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container terminals
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Abstract

In this paper we consider the problem of integrated scheduling of various types of handling
equipment at an automated container terminal in a dynamic environment. This means that
the handling times are not known exactly beforehand and that the order in which the different
pieces of equipment handle the containers need not be specified completely in advance.
Instead, (partial) schedules may be updated when new information on realizations of handling
times becomes available. We present an optimization based Beam Search heuristic and
several dispatching rules. An extensive computational study is carried out to investigate the
performance of these solution methods under different scenarios. The main conclusion is
that, in our tests, the Beam Search heuristic performs best on average, but that some of the
relatively simple dispatching rules perform almost as good. Furthermore, our study indicates
that it is effective important to base a planning on a long horizon with inaccurate data, than
to update the planning often in order to take newly available information into account.
Keywords: container terminal, dynamic scheduling, Beam Search, dispatching rules

1 Introduction

The handling of containers at seaport terminals becomes more and more automated. In 1993, the
first automated container terminal in world was put into operation in Rotterdam, the Nether-
lands. This terminal uses both Automated Stacking Cranes (ASC) for the retrieval of containers
from the stack and Automated Guided Vehicles (AGV) for the transport of containers to the
Quay Cranes (QC) that load the containers into the vessel. Since the operating costs of the
vessels handled at this terminal are very high (up to $1000 an hour), the loading and unloading
has to be done rapidly. Efficient scheduling of the automated handling equipment is crucial to
achieve this.

AGYV systems also exists within the area of Flexible Manufacturing Systems (FMS). In this con-
text, several authors have considered the scheduling of AGV’s. We mention Egbelu & Tanchoco
(1984) who were among the first to investigate the performance of dispatching rules. However,
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such decision rules cannot be applied in a straightforward way to the scheduling of AGV’s at
container terminals. This is due to blocking, i.e., the fact that the AGV’s always require a crane
(ASC or QC) for loading and unloading. Hence, uncoordinated scheduling of the AGV’s may
result in low performance or even deadlock situations. Therefore, in Meersmans & Wagelmans
(2001) we proposed an integrated approach to the scheduling of all terminal equipment (ASC’s,
AGV’s and QC’s). Both an exact Branch & Bound algorithm and a Beam Search heuristic were
developed to solve the integrated scheduling problem in a static environment, i.e., it was assumed
that all data is deterministic and known in advance. In this paper, we consider the dynamic
case in which the handling times are not known exactly beforehand and the order in which the
different pieces of equipment handle the containers need not be specified in advance. Instead,
(partial) schedules may be updated when new information about realizations of handling times
becomes available. We consider a planning method that uses the Beam Search heuristic and we
also consider several dispatching rules. These dispatching rules are known from literature, but
they are adjusted for the specific situation of an automated container terminal.

The remainder of this paper is organized as follows. First, we will describe the processes at a
container terminal and the scheduling problem that arises. In Section 3, we will discuss how the
static scheduling problem can be solved using a Beam Search algorithm and how this algorithm
can be used in a dynamic context. In Section 4, we will report on our computational experiments
with this approach. Next, in Section 5, we will discuss several dispatching rules known from
literature and we will show that adjustments are necessary in order to avoid deadlock situations.
Computational results of these dispatching rules will be discussed in Section 6. Finally, in
Section 7 we will summarize our conclusions and give some directions for further research.

2 Problem setting

In this section, we give a detailed problem description. First, we will describe the environment
in more detail. After that, we will elaborate on the loading and unloading operation of a vessel.
Finally, we discuss some modeling issues.

2.1 Automated container terminals

A typical layout of an automated container terminal is given in Figure 1. From the figure it
follows that the stack covers most of the area of the terminal. In the stack, the containers are
temporarily stored as they change from one mode of transportation to another. For instance, a
container may arrive at the terminal with a deep sea vessel and leave again on a truck, train,
river barge or short sea vessel. The stack is divided into a number of stack lanes on which a
dedicated stacking crane (ASC) is operating to retrieve and store containers. The AGV’s are
driving in a clock-wise loop. The transparent AGV’s are empty, the shaded AGV’s are loaded.

Whenever a container is to be loaded into the vessel, the proper ASC picks the container from
the stack and transports it to the transferpoint at the seaside. At the transferpoint, the ASC
loads the container on an empty AGV. Next, the AGV transports the container to the Quay
Crane (QC), which lifts the container off the AGV and loads it into the vessel. Note that the
QC is still manually operated. The handling of a container that is unloaded from the vessel is
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Figure 1: Typical layout of an automated container terminal

done in reverse order.

We assume that whenever an AGV drives from one location to another, it follows a predetermined
path in the AGV area. Moreover, we assume that there is a common point which all AGV’s
pass after they have been unloaded by one of the QC’s and drive towards the pickup location
(ASC’s) for their next container. These assumptions are satisfied in the circular layout as given
in Figure 1 and also in many practical situations. For instance, at the automated container
terminals in Rotterdam, the AGV’s drive in a similar loop as in Figure 1. In case of more
general layouts, such as layouts in which AGV’s drive in both directions or layouts in which
AGV’s can take shortcuts directly after unloading at the QC and cross the middle area, we refer
to the model as discussed in Meersmans et al. (2001).



2.2 Loading operation of a vessel

The containers are loaded into the ship according to a so-called stowage plan. The stowage plan
is usually given by the shipping company and assigns each individual container to a specific
position in the ship. This is done in such a way that the stability of the ship is maintained and
the number of shifts, that is, the unnecessary unloading and reloading of containers at other
ports, is minimized. For more details on stowage planning, see Avriel et al. (1998, 2000).

Modern container vessels have over 25 bays in which containers are loaded. The size of these
vessels allows for the deployment of 3 to 6 QC’s at the same time, where each QC handles a
number of bays. The assignment of bays to QC’s, and the order in which a QC handles the bays,
is a problem in itself and is beyond the scope of this paper. The interested reader is referred to
Daganzo (1989) and Peterkofsky & Daganzo (1990). Within a bay, the containers are loaded in
a fixed order. Moreover, for reasons of visibility (the QC’s are still manned), the positions at
the waterside of the vessel are loaded first. So, since we know the order in which the QC handles
the bays and since within a bay also the order in which the containers are loaded is fixed, we
obtain a linear order of the containers to be loaded by the same QC.

Note that the unloading operation of a vessel is far less complex than the loading operation.
This is because the unloaded containers can be randomly stored in the stack, that is, there is
no such thing as a stowage plan that has to be respected. Therefore, we will only consider the
loading of operation of a vessel.

As already mentioned in the introduction, the operating costs of seagoing vessels are very high,
up to $1000 an hour for the current generation of vessels. These costs are likely to increase
as even larger vessels are put into operation in the near future. Since seagoing vessels spend
a major part of their time in ports, it is crucial to have the vessel loaded as fast as possible.
Therefore, our goal is to minimize the loading time of the vessel, that is, to minimize the time
at which the last QC has finished loading. Only then, the ship can depart.

2.3 Problem characteristics

In this subsection, we will discuss the main characteristics of the problem of scheduling the
ASC’s, AGV’s and QC’s so as to minimize the loading time in a static environment. As shown
in Meersmans & Wagelmans (2001), this problem is NP-hard.

Blocking constraints

An important characteristic of the AGV’s is that they are not able to load and unload containers
themselves, i.e., a crane is always needed. This gives rise to blocking constraints. Once the ASC
has picked up a container, it cannot advance to handle its next container until the proper (empty)
AGYV has arrived at the transferpoint and the container is loaded onto the AGV. Hence, the
ASC is blocked by the AGV. Moreover, the AGV cannot advance to handle its next container
until the QC has lifted the container off the AGV. So, the QC blocks the AGV.

Time-lags
Consider two containers ¢ and j to be loaded by the same QC immediately after each other. We
have that the AGV task related to container § cannot be finished before the QC has finished



loading container ¢. This is due to the blocking of the AGV by the QC. So, the loading sequence
of the containers of a QC determines a similar order on the completion times of the related AGV
tasks. This allows us to model the QC tasks implicitly by defining time-lags on the AGV tasks.
Time lags are a generalization of precedence constraints and define general timing restrictions
between start and/or completion times of tasks. So, for containers ¢ and j, such that j is
loaded immediately after ¢, we have that the difference in completion times of the corresponding
AGYV tasks is at least the handling time of container ¢ by the QC. Note that the time-lags are
chain-like, i.e., for each QC we have a linear order of the tasks (which is known in advance).

Fixed assignment of containers to ASC’s

From the location of a container in the stack follows the ASC that will handle this container.
Hence, each ASC has to handle a subset of all containers, where the elements of the subsets are
known in advance, but the order in which they will be handled is not.

2.4 Dominant schedules

Recall that there is a common point that each AGV passes whenever it has delivered a container
at a QC and drives back to the stack area (see Figure 1). Now suppose that when an AGV
passes the common point, it is assigned its next container. Furthermore, suppose that this
assignment is done according to a prespecified order of the containers, to which we will refer as
an assignment order, or simply as an assignment.

The next theorem, which has been proven in Meersmans & Wagelmans (2001), states that for
the static problem there is a dominant set of schedules in which the assignment order of the
containers to the AGV’s is consistent with the orders in which the ASC’s handle the containers.

Theorem 2.1 Consider an optimal schedule for the static problem. Let w,; denote the order in
which ASC s handles its containers. Then there exists an optimal assignment order w of the
containers to the AGV’s, such that 75 is a suborder of w, for each ASC s € S.

Theorem 2.1 implies that the orders in which ASC’s handle their containers can be derived from
the assignment order of the containers to the AGV’s, i.e., the assignment order 7= completely
determines the schedule. So, we may enumerate over all possible assignment orders to obtain
an optimal schedule. This observation is the basis of the Beam Search algorithm, which we will
discuss in the next section.

3 Solving the integrated scheduling problem using Beam Search

In this section, we will first briefly present the Beam Search algorithm that was developed
in Meersmans & Wagelmans (2001) for solving the integrated scheduling problem of terminal
equipment in a static environment. Then we we will discuss how the Beam Search algorithm
can be used in a dynamic context.



3.1 A Beam Search algorithm

Beam Search is a heuristic search technique that is closely related to Branch & Bound. Beam
Search follows a breadth-first-search strategy for exploring the tree. However, instead of ex-
panding all the nodes at a certain level of the tree, only a limited number of nodes are selected
to be expanded further. The number of nodes selected is called the beam width. The selection
of the most promising nodes that are kept for further branching, is done by using an evaluation
function. Since large parts of the search tree are cut off in this way, the method runs very
fast. For instance, in our Beam Search algorithm the number of generated nodes is O(bw - n?),
where n is the number of containers and bw is the beam width, a parameter value that has to
be chosen. At every level we generate O(bw - n) new branches (nodes) and the complete tree
consists of n levels (see below for a more detailed description of how the tree is constructed).
Figure 2 shows a search tree that illustrates the Beam Search. From the root node, all branches
are generated. At the first level, the best two nodes (bw = 2) are selected and further expanded.
This procedure is repeated at level two, and so on, until we reach the leaves of the tree at level
n.
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Figure 2: Beam Search algorithm with bw = 2
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The selection of the nodes for further expansion is the crucial part within a Beam Search
algorithm. However, a thorough evaluation can be computationally expensive. Therefore, a
two—stage procedure is often used for the selection. In the first stage, the nodes are “filtered”
using a simple evaluation function. After the filtering, there are only a limited number of nodes
(referred to as the filter width fw) left. These nodes are evaluated again, now using a more
detailed, time consuming evaluation function, which results in the set of nodes (bw) that are
further expanded.

For the integrated scheduling of ASC’s and AGV’s, the complete search tree corresponds to
an enumeration of all possible assignment orders. Recall that this suffices since, according to
Theorem 2.1, both the schedule for the AGV’s and ASC’s can be represented completely by
such an order. A node at level k of the tree represents a partial assignment of which the first &
containers in the order are fixed.

The main ingredient of the Beam Search algorithm is the evaluation function that is used for
selecting the most promising nodes for further expansion. In each node that is evaluated, we



calculate a lower bound on the minimum loading time that will result if the partial assignment
order would be expanded to a complete assignment order. The selection of the nodes is then
done using these lower bounds. So, the bw nodes with the smallest lower bound are selected
for further expansion. In case of ties, we select the node with the smallest upper bound, which
is calculated as follows. Finish the partial schedule of the first £ containers by adding the
unscheduled containers in order of their tail ¢;, which is defined as the handling time of the
container on the QC plus the handling times of its successors on the QC, i.e.,

ti=> pf (1)

I

The last major ingredient of the Beam Search algorithm is the so-called filter. In our implemen-
tation, the filtering is based on the tail ;. That is, we only evaluate the lower bound of nodes
for which the tail belongs to the fw largest.

Clearly, setting the beam and filter width requires some computational testing. However, as
results in Meersmans & Wagelmans (2001) show, the solutions are not very sensitive to the
specific parameter settings.

Computational tests showed that the Beam Search algorithm very effective. It produces, in a
reasonable amount of time, solutions that usually are within 5 percent of the optimum, even
for large problem instances. For more detailed information, we again refer to Meersmans &
Wagelmans (2001).

3.2 Applying the Beam Search algorithm in a dynamic setting

In this subsection, we will discuss how the Beam Search algorithm can be applied in a dynamic
setting, in which we have changing information or new information that becomes available as
time goes by while the current schedule is executed. As a result, rescheduling may be advan-
tageous since realized handling times may differ from the expected handling times that were
used in constructing the schedule. Moreover, there may be additional containers that have to be
incorporated in the schedule. In particular the latter will happen in a rolling planning horizon
approach, which is what we will do. This means that at any point in time that scheduling
decisions are taken, we only consider the containers that have to be handled relatively soon.

Note that for a given complete feasible schedule, differences between the expected handling
times and the realizations do not result in an infeasible schedule. If we keep the order in
which the containers are handled fixed, the schedule always remains feasible. The example in
Figure 3 illustrates this. Given are four containers to be handled, one ASC and two AGV’s,
an we assume that the QC handling times are negligible. The upper Gantt chart represents
the original schedule in which the ASC handles the containers 1 to 4 in this order and AGV
1 handles containers 1 and 3, and AGV 2 handles containers 2 and 4 (note the drive time djs
and dy after the AGV’s have completed the handling of their first container). The lower chart
illustrates the schedule in which the handling time of containers 1 and 4 on the ASC are longer
than expected and the handling of container 1 on the AGV is shorter than expected. However,
the order of the containers is kept fixed. This still results in a feasible schedule, although the
makespan is longer and there is idle time between the containers handled on the AGV’s.



ASC [1]2] 3 [4]

AGV1 | | 1 \ d ] 3 \
AGV2 \ 2 \ d | 4 |
\
AsC [[1 [2] 3 [ 4 ]
F¥c) L T I " R -
AGV2 | \ 2 | d || 4 |

Figure 3: Gantt charts

Now suppose that containers are rescheduled, based on updated information about the handling
time of the containers. Given the part of the schedule that has already been executed, it is not
obvious that the Beam Search algorithm will find a feasible schedule. This is because the Beam
Search does not exploit the search tree completely. Hence, we may have that the node which will
finally result in a feasible solution, is cut off in an early stage. The following example illustrates
this.

Example

Consider 2 QC’s, 2 AGV’s and 2 ASC’s. The QC’s load container 1,2 and 3,4 respectively. ASC1
has to handle containers 1 and 3, ASC2 handles containers 2,4. Suppose we have the initial
schedule based on the assignment order 7 = {1,3,4,2}. Whenever we execute this schedule,
ASC 1 starts with container 1 and ASC 2 starts with container 4. Suppose we reschedule after
container 1 is handled by the ASC. Moreover, we have that the tails ¢; of the containers 2,3,4
equal 50, 100 and 49 respectively. In the Beam Search algorithm, the containers are initially
sorted in order of non-increasing tail. Hence, initially we have the assignment order 7 = {3, 2, 4}.
Now suppose we run the algorithm with filter width fw = 2 and beam width bw = 1. We then
get the following search tree shown in Figure 4.

0 3024
e AN
1 [3]2]4] [2]3]4
e AN
2 2(3]4] 243

Figure 4: Search tree fw =2, bw =1

At level 0, we have the containers sorted according to their tail £;. With a filter of 2, we generate
the assignment orders on level 1. Now suppose the assignment order on the left leaf, has a larger
lower bound than the assignment order of the right leaf. Since the beam width is only 1, we select
the left leaf. This results then in the assignment orders on level 2, which are both infeasible,
since ASC 2 has already started with container 4, but should in both cases deliver container 2
first.

Hence, the node representing the (obviously) feasible solution in which the assignment order



is kept the same, may not be generated. So, rescheduling using the Beam Search algorithm
should be done carefully in order to guarantee feasibility. Therefore, we propose the following
procedure to deal with rescheduling.

Let 7 represent the assignment order of the AGV’s (and ASC’s), as defined in Theorem 2.1.
Denote by 4 the container which is currently handled by some AGV or ASC, and which position
in the assignment order 7 is largest. Whenever we reschedule, we take the positions of all
containers up to ¢ in the assignment order fixed. So, only the positions of the containers that
succeed container 7 in the assignment order can be changed. Although this may seem to be
a restrictive policy, it is necessary to guarantee feasibility at all times, since the Beam Search
algorithm is used as a “black box”.

4 Computational experiments with the Beam Search algorithm
in a dynamic context

In this section, we will report on the computational experiments with the Beam Search algorithm
in a dynamic context. In particular, we are interested in the following:

(a) The effects on the overall performance of the length of the planning horizon, i.e., the
effects of taking more or less information into account. Although the running time of the
Beam Search algorithm is polynomial in the number of containers to be scheduled, solving
extremely large instances (about 1000 containers) can take quite some computation time.
In a real time setting, or whenever rescheduling is done frequently, one may choose to
restrict the planning horizon if the loss in performance is limited.

(b) The effect of the frequency of rescheduling on the overall performance. It is interesting to
see whether taking new information frequently into account pays off, or whether it leads to
a worse performance, since reacting on every bit of new information may give an unstable
schedule. Moreover, it is clear that every time we reschedule, an amount of computation
time is necessary. Also this should be taken into account.

(c) The effects of uncertain handling times of the containers. This uncertainty is mainly
present at the QC’s, since this is still a manual operation. Moreover, there is uncertainty
in the driving times of the AGV’s, since some congestion may appear near crossings of
AGYV tracks. This uncertainty may influence both the best planning horizon and the
frequency of rescheduling. Obviously, taking a lot of information into account, that is,
taking a long planning horizon, may work counterproductive whenever this information
turns out to be uncertain. Also, the best rescheduling frequency may be influenced by the
uncertainty in the handling times. Although rescheduling every time that new information
becomes available may seem attractive, rescheduling too often may lead to “nervousness”
and decrease again overall performance.

In order to investigate the performance of various algorithms for the scheduling of terminal
equipment, a detailed simulation model has been developed in close cooperation with Europe
Combined Terminals (ECT), the operator of the automated terminals in Rotterdam. For more
details, we refer to Meersmans et al. (1999). In the experiments that were used to test the



performance of the Beam Search algorithm, approximately 1000 containers were generated, to
be loaded by four Quay Cranes. In order to guarantee reliable outcomes, over 150 of these
loading operations were simulated.

In Table 1, we show the relative performance under various settings for both the planning
horizon and the frequency of rescheduling, in a completely deterministic scenario. That is, we
assume that the information about the handling times of the containers is perfectly known. As a
reference point, we take for each run the schedule that was obtained by scheduling all containers
of the loading operation at once at the beginning of the operation and keeping this schedule
fixed. In the remainder of this paper, we will refer to this as the “static” version of the Beam
Search algorithm. The numbers given in Table 1 represent the average percentage deviation in
performance and in brackets, the standard deviation.

The planning horizon is set to 10, 20, 30, 40 and 50 containers per QC, which represents a
workload ranging from about a quarter up to an hour. The rescheduling interval is taken to
be 250, 500, 750 and 1000 seconds. All computations were done on a pentium PC 400 MHz.
Computation times for the various settings of the planning horizon and the rescheduling interval
varied from 1 to 5 minutes for constructing the initial schedule, and at most 2 minutes for
rescheduling. The shorter computations times for rescheduling can be explained from the fact
that that whenever we reschedule, a part of the schedule is already fixed (see Subsection 3.2).
Scheduling all 1000 containers at once (the static version of the algorithm), led to computation
times which were around half an hour. Note that the computation times are such that it is
feasible to apply the Beam Search algorithm in real time, even for rescheduling intervals of 250
seconds.

rescheduling planning horizon (containers/QC)

interval (sec.) 10 20 30 40 50
1000 13.2 (6.4) 10.5 (6.7) 9.6 (6.2) 3.4 (3.8) 1.3 (3.8
750 129 (67) 101 (64) 7.5 (48) 23 (39) 10 (3.7)
500 12.9 (6.8) 9.5 (6.4) 5.6 (3.9) 14 (4.0 0.8 (3.7)
250 12.0 (6.6) 79 (5.2) 3.8 (3.1) 0.8 (3.8) 0.6 (3.5)

Table 1: Performance (in percentage deviation from makespan of static schedule) under different
planning horizons / rescheduling intervals; deterministic scenario

The results from Table 1 are in line with our expectations; the longer the planning horizon and
the higher the frequency of rescheduling, the better the performance. In all cases, the static
version of the algorithm has the best average performance. (Note that if the Beam Search were
an exact algorithm, the static version would always perform best.) Moreover, we may conclude
from Table 1 that the length of the planning horizon is more important to achieve satisfactory
performance than the frequency of rescheduling. Taking a short planning horizon of about 20
or 30 containers per QC, which represents about half an hour of workload, yields a relative low
performance, even if we reschedule frequently. On the other hand, when the planning horizon
is increased to about an hour of workload (40 to 50 containers per QC), the performance of the
dynamic version of the Beam Search algorithm is on average very close to the performance of

10



the static version, even for relatively large rescheduling intervals.

The results from Table 1 also show that the standard deviations are quite high, even if the
planning horizon is large. Looking at individual instances, we observed that for 10 to 20 percent
of the instances, rescheduling resulted in relatively bad schedules, compared to the schedules
obtained by scheduling all containers at once. For the remainder of the instances, the schedules
are of almost similar quality. Consider, for instance, the particular combination of a planning
horizon of 50 containers per QC and rescheduling every 250 seconds. We found that in the
worst case, the dynamic version of the algorithm performs about 9 percent worse than the
static version. The other way around, the dynamic versions performed in the best case about 5
percent better than the static version (note again that the Beam Search algorithm is a heuristic
procedure and does not necessarily give the optimal solution).

In order to investigate the effects of uncertainty in the handling times of containers, we introduce
two stochastic scenarios. In the “low” stochastic scenario, we assume that both the handling
times at the QC’s and the AGV’s are uniformly distributed within a range of plus/minus 10
percent of the average handling time. In the “high” stochastic scenario, this percentage is set
to 20. The dynamic version of the Beam Search algorithm obviously uses the information of the
containers that have already been handled. So, the realizations of the handling times of these
containers are known. However, for the containers that are not handled yet, the schedule is
based on the expected values of the handling times.

Again we compare the dynamic version of the Beam Search algorithm with the static version
in which we schedule all containers beforehand, using expected handling times. The results are
summarized in Table 2 and Table 3 and give the average difference in performance and between
brackets, the standard deviation.

rescheduling planning horizon (containers/QC)

interval (sec.) 10 20 30 40 50
1000 12.9 (6.3) 10.3 (6.8) 9.5 (6.0) 3.5 (4.0) 14 (3.7)
750 12.6 (6.6) 9.7 (65) 72 (47) 25 (40) L1 (3.5)
500 12.9 (6.5) 9.3 (6.1) 5.6 (4.0) 1.4 (3.7) 0.9 (3.5)
250 11.6 (6.7) 74 (5.0) 3.8 (3.1) 0.9 (3.4) 0.8 (3.4)

Table 2: Performance (in percentage deviation from makespan of static schedule) under different
planning horizons / rescheduling intervals; low stochastic scenario

From the results of Table 2 and Table 3, we may again conclude that the length of the planning
horizon is most important. Even in a high stochastic environment, the dynamic version of the
algorithm does not give better results than the static version. So, we may conclude that the
information about the handling of future containers, although uncertain, is more important than
the correct information about already handled containers.

Note that the schedule we compute in the static version of the algorithm is the same, whether
we consider a deterministic or a stochastic case. From Tables 2 and 3 we may therefore conclude
that such a schedule is quite robust. This is also illustrated in Table 4, which gives the average
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rescheduling planning horizon (containers/QC)

interval (sec.) 10 20 30 40 50
1000 125 (64) 101 (6.6) 92 (62) 34 (38 14 (3.5)
750 124 (6.4) 9.7 (6.4) 69 (44) 24 (37) 13 (3.4)
500 12.2  (6.3) 89 (62) 54 (41) 15 (38) 10 (3.3)
250 11.3 (6.3) 7.1 (4.9) 3.5 (3.3) 1.1 (3.6) 0.9 (3.3)

Table 3: Performance (in percentage deviation from makespan of static schedule) under different
planning horizons / rescheduling intervals; high stochastic scenario

increase of the makespan of the static schedules when these are evaluated in the stochastic
scenarios. As we can see from the table, the performance does not deteriorate much when
stochasticity is introduced in the handling times of the Quay Cranes and AGV’s.

scenario | deviation from makespan in deterministic case
average (%) stand. dev.
low 0.4 (0.3)
high 1.4 (0.6)

Table 4: Influence of stochastic handling times on overall performance of static schedule

5 Dispatching rules

The advantages of dispatching rules are obvious. By definition, these rules do not use com-
plicated mathematical models to calculate the “best” assignment. Hence, they are easy to
implement and therefore often used by practitioners. Moreover, these rules require only few in-
formation about the system. For instance, using a rule like Nearest Workstation First (Van der
Meer (2000)), an idle AGV simply selects the nearest workstation to pick up its next load. So,
especially in situations in which information is not available or uncertain, these rules seem to be
an attractive alternative. In this section, we will compare the performance of various dispatching
rules with each other and with the more complicated Beam Search algorithm.

5.1 Some well known dispatching rules

In this subsection, we will discuss several dispatching rules from the literature that are commonly
used within the area of (AGV) scheduling. Early work within this area was done by Egbelu &
Tanchoco (1984), who were among the first to investigate the performance of various dispatching
rules for AGV’s within Flexible Manufacturing Systems. Moreover, we mention Van der Meer
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(2000) who investigated the performance of dispatching rules for various AGV systems, among
others, an AGV system at an automated container terminal.

The dispatching rules we will consider are the following:

1. Nearest Vehicle/Workstation First (Van der Meer (2000)). Assigns an idle AGV to the
nearest available load or, alternatively, a load is assigned to the nearest idle AGV.

2. First Come First Served (Egbelu & Tanchoco (1984); Van der Meer (2000)). Assigns the
first idle AGV to the load that has been available for the longest time.

3. Random Assignment (Egbelu & Tanchoco (1984)). Assigns an idle AGV randomly to a
load.

4. Fized Assignment of AGV’s to QC’s. This rule is currently used at container terminals
(see, for instance, Steenken (1992) who applies this rule for straddle carriers). Under this
rule, each AGV will transport only containers destined for a certain QC.

5. Most Work Remaining. This rule is commonly used in machine scheduling. The general
idea is that the next job that is scheduled on an idle machine is the job for which the
remaining handling time is largest.

6. Earliest Due Date. Another rule that is commonly used in machine scheduling. Assigns
to an idle machine the job that is most urgent with respect to its due-date.

The dispatching rules as given above, are usually evaluated on a number of performance criteria,
for instance:

e Maximization of vehicle utilization

e Maximization of system throughput

e Minimization of queue lengths

e Minimization of (empty) driving distance

e Balanced workload

It is obvious, that the behavior of some dispatching rules favors one or more of the criteria as
mentioned above. For instance, the Nearest Vehicle/Workstation First rule will likely result in
short empty driving distances. However, for the specific situation of a container terminal, all
the performance criteria as mentioned above are subordinate to minimizing the time required
to load all containers, i.e., minimizing the makespan of the schedule.

Note that the dispatching rules as discussed above only consider the dispatching of the AGV’s.
As we will see in the next subsection, a straightforward implementation of the dispatching rules
will inevitably lead to deadlock situations. Moreover, also a schedule for the ASC’s has to be
determined, which must be coordinated with the AGV dispatching. In Subsection 5.3 we will
discuss how the dispatching rules can be implemented such that a feasible schedule for both the
AGV’s and ASC’s is guaranteed.
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5.2 Deadlocks

Although the dispatching rules as discussed in the previous section seem to be generally applica-
ble, the specific setting of a container terminal does not allow for straightforward implementation
of such a rule. Applying dispatching rules as presented above instead of solving the integrated
scheduling problem by using the Beam Search or another algorithm calls for some caution. Be-
cause of the blocking constraints, and the resulting dependence between the ASC and AGV
schedules, deadlocks may appear. A deadlock is a situation in which there is a total standstill
of the system, due to circular waiting of the equipment. All AGV’s and ASC’s are occupied and
cannot be released of their containers. ASC’s wait for empty AGV’s, which are not available,
since the loaded AGV’s wait for a container that should precede at the QC, but which cannot
be transported since all AGV’s are occupied. The following example illustrates such a situation.

Example

Consider a simplified situation in which we have a single QC, two AGV’s and three ASC’s. The
QC has to handle containers 1, 2 and 3 in this order. Each container is located in a different
stack lane. Moreover, the handling times of the containers on the ASC’s are p*¢ = 3, p§*¢ =
2, p3°¢ = 1. Since each ASC has exactly one container to handle, each ASC will start doing
so at time ¢ = 0. As a result, the ASC’s are ready to transfer the containers to the AGV’s at
times t| = 3, to = 2, t3 = 1. Suppose the two AGV’s become empty at the QC at the same
time and assume the driving times to the stack lanes are negligible. Now using, for instance,
an AGV dispatching rule like Nearest Vehicle/Workstation First (Van der Meer (2000)), which
assigns an idle vehicle to the nearest available load, or alternatively, assigns a load to the nearest
idle vehicle, leads to the assignment of containers 2 and 3 to the two AGV’s. As a result, both
AGV’s cannot be released from their container since container 1 should arrive first at the QC.
This deadlock situation is illustrated in Figure 5.

Figure 5: Example of a deadlock situation
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Although the example of Figure 5 may seem somewhat artificial, it illustrates perfectly the
complicated deadlocks that frequently occurred after we implemented the dispatching rules in
our detailed simulation model of the container terminal (see Section 4).

In Flexible Manufacturing Systems, when deadlocks appear, intervention is usually possible by
directing some vehicle to a special buffer area where the load is temporarily stored (see Egbelu
& Tanchoco (1984)). Although intervention is also possible at an automated container terminal,
this is not preferred since it leads to a (partial) shutdown of the terminal (all AGV’s and ASC’s
are stopped). As a consequence, there is a great loss of performance. So, any dispatching rule
that is implemented should ideally be such that deadlocks cannot appear. We will therefore
adjust the dispatching rules as given in Subsection 5.1 in such a way that they always guarantee
deadlock free schedules.

5.3 Deadlock free dispatching rules

In this subsection, we will discuss how the dispatching rules as mentioned in Subsection 5.1 can
be modified in order to guarantee feasibility. The following result is used to achieve this.

Theorem 5.1 Consider the integrated scheduling problem of ASC’s, AGV’s and QC’s. For a
schedule to be feasible, the following two conditions are sufficient:

1. The order of the containers on the ASC’s and the AGV’s coincide, i.e., for each ASC s,
the order ws of the containers is a suborder of w, the assignment order of the containers
to the AGV’s.

2. The order of the containers on the QC’s and the AGV’s coincide, i.e., the fized order mq
of the containers on QC q, should be a suborder of w, for each QC q.

Proof: We will prove the theorem by induction. Given that the first ¢ containers in the
assignment order 7 give a feasible schedule, we will show that adding the i + 1** container also
results in a feasible schedule.

Note that since the schedule for the first ¢ containers is feasible, we have that all containers are
completed and thus, all AGV’s have a finite finish time. Take now the first idle AGV and assign
this AGV to the i + 1%* container. Clearly, since the orders 7, are in accordance with 7, the
i + 1" container can be completed on the ASC, since all its predecessors in 7, are completed
(the schedule of the first ¢ containers is feasible). Moreover, since the orders 7, are suborders of
7, we also have that all predecessors of the i + 1% container at the QC are completed. So, also
the 4 + 1** container can be completed on the QC and thus, we have a feasible schedule. O

Note that Theorem 5.1 only gives sufficient conditions for a schedule to be feasible. So, there
may be schedules that do not satisfy these conditions, but which are still feasible. However, by
their nature, dispatching rules are straightforward priority rules and therefore, we do not want
to complicate them too much.
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Theorem 5.1 gives us a guide to develop dispatching rules that guarantee a feasible solution. We
will next discuss if and how we can modify the dispatching rules we discussed earlier. We will
focus on the AGV assignment. The order of the containers on the ASC’s is kept in accordance
with this AGV assignment, i.e., we satisfy Condition 1 of Theorem 5.1.

1. Nearest Vehicle/Workstation First. This rule cannot be applied here. Recall the layout of
Figure 1 in which all AGV’s pass a common point after unloading. So, there is in fact only
a single delivery location. Applying this rule will assign all AGV’s to a container that is
located in the nearest stacking lane. Obviously, this will lead to deadlock situations since
this dispatching rule does not respect the order of the containers at the QC in any way.

2. First Come First Served. In order to determine which container has been available the
longest time, we define a planning horizon for each QC consisting of k& containers. All
containers are pooled in a list of unscheduled containers which is initially sorted according
to the time at which the containers are required at the QC (based on the expected handling
times of the containers at the QC). After a container is handled by a QC, the k + 1t
container for this QC is made available. This container is then added last to the list
of unscheduled containers. If an AGV becomes idle, the first container on the list of
unscheduled containers is assigned to it. In this way, we ensure that the AGV is assigned
to the container that was generated earliest. Note that by this strategy, the schedule will
always respect Condition 2 of Theorem 5.1.

3. Random Assignment. To ensure the feasibility of this dispatching rule, we assign the empty
AGYV to the earliest required unscheduled container of a randomly chosen QC. In this way
we ensure that Condition 2 is satisfied.

4. Fized Assignment of AGV’s to QC’s. The implementation of this rule is quite obvious.
Each AGV transports containers destined for only a single QC. An empty AGV is assigned
to the unscheduled container which is required earliest at the QC.

5. Most Work Remaining. Crucial here is to determine which “container” has the most work
remaining. We have implemented this rule by assigning the idle AGV to the unscheduled
container which tail ¢; is largest.

6. FEarliest Due Date. To implement this rule, we take for each container the time at which
the container should be available at the QC, such that there is no idle time for the QC.
Given this time, we can calculate the time at which the AGV should leave the common
point latest to load the container at the stack lane and drive to the proper QC in order to
be just in time. We take this as the due date of a container. An empty AGV that arrives
at the common point is then assigned to the container with the smallest due date. For
two container i, 5 destined for the same QC, such that ¢ precedes j, we should have that
the due date of container ¢ is smaller than the due date of j. This is obvious whenever we
have a perfect loop layout. However, in case we only have a common point, we may have
that the total handling time on the AGV of container j is larger than the total handling
time of container i, and hence, the due date of j may be smaller than the due date of ¢ (if
i and j are in different stack lanes). If this is the case, we force the due date of j to be
slightly larger than the due date of 7. In this way, we ensure Condition 2 of Theorem 5.1.
Note that each time a container is loaded by one of the QC’s, we can update the due dates
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of all the containers related to that QC, taking into account the most recent information.
However, this has to be done carefully. For instance, a container of which the handling
has already been started by the ASC, but not yet by the AGV, should not be updated.
Otherwise, the due date of the container may increase, and as a result, the idle AGV may
be assigned to another container from that stack lane, resulting in a deadlock situation.
So, we should always guarantee that the AGV’s handle they containers in accordance to
the order of the containers on the ASC’s (Condition 1 of Theorem 5.1)

6 Dispatching rules versus Beam Search

In this section, we will discuss our computational study to investigate the performance of the
various dispatching rules discussed in Subsection 5.3. Moreover, we will compare the results of
the dispatching rules with the results of the Beam Search algorithimn, both in its static and its
dynamic version.

Both the Beam Search algorithm and the dispatching rules were tested using the simulation
model mentioned in Section 4. Moreover, the same loading operations (over 150) were generated
as in Section 4. As a benchmark, we use the results obtained by applying the static Beam
Search algorithm. The results of the dispatching rules are compared with this benchmark. We
only evaluate the dispatching rules based on the time the last container is loaded onto the
ship, i.e., the makespan of the schedule. Other criteria, like vehicle utilization and driving
distance, as mentioned in Subsection 5.1, were not considered since they are all subordinate to
the minimization of the makespan. Table 5 gives the average deviation of the makespan of the
schedules generated by the dispatching rules (in percent), compared to the static version of the
Beam Search algorithm. Between brackets, the standard deviations are given. Note that we
repeat the results of the best dynamic Beam Search algorithm (see Tables 1 to 3).

dispatching rule scenario
deterministic ~ low stochastic  high stochastic
First Come First Served (10) 12.4  (5.7) 12.2  (5.5) 11.8 (5.4)
First Come First Served (50) 24 (1.9) 23 (2.0) 2.1 (2.1)
Most Work Remaining 2.4 (3.3) 22 (3.2) 1.9 (3.2)
Random Assignment 12.5 (4.6) 12.1 (4.6) 11.6  (4.6)
Fixed Assignment 7.1 (4.8) 7.1 (4.7) 7.0 (4.5)
Earliest Due Date 13.8 (6.8) 13.4 (6.5) 13.0 (6.4)
Beam Search (50, 250) 0.6 (3.5) 0.8 (3.4) 09 (3.3

Table 5: Dispatching rules vs. Beam Search (performance in percentage deviation from
makespan of static schedule)

The following remarks are in order:
1. The performance of the First Come First Served rule depends on the length of the planning
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horizon that is taken into account. In Table 5 we give results for both a horizon of 10 and
50 containers per QC. The less containers are within the planning horizon, the more likely
it is that an ASC becomes idle. The explains the relatively poor results for the horizon of
10 containers.

2. For the Fixed Assignment rule, the numbers in Table 5 are only based on cases in which
the number of AGV’s is a multiple of the number of QC’s, since in the Fixed Assignment
rule, each QC has a fixed number of AGV’s assigned to it.

The results in Table 5 give rise to the following conclusions. First of all, the average performance
of the Fixed Assignment rule, that is often used in practice, can be improved upon significantly.
Furthermore, their is a lot a variation in the performance of the different dispatching rules. The
dynamic version of the Beam Search algorithm performs best on average, although the Most
Work Remaining rule and the First Come First Served rule with a large planning horizon come
very close. These two rules take information about future containers into account. Therefore,
their good performance confirms our conclusion from Section 4 that it is more important to
take information about future containers into account than to react quickly to realizations
of handling times. For instance, the Farliest Due Date rule is based on constantly updated
information about when a container is required at the QC. Its performance, however, is the
worst of all. Moreover, updating information should be done carefully, i.e., the conditions of
Theorem 5.1 should be taken into account. From computational tests we learned that neglecting
these conditions (for instance, by defining dispatching rules which are less strict) will often lead
to deadlock situations. Note, however, that the conditions of Theorem 5.1 have not been proven
to be necessary to obtain a feasible schedule. There may exist conditions that are less strict but
still guarantee feasibility.

Another conclusion we can draw from Table 5 is that the dispatching rules tend to perform
slightly better, relative to the Beam Search, when the stochasticity increases.

7 Conclusions and further research

In this paper, we considered the scheduling of container terminal handling equipment within
a dynamic and stochastic context. We compared the performance of various algorithms under
both deterministic and stochastic scenarios.

The integrated scheduling problems can be solved by using, for instance, a method like the
Beam Search algorithm which was discussed in Section 3.1. This algorithm models the problem
exactly and solves it using partial enumeration. A drawback of this method is that, although
it runs in polynomial time (in the number of containers), the computation time becomes quite
large for very large instances (1000 containers). Therefore, we also considered a dynamic version
of the algorithm, which only takes a small number of containers into account within a rolling
horizon. We investigated the performance of this dynamic version of the Beam Search algorithm
and compared it to the performance of the static version of the algorithm, that solves the
whole problem at once. In particular, we investigated the effects of the length of the planning
horizon and the frequency of rescheduling were investigated in an extensive computational study.
The results show that the length of the planning horizon is the most important factor for the
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performance, i.e., the longer the planning horizon the better the average performance. This result
holds for both deterministic and stochastic scenarios. Hence, it seems that taking information
about future containers into account is advantageous, even if this information is not completely
reliable. This also means that the static version of the algorithm, which uses the longest possible
planning horizon, performs best on average.

The second part of the paper considered various dispatching rules. It is said that such rules
are very general and easy to implement. Therefore, they are often preferred by practitioners.
However, we have shown that a straightforward implementation of such rules will lead to dead-
lock situations. Hence, we presented modified versions of such rules which do yield feasible
schedules. Moreover, we compared the performance of these rules with the performance of the
Beam Search algorithm we considered earlier. It is found that, on average, the Beam Search
algorithm performs the best, but that some dispatching rules such as First Come First Served
and Most Work Remaining come very close.

For practical situations, our results have the following implications. First of all, it does not seem
to be a good idea to stick to the Fixed Assignment rule that is often used in practice. Given its
relative performance and robustness we recommend to use the static version of the Beam Search
algorithm. Note that all computations can be carried out in advance, so computation time need
not be a bottleneck. In case unanticipated events, such as machine breakdowns, occur while
the static schedule is being executed, rescheduling can always be done using the dynamic Beam
Search algorithm with a planning horizon that is as long as possible. Alternatively, one may
choose to use the modified First Come First Serve rule (with a long planning horizon) or the
modified Most Work Remaining rule. Both may give slightly worse results, but they are much
easier to implement than the Beam Search approach.

Finally we note that in Theorem 5.1 two sufficient conditions for the feasibility of a schedule were
given. Future research may focus on determining necessary conditions or sufficient conditions
that are less strict. If such conditions can be found, they may lead to the development of better
dispatching rules.
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