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Abstract

Many practical optimization problems are characterized by some flexibility in the prob-

lem constraints, where this flexibility can be exploited for additional trade-off between im-

proving the objective function and satisfying the constraints. Especially in decision making,

this type of flexibility could lead to workable solutions, where the goals and the constraints

specified by different parties involved in the decision making are traded off against one

another and satisfied to various degrees. Fuzzy sets have proven to be a suitable represen-

tation for modeling this type of soft constraints. Conventionally, the fuzzy optimization

problem in such a setting is defined as the simultaneous satisfaction of the constraints and

the goals. No additional distinction is assumed to exist amongst the constraints and the

goals. This report proposes an extension of this model for satisfying the problem constraints

and the goals, where preference for different constraints and goals can be specified by the

decision-maker. The difference in the preference for the constraints is represented by a set

of associated weight factors, which influence the nature of trade-off between improving the

optimization objectives and satisfying various constraints. Simultaneous weighted satis-

faction of various criteria is modeled by using the recently proposed weighted extensions

of (Archimedean) fuzzy t-norms. The weighted satisfaction of the problem constraints
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and goals are demonstrated by using a simple fuzzy linear programming problem. The

framework, however, is more general, and it can also be applied to fuzzy mathematical

programming problems and multi-objective fuzzy optimization.

Keywords

Fuzzy constraints, weighted aggregation, weighted t-norms, fuzzy optimization, soft

decision making.

1 Introduction

Optimization is an important activity in many fields of science and engineering. A lot of model-

ing, design, control and decision making problems can be formulated in terms of mathematical

optimization. The classical framework for the optimization is the minimization (or maximiza-

tion) of the objectives, given the constraints for the problem to be solved. Many design prob-

lems, however, are characterized by multiple objectives, where a trade-off amongst various ob-

jectives must be made, leading to under or over-achievement of different objectives. Moreover,

some flexibility may be present for specifying the constraints of the problem. Furthermore,

some of the objectives in decision making may be known only approximately. In management

decisions, for instance, many of the objectives can be expressed approximately in linguistic

terms, but a precise mathematical formula is not available. Also, the decision constraints may

be relaxed in some situations, as long as the decision objectives can be improved. These types

of problems require an extension of the classical optimization and constraint framework in or-

der to deal with the flexibility of the constraints and with the approximate specification of the

objectives.

Fuzzy set theory provides ways of representing and dealing with the flexible or soft con-

straints, in which the flexibility in the constraints can be exploited to obtain additional trade-off

between improving the objectives and satisfying the constraints. Various fuzzy optimization

methods have been proposed in the literature in order to deal with different aspects of soft con-

straints. In one formulation of fuzzy optimization due to Zimmermann [21], concepts from

Bellman and Zadeh model of fuzzy decision making [1] are used for formulating the fuzzy op-

timization problem. In this formulation, fuzzy sets represent both the (aspired) problem goals
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and the flexible (soft) constraints. The optimal trade-off amongst the problem goals and the

constraints is determined by the maximizing fuzzy decision, in which the optimal decision is

found by maximizing the simultaneous satisfaction of the optimization objectives and the con-

straints. The asymmetry between the problem goals and the problem constraints disappears in

this formulation, and the fuzzy goals and the constraints are aggregated to a single function

that is maximized. It should be noted that this framework is general enough to handle crisp

constraints as well as fuzzy constraints.

In the fuzzy optimization model of Zimmermann, simultaneous satisfaction of the decision

goals and the constraints is sought. No further distinction is made amongst the constraints and

the goals. When there is a possibility to make a trade-off between improving the objective and

satisfying the constraints, however, the user of the optimization algorithm (i.e the designer, the

decision maker, the controller, etc.) can choose to trade a particular constraint or goal prefer-

entially with respect to the other ones. Within the classical framework, constraints of different

importance are distinguished by ordering them hierarchically according to their importance and

to admit them into the optimization problem one by one, often by first starting with the most

constraining set and then gradually removing the constraints one at a time. In addition to the

more conventional hierarchical ordering approach, fuzzy optimization admits another model for

dealing with the preference structure imposed on a constraint set by introducing weight factors

that represent the importance of the constraints for the optimization problem. Since there is

no distinction between the fuzzy goals and the fuzzy constraints in Zimmermann’s formulation

of fuzzy optimization, the weight factors can also be applied to the optimization objectives.

This report extends Zimmermann’s fuzzy optimization framework with weighted aggregation

of the fuzzy objectives and the fuzzy constraints. Within the extended framework, the trade-off

amongst the objectives and various constraints can be influenced by changing the associated

weight factors. Recently proposed weighted extensions of fuzzy t-norm operators are used for

the aggregation [7].

The proposed framework is rather general, and it can be applied to various fuzzy non-linear

programming problems with multiple objectives and constraints. In this article, the application

of the framework to fuzzy linear programming is considered. The main concepts are illustrated

by using a small optimization problem as an example. It is assumed that a general optimization

algorithm is available and has been implemented for performing the final (crisp) optimization
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in order to obtain the optimal solution to the fuzzy optimization problem. Various well-known

algorithms with different complexity can be used for this purpose. Examples are interior-point

methods, sequential quadratic programming, exhaustive search or even heuristic search. For the

working example in this report, an optimization algorithm based on Nelder and Mead’s simplex

minimizer [14] is used.

The outline of the report is as follows. Section 2 describes the general fuzzy optimization

framework used in the remainder of this report. Section 3 discusses the application of the fuzzy

optimization framework of Section 2 to fuzzy linear programming problems. Zimmermann’s

solution to fuzzy linear programming is presented. Weighted aggregation of fuzzy sets is intro-

duced in Section 4. Popular methods for weighted fuzzy aggregation are considered as well as

proposals based on recent developments in the field of fuzzy aggregation. The weighted aggre-

gation methods considered are used in Section 5 for formulating the weighted combination of

constraints within the fuzzy linear programming framework. The proposed formulation is illus-

trated in Section 6 by presenting a small example. Finally, conclusions are given in Section 7.

2 Fuzzy Optimization

Fuzzy optimization is the name given to the collection of techniques that formulate optimization

problems with flexible, approximate or uncertain constraints and goals by using fuzzy sets. In

general, fuzzy sets are used in two different ways in fuzzy optimization.

1. To represent uncertainty in the constraints and the goals (objective functions).

2. To represent flexibility in the constraints and the goals.

In the first case, fuzzy sets represent generalized formulations of intervals that are manipulated

according to rules which are extensions of the interval calculus by using the �-cuts of fuzzy sets.

In the second case, fuzzy sets represent the degree of satisfaction of the constraints or of the

aspiration levels of the goals, given the flexibility in the formulation. Hence, the constraints (and

the goals) that are essentially crisp are assumed to have some flexibility that can be exploited

for improving the optimization objective. This framework is suitable for the representation of

interaction and possible trade-off amongst the constraints and the objectives of the optimization,

as discussed in this report. Consequently, the remainder of the report considers the latter case,
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where the fuzzy sets represent the flexibility in the constraints and the goals. Further, the term

fuzzy optimization also refers to a formulation in terms of the flexibility of the constraints.

The general formulation for fuzzy optimization in the presence of flexible goals and con-

straints is given by

fuzzy maximize
x2X

[f1(x); f2(x); : : : ; fn(x)]

subject to gi(x) ~� 0; i = 1; 2; : : : ; m:

(1)

In (1), the tilde sign denotes a fuzzy satisfaction of the constraints. The sign ~� thus denotes

that gi(x) � 0 can be satisfied to a degree smaller than 1. The fuzzy maximization corresponds

to achieving the highest possible aspiration level for the goals f1(x) to fn(x), given the fuzzy

constraints to the problem. This optimization problem can be solved by using the approach of

Bellman and Zadeh to fuzzy decision making [1].

Consider a decision making problem where the decision alternatives are x 2 X . A fuzzy

goal Fj, j = 1; 2; : : : ; n is a fuzzy subset ofX . Its membership functionFj(x), x 2 X , withFj :

X ! [0; 1] indicates the degree of satisfaction of the decision goal by the decision alternative

x 2 X . Similarly, a number of fuzzy constraints Gi, i = 1; 2; : : : ; m can be defined as fuzzy

subsets of X . Their membership functions Gi(x), x 2 X denote the degree of satisfaction of

the fuzzy constraint Gi by the decision alternative x 2 X . According to Bellman and Zadeh’s

fuzzy decision making model, the fuzzy decision D is defined as the confluence of the fuzzy

goals and constraints, i.e.

D(x) = F1(x) Æ F2(x) Æ � � � Æ Fn(x) ÆG1(x) ÆG2(x) Æ � � � ÆGm(x); (2)

where Æ denotes an aggregation operator for fuzzy sets. Since the goals and the constraints must

be satisfied simultaneously, Bellman and Zadeh proposed to use an intersection operator, i.e. a

fuzzy t-norm for the aggregation. The optimal decision alternative x� is then the argument that

maximizes the fuzzy decision, i.e.

x
� = argmax

x2X
D(x): (3)

The optimization problem is then defined by

max
x2X

F1(x) ^ � � � ^ Fn(x) ^G1(x) ^ � � � ^Gm(x): (4)

Note that both the goals and the constraints are aggregated. Hence, the goals and the constraints

are treated equivalently, which is why the model is said to be symmetric.
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Figure 1: Hierarchical aggregation of goals and constraints.

The symmetric model is not always appropriate, however, since the aggregation of the

goals and the constraints may have different requirements. Often, for example, some trade

off amongst the goals is allowed or may even be desirable, which may be modeled by an aver-

aging operation. The aspiration level for some goals may then be unreachable, but this is not a

problem if compensation is allowed amongst the goals. The constraints, however, should not be

violated, i.e. their aggregation must be conjunctive. In that case, the goals and the constraints

can not be combined uniformly by using a single aggregation operator. In the simplest case, the

goals must be combined by using one operator and the constraints must be combined by using

another operator. The aggregated results must then be combined at a higher level by using a

third aggregation operator, which has to be conjunctive (i.e. both the aggregated goals and the

aggregated constraints should be satisfied). This leads to the hierarchical aggregation scheme

like the one shown in Fig. 1. An example of an application of this scheme can be found in [15].

Clearly, the above formulation of fuzzy optimization is closely related to the penalty func-

tion methods known from classical optimization theory. The aggregated goals correspond to an

overall objective function, which is maximized. The constraints extend this objective function

by using fuzzy t-norms. This approach is similar to the addition of a penalty function to an

optimization objective function in classical optimization. After combining the objectives and

the constraints, the resulting optimization is unconstrained, but possibly non-convex. Further-

more, gradient descent methods may not be suitable for the maximization due to possible and

likely discontinuity in the first derivative of the final aggregated function. Derivative-free search

and optimization algorithms such as genetic algorithms [5], simulated annealing [12], branch-
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and-bound [2] or Nelder and Mead’s simplex algorithm [14] can be used to solve this type of

optimization problems.

3 Fuzzy Linear Programming

Fuzzy linear programming can be viewed as a special case of the general multiple objective

multiple constraint fuzzy optimization. Let there be n decision variables. The general fuzzy

linear programming (FLP) problem is then formulated as

fuzzy maximize
x2Rn

c
T
x

subject to Ax ~� b

x � 0

: (5)

Zimmermann [21] has considered the fuzzy linear programming problem formulated as a sym-

metric problem in terms of (4). In this formulation, the vectors c and b as well as the matrix A

have crisp elements. The fuzziness arises because of the definition of fuzzy maximization and

the approximate inequality ~�. These are defined by the fuzzy goal and the fuzzy constraints

whose membership functions represent the degree to which x 2 R
n satisfies the fuzzy goal or

the fuzzy constraints. The membership function of the fuzzy goal is given by F (cTx), while the

membership functions of the fuzzy constraints are given by Gi(a
T
i x), i = 1; 2; : : : ; m, where

a
T
i represents row i of the matrix A. The optimal vector x� is found by

D(x�) = sup
x2Rn

F (cTx) ^G1(a
T
1
x) ^ � � � ^Gm(a

T
mx): (6)

Usually, shouldered trapezoidal fuzzy sets are used as membership functions. The fuzzy con-

straints Gi are then defined by their membership function

Gi(a
T
i x) =

8>>>><
>>>>:

1 a
T
i x < bi

pi + bi � a
T
i x

pi

bi � a
T
i x � bi + pi

0 bi + pi < a
T
i x

: (7)

Next, a fuzzy set representing the satisfaction of the aspiration level for the objective is specified

as

F (cTx) =

8
>>>><
>>>>:

1 zu < c
T
x

c
T
x� zl

zu � zl

zl � c
T
x � zu

0 c
T
x < zl

: (8)
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The coefficients zl and zu are obtained by solving the conventional linear programming prob-

lems
maximize cTx

subject to Ax � b

x � 0

; (9)

and
maximize cTx

subject to Ax � b+ p

x � 0

; (10)

respectively, where p is a vector of relaxation coefficients pi, i = 1; 2; : : : ; m.

Let now

a
T
0
= c

T
;

and

G0(a
T
0
x) =

8>>>><
>>>>:

1 z0 < a
T
0
x

a
T
0
x + p0 � z0

p0

z0 � p0 � a
T
0
x � z0

0 a
T
0
x < z0 � p0

;

with zu = z0 and p0 the relaxation of the aspiration level of the goal cTx. We have then

G0(a
T
0
x) = F (cTx). The solution to the fuzzy linear programming is now given by the con-

junction of all fuzzy sets as

D(x) =
m^
i=0

Gi(a
T
i x); (11)

where
V

is the minimum operator. The solution is found by seeking an optimal x� 2 R
n such

that

D(x�) = sup
x2Rn

D(x): (12)

After introducing an additional variable �, the solution to the optimization (12) can be found

by solving the conventional linear programming problem [21]

maximize �

subject to c
T
x � z0 � (1� �)p0

a
T
i x � bi + (1� �)pi; i = 1; 2; : : : ; m

x � 0

� � 0

� � 1

: (13)

8



The optimization (12) can not be reduced to the problem (13) when the membership func-

tions are not trapezoidal, or when t-norms other than the minimum are used for the aggregation.

In that case, the optimization must be solved by a more general optimization algorithm that can

deal with nonlinear programming problems such as sequential quadratic programming [4].

4 Weighted Fuzzy Aggregation

Weighted aggregation has been used quite extensively especially in fuzzy decision making,

where the weights are used to represent the relative importance that the decision maker at-

taches to different decision criteria. Almost always an averaging operator has been used for the

weighted aggregation, such as the generalized means [3, 16], fuzzy integrals [6] or the ordered

weighted average (OWA) operators [19]. Consequently, the weighted aggregation of fuzzy sets

has been studied with averaging type of operators. The generalized means extend naturally to

weighted equivalents. The weighted generalized mean operator has been used in many fields,

and it has been studied in the context of fuzzy set aggregation in [3, 9, 10]. The OWA oper-

ators and the fuzzy integrals are inherently weighted operators, which do not need a separate

extension to the weighted case. Applications of these operators have also been reported in the

literature (see e.g. [6, 20]).

The averaging operators are suitable for modeling compensatory aggregation. They are not

suitable, however, for modeling simultaneous satisfaction of aggregated criteria. Since the goal

in fuzzy optimization is the simultaneous satisfaction of the optimization objectives and the

constraints, t-norms must be used to model the conjunctive aggregation. In order to use the

weighted aggregation in fuzzy optimization, weighted aggregation using t-norms must thus be

considered.

The axiomatic definition of t-norms does not allow for weighted aggregation. In order to

obtain a weighted extension of t-norms, some of the axiomatic requirements must be dropped.

Especially the commutativity and the associativity properties must be dropped, since weighted

operators are by definition not commutative. The commutativity and the associativity require-

ments must be relaxed to hold only in case of equal weight factors, which is a special case of

weighted aggregation.

Weighted aggregation of fuzzy sets by using t-norms has been considered first by Yager
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in [17]. He proposed to modify the membership functions with the associated weight factors

before the fuzzy aggregation. The weighted aggregation is then the aggregation of the modi-

fied membership functions. A generalized form of this idea leads to the weighted aggregation

function [18]

D(x;w) = T [I(G1(x); w1); I(G2(x); w2); : : : ; I(Gm(x); wm)]; (14)

wherew is a vector of weight factors wi 2 [0; 1], i = 1; 2; : : : ; m associated with the aggregated

membership functions Gi(x), T is a t-norm and I is a function of two variables that transforms

the membership functions. Usually, the power-raising method is used for the transformation

and the minimum operator for the t-norm, so that the aggregation function becomes

D(x;w) =
m^
i=1

[Gi(x)]
wi (15)

The weighted t-norm aggregation (14) and its special cases like (15) have long been moti-

vated on intuitive grounds [17], and an axiomatic framework for the extension of t-norms with

weight factors has been unavailable. Nevertheless, the aggregation function (15) is quoted of-

ten (see e.g. [13]) in various publications regarding fuzzy weighted aggregation, especially in

multicriteria decision making, without regard to mathematical analysis for the requirements re-

garding the implication functions I and the conditions under which they can be applied. This is

possibly one reason why weighted aggregation of fuzzy sets has not been considered in fuzzy

optimization previously.

Recently, weighted aggregation of fuzzy sets has been investigated in more detail in a gen-

eralized framework [7, 10, 11], where weighted counterparts of fuzzy t-norms have also been

proposed based on a sensitivity analysis of weighted fuzzy aggregation. The analysis provides a

general mechanism for introducing weight factors into Archimedean t-norms and t-conorms by

considering several requirements that can be imposed on a weighted aggregation operator. The

results are extensions of fuzzy aggregation operators such as the t-norms and the t-conorms to

their weighted counterparts. The analysis indicates, for example, that the power raising method,

apart from the idempotent case, can only be used with strict Archimedean t-norms, but not with

the nilpotent t-norms. An application of the weighted counterparts of Archimedean t-norms can

be found in [8].

Weighted counterparts of several Archimedean t-norms as studied in [7] are used in this

report. The specific operators considered are the weighted extension of the product t-norm
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given by

D(x;w) =
mY
i=1

[Gi(x)]
wi

; (16)

the extension of the Hamacher t-norm given by

D(x;w) =

8>>>><
>>>>:

1

1 +
mX
i=1

wi

1�Gi(x)

Gi(x)

if 8i; Gi(x) > 0

0 if 9i; Gi(x) = 0

(17)

and the extension of the Yager t-norm given by

D(x;w) = max

0
@0; 1� s

vuut
mX
i=1

wi(1�Gi(x))s

1
A ; s > 0: (18)

Note that the extension (16) of the product t-norm according to the sensitivity based analysis is

the same as the application of (14) with the product operator as T and the power raising as I .

However, the extensions (17) and (18) can not be obtained from (14).

5 Fuzzy Linear Programming with Weighted Aggregation

In fuzzy optimization, the importance of the constraints can be used to indicate which con-

straints should be satisfied preferentially, in a similar fashion to the aggregation of decision

criteria in fuzzy decision making. Since it is possible to satisfy a constraint partially in fuzzy

optimization, the weight factors indicate to what degree various constraints can be interchanged.

The extension of fuzzy linear programming with weighted aggregation follows naturally from

the formulation in (6). The fuzzy linear programming problem is formulated in the usual way by

specifying the constraints, the flexibility in the constraints (fuzzy sets representing the allowed

relaxation) and the coefficients for the objective function from which the aspiration level for

the optimization goal is computed. Additionally, the user must now specify a set of weight fac-

tors that indicate the importance of the corresponding constraints or the objective in the fuzzy

aggregation used for fuzzy optimization.

Following the notation in (11), note that there are m + 1 fuzzy sets to be aggregated in the

problem, where m is the number of constraints. Hence, m+1 weight factors must be specified.

Furthermore, the membership functions are functions of aTi x, i.e. Gi(a
T
i x), i = 0; 1; : : : ; m
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with ai 2 R
n and x 2 R

n . The solution to the fuzzy linear programming in the presence of

weight factors is then given by the weighted conjunction of all fuzzy sets according to

D(x;w) = T
�
w; G0(a

T
0
x); G1(a

T
1
x); : : : ; Gm(a

T
mx)
�
: (19)

The solution is then found by seeking an optimal x� 2 R
n such that

D(x�;w) = sup
x2Rn

D(x;w): (20)

In case of using Yager’s approach to weighted fuzzy aggregation, (19) becomes

D(x;w) =
m^
i=0

�
Gi(a

T
i x)
�wi

: (21)

When using the extension of the product t-norm, one obtains

D(x;w) =
mY
i=0

�
Gi(a

T
i x)
�wi

: (22)

When using the extension of the Hamacher t-norm, one obtains

D(x;w) =
1

1 +
mX
i=0

wi

(1�Gi(a
T
i x))

Gi(aTi x)

; (23)

and when using the extension of the Yager t-norm, one obtains

D(x;w) = max

0
@0; 1�

vuut
mX
i=0

wi[1�Gi(aTi x)]
2

1
A : (24)

Note that a value of s = 2 is used in (24). This value is also used in the example in Section 6.

Just like in fuzzy decision making, one of the questions to answer is how to select which

t-norm to use for the aggregation. This question is more general to fuzzy optimization. The

problem of selecting an aggregation operator is not studied explicitly in this report. We suffice

by applying several t-norms and by observing their influence on the optimization results.

The weight factors represent the relative importance of various constraints and the objective

with respect to one another. The general assumption is that the higher the weight of a partic-

ular constraint, the larger its importance on the aggregation result. Hence, final optimization

result will be closer to the more important constraints. If the objective is more important, the

constraints will be relaxed to a larger degree in order to increase the objective function. The
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user can specify preferences regarding the outcome of the optimization by changing the weight

factors.

Note that a similar effect can also be achieved by modifying the membership functions that

represent the flexible constraints and the objective. If a constraint should have more influence

on the result, it can be set tighter by reducing the fuzzy spread of the membership function, i.e.

by reducing the value of pi. However, the analysis of the optimization problem is simplified if

the specification of the constraints can be separated from the specification of the aggregation

to determine the solution. The membership functions then represent the actual constraints im-

posed on the problem. The weight factors represent the preferences of the user regarding the

optimal solution, and they indicate the influence of the constraints on the total aggregation. By

separating the specification of the constraints from the specification of the aggregation, a more

transparent problem specification can be obtained. The membership functions can be modified

to study the influence of the constraint flexibility on the optimization results. The weight factors

can be modified to study the sensitivity of the optimization results to the preference information

articulated by the user for satisfying the different constraints.

One of the issues regarding the use of weight factors in any problem specification is to find

a common scale for the weight factors corresponding to the constraints and the objective. The

problem is to determine a suitable normalization for the weight factors so that the influence of

the weight factors on different constraints can be compared. Often, the normalization is done

so that the sum of the weight factors equals to 1, i.e.,

mX
i=0

wi = 1: (25)

This normalization is suitable for weighted aggregation by using averaging operators. Essen-

tially, the increase in the importance of one of the constraints is coupled to a decrease in the

importance of the remaining constraints. Since the sum of the weight factors is 1, only an aver-

aging result can be obtained. The conjunctive aggregation with t-norms is not compatible with

averaging aggregation, and hence a different normalization is needed. We propose to use

m_
i=0

wi = 1 (26)

as the normalization, where _ denotes the maximum operator. Equation (26) has the desired

property that the influence of a constraint diminishes to zero as the corresponding weight factor
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decreases to zero, while the influence of a constraint can not increase arbitrarily due to the

maximal value.

6 Example

In this section, weighted fuzzy linear programming is illustrated by using a small fuzzy lin-

ear programming problem based on an example from [13]. The solution of the fuzzy linear

programming problem is studied by using the t-norms from Section 5 for aggregation. The

influence of different weighting is studied for three scenario’s.

1. With equal weigh factors.

2. With unequal weight factors with preference for one of the constraints.

3. With unequal weight factors with preference for increasing the objective function.

Consider a company that makes two products, P1 and P2. Product P1 has a k$0.40 profit per

unit, while product P2 has a k$0.30 profit per unit. Product P1 takes twice as long to produce

than product P2. The total labor time per day is 500 hours, and it may be extended to 600 hours

per day due to special arrangements for overtime work and hiring of external labor resources.

The supply of material is sufficient for at least 400 units of both products, but it may possibly

be extended to 500 units per day. The problem is to determine the number of units to produce

per day of each product P1 and P2 in order to maximize the total profit.

Let x1 and x2 represent the number of units of the products P1 and P2, respectively. Then

the fuzzy optimization problem is formulated as

fuzzy maximize
x2R2

z = 0:4x1 + 0:3x2

subject to x1 + x2
~� 400 material

2x1 + x2
~� 500 labor hours

x � 0

: (27)

Note that

a
T
0
= c

T = [0:4 0:3];

a
T
1

= [1:0 1:0];

a
T
2

= [2:0 1:0]:
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Figure 2: Membership functions that represent the flexibility in (a) the material amount, (b) the

labor hours.

Assume that the membership functions for the constraints are defined as piecewise linear

membership functions

G1(x1 + x2) =

8
>>><
>>>:

1 x1 + x2 < 400

500� (x1 + x2)

100
400 � x1 + x2 � 500

0 500 < x1 + x2

; (28)

and

G2(2x1 + x2) =

8>>><
>>>:

1 2x1 + x2 < 500

600� (2x1 + x2)

100
500 � 2x1 + x2 � 600

0 600 < 2x1 + x2

: (29)

Figure 2 shows the membership functions for the constraints.

We now determine the membership function for the aspiration level of the objective (profit).

The coefficients zl and zu for the membership function for the objective are determined by

solving (9) and (10), respectively. The solution obtained is zl = 130 and zu = 160, which leads

to the membership function

G0(c
T
x) =

8>>><
>>>:

1 160 < 0:4x1 + 0:3x2
c
T
x� 130

30
130 � 0:4x1 + 0:3x2 � 160

0 0:4x1 + 0:3x2 < 130

: (30)

The relaxation coefficients can be read directly from (28), (29) and (30) as p1 = p2 = 100, and

p0 = 30.

By using (13), the optimal solution of the fuzzy linear programming is obtained for �� = 0:5

as x�
1
= 100 and x

�

2
= 350. The optimal profit z� is found to be k$145. Note that this is an
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intermediate result between zl and zu. The number of labor hours needed per day is 550, and

450 products are produced. Hence, by relaxing the constraints within the allowed flexibility

bounds, the profits have increased from k$130 to k$145. Note that this solution corresponds to

a non-weighted aggregation using the minimum operator according to (11).

Similarly, other aggregation operators can be used to determine the optimal solution. We

now report the result of optimization using the operators (22), (23) and (24) when the weight

factors are equal, i.e wi = 1, i = 0; 1; 2. In all these cases, the optimization is performed by

the simplex algorithm of Nelder and Mead [14], using the optimal solution due to (13) as the

initial estimate. The optimization results are rounded to the nearest integer, since the products

are assumed to be fully completed on each day. When the product operator (22) is used for

the aggregation, the optimal solution is found to be x�
1
= 50 and x�

2
= 400, which corresponds

to a profit of k$140. The aggregation using the Hamacher operator (23) leads to x
�

1
= 79,

and x
�

2
= 370 corresponding to z

� = 142:6. When the Yager operator (24) is used, x�
1
= 79

and x
�

2
= 364 with z

� = 140:8. Observe that all four operators considered make different

trade-offs amongst the constraints and the objective. The minimum operator leads to the largest

profit, but of course it requires also the largest relaxation of the constraints. The minimum

operator relaxes the two constraints to an equal degree (0.5 membership), while the product

operator relaxes only the constraint on the materials. The other two operators are positioned

between the minimum and the product. The optimal solutions with each operator are also listed

in Table 1. Figure 3 shows the regions within which the trade-off amongst the constraints and

the objective function occurs. Also the contour lines (lines of equal function value) for the

aggregated decision function that is maximized are shown.

Suppose, now, that there is preference for satisfying one of the constraints to a larger degree.

The employees, for example, may find the constraint on the materials less important than the

constraint on labor hours. After all, making long overtime may not always be desirable, and

it may be difficult to arrange for outside labor resources. Accordingly, let the corresponding

weight factors be w0 = 1 (profit), w1 = 0:5 (material) and w2 = 1 (labor hours). Table 1 shows

the results of optimization with the modified weight factors. Note that the requirement for labor

time has decreased for all the solutions. This corresponds to the fact that the satisfaction of the

labor time constraint is more important to the user. Hence, the trade-off is achieved by relaxing

the materials constraint more. This is indeed what one would expect from decreasing the weight
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Figure 3: Regions within which the optimal solution is sought for different fuzzy aggregation

operators.

or importance of the materials constraint. Note that the weight of the materials constraint has

also decreased compared to the weight of the profits. Hence, the influence of the profit on the

overall aggregation has also increased. This is visible in the increased profits compared to an

aggregation with equal weight factors. Observe that the Yager operator leads to a comparable

profit as with the minimum operator in the non-weighted case. The relaxation of the labor

constraint is much less, however, which may be a more preferable solution in this case.

The management of the company may want to put more emphasis on the daily profits. Let

this goal be represented by the weight factors w0 = 1, w1 = 0:25 and w2 = 0:5. The optimal

results obtained from different aggregation operators are given in Table 1. As expected, the

profits increase further by relaxing the constraints more. The profit according to the minimum

operator is very close to the profit according to the Yager operator. However, the constraint

on the labor hours is relaxed to a smaller degree with the Yager operator, which may be a

more acceptable solution, given the context. The merits of one trade-off against the other must

be decided upon by the decision maker, but this example shows that the range of fuzzy set

operators together with different weight combinations can be used to explore various trade-off

possibilities. As an illustration, Fig. 4 shows the region within which the Yager operator leads
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Aggregation w0 w1 w2 x1 x2 Material Labor Profit

Minimum 1.0 1.0 1.0 100 350 450 550 145.0

Product 1.0 1.0 1.0 50 400 450 500 140.0

Yager 1.0 1.0 1.0 79 364 443 522 140.8

Hamacher 1.0 1.0 1.0 79 370 449 528 142.6

Minimum 1.0 0.5 1.0 76 391 467 543 147.7

Product 1.0 0.5 1.0 33 433 466 499 143.1

Yager 1.0 0.5 1.0 50 417 467 517 145.1

Hamacher 1.0 0.5 1.0 60 400 460 520 144.0

Minimum 1.0 0.25 0.5 75 402 477 552 150.6

Product 1.0 0.25 0.5 36 443 479 515 147.3

Yager 1.0 0.25 0.5 33 456 489 522 150.0

Hamacher 1.0 0.25 0.5 66 400 466 532 146.4

Table 1: Optimal solutions (rounded to the nearest integer) obtained for various aggregation and

weight factor combinations.

to the optimal solution, and the solutions corresponding to different weight combinations. Note

how the optimal solution moves towards to edge of the initial feasible region as the weight of

the labor constraint and the profit increases.

7 Conclusions

An optimization model based on weighted fuzzy aggregation has been proposed for satisfy-

ing the constraints and the objectives in fuzzy optimization. The model is an extension of the

solution framework proposed by Zimmermann [21]. In the proposed model, the user of the

optimization scheme is able to convey preference information for satisfying various goals and

constraints. For example, certain constraints can be more important to satisfy, and hence the so-

lution should take into account this preference information provided by the user. The difference

in the importance is represented as a set of weight factors. Weighted extensions of t-norms are

used for the aggregation. These operators can model simultaneous satisfaction of the constraints

and the goals, while taking the difference in the importance into account.
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Figure 4: Solutions when using the Yager operator for different combinations of weight factors:

� - non-weighted solution, Æ - more weight on labor constraint, � - more weight on profit.

A main advantage of the proposed method is that it allows the user to concentrate on the

actual limitations in a problem during the specification of the flexible constraints. The difference

in preference information is then incorporated during the specification of the weight factors.

In this way, a separation can be achieved between the requirements of the problem and the

preferences of the user regarding the preferred solution. In classical optimization, the preference

is specified as a hierarchical ordering of problem constraints that can be removed one by one

if needed. The fuzzy optimization setting provides the user with an alternative method to the

hierarchical ordering of constraints.
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