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Abstract

In this article, we demonstrate that a direct relation exists between the context of Japanese �rms

indicating relative distress and conditional return distribution properties. We map cross-sectional vec-

tors with company characteristics on vectors with return feature vectors, using a fuzzy identi�cation

technique called Competitive Exception Learning Algorithm (CELA)1. In this study we use company

characteristics that follow from capital structure theory and we relate the recognized conditional

return properties to this theory. Using the rules identi�ed by this mapping procedure this approach

enables us to make conditional predictions regarding the probability of a stock's or a group of stocks'

return series for di�erent return distribution classes (actually return indices). Using these �ndings,

one may construct conditional indices that may serve as benchmarks. These would be particularly

useful for tracking and portfolio management.

Keywords: capital structure, asset pricing, conditional return distribution, fuzzy systems, heuris-

tic learning.
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1After having discovered the precise mathematical background of Competitive Exception Learning [14], it may be better

to rename CELA into PFELA (Probabilistic Fuzzy Exception Learning Algorithm), but here we stick to the original name.
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1 Predicting distribution characteristics in stock returns

In this article, we demonstrate that a direct relation exists between the context of Japanese �rms indicat-

ing relative distress and conditional return distribution properties. A clear understanding of what drives

returns of a portfolio containing low-investment grade assets is of course vital for all those whose economic

welfare is, involuntarily or on purpose, dependent on it. This is especially true for Japan, because we

expect that our methodology is able to make a better distinction between good and bad companies. Since

Japan has experienced an 11-year period of economic downturn, with numerous bankruptcies and many

more to follow, we expect the results to be more signi�cant. With the CELA methodology, explained

later, we are able to determine the factors that predict the stock price distribution of Japanese companies.

This is particularly useful for index tracking, active portfolio management, pricing of contingent claims

and for �nancial risk management in general.

A majority of studies focuses on the explanation of expected returns as a linear combination from one

or more factors re
ecting risk. Usually the Arbitrage Pricing Model gives the theoretical justi�cation for

these studies. The 3-factor Fama and French [4] model is undeniably the best-known empirical article

in this �eld. The equity value book-to-market ratio (often considered a good proxy for relative distress)

emerges as the most important ex-post explanatory state variable in conjunction with the market risk.

However, the discussion on an explicit theoretical interpretation of these results is still open.

The motivation of our study is to get a better insight in conditional price formation and clearer view

of the book-to-market puzzle. We examine endogenously determined classes of return properties. This

approach was inspired by Brown et al. [3] who look after similarities in raw return series. However, we do

not use raw return patterns, but examine similarities in return distribution properties like market beta

and �rst and higher order moments. Such procedure greatly reduces the dimensionality of the return

space although we realize that it is at a cost of information loss. We look for similarities of equity return

distributions conditional on the capital structure.

In our approach, company characteristics related to capital structure are mapped on a set of statistical

properties of the return series using a methodology termed Competitive Exception Learning (CELA) [16,

12, 15, 14]. The CELA method developed observes average behavior of system outputs (here the statistical

properties of the return series) and tracks deviations from this average behavior. These deviations are

then correlated to regions within the system's input space (here the company characteristics). The result

is a set of fuzzy rules [9] that describe the speci�c company characteristics which lead to `exceptional'

return series. Since CELA concentrates explicitly on the discovery of exceptions and constructs a fuzzy

rule base, the rules of which can be expressed in linguistic terms interpretable by experts in the �eld, we

think CELA is an excellent tool for solving our portfolio management problem.

The structure of the rest of this paper is as follows. In the next section, we describe the background

theory for solving our problem and take a closer look to the dissipation of news in capital markets.

In section 3, we describe CELA in mathematical terms. In section 4, we illuminate the experimental

setup and in section 5 we describe and analyze the mapping of relative distress to stock distribution
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characteristics. We �nalize with a discussion and outlook.

2 Dissipation of News in Capital Markets

Asset prices move when news reaches the market. By de�nition news is unpredictable but once news

arrives, the reaction of speci�c asset prices may be systematic in such way that they show any kind of

co-movement. Thus, for a given 
ow of news events during some period of time, return series may show

local similarities. Such local similarities may potentially be identi�ed endogenously. In their 1997 working

paper Brown et al. [3] attempted to identify return driving factors using cluster techniques. Monthly stock

return series over two consecutive years were examined in a 24-dimensional Euclidian space (each single

sample point representing the series of one stock). With an iterative replacing algorithm 10 `similarity'

clusters (i.e. stock portfolios) were identi�ed by minimizing the Euclidian distance between the 24-

dimensional vectors in each cluster. Thus similarity refers to neighboring sample points which tend to

display similar behavior of the return series. Subsequently the portfolios are related to a classi�cation

according to industry or size. This procedure yields evidence for both a size factor and factors associated

with certain industries.

Realizing that company-speci�c news will a�ect the value of a company's assets, it doesn't come as a

surprise that the value of companies in the same industry or country will react in a more or less similar

fashion to a given news event. More generally, when the assets of companies are sensitive to the same

sources of risk, the market value of these companies is expected to react in a similar fashion to news

about these sources of risk, resulting in a clustering in time.

But one should recognize that the market valuation of �rms takes place via the capital structure. In

other words, news that directly a�ects the asset value may have a more complex e�ect on the value of the

various claims on the company. Almost 50 years ago Modigliani and Miller [10] already proposed that all

claim holders require a fair part of the asset value, depending on the nature of their claim and equilibrium

prices are set accordingly. But if the asset value changes, the `fair' relative part of each claim holder will

not necessarily remain the same. Positive news may lead to a higher share price, but the value of debt

will as well increase, mainly due to the fact that the probability of bankruptcy has declined. In other

words, there is a wealth transfer from shareholders to the holders of �xed debt whenever positive news

reaches the market. The opposite occurs in the case of negative news: The value of debt may fall more

than proportionally. Of course, this e�ect will be stronger, the higher the �nancial leverage of the �rm,

resulting in a clear non-linear relationship between the nature of the news and a stock's return. Black

and Scholes showed in their seminal article [2] that this relationship could well be modelled in terms of

an options framework with the important result that the slope between the (contingent) value of debt

and the underlying asset value is not constant.

The eventual e�ect on stock returns depends on e.g.: the location of the company, the industry, the

distribution of the claims, the probability of bankruptcy and the estimated bankruptcy costs should a

�rm go under, and agency costs.

Stock prices of a speci�c group of �rms moving in a similar way also implies that the returns of
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these stocks should have a more or less similar distribution. Not only the mean return but also standard

deviation, skewness, kurtosis etc. may potentially cluster. So if we divide stocks over portfolios based on

some criterion that captures the speci�c reaction to news, we may expect to �nd conditional distribution

behavior.

Expectedly the resulting conditional co-distribution of stock returns is not fully encapsulated by the

market beta. Recent studies seem to con�rm that conditional higher moments play a signi�cant role,

c.f. skewness found by Harvey et al. [5] among others. Moreover, a classi�cation conditional on higher

return moments appears to coincide largely with a classi�cation based on �rm size and book-to-market

equity value. In our view the Fama & French 3-factor model [4] picks up the speci�c way stock prices

react to news quite satisfactory. But even more complex conditional co-movement than captured by

centered higher order moments may occur. If for instance some stocks only move with the market when

bad news reaches the market, adding an extra factor that distinguishes such stocks from the others will

undoubtedly improve the overall behavior of the model. In a recent working paper Ang et al. [1] show

that stocks with a relatively high downside correlation factor have higher expected returns (up to 6.5%

per annum) than returns that can be explained by the 3-factor Fama and French model. Even after

controlling for the size e�ect and the book-to-market e�ect such extra factor may pick up some ex-post

explanation of returns.

Although these pieces of evidence certainly provide more insight, we know of no theory describing

how risk is priced. An important open question is therefore through which channels the arrival of news

in the market a�ects equity returns. This news arrives in the market and a�ects similar companies in a

similar fashion. However, we hypothesize that the speci�c capital structure will dampen or intensify the

e�ect on the equity returns of an individual company.

Theories of Capital Structure

An important factor explaining the level of downside risk perceived by investors, is bankruptcy risk,

which in turn is largely determined by the D/E ratio. We mentioned already an important cause for

the observation that stock returns are not normally distributed, namely the fact that the correlation

between the D/E ratio and the level of bankruptcy risk is probably not linear: until a certain level of

debt, bankruptcy risk will be deemed negligible. Beyond a certain critical point, however, the investors'

perception of bankruptcy risk suddenly increases and the required risk premium on debt increases.

A central determinant of the perception of bankruptcy risk is the guarantees a company can give

its debtholders. First of all, the larger the company, the more debt will be allowed by investors before

they start worrying about bankruptcy risk. The reason is that direct bankruptcy costs form a smaller

share of the value of a company when that value is higher. Moreover, larger companies are usually more

diversi�ed and hence less risky. In addition, the cost of issuing new shares is relatively less costly for

larger companies, leading to a larger fraction of debt.

In general, management has more information regarding the current value and future opportunities

of a company than shareholders or bondholders. This leads to a pecking order of the various ways a
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company's activities are �nanced: �rst choice is for internal funds, next debt and �nally equity (Myers,

[11]). The underlying explanation is that the costs of attracting internal funds are less dependent on

the correct estimation of the company's value, more when attracting debt and still more when issuing

equity. The diÆculty to assess the value of the assets will limit the amount of additional debt that

is acceptable for debtholders. In other words: the higher the level of intangible assets, the sooner the

e�ects of bankruptcy risk described above will kick in. In case managers are not or only partial owners

of the �rm, the costs of the consumption of perquisites are not or partially born by the managers. As a

result, managers can reduce e�ort or use company funds to their own bene�ts (Jensen and Meckling, [7]).

By �nancing more with debt, it will be more diÆcult for the manager to �nance these value-destroying

activities internally. In other words, the more free cash is available internally, the more debt is required

in order to mitigate these con
icts. This implies a positive relationship between the amount of free cash

and the debt-equity. The required return on equity depends on the extent to which agency costs can

be reduced by introducing more debt in the capital structure and bankruptcy risks described above. A

high dividend yield would have the same e�ect. Note however that the pecking order theory suggests an

opposite relationship: when there are a suÆcient number of pro�table investment opportunities, a larger

amount of internal funds will limit the need to attract additional debt, resulting in a lower debt-equity

ratio.

Hypotheses

The central factor in the test is the D/E ratio and the amount of debt acceptable for debtholders and

shareholders without introducing bankruptcy risk. The smaller the company, the higher the volatility

of pro�ts and the higher the level of intangible assets, the lower the D/E ratio is allowed to be. In

general, once bankruptcy risk becomes important, the return distribution should become more skewed

to the left. This motivates us to examine a direct but non-linear relation between the capital structure

and cross-sectional return distribution characteristics. Factors related to relative distress as well as size

should be visible in return distribution characteristics, such as skewness and kurtosis, in a non-linear way.

Financing a company with debt should lead to a certain level of skewness in equity returns, even if the

return on assets is distributed normally. This asymmetry may lead to a higher required equity return.

A challenging question is to what extent such e�ects are related to industry. The clearly inadequate

industrial SIC classi�cation of Japanese �rms interferes with a viable study. At the end of our experiments

we will take a short look to this.

3 Fuzzy Exception Learning

In this section we �rst sketch CELA's background, we present a mathematical framework of probabilities

and statistics of fuzzy sets, and then, by using this framework, describe the various steps of the CELA-

algorithm. For more information on CELA, we refer to [12, 15, 14].
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3.1 Background of CELA

CELA constructs a stochastic mapping from aM -dimensional input sample space X to an N -dimensional

output sample space Y . The corresponding stochastic variables are denoted as x = (x
1
; x

2
; : : : ; xM ) and

y = (y
1
; y

2
; : : : ; y

N
) respectively. A representative set of sample vector values (xp;yp); (p = 1; 2; : : :) is

supposed to be available with xp = (xp1; xp2; : : : ; xpM ) and yp = (yp1; yp2; : : : ; xpN ). The data set has an

unknown joint probability density function (p.d.f.) described by f(x;y).

A main goal of CELA is to �nd the x-clusters (in time series applications often termed `regimes') for

which the conditional p.d.f.'s f(yjx) deviate `exceptionally' from the marginal p.d.f. f(y). By setting

up a fuzzy rule base, the exceptional behavior can be expressed in linguistic terms hereby increasing

transparency for human beings. The fuzzy rule base can be used to validate the system by putting it to

experts in the �eld and asking for (in)correctness. Furthermore, a non-linear regression model of y on x

can be assessed using fuzzy interpolation. The underlying regression model can be formulated as

y = g(x) + �(x); (1)

where �(x) is a random vector with a probability distribution dependent on x. To deal with both

probabilities and fuzziness, we need a well-founded mathematical framework.

3.2 Probabilistic fuzzy framework

We start by presenting a probability theory on fuzzy sets, then change to statistics where it is shown how

probabilities on fuzzy sets and fuzzy regression lines can be estimated.

3.2.1 Well-de�ned fuzzy sample spaces

We here con�ne our presentation to the continuous case. For the discrete analogon we refer to [14].

Let f(x) be a p.d.f. de�ned on a M -dimensional continuous sample space X . The probability of a

multi-dimensional fuzzy event P , de�ned on X by means of membership �P (x), is given by expression

Pr(P ) =

Z
1

�1

Z
1

�1

: : :

Z
1

�1

�P (x1; x2; : : : ; xM )f(x1; x2; : : : ; xM )dx1dx2 : : : dxM : (2)

More compactly, we write this expression as

Pr(P ) =

Z
1

�1

�P (x)f(x)dx = E(�P (x)); (3)

where
R
represents the M -fold integral of (2). Note from (3) that the probability of a fuzzy event equals

the mathematical expectation E(�P (x)) of the membership function describing the fuzzy event.

Theorem 3.1 Let a set of continuous fuzzy events P1; P2; :: ; Pb; : : : form a fuzzy partition in a continuous

sample space implying that

8x :
X
Pb

�Pb(x) = 1; (4)

then the sum of all probabilities of fuzzy events Pb equals one, or

X
Pb

Pr(Pb) = 1: (5)
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The (straightforward) proof can be found in [14]. Since the theorem guarantees that the sum of proba-

bilities equals one, the corresponding sample space is termed well-de�ned.

3.2.2 Assessing fuzzy probabilities

Having a �nite set of representative sample data xp, mathematical statistics can be used to assess prob-

ability distributions. In the fuzzy case, the domain of X is fuzzily partitioned in a set of fuzzy classes

Pb; (b = 1; : : : ; B) such that condition (5) holds. This guarantees that X is well-de�ned. It also implies

that a fuzzy sample xp belongs to each fuzzy class to a certain degree. Let ~fPb denote the relative fre-

quency and fPb the absolute frequency of the contributions of the fuzzy samples xp to the fuzzy class Pb,

then the probability of fuzzy class (fuzzy event) Pb can be assessed conform

Pr(Pb) � ~fPb =
fPb
P

=
1

P

X
xp

�Pb(xp) = �̂Pb : (6)

Note that the vector ( ~fP1 ;
~fP2 ; : : :) describes an assessment of the probability distribution over all fuzzy

classes Pb. In line with the above-given presentation, conditional probabilities on fuzzy sets can be dealt

with. E.g., the conditional probability of fuzzy event (class) Pb, given fuzzy event (class) Pb0 , is given by

Pr(PbjPb0) =
Pr(Pb

T
Pb0 )

Pr(Pb0)
�

P
xp
�Pb(xp)�Pb0 (xp)P
xp
�Pb0 (xp)

: (7)

3.2.3 Assessing fuzzy expectations

The above-given theory demands that membership functions �Pb describing the fuzzy classes Pb in X

should (a) be de�ned locally to enable interpretability and (b) meet condition (4) to guarantee that the

fuzzy sample space X is well-de�ned. These requirements motivated us to de�ne them according to

�Pb(x) =
d
�q
b (x)PB

k=1 d
�q

k (x)
: (8)

The letter `d' represents a distance measure where db(x) represents the (e.g., Euclidean) distance between

vector point x and class centro��d �xb = (�xb1; �xb2; : : : ; �xbM ) in X . For the power q used in (8), we normally

choose the value 2. Note that by this de�nition �Pb(x) is locally de�ned around �xb with

�Pb(x)

8<
:

= 1 if x = �xb

< 1 if x 6= �xb:
(9)

In addition, we note that

�Pb(�xb) = 1) 8b0 6= b : �Pb0 (�xb) = 0: (10)

Let �xb represent the class centro��d of fuzzy class Pb in X , then we can estimate the mathematical

means E(xi); (i = 1; : : : ;M) by calculating the fuzzy sample means mxi using

E(xi) =

Z
1

�1

xif(x)dx �
X
b

�xbiPr(Pb) �
X
b

�xbi�̂Pb = mxi : (11)
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3.2.4 Assessing fuzzy regression hyperplanes

Let, in addition to the fuzzy partitioning of X in B fuzzy classes Pb , space Y be partitioned in C fuzzy

classes Fc with fuzzy centro��ds �yc = (�yc1; �yc2; : : : ; �ycN ) and locally de�ned fuzzy membership functions

�Fc de�ned according to

�Fc(y) =
d�qc (y)PC

k=1 d
�q
k (y)

: (12)

Classical regression [8] de�nes the regression hyperplanes of yj on x as the location of all mathematical

expectations E(y
j
jx) de�ned by

E(y
j
jx) =

Z 1

�1

yjf(yj jx)dyj ; (j = 1; 2; : : : ; N): (13)

To �nd approximations of regression hyperplanes (13), we start estimating the conditional mathematical

expectations E(y
j
j�xb). Using property (10) it is rational to choose as assessment

E(y
j
j�xb) =

X
c

�ycj Pr(FcjPb) �
X
c

�ycj

P
xp
�Fc(yp)�Pb(xp)P
xp
�Pb(xp)

= myj j�xb : (14)

Note that we applied equations (11) and (7) here. The conditional sample means myjj�xb ; (b = 1; 2; : : : ; B)

are used as points of support in a fuzzy interpolation approach for estimating the complete regression

planes according to

E(y
j
jx) �

X
b

�Pb (x)P
b0 �Pb0 (x)

myjj�xb : (15)

Here, each �Pb (x)=
P

b0 �Pb0 (x); (b = 1; 2; : : : ; B) is a normalized weighted fuzzy membership function2

with

�Pb (x) = Pr(Pb)�Pb(x): (16)

By combining equations (15), (16), (6), and (14), the fuzzy regression hyperplanes E(y
j
jx); (j =

1; 2; : : : ; N) can be estimated conform

E(y
j
jx) =

X
b

�Pb(x)P
b0 �Pb0 (x)

E(y
j
j�xb) �

X
b

�̂Pb�Pb(x)P
b0 �̂Pb0�Pb0 (x)

myj j�xb = myj jx: (17)

3.3 The CELA-algorithm

We here formulate CELA within the general framework as introduced in the previous section. As men-

tioned in section 3.1, CELA constructs a stochastic mapping from anM -dimensional (fuzzily partitioned)

input sample space X to an N -dimensional (fuzzily partitioned) output sample space Y . We use fuzzy

classes having as parameters the above-introduced fuzzy centro��ds �xb and �yc, the values of which should

be �xed. The idea behind �xing the output classes Fc is to facilitate a compact, close assessment of the

unconditional probability distribution in Y describing average statistical behavior. The �xation of the

input classes concerns the discovery of the above-mentioned regimes.

2Fuzzy interpolation approach (15) is quite similar to the Takagi-Sugeno fuzzy inference scheme [9]. However, instead

of just using normalized membership functions, we here also apply probabilistic fuzzy rule weights Pr(Pb). For further

discussion on this topic, we refer to [6, 13].
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3.3.1 Algorithmic steps of CELA

Step 1: Fixing the output classes

First, the output classes Fc are �xed by calculating appropriate locations of all fuzzy class centers

in Y . This is done using a fuzzy clustering heuristic. Actually, we identify each fuzzy class (event) Fc

with a fuzzy cluster and, in line with that, each class center �yc with a cluster centro��d. In the original

approach, competitive learning was applied but other fuzzy clustering algorithms might be used as well.

The result of the clustering is a fuzzy partitioning [9] of Y such that each class center �yc of the fuzzy

class Fc is situated in the center of a `cloud' of fuzzy sample points.

Step 2: Assessing unconditional output probabilities

Since the sample space Y is well-de�ned, the probability of each fuzzy class Fc can be assessed by

summing up the membership values �Fc(yp) conform equation (6) with xp replaced by yp. This yields

the probability vector ( ~fA1
; ~fA2

; : : :) = (�̂F1 ; �̂F2 ; : : :) with

8Fc : ~fFc =
1

P

X
p

�Fc(yp) = �̂Fc � Pr(Fc): (18)

The probability vector (18) characterizes the unconditional behavior in Y and has been termed the

Unconditional Output cluster membership Distribution (UOD).

Step 3: Fixing the input classes and assessing the conditional output probabilities

For each b-th regime, i.e., for each fuzzy input class Pb in X (b = 1; 2; : : : ; B), a Conditional Out-

put cluster membership Distribution (COD) (Pr(F1jPb;Pr(F2jPb; : : : ;Pr(FC jPb) in Y can be calculated

conform the theory of section 3.2.2. As mentioned, we are interested in exceptional behaviour in Y due

to special regimes in X . In order to quantify the degree of exceptionality, we use the exception �tness

function EF () de�ned by

EF (P1; P2; : : : ; Pb) =

BX
b=1

CX
c=1

�
Pr(FcjFb)� Pr(Fc)

�2
: (19)

By changing the fuzzy events Pb, i.e., by changing the locations of the centro��ds �xb of the membership

functions �Pb(x), the �tness function EF () can be optimized.

Step 4: Deriving a fuzzy rule base

By comparing the various CODs found to the UOD as found in step 2, we can determine the most

exceptional relationships, i.e., the regimes for which the deviations from the UOD are most exceptional.

Then we can express these most exceptional fuzzy relationships in a fuzzy rule base. For each regime,

the deviations from the UOD can be expressed in linguistic terms. It is of interest to put the results to

experts working in the domain at stake and to verify whether the rules found are consonant with their

experience. For an example on this, we refer to [15].

Step 5: Assessing the regression hyperplane

We can use (17) to assess the N regression hyperplanes of yj on x.
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3.4 Data Correction

It may occur that output values yp are structurally biased for known reasons while we are actually

interested in other e�ects. E.g., when analyzing return characteristics from companies, we might observe

a country e�ect or an industry e�ect while we only want to understand the e�ect due to di�erent capital

structures of companies. In these cases, it is highly desirable to have a procedure to correct the yp-values

for the known e�ects. Suppose we know that the variable xi causes a structural deviation such that for

each �xed value xi, all values yj are displaced with the same amount dji given by

dji = E(y
j
jxi)�E(y

j
): (20)

Then, �rst order data correction can be applied by adjusting all sample component values ypj of the

sample vector values yp according to

ynewpj = yoldpj � dji � yoldpj � (myj jxi �myj ); (j = 1; 2; : : : ; N): (21)

where the myj jxi 's and myj 's are calculated using equations (17) and (11) respectively.

4 Experimental Setup

4.1 Data

We use data from the largest companies in Japan. We take the company speci�c information on 31

December 1999 and relate that to the return distribution characteristics over the period 1 July 1999 until

30 June 2000. We only included the companies of which all information was retrieved. This resulted in

a total number of 196 companies. Stock price information is obtained from Datastream. Balance sheet

information is provided by Worldscope.

From the daily return series we calculated the following distribution characteristics: expected return,

standard deviation, skewness, kurtosis and market beta to arrive at a 5-dimensional return distribution

space (Y -space).

The �rm's characteristic vectors in the 7-dimensional X-space embody the following features:

Book to market ratio: The book value of the equity divided by the market value.

Company size: Proxied by the total yearly turnover.

Collateral : Material �xed assets + inventories. Division by total assets.

Free cash
ow : Operational income - interest costs - taxes + depreciation. Division by total assets.

Dividend payout : The dividend per share divided by the net pro�t per share.

Convertibility : The amount of convertible capital divided by total capital.

D/E ratio: The book value of the debt divided by the book value of the equity.

4.2 Filtering `zero returns' e�ects from the data

A common problem in return series is caused by zero returns. A zero return will occur when the stock

price did not change, either because no transaction took place or when the the sampling at t and t + 1

10



incidentally captured the same last transaction price. But zero returns may also stem from missing data

because the data feed was interrupted for some period. It is as well possible that the series starts or

ends with zero returns because the company was not listed before or after a certain moment in time.

The latter may be the result of default, merger or take-over. Clearly these zero returns may bias the

return distribution characteristics in a complicated way. As explained earlier the CEL Algorithm enables

a method to �lter such unwanted zero returns e�ects from the data.

Figure 1: Distribution e�ect from zero returns. The relative number of zero returns is on the horizontal

axis. We only considered return series with less than 25% zero returns. On the vertical axis we measure

the relative deviation from the unconditional mean value for the 5 distribution features. Each deviation

is normalized to enable plotting the values for all distribution characteristics in one �gure.

For this purpose we map the fraction of zero returns in the series (an 1-dimensional X-space) on the

return distribution space. Once we have estimated the regression hyperplanes of yj on x we can use this

to correct the original return distribution features.

The estimated zero returns e�ects are summarized in �gure 1. We note that the e�ects become more

important when the fraction of zero returns rises but we must realize that the frequency of companies is

very low at the right side of the �gure. The most important e�ect appears to arise for the beta and the

skewness. The beta tends to be higher for a high fraction of zero returns, but for extreme high fractions

(above 20%) it tends to be lower. The skewness indicates a tendency to more negative values (or less

positive values) for higher fraction of zero returns. As to be expected, the standard deviation gets lower

when there are more zero returns, but for a few companies with an extreme amount of zero returns the

standard deviation tends to be higher.
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5 Results

5.1 Mapping Company Characteristics to Return distribution regimes

We consider �ve clusters in the Y -space. Each cluster represents a (fuzzy) regime Fc regarding the return

distribution properties.

F1 F2 F0 F4 F3

Prob 0.416 0.329 0.126 0.080 0.050

average -1.314 0.063 0.063 -1.752 2.359

st dev 0.969 -0.616 -0.170 -0.631 2.755

skewness -1.698 0.967 0.151 -5.491 0.455

kurtosis 1.420 -0.380 -0.588 3.507 -0.032

beta 0.677 0.357 -0.975 -1.279 1.884

Table 1: Probability and Location of Y-clusters

Table 1 shows the probability and the relative centroid location of the optimized3 clusters. The

columns are sorted according to the cluster probability. The centroid values are expressed as normalized

deviations from the overall fuzzy mean myi for output dimension i following equation (11). Cluster F0

for instance has a probability of 12.6% while the expected return in the centroid (denoted as average)

is 0:063 standard deviations higher than the overall average, the standard deviation is 0.17 standard

deviations lower etc.

Prob D/E BK/MKT Div Pay Free CF Turnov Collat Convert

P0 0.289 -0.418 -1.170 -1.345 -1.061 0.002 -0.765 -1.143

P4 0.235 -1.758 0.391 1.394 3.618 -0.002 -0.536 0.359

P2 0.139 -0.820 1.113 1.599 -1.048 0.000 -0.500 -0.728

P1 0.067 2.642 1.005 0.766 -1.501 -0.007 -0.768 0.542

P5 0.063 -0.787 0.108 0.219 -0.754 0.001 0.091 0.215

P9 0.047 1.743 -2.733 -0.506 0.459 -0.001 -0.908 2.480

P6 0.047 2.191 2.246 0.367 2.039 -0.001 3.363 0.191

P8 0.042 2.500 -2.033 -1.200 3.736 -0.006 2.759 0.878

P3 0.040 0.707 3.631 2.218 3.300 0.000 1.521 0.487

P7 0.032 2.358 1.545 -1.030 1.376 0.000 1.748 2.588

Table 2: Probability and Location of X-clusters

Table 2 details the relative location of the cluster centroids in the X-space resulting from the CELA

mapping procedure. We arbitrarily chose a number of ten clusters. Each cluster represents a (fuzzy)

regime Pb regarding the company characteristics. The centroids can be seen as `hot spots' indicating

3See the sections on the CELA algorithm for details.
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non{average behavior of the return distribution. Note that the table is sorted following the probability of

occurrence. Each location is expressed as the normalized deviation from the overall fuzzy mean mxi for

input dimension i. To illustrate, cluster P0 has a probability of 28.9 % while the centroid value for the

D/E ratio is 0.418 standard deviations lower than the average, the Book to Market ratio is 1.17 standard

deviations lower etc.

5.2 Fuzzy Rule Base

Table 3 illustrates the fuzzy rule base identi�ed by CELA. Each line represents a rule associated with

a cluster centroid. Such rule implies a conditional output distribution (COD) that di�ers from the

unconditional one (UOD). The last but on column shows the (Euclidian) distance between COD and

UOD. The rules are sorted following the probability of occurrence. Note that the distance measure,

which tells us something about the 'exceptionality' of the rule, di�ers from the probability of the regime

(i.e. the X-cluster) for which the rule applies.

F0 F1 F2 F3 F4 dist UOD Prob

P0 0.187 -0.032 -0.054 0.044 0.070 0.033 0.289

P4 -0.097 0.016 0.048 -0.052 -0.094 0.022 0.235

P2 -0.092 0.052 0.002 -0.084 -0.081 0.026 0.139

P1 -0.097 0.006 0.018 -0.029 0.063 0.015 0.067

P5 -0.037 -0.008 -0.007 0.064 0.088 0.010 0.063

P9 -0.031 -0.015 0.022 0.055 0.003 0.011 0.047

P6 -0.055 -0.014 0.038 0.046 -0.023 0.016 0.047

P8 -0.082 0.004 0.030 -0.003 -0.013 0.014 0.042

P3 -0.026 0.006 -0.021 0.072 0.050 0.010 0.040

P7 -0.034 -0.018 0.004 0.058 0.091 0.012 0.032

Table 3: The Fuzzy Rule Base

The others cells in the table are relative deviations of their unconditional pendant. To exemplify: Rule

0 (P0) entails an 18.7% higher probability to arrive in regime 0 (F0) than the unconditional probability

of 0.126 (see �rst table), i.e. 1:187� 0:126 = 0:150.

5.3 Intrapolation for Individual Firms

With CELA we assess a multiple mapping (regression hyperplanes) from the �rm's characteristics data

space (7-dimensional) to the return data space (5-dimensional). As explained earlier, we can assess

conditional estimates of the return feature vector for a speci�c �rm's characteristics vector. To be able

to plot the return features in one single graph, we calculate per estimated feature the distance from it's

(unconditional) mean and normalize that by dividing by the standard deviation of the feature in the total

sample.
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Figure 2: Book to Market e�ect on return distribution.

Figure 3: Free Cash Flow e�ect on return distribution.

In the next 7 charts (�gure 2{8), we have scattered these return features against each of the �rm's

characteristics. Note that these relations are not partial but just one component plane of a multiple

relation. From these charts we draw the following conclusions. There appears to be a distinct e�ect of

the �rm's characteristics on the return distribution. However, the model does only account for about

2 percent of the total variation in the return characteristics. For some characteristics the e�ect is less

clear, for instance the D/E ratio measured in book values. For other characteristics, the relation with

return features is less clear for lower than average values as compared with higher than average values,

notably for free cash 
ow. We observe also that in all cases the market beta behaves clearly in an opposite

direction (although sometimes only for lower than, resp. higher than average values).

The direction of the size e�ect and the D/E e�ect (although less clear) is mirrored when compared to

the other e�ects. Thus above average sized �rms seem to have a similar e�ect on the return distribution

as �rms with relatively low free cash 
ow, book-to-market ratio's, low collateral, low convertibility etc.
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Figure 4: Dividend Payout e�ect on return distribution.

Figure 5: Convertibility e�ect on return distribution.

but the opposite (i.e. for relatively small �rms and high free cash 
ow etc. �rms) is less clear. We think

that this justi�es the claim that priced factors exist (apart from the market beta) in an asset pricing

model, one that is related to size and one that is related to free cash 
ow or book to market, collateral,

etc.

5.4 Industry E�ects

In �gure 9 we have plotted the relative frequency of companies in the 2-digit industry classes.

We observe that some classes are heavily overweighted, especially 28 (Chemicals And Allied Prod-

ucts), 35 (Industrial And Commercial Machinery And Computer Equipment), 36 (Electronic And Other

Electrical Equipment And Components, Except Computer Equipment ) and 37 (Transportation Equip-

ment). In addition we have 5 to 10 observations in 15 (Building Construction General Contractors
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Figure 6: Collateral e�ect on return distribution.

Figure 7: Size (turnover) e�ect on return distribution.

And Operative Builders), 20 (Food And Kindred Products), 38 (Measuring, Analyzing, And Controlling

Instruments; Photographic, Medical And Optical Goods; Watches And Clocks) and 53 (General Mer-

chandise Stores). Some 20 other classes have very few observations (mostly 1) and many other classes

do not have observations at all. Clearly this uneven distribution may in
uency our results in the sense

that they do not apply to the average Japanese company. However, since our sample represents the most

heavily traded stocks on the Tokyo Sock Exchange, our results may be considered representative for the

average Japanese investment portfolio.

But are the e�ects of �rm's characteristics on the return distribution are (partly or entirely) related to

industry e�ects? The characteristics we use are roughly the same as the proxies for the factors in the Fama

en French. This model appears to remain valid even after correction for industry classes, although we

know that average beta, book-to market ratio and size will vary among industry classes. But somehow

a more or less complex relationship between beta, book-to market ratio and size compensates for the
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Figure 8: Debt/Equity (book value) e�ect on return distribution.

Figure 9: Frequency Distribution of Industries

industry e�ect. Anyhow, from these results we may hypothesize that the return distribution e�ects we

identi�ed will not disappear after correction for industry. The CELA method is well suited to assess a

fuzzy classi�cation of return characteristics that is conditional on the industry. Based on such mapping

we may �lter the industry e�ects from our return data and then again examine the relation between

�rm's characteristics and return distribution features.

The same �lter procedure was already used for the zero-return e�ect set out earlier. Figure 10 shows

the normalized deviation of the conditional estimates from their mean value. All distribution features

seem to co-vary in a similar manner with the industry with the kurtosis as a noteworthy exception. The

e�ects seem to be the strongest around 35 (material and equipment), 45 (transportation) and 52 (trade).

This said we must note that the estimations of the conditional industry e�ect are far from perfect because

of the uneven distribution of our data over the industry classes. However, it appears that our earlier

results for the �rm's characteristics remain nearly unchanged after correction for the industry e�ect,

17



Figure 10: Industry e�ect on return distribution.

which is in line with the Fama and French �nding.

6 Conclusions

In this article we construct fuzzy classes of Japanese stocks with similar return distribution patterns

over time and map company characteristics on these classes, using the Competitive Exception Learning

Algorithm (CELA).

The properties of the return distribution appears to be clearly related to the factors following from

the theory. Apart from beta, important explanatory factors appear to be size and relative distress. The

debt-equity ratio, when measured in book values, does not show any strong relationship with unexpected

events and thus the market apparently has other sources of publicly available information, as the e�ect

is priced in.

Our approach enables us to make conditional predictions regarding the probability of a stock's or

a group of stocks' return series for di�erent return distribution classes (actually return indices). Using

these �ndings, one may construct conditional indices that may serve as benchmarks. These would be

particularly useful for tracking and portfolio management. In fact, there is another powerful motivation

for this research. In many contexts researchers and practitioners form industry portfolios for a variety of

purposes. To do this, they rely on the classi�cations provided by the government and industry research

organizations that typically measure the major line of business of the corporation. This procedure is

clearly inadequate, especially for Japan.

From the conditional probability distribution we can even intrapolate and estimated return properties

for individual stocks. This o�ers great potential for conditional option pricing and risk management

techniques, like VAR, relying on it.
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