order to be able to estimate probabilities on fuzzy sets. We also

illustrate how a probability distribution can be approximated by a fuzzy histogram. In Section 4,

we apply the proposed methodology for financial time series analysis and demonstrate how a

probabilistic TS fuzzy system can be identified, assuming that a linguistic term set is given.

We illustrate the interpretability of such a system by inspecting the rule bases of our models.

Finally, the conclusions and a short discussion are given in Section 5.

2 Probabilistic Fuzzy Systems

For the scope of this paper, we concentrate on zero-order Takagi–Sugeno PFSs, although exten-

sions to other types of fuzzy systems are also possible. The heart of a zero-order Takagi–Sugeno

probabilistic fuzzy system consists of a probabilistic fuzzy rule-base which is made up of a set

of probabilistic fuzzy rules, together with an appropriate inference mechanism for reasoning.

The probabilistic fuzzy rules have the general form [8]:

Rule Rq: If x is Aq then

y = yq1 with Pr(y1jAq) and

y = yq2 with Pr(y2jAq) and : : : and

y = yqN with Pr(yN jAq); (1)

where x = (x1; x2; : : : ; xM) 2 X is an M -dimensional input vector, Aq is an antecedent lin-

guistic value defined by a fuzzy membership function �q(x), y is the stochastic consequent
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variable being equal to one of the values yq1, yq2; : : : ; yqN . The selection of this consequent

value is done proportionally to the conditional probabilities Pr(yq1jAq); : : :, Pr(yqN jAq), with

8j : Pr(yqjjAq) = Pr(y = yqjjx is Aq).

In this paper, we use fuzzy rules (1), where the consequent values yqj are the same for all

rules. Mathematically expressed, we assume that

8j; q; q0 : yqj = yq0j = yj: (2)

Hence, each rule describes a probabilistic mapping from a fuzzy antecedent to the same set of

consequents. The rules differ in the probabilistic mapping that they describe. This assumption

is not restrictive if the consequents are chosen such that they can be used to characterize the

whole system output (or equivalently consequent) space.

The reasoning in probabilistic systems essentially performs an interpolation as in many

fuzzy systems. The following paragraphs summarize two reasoning schemes as derived in [8].

2.1 Probabilistic fuzzy reasoning I

In this scheme, we begin by estimating the conditional probabilities Pr(yjjx) for arbitrary x and

then calculate the regression hyperplane y on x. First, the conditional probabilities Pr(yjjx) are

calculated by using a weighted sum of conditional probabilities Pr(yjjAq),

Pr(yjjx) =

QX
q=1

�q Pr(yjjAq) =

P
Q

q=1 Pr(Aq)�q(x) Pr(yjjAq)P
Q

q=1 Pr(Aq)�q(x)
; (3)

with �q = Pr(Aq)�q(x)=
P

Q

q=1 Pr(Aq)�q(x). The weight factors �q take into account both the

membership to the fuzzy antecedent Aq and the probability of the fuzzy event Aq. Note that

equation (3) actually implements a stochastic mapping X ! Y : for each arbitrary input vector

x, the conditional probability distribution Pr(yjjx); (j = 1; 2; : : :) is given by (3).

In practice, one often wants to know the expected behavior as described by a regression

curve, i.e. the regression hyperplane of y on X . This is defined as the location of the mathemat-

ical expectations E(yjx) [4], and it can be calculated according to

y = E(yjx) =
NX
j=1

yj Pr(yjjx): (4)
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2.2 Probabilistic fuzzy reasoning II

In this reasoning scheme, we start by calculating the expectations E(yjAq); q = 1; 2; : : : ; Q,

according to

E(yjAq) =

NX
j=1

yj Pr(yjjAq): (5)

Next, we estimate y (as a function of x) by the weighted sum of expectations E(yjAq); q =

1; 2; : : : ; Q according to

y =

QX
q=1

�qE(yjAq) =

P
Q

q=1 Pr(Aq)�q(x)E(yjAq)P
Q

q=1 Pr(Aq)�q(x)
; (6)

with �q = Pr(Aq)�q(x)=
P

Q

q=1 Pr(Aq)�q(x). Hence, equation (6) calculates the expected out-

put of the probabilistic fuzzy system given the expected output of each rule. Again, the weight

factors �q take into account both the membership to the fuzzy antecedent Aq and the probability

of the fuzzy event Aq. Note that (6) involves an interpolation procedure, just like (3). Note also

that equations (4) and (6) describe the same hyperplane [8].

3 Mathematical Statistics on Fuzzy Sets

In this section, we describe how the probabilities in Section 2 can be computed from data.

Furthermore, we discuss the approximation of probability density functions by using fuzzy

histograms.

3.1 Probability estimation

Given a set of S samples xs; (s = 1; : : : ; S) in a ‘well-defined’ [9] sample space X , the proba-

bility Pr(Ac) describing the probability of the ‘fuzzy event’ ‘x is Ac’, can be estimated accord-

ing to

Pr(Ac) � ~fAc
=

fAc

S
=

1

S

X
xs

�Ac
(xs) = �̂Ac

: (7)

Here, ~fAc
denotes the relative frequency and fAc

the absolute frequency of the fuzzy sample

values �Ac
(xs) for fuzzy class Ac. In addition, conditional probabilities on fuzzy sets can be

assessed according to

Pr(AcjAb) =
Pr(Ac

T
Ab)

Pr(Ab)
�

P
xs
�Ab

(xs)�Ac
(xs)P

xs
�Ab

(xs)
: (8)
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In Section 2, we mentioned expressions of type Pr(yjjAq) describing the probability of a crisp

event y = yj, given the occurrence of fuzzy event x is Aq. Having a training set of data pairs

(xs; ys); s = 1; : : : ; S, such a conditional probability can be calculated by means of an adapted

version of (8),

Pr(yjjAq) �

P
(xs;ys)

�j(ys)�Aq
(xs)P

xs
�Aq

(xs)
; (9)

with �j(y) defined as

�j(y) =

8<
:

1 if y = yj

0 if y 6= yj:
(10)

3.2 Fuzzy histograms

The technique for estimating a probability density function (pdf) using (crisp) histograms is

well-known. By appropriately partitioning the domain of sample space X in a set of Q disjunct

classes Cq, each “column” fq(x); (q = 1; 2; : : : ; Q) of the histogram is defined by the functions

fq(x) =

8<
:

Pr(Cq)

cq
if x 2 Cq

0 if x 62 Cq,
(11)

where the probability Pr(Cq) is estimated in the usual way (using the relative frequency of

samples xs 2 Cq) and where the scaling scalar cq equals the size of class Cq (which in the one-

dimensional case, equals the length of the interval Cq). The complete pdf f(x) is approximated

by a summation of the functions fq(x) according to

f(x) � fapp(x) =
X
q

fq(x): (12)

Probability density functions defined on a sample space X that is partitioned fuzzily can

also be estimated by using a fuzzy histogram. To do so, we need a generalization of the above-

given crisp approach. Let X be fuzzily partitioned in a set of Q fuzzy classes Aq described by

membership functions �Aq
(), then the probability fq(x) for the fuzzy class Aq can be estimated

according to

fq(x) =
Pr(Aq)�Aq

(x)R
1

�1
�Aq

(x)dx
; (13)

with
R
1

�1
�dx representing an M -fold integral.

The numerator in (13) describes a probability weighted with membership functions. The

denominator of (13) is a scaling factor representing the fuzzified size of class Cq. The complete
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pdf f(x) is again approximated by a summation of the functions fq(x) according to

f(x) � fapp(x) =
X
q

fq(x) =
X
q

Pr(Aq)�Aq
(x)R

1

�1
�Aq

(x)dx
: (14)

Finally, we mention here that definition (14) guarantees that, like in the crisp case, the approxi-

mation fapp(x) is properly defined in the sense that
Z

1

�1

fapp(x)dx = 1: (15)

The proof of this observation is obtained by using (14), so that
Z

1

�1

fapp(x)dx =

Z
1

�1

X
q

Pr(Aq)�Aq
(x)R

1

�1
�Aq

(x)dx
(16)

=
X
q

Pr(Aq)

R
1

�1
�Aq

(x)dxR
1

�1
�Aq

(x)dx
=
X
q

Pr(Aq) = 1: (17)

4 Analysis of Financial Time Series

In this section, we give examples of analysis of financial time series by using probabilistic fuzzy

systems. In Section 4.1 an artificial time series generated by a GARCH system is studied. It

is shown that a probabilistic TS system can be used to discover some basic properties of the

underlying data generating system without making extensive assumptions about the structure of

this system. Afterwards, we study high frequency Dow Jones data and discuss the results of our

proposed method.

4.1 GARCH modelling

GARCH (Generalized Auto Regressive Conditional Heteroskedasticity) models are often used

in financial literature to describe the volatility behavior of asset return series [2]. Being able

to infer something about the volatility of tomorrow from today’s volatility has important im-

plications for the valuation of many financial contracts, more particularly for the contingent

claims. Typically, the value of such contract depends on the probability that the price S of some

underlying asset attains a pre-specified level. We define the asset return u(t) at time t as the

instantaneous relative price change: 8t : u(t) = ln (S(t)=S(t� 1)). Then �(t) is the volatility

of the return u(t), i.e. the standard deviation over a given previous period. This local volatility

�(t) is assumed to move around the constant global volatility �.
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Figure 1: (left) Return path (right) Price path from a simulated GARCH process

For purposes of our study, we generate data according to a GARCH(1,1) process, which is

characterized as follows.

1. Each return u(t) is drawn from a normal distribution with a constant mean � and with a

standard deviation equal to the local volatility �(t): u(t) � N(�; �(t)).

2. Each period, the local volatility estimate is updated by using � 2(t) = 
�2+�u2(t� 1)+

��2(t� 1).

3. The parameter values used are in line with those found empirically in stock return series:

� = 0:03, 
 = 0:02, � = 0:2 and � = 0:78. The series is initiated with �0 = �.

In Figure 1: we show simulation results for 1000 consecutive samples. The return series in

the left graph exhibit volatility clusters that are typical for the process. The right graph shows

the price development that, starting with S0 = 100, is calculated from the instantaneous return

as S(t) = S(t� 1) eu(t).

4.1.1 Characterizing the input space

The left panel of Figure 2: shows a scatter plot of the product space u(t� 1)� u(t) of the an-

tecedents and the consequent. In the probabilistic fuzzy rule base, we consider three antecedent

linguistic values Aq, defined by fuzzy membership functions �Aq
(u); q = 1; 2; 3, (see the right

panel of Figure 2:) . The corresponding linguistic values “Low”, “Average” and “High” respec-

tively describe return values in linguistic terms. Using (7), we have estimated the corresponding

probabilities yielding Pr(u(t� 1) is “Low”) = 0:0594, Pr(u(t� 1) is “Average”) = 0:8722,

and Pr(u(t� 1) is “High”) = 0:0684.

8



Figure 2: (left) Scatter of u(t� 1) against u(t), (right) memberships value for u(t� 1)
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Figure 3: (left) Fuzzy histogram, (right) the fuzzy approximation fapp(u).

We can also approximate the pdf f(u) by using a fuzzy histogram based on the fuzzy parti-

tion of u(t� 1) from Figure 2:. In the left panel of Figure 3:, the fuzzy histogram on the input

space is shown computed according to (13). The calculations can be summarized as

f1 =
0:0594 � �A1

(u)

0:0625
; f2 =

0:8722 � �A2
(u)

0:0750
; f3 =

0:0684 � �A3
(u)

0:0625
; (18)

where the membership functions �Aq
(u) are given by the functions in the right panel of Fig-

ure 2:.

In the right panel of Figure 3:, the fuzzy approximation of the pdf f(u), defined on the

input space according to (14), is shown. Note that the antecedent space is partitioned very

roughly in only three partitions, but the approximation is already indicative of the distribution

also observed in Figure 2:. Fuzzy histograms defined on properly partitioned sample spaces

show better approximation results than crisp histograms. This phenomenon can be explained

by the fact that the fuzzy approximation of the pdf is obtained by means of an interpolation

procedure according to (14).
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Future return very low low average high very high Prob

(-0.05) (-0.025) (0) (0.025) (0.05)

Current return

All 0.0550 0.2265 0.4435 0.2140 0.0610 1.0000

Low 0.1271 0.2084 0.2954 0.2302 0.1390 0.0594

Average 0.0437 0.2293 0.4666 0.2136 0.0468 0.8722

High 0.1374 0.2077 0.2808 0.2063 0.1679 0.0684

Table 1: Unconditional and conditional probabilities Pr(uj) and Pr(ujjAq).

4.1.2 Characterizing the output space

In order to keep this illustrative example simple, we chose (without further optimization) five

equidistant crisp consequent values u1 = �0:050, u2 = �0:025, u3 = 0:000, u4 = 0:025, u5 =

0:050 to describe the future returns. We labeled these arithmetic values with the linguistic terms

“very low”, respectively “low”, “average”, “high”, “very high”. Then, each return value from

the time series is classified according to the nearest prototype value using the Euclidian norm.

By simply counting all u-values and determining the relative score, we make an estimate of the

(unconditional) output probability distribution of Pr(uj) = Pr(u(t) = uj); j = 1; 2; : : : ; 5. The

results of these calculations are shown in the (emphasized) row (labeled ‘All’) of Table 1:.

4.1.3 Characterizing the probabilistic fuzzy input-output mapping

By using (9), we can also calculate Pr(ujjAq); j = 1; 2; 3; 4; 5; q = 1; 2; 3. It concerns proba-

bilities like “the probability that the future return is high given that the current return is Low”.

These conditional probabilities are summarized in Table 1:.

It becomes clear after analyzing these results that for low current returns, the probability for

very high or very low future returns is higher than the overall probability. A similar conclusion

can also be drawn for high current returns. For low or high current returns, the deviation of

low and high future returns from the overall probability distribution is also visible, although to

a lesser extent. If we attach linguistic values to the magnitude of the difference between the

conditional probability and the overall probability (e.g.: More than 5 percent is “very likely” or

“very unlikely” and more than 2 percent is “rather likely” or “rather unlikely”), then the above

10



Figure 4: (left) Pr(ujju(t� 1))� Pr(uj), (right) regression line of u(t) on u(t� 1)

results can thus be summarized as

If current return is Low or the current return is High, then a low or high future

return is rather likely, and a very low or very high future return is very likely.

This is a pretty good intuitive description of the GARCH process that has generated the data,

where periods of high returns are correlated to periods of high volatility.

Finally, we show two additional results. First, we have plotted the regression line of u(t)

on u(t � 1) (estimated according to (4)) in the right panel of Figure 4:. As expected for this

problem, we found that u(t) � 0. In the left panel of the same figure, we show the difference

between the conditional probabilities Pr(ujju(t� 1)) and the unconditional probability Pr(uj),

for j = 1; 2; 3; 4; 5. If current returns are Average, we observe that all conditional probabilities

are almost equal to the unconditional one. However, if current returns are Low or High, we

observe differences in the probability distribution of the future returns u(t), i.e. average future

returns are less dominating under those conditions, while lower and higher future returns are

more probable, indicating a high volatility regime.

4.2 Analysis of high frequency return series

In this section, we apply a similar analysis as in Section 4.1 to a real return time series. The goal

is to illustrate briefly what kind of information the probabilistic TS fuzzy models can provide

when the underlying process that has generated the data is not known.

The data consists of half-hourly samples of the most recent tick of the Dow Jones index of

the New York Stock Exchange. The samples run from 31.12.95 19:30 through 31.12.96 19:00,

in total 17567 individual data points. Of these, we have used only the samples from the opening
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Figure 5: (left) Half-hourly returns (right) Corresponding Dow Jones index.
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Figure 6: (left) Scatter of u(t� 1) against u(t), (right) memberships values for u(t� 1)

hours of the market, which has reduced the number of data points to 3594. The half-hourly

returns and the index values are depicted in Figure 5:.

We have studied the behavior of one-step ahead returns u(t) conditional on u(t � 1). The

scatter plot of u(t) against u(t� 1) is depicted in the left panel of Figure 6:. The right panel of

Figure 6: shows the fuzzy partitioning of the antecedent space u(t � 1), where the fuzzy sets

are placed evenly over the antecedent space. The fuzzy approximation for the distribution of

the half-hourly returns is depicted in Figure 7:. Note the ‘fat-tail-like’ phenomenon observed in

the figure.

For the consequent space, we use five discrete values, -0.01 (very low), -0.005 (low), 0

(average), 0.005 (high) and 0.01 (very high). Note that these values are same as the cores

of the membership functions used for partitioning the antecedent space. Assuming that each

half-hourly return is classified to the nearest discrete value, we can compute the unconditional

probability distribution Pr(uj) = Pr(u(t) = uj); j = 1; 2; : : : ; 5. The results of these calcula-

tions are shown in the (emphasized) row (labeled ‘All’) of Table 2:. The conditional probability

distributions are computed by using (9), and they are shown in Table 2:.
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Figure 7: Fuzzy approximation fapp(u) of the probability distribution for half-hourly returns.

Future return very low low average high very high

(-0.01) (-0.005) (0) (0.005) (0.01)

Current return

All 0.004 0.073 0.839 0.081 0.003

Very Low 0.000 0.056 0.683 0.220 0.041

Low 0.010 0.083 0.828 0.076 0.003

Average 0.004 0.071 0.840 0.081 0.003

High 0.001 0.079 0.846 0.074 0.000

Very High 0.062 0.127 0.774 0.037 0.000

Table 2: Unconditional and conditional probabilities Pr(uj) and Pr(ujjAq) for the Dow Jones

data.
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The resulting model can be interpreted by studying the deviations in the rows of Table 2:

from the first row of Table 2:. We observe the following. At low current return values u(t �

1), we have a somewhat higher probability of (very) low future return values u(t). This may

indicate some GARCH-like behaviour, although the probability of high subsequent values is

not increased and the picture is different for high current return values. Far more striking is the

behavior at very low and very high current return values. Here, we observe a clear reversal in

the sense that very low values have an increased probability to be followed by very high values.

For very high values there is even a greater probability of a subsequent very low value. Such

reversal behavior has been reported in literature for different sample rates, mostly for long term

sampled data such as weekly, monthly or yearly data [1].

5 Conclusions and Discussion

In this paper, we have described zero-order Takagi–Sugeno (TS) probabilistic fuzzy systems,

which implement a stochastic input-output mapping. If desired, the stochastic mapping can

be converted in a deterministic input-output mapping describing the expected behavior. For

both types of mappings, appropriate reasoning schemes are presented, which, unlike classical

fuzzy systems, take the statistical properties of the data explicitly into account. Further, we

have shown a technique for representing fuzzy histograms. We illustrated our theoretical obser-

vations by analyzing a simulated GARCH type of financial time series data and by analyzing

high-frequency Dow Jones index data.

The findings presented in this paper constitute only a first step. Nevertheless, we already

believe that the PFSs as presented in this paper will turn out to be a very fruitful paradigm for

combining fuzzy and statistical uncertainty and that this framework provides tools for getting

“the best of the two worlds”. This also enhances the adaptation power of our models to different

types of uncertainty present in real-world problems. Extensions of the proposed approach are

under construction, such as the design of appropriate probabilistic fuzzy reasoning schemes for

other types of FSs. At the same time, we are working on applications, most importantly in the

area of financial time series analysis.
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