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A polynomial time algorithm for a deterministic joint pricing

and inventory model

Wilco van den Heuvela∗, Albert P.M. Wagelmansa†

a Faculty of Economics, Erasmus University Rotterdam, Econometric Institute,

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Abstract

In this paper we consider the uncapacitated economic lot-size model, where demand is

a deterministic function of price. In the model a single price need to be set for all periods.

The objective is to find an optimal price and ordering decisions simultaneously. In 1973 Kun-

reuther and Schrage proposed an heuristic algorithm to solve this problem. The contribution

of our paper is twofold. First, we derive an exact algorithm to determine the optimal price and

lot-sizing decisions. Moreover, we show that our algorithm boils down to solving a number of

lot-sizing problems that is quadratic in the number of periods, i.e., the problem can be solved

in polynomial time.

Keywords: Production; Pricing; Lot-sizing; Inventory

1 Introduction

The demand that a manufacturer has to satisfy is usually created by activities of its marketing

department. Instead of taking the marketing and production decisions more or less independently,

it may be beneficial to integrate these decisions. This leads to models that are more complex than

when we are only concerned with optimal production decisions. As an example, suppose that the

selling price of the item still has to be set and that the demand functions are given for the periods

under consideration. Then the planning problem consists of deciding simultaneously how high to

set the price and how much to produce in each period such that the total profit is maximized.

In this paper we consider the uncapacitated economic lot-sizing problem (ELSP). This model

can be described as follows. For a finite time horizon T , there is a known demand for a single
∗Corresponding author. Tel.: +31-10-4081321, Email: wvandenheuvel@few.eur.nl
†Email: wagelmans@few.eur.nl
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product. This demand has to be satisfied each period by producing in this period or in previous

periods, i.e., back-logging is not allowed. When production occurs in a period, a setup has to be

made and marginal production costs per unit production are incurred. Finally, holding costs are

incurred for carrying ending inventory from a period to the next one and it is assumed that all

costs are non-negative. Now instead of assuming that demand is deterministic as in the classical

ELSP, we assume that demand is a deterministic function of the price.

We see in the literature that two assumptions are made. First, one can assume that a different

price can be set in each period. For instance, this is the case for a monopolist. Thomas (1970)

showed that this problem can be solved in a similar way as the well-known algorithm proposed

by Wagner and Whitin (1958). For instance, if demand is assumed to be linear in the price, then

the algorithm requires O(T 2) computation time. This means that this problem can still be solved

efficiently.

Another assumption is that a single price must be set for all periods, i.e., pt = p for t = 1, . . . , T .

For instance, this is the case if firms rely on sales from catalogues. In this case it may be rather

expensive to communicate price changes to the customers. Kunreuther and Schrage (1973) propose

an heuristic algorithm to solve this problem. However, they do not give any approximation and

complexity results of their algorithm. In a more recent paper Gilbert (2000) considers the case

with multiple items and production capacities. In this paper it is assumed that setup costs are

negligible. The problem is solved iteratively by using the dual problem of the production scheduling

problem. For an overview of literature on both continuous and discrete joint pricing-production

decision-making we refer to Eliashberg and Steinberg (1993).

In this paper we propose an exact algorithm to solve the ELSP with deterministic demand

functions and a constant price for all periods. We show that the problem can be solved in polyno-

mial time. The remainder of the paper is organized as follows. In section 2 we give a mathematical

formulation of the problem. In the next section we describe the heuristic algorithm proposed by

Kunreuther and Schrage (1973). In section 4 we introduce an exact algorithm to solve the prob-

lem. In the last section we show that the running time of the algorithm is polynomial in the

number of periods. The paper is ended up with a conclusion and we give some suggestions for

future research.

2 Problem description

First, we will describe the classical ELSP in short. If we use the following notation

T : model horizon

Dt : demand in period t

Kt : setup costs in period t
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ct : unit production costs in period t

ht : unit holding costs in period t

xt : production quantity in period t

It : ending inventory in period t

then the problem can be formulated as

C(D) = min
∑T

t=1 Ktδ(xt) + ctxt + Itht

s.t. It = It−1 −Dt + xt t = 1, . . . , T

xt, It ≥ 0, t = 1, . . . , T

I0 = 0

where

δ(x) =





0 for x = 0

1 for x > 0.

and D is the demand vector of length T . The first set of constraints models that the ending

inventory in period t equals the ending inventory in period t − 1 plus the amount produced in

period t minus demand in period t. The second set of constraints models that production and

ending inventory are non-negative in each period. The above problem can be solved efficiently

by dynamic programming. Wagner and Whitin (1958) proposed an O(T 2) algorithm to solve the

problem. Federgruen and Tzur (1991), Wagelmans et al. (1992) and Aggarwal and Park (1993)

independently improved this result to O(T log T ) for the general case and to O(T ) for certain

interesting cases, such as stationary cost parameters.

Assume now that demand is not deterministic as in the ELSP, but demand is a deterministic

function of the price and a single price for all periods needs to be set. Kunreuther and Schrage

(1973) propose the demand function

Dt(p) = αt + βtd(p),

where d(p) is a differentiable non-increasing function. This means that demand will not increase,

if the price increases. Note that the function d(p) is independent of period t. If d(p) = −p we have

a linear demand curve. Now the objective is not to minimize the total costs as in the classical

ELSP, but to maximize total profit. If we introduce the additional notation

Rt(p) = pDt(p), the revenue in period t,

then the objective can be formulated as

Π(D(p)) = max
p>0:D(p)≥0

{
T∑

t=1

Rt(p)− C(D(p))

}
,

where D(p) corresponds to the vector [D1(p), . . . , DT (p)].
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Kunreuther and Schrage (1973) show that C(D(p)) is a concave piecewise linear function of

the ‘demand effect’ d(p). This can be seen in the following way. Let S be the set of production

periods (in increasing order) of a production plan. Furthermore, let s(i) be the first production

period after period i and if period i has no successor, then s(i) = T + 1 by convention. Because

of the zero-inventory property (see Wagner and Whitin (1958)), a production plan is completely

determined by its production periods. Now the cost S(d(p)) of a production plan S equals

S(d(p)) =
∑

i∈S

Ki +
∑

i∈S

ci

s(i)−1∑

t=i

Dt(p) +
T∑

i=1

s(i)−1∑

t=i+1

ht−1Di(p)

=
∑

i∈S

Ki +
∑

i∈S

ci

s(i)−1∑

t=i

(αt + βtd(p)) +
T∑

i=1

s(i)−1∑

t=i+1

ht−1(αi + βid(p)),

which shows that S(d(p)) is a linear function of d(p). Because C(D(p)) is the lower envelope of

linear functions and the number of possible production plans is finite, C(D(p)) is a concave piece-

wise linear function of d(p). This also means that each piece corresponds to a specific production

plan S.

3 Heuristic algorithm

In this section we present the heuristic algorithm proposed by Kunreuther and Schrage (1973).

The algorithm works as follows:

1. Set i := 0, start with some initial price pi and set Πi := −∞.

2. Set i := i + 1.

3. Calculate the demand vector D(pi−1) and let Si be the optimal production plan correspond-

ing to problem C(D(pi−1))

4. Calculate the price pi which maximizes the net profit Πi :=
∑T

t=1 Rt(pi)− C(Si)

5. If Πi −Πi−1 > 0, then go to step 2.

6. The terminating price is pi with corresponding net profit Πi.

In the remainder of this paper we will call this the KS-procedure. In step 3 of the algorithm, we

are looking for an optimal production plan given the demand vector D(pi−1), which boils down to

solving an ELSP. In step 4 we are looking for an optimal price corresponding to a fixed production

plan. If we have a relatively easy function d(p) (for instance, d(p) = −p), the optimization

problem may be relatively easy to solve (for instance,
∑T

t=1 Rt(p) is quadratic for d(p) = −p).

As in Kunreuther and Schrage (1973) we assume that the optimization problem in step 3 can be

solved (either analytically or by a search procedure).

4



Kunreuther and Schrage (1973) show that the above algorithm does not skip over any optimum

on its way to the terminating price, i.e., if pi−1 and pi are two successive prices generated by the

KS-procedure, then
∑T

t=1 Rt(pi)−C(D(pi)) ≥
∑T

t=1 Rt(p)−S(d(p)) for all prices p between pi−1

and pi and all plans S. Thus, if we have a lower bound pL and an upperbound pU on the optimal

price p∗ and we apply the KS-procedure with these values as initial prices resulting in terminating

prices p∗L and p∗U , respectively, then the optimal price p∗ satisfies the inequality p∗L ≤ p∗ ≤ p∗U .

So, if the terminating prices are equal, we have found the optimal price.

A graphical representation of the algorithm is shown in figure 1. In the figure it is assumed
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Figure 1: Heuristic algorithm

that d(p) = −p, so that
∑T

t=1 Rt(p) is quadratic and C(D(p)) is a non-increasing concave piece

wise linear function of p. The derivatives of the revenue and cost function are plotted against the

price p. Because d(p) = −p it follows immediately that the derivatives are a linear function and

a piece wise constant function, respectively. The algorithm starts with some initial price pL,0.

The marginal cost of the production plan corresponding to this price is line (1). In step 4 of

the algorithm we are looking for the optimal price corresponding to this production plan. This

optimal price occurs in the point where marginal revenue equals marginal cost (p = pL,1). Now we

are looking for the optimal production plan corresponding to the price p = pL,1, which is line (3).

Note that the algorithm skips over line (2). It may be clear that there is no optimal solution in this

part, because marginal revenue is larger than marginal cost. This means that it is not necessary
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to calculate all pieces of C(D(p)) explicitly. Now the optimal price corresponding to line (3) is

pL,2. At this point the algorithm terminates, because the optimal production plan corresponding

to this price is again line (3).

In an analogous way we can find a terminating price starting with an upperbound for the

optimal price p∗. Starting with price p = pU,0, we see that the algorithm also terminates in

two iterations at price p = pU,2. So, essentially the KS-procedure consists of a local search with

multiple starting points. In this example there is another local optimal price p∗ which satisfies

pL,2 < p∗ < pU,2. If the net profit in p∗ is larger than in pL,2 and pU,2, then the KS-procedure

will not find the optimal solution. Kunreuther and Schrage (1973) give an example for which the

algorithm does not converge. A slight modification of that example shows that this may have

major consequences for the net profit.

Example 1 Consider a three-period problem with K1 = 13, K2 = K3 = 10, ht = h = 1,

ct = c = 0 and Dt(p) = αt − βtd(p) with α1 = 25, α2 = α3 = 22, βt = β = 12 and d(p) = −p.

If we start with pL,0 = 0, the algorithm terminates after one iteration at pL,1 = 0.96 with net

profit ΠL = −0.06. Starting with pU,0 = 2.08 (the largest price for which demand is positive),

the algorithm terminates after one iteration at pU,1 = 1.46 with net profit ΠU = −2.56. However,

the optimal price equals p∗ = 1.13 with net profit ΠU = 0.44 > ΠL > ΠU . This example shows

that the KS-procedure may fail to find a profitable solution if one does exist. In this case a firm

may decide to produce not at all, while it is profitable to produce. We will consider this problem

instance in more detail later. (Note: In this example all prices and profits have been rounded to

nearest cent.)

4 Exact algorithm

In this section we present an exact algorithm to solve the ELSP with deterministic demand func-

tions. The main idea of the exact algorithm is that the KS-procedure is restarted. Assume that

the heuristic algorithm starts with pL < pU and terminates with prices p∗L and p∗U which satisfy

pL ≤ p∗L < p∗U ≤ pU . To restart the algorithm we need a suitable price p that satisfies p∗L < p < p∗U .

In the exact algorithm we will find such a price by applying an idea often attributed to Eisner and

Severance (see Eisner and Severance (1976)) on the function C(D(p)).

We will first explain how the Eisner Severance(ES)-method works. Assume we would like to

perform a parametric analysis on an optimization problem

z(λ) = min(c + λd)x

x ∈ X,

where X is a finite set. Here the vector of objective coefficients is a linear function of a parameter λ.

6



Assume we have some algorithm A to solve this optimization problem for a fixed λ. It is well-

known that the objective function z(λ) is a piece wise linear concave function of λ. Assume that we

want to find all breakpoints in the interval [λL, λU ]. This can be done in the following way. Apply

algorithm A on the optimization problem with λ = λL and λ = λU . Calculate the intersection

point λ of the lines corresponding to λL and λU , say lL(λ) and lU (λ). Perform algorithm A on

the optimization problem with λ = λ. If the objective value is equal to lL(λ) and lU (λ), there

is no new line piece between λL and λU . Otherwise, apply the above procedure recursevily with

λL := λL and λU := λ and with λL := λ and λU := λU .

An example of the ES-method is shown in figure 2. We see that the piece wise linear concave

6
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Figure 2: The Eisner Severance method

function consists of three line pieces: l1(λ), l2(λ) and l3(λ). If we apply algorithm A with λ = λL

and λ = λU , the corresponding lines are l1(λ) and l3(λ), respectively. These lines intersect at

λ = λ. Applying algorithm A on the optimization problem with λ = λ, we find line l3(λ). If we

repeat this procedure with λL := λL and λU := λ and with λL := λ and λU := λU , we will not

find new line pieces and the ES-method terminates. If B is the total number of breakpoints it is

easy to show that algorithm A needs to be applied 2B − 1 times. For more details we refer to

Eisner and Severance (1976).

As already mentioned before, C(D(p)) is a piece wise linear function of d(p) and each piece

corresponds to a production plan. Assume now that the KS-procedure terminates with prices

p∗L < p∗U . It follows from section 3 that in every iteration a new production plan is generated

except for the last iteration. Because the interval [p∗L, p∗U ] has not been searched, it is possible that

there are still production plans in [p∗L, p∗U ] that have a local or global maximum (see also figure 1).

If S∗L and S∗U are the optimal production plans corresponding to p∗L and p∗U , respectively, then by
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applying one iteration of the ES-method we can find the intersection point of the cost functions

S∗L(d(p)) and S∗U (d(p)) in terms of d(p), say in the point d(p) = v. Furthermore, because d(p) is

a continuous non-increasing function of p, there exists a p with p∗L < p < p∗U for which d(p) = v.

Therefore we propose the following recursive algorithm.

Start the KS-procedure with pL < pU and let p∗L and p∗U be the terminating prices

If p∗L = p∗U then

Stop; the optimal price is p∗L

Else

Call Optim(p∗L, p∗U )

End if

Function Optim(pL, pU )

p =ES(SL, SU )

If SL(d(p))) = SU (d(p))) then

CheckOptima

End function

Else

Perform the KS-procedure with p = p and let p∗ be the terminating price

If p∗ > p, then

Call Optim(pL, p); Call Optim(p∗, pU )

Else

Call Optim(pL, p∗); Call Optim(p, pU )

End if

End if

End function

In the algorithm the function CheckOptima checks if the found optimum is larger than the

previous found optimum (if any) and stores the corresponding price and production plan. The

production plans SL and SU correspond to the prices pL and pU , respectively. The function ES

applies one iteration of the ES-method and finds a price p with the property pL < p < pU as

described before. If there are no new production plans between SL and SU , we can terminate the

function Optim. If not, we apply the KS-procedure on the price p. It is not clear beforehand,

whether the terminating price p∗ is larger of smaller than p. If it is larger, then there may still

be production plans between pL and p and between p∗ and pU . Therefore, we repeat the same

procedure with starting prices pL and p and with prices p∗ and pU . If it is smaller, the procedure

is repeated the other way around. In the following example we illustrate the exact algorithm.
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Example 2 Consider the same problem instance as in example 1. For this problem instance we

have four possible production plans S1 = {1, 2, 3}, S2 = {1, 2}, S3 = {1, 3} and S4 = {1} with

corresponding costs

S1(p) = 33

S2(p) = S3(p) = 45− 12p

S4(p) = 79− 36p.

The total revenue equals R(p) =
∑T

t=1 Rt(p) = p(69 − 36p). From example 1 we know that

starting with pL = 0 the KS-procedure terminates at p∗L = 0.96 and starting with pU = 2.08 the

KS-procedure terminates at p∗U = 1.46. The production plans corresponding to these prices are S1

and S4, respectively. For the marginal cost and marginal revenue functions we refer to figure 3.
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Whereas the KS-procedure stops, the exact algorithm continues and performs one step of the

ES-method, i.e., the intersection point of S1(p) and S4(p) is calculated. These plans intersect in

the point pES = 1.28. Because S1(1.28) 6= S4(1.28), the algorithm applies the KS-procedure with

starting price pES = 1.28. The optimal production plan corresponding to this price is S2. The

optimal price corresponding to S2 is p∗ES = 1.13 and the KS-procedure terminates, because the

optimal plan for this price is again S2. (See also figure 3.)

Now it is possible that there are still optima in the interval [p∗L, p∗ES ] and [pES , p∗U ]. Therefore

the procedure Optim is called again with prices p∗L, p∗ES and pES , p∗U . Starting this procedure with

p∗L = 0.96 and p∗ES = 1.13, we calculate the intersection point of plans S1(p) and S2(p), which
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occurs at p = 1.00. Because S1(1.00) = S2(1.00), there are no new production plans between p∗L

and p∗ES and the procedure terminates. Analogously, starting with pES = 1.28 and p∗U = 1.46, the

procedure terminates at price p = 1.42.

Because the KS-procedure does not skip over any local optimum (see Kunreuther and Schrage

(1973)), it must hold that pL ≤ p∗ ≤ pU . Furthermore, because the number of possible production

plans is finite, the algorithm will always terminate. Moreover, because the whole interval [pL, pU ]

is searched, the global optimum will be found. It is clear that the running time of the algorithm

depends on the number of production plans. In the following section we will give an upper bound

on the number of production plans that may be optimal for some value of d(p).

5 Time complexity of the algorithm

In this section we will show that the time complexity of our algorithm is polynomial. To perform

the ES-method we need to solve an ELSP and in every iteration of the KS-procedure we also need

to solve an ELSP. We assume that step 4 of the KS-procedure requires less time then step 3, so

that solving the ELSP takes the most time. Solving an ELSP requires O(T log T ) time in general.

Because in every iteration of the KS-procedure a new production plan is generated (except for the

last) and because the ES-method is applied to find a new production plan between two existing

plans and terminates if such a plan is not found, the number of ELSP’s to be solved is not larger

than twice the number of production plans. Thus, if we are able to find a polynomial bound on the

number of production plans, the algorithm runs in polynomial time. Because every production

plan corresponds to a line piece in C(D(p)), it is sufficient to find a polynomial bound on the

number of line pieces in C(D(p)) as a function of d(p).

5.1 The proof

Theorem 1 The number of breakpoints of C(D(p)) as a function of d(p) is at most 1
2T (T − 1).

Note that the total number of different production plans is equal to 2T−1. We assume that in

period 1 production takes place and in the remaining T − 1 periods one may produce or not. We

will prove theorem 1 by showing that a number of production plans will not occur in C(D(p)).

Before we start the proof we give an example for model horizon T = 4. If we denote the intercept

of a line by a and the slope by −b, then a line l(p) can be represented by

l(p) = a− bp

and the intersection point of l1(p) and l2(p) occurs in

p1,2 =
a1 − a2

b1 − b2
.
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It may be clear that if we have four lines l1(p), . . . , l4(p), then a necessary condition to have three

breakpoints in the first quadrant is that if a1 > a2 > a3 > a4 then b1 > b2 > b3 > b4. If we have

three breakpoints, then a picture of such a situation is as follows.
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Figure 4: Example of 3 breakpoints

Example 3 Consider the ELSP with T = 4 periods with demand in period t according to

Dt(p) = αt − pβt. In this section a production plan is represented by a binary number. For

instance the number 1010 corresponds to a production plan with production in period 1 and

period 3. Now consider the following four production plans: 1010, 1011, 1110 and 1111 with the

corresponding lines

1010 : l1(p) = K1 + (α1 + α2)c1 + K3 + (α3 + α4)c3 − p((β1 + β2)c1 + (β3 + β4)c3)

1011 : l2(p) = K1 + (α1 + α2)c1 + K3 + α3c3 + K4 + α4c4 − p((β1 + β2)c1 + β3c3 + β4c4)

1110 : l3(p) = K1 + α1c1 + K2 + α2c2 + K3 + (α3 + α4)c3 − p(β1c1 + β2c2 + (β3 + β4)c3)

1111 : l4(p) = K1 + α1c1 + K2 + α2c2 + K3 + α3c3 + K4 + α4c4 − p(β1c1 + β2c2 + β3c3 + β4c4)

Note that

a1 − a2 = a3 − a4 = α4(c3 − c4)−K4

b1 − b2 = b3 − b4 = β4(c3 − c4).

Such a situation is illustrated in figure 5.

Lemma 2 If we have four lines l1, . . . , l4 with the properties a1 − a2 = a3 − a4, b1 − b2 = b3 − b4

and b1 6= b2, then we have not more than 2 breakpoints.

Proof It follows directly that we also have

a1 − a3 = a2 − a4 (1)

11
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p1,2 = p3,4 p1,3 = p2,4
p

Figure 5: Example with a1 > a2 > a3

and

b1 − b2 = b3 − b4, (2)

implying that

p1,2 = p3,4 and p1,3 = p2,4. (3)

Assume without loss of generality that a1 ≥ a2, so that a3 ≥ a4. Now we have the following

possibilities:

• a1 ≥ a2 ≥ a3:

It follows now that a3 ≥ a4, so that a1 ≥ a2 ≥ a3 ≥ a4. If we want to have three breakpoints,

it must hold that p1,2 < p2,3 < p3,4. But we know from (3) that p1,2 = p3,4, implying that

it is not possible to have three breakpoints.

• a1 ≥ a3 ≥ a2:

It follows now from (1) that a2 ≥ a4, so that a1 ≥ a3 ≥ a2 ≥ a4. If we want to have three

breakpoints, it must hold that p1,3 < p3,2 < p2,4. But we know from (3) that p1,3 = p2,4,

implying that it is not possible to have three breakpoints in this case.

• a3 ≥ a1 ≥ a2:

It follows now from (1) that it holds either that a3 ≥ a4 ≥ a1 ≥ a2 or that a3 ≥ a1 ≥
a4 ≥ a2. In the first case to have three breakpoints, it must hold that p3,4 < p4,1 < p1,2,

which contradicts (3). In the second case it must hold that p3,1 < p1,4 < p4,2, which also

contradicts (3).
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This means that in all cases it is not possible to have three breakpoints and that lines l1(p), . . . , l4(p)

cannot have more than two breakpoints. ¤

We can extend this proof to the case with n pairs of lines.

Lemma 3 If we have n ≥ 2 pairs of lines l1, . . . , l2n with the properties a2i−1 − a2i = 4a and

b2i−1 − b2i = 4b with 4b 6= 0 for i = 1, . . . , n, then we lose n− 1 breakpoints.

Proof Assume that we have n pairs of lines with the above property. The lines l2i−1 and l2i

correspond to pair i. Furthermore, we may assume without loss of generality that 4b > 0, so that

l2i−1(p) > l2i(p) for p < p∗ and l2i−1(p) < l2i(p) for p > p∗. Denote the lower envelope of the lines

by Fn(p), i.e.,

Fn(p) = min
i=1,...,2n

li(p).

It is clear that Fn(p) has a breakpoint in p∗ = 4a/4b. Now we can distinguish the following two

cases.

• There is exactly one pair that has an intersection point in Fn(p∗). If we call this pair i, then

i = arg min
j=1,...,n

l2j−1(p∗).

We will now show that every pair j 6= i will contribute at most one line to Fn(p). Assume

that p2j,2i < p∗. Then we have that b2j < b2i and the line l2j(p) may contribute to Fn(p).

But then l2j−1(p) will not contribute to Fn(p), because

b2j−1 = 4b + b2j = b2i−1 − b2i + b2j < b2i−1

and

l2j−1(p∗) > l2i−1(p∗),

which implies that l2j−1(p) > Fn(p) for p > p∗. The above situation is illustrated in figure 6.

Assume there is a pair k with p2k−1,2i−1 > p∗. Then we have that b2k−1 > b2i−1 and the

line l2k(p) may contribute to Fn(p). But then l2k(p) will not contribute to Fn(p), because

b2k = −4b + b2k−1 = −b2i−1 + b2i + b2k−1 > b2i

and

l2k−1(p∗) > l2i−1(p∗),

which implies that l2k(p) > Fn(p) for p < p∗. This situation is also illustrated in figure 6.

To summarize, there is exactly one pair (namely pair i) that contributes two line pieces to

Fn(p) and there are n − 1 pairs that contribute at most one line piece to Fn(p), so that at

least n− 1 breakpoints will not occur.
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Figure 6: Example with p2j,2i < p∗ and p2k−1,2i−1 > p∗

• There are two or more pairs of lines that intersect in the point Fn(p∗). In this case there

are exactly two of theses pairs that contribute one line piece to Fn(p) (see figure 7). One

...

...

...

...

...

...

...

...

...

...

...

...

...

..
l2i−1(p)

l2i(p)

l2j−1(p)

l2j(p)

p∗

Figure 7: Two pairs of lines intersect in p∗

can prove in an analogous way as in the previous case that the pairs which do not intersect

in Fn(p∗), contribute at most one line piece to Fn(p). Thus, if we have k ≥ 2 pairs that
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intersect in Fn(p∗), then Fn(p) consists of at most n − k + 2 line pieces, so that we lose at

least n + k − 2 > n− 1 breakpoints.

Thus, in both cases we lose at least n− 1 breakpoints. ¤

Proof of theorem 1

In the proof a production plan is represented by a binary number of length T . We assume that

demand in period 1 is positive, so that a production plan is completely determined by a T -digit

binary number starting with a 1. Now consider the following pairs of production plans

1 • · · · • 1 0 · · · 0 (4)

1 • · · · •︸ ︷︷ ︸
T − n− 2

1 ◦ · · · ◦︸ ︷︷ ︸
n

. (5)

A •-sign in a production represents a period where production takes place in plan (4) if and only

if production takes place in plan (5). Furthermore, in exactly one of the periods with a ◦-sign

production takes place. For instance, if T = 5, then the sequences

1 • 1 00

1 • 1 ◦◦

represent two times two pairs of production plans

10100 10100

10101 10110

11100 11100

11101 11110.

We will now show that production pairs with identical ‘tails’ satisfy the properties of lemma 3.

Let S be the set of production periods (in increasing order) for a production plan. For instance

with T = 5 the production plan 10101 corresponds to S = {1, 3, 5}. Furthermore, if i is an

production period, then s(i) is the successive production period and the successor of the last

production period equals T + 1 by convention. Now the cost S(d(p)) of a production plan S as a

function of d(p) equals

S(d(p)) =
∑

i∈S


Ki + ci

s(i)−1∑

t=i

Dt(p)


 =

∑

i∈S


Ki + ci

s(i)−1∑

t=i

αt


− d(p)

∑

i∈S

ci

s(i)−1∑

t=i

βt. (6)

Note that there are no holding costs in (6). It can be shown (see for example Wagelmans et al.

(1992)) that every ELSP can be rewritten as an ELSP without holding cost by making the sub-

stitution ct := ct +
∑T

i=t ht.
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Assume now that we have a pair of production plans S1 and S2 according to (4) and (5),

respectively, with period m and n (m < n) corresponding to the one but last and last production

period in (5), i.e., S1 = {i1, . . . , ik, m} and S2 = {i1, . . . , ik,m, n}. It follows from (6) that

S2(d(p))− S1(d(p)) = Kn + (cn − cm)
T∑

t=T−n+1

αt + p(cm − cn)
T∑

t=T−n+1

βt. (7)

It follows directly from (7) that the difference in intercept and slope is independent of the sequence

i1, . . . , ik.

Now for a fixed n ≥ 1 and a fixed production period in the last n periods, there are T − n− 2

places for the •-sign, implying that we have 2T−n−2 pairs with the properties of lemma 3. It

follows from this lemma that we lose 2T−n−2 − 1 breakpoints. Because we have n possibilities

for the ◦-sign and n ranges from 1 to T − 3, we lose
∑T−3

n=1 n(2T−n−2 − 1) breakpoints in total.

Furthermore, because the maximum number of breakpoints for model horizon T equals 2T−1 − 1,

the maximum number of breakpoints equals

2T−1 − 1−
T−3∑
n=1

n(2T−n−2 − 1) =

2T−1 − 1 +
1
2
(T − 3)(T − 2)−

T−3∑
n=1

n2T−n−2 =

2T−1 − 1 +
1
2
(T − 3)(T − 2)− (−2(T − 1) + 2T−1) =

1
2
T (T − 1),

where the second equality follows from lemma 4 (see appendix A).

As it follows from example 3 and figure 5, if li(p), lj(p) and lm(p), ln(p) are pairs of lines with

the properties of lemma 3, then the pairs li(p), lm(p) and lj(p), lj(p) also have these properties.

Call these pairs the complement pairs. Thus, to complete the proof we have to check that none

of the pairs defined in (4) and (5) are complement pairs of each other. To see that this holds,

note that the tails of the complement pairs (i.e., the production periods of the last n + 1 periods)

are identical for pairs constructed according to (4) and (5) with n fixed. However, the tails of

the production pairs defined in (4) and (5) are different. This means that the pairs can never be

complements of each other. ¤
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5.2 An O(T 2) Example

In this section we show that the bound on the number of optimal production plans in C(D(p)) in

section 5.1 is tight. Consider the following problem instance. Let

Dt(p) = D − p for t = 1, . . . , T

Kt = (T − t + 1)K for t = 1, . . . , T

ct = TT−t+1 for t = 1, . . . , T

ht = 0 for t = 1, . . . , T.

Again production plans are represented by binary numbers. We construct production plans in the

following way. We start with a production plan with only a setup in period 1. The next production

production plan is constructed by adding a setup in period T and the following production plans

are constructed by moving this setup one period earlier. If this is not possible anymore, we start

the procedure again by adding a setup in period T . Formally, if

Si = 1 • · · · • 010 · · · 0

is a production plan, then

Si+1 = 1 • · · · • 100 · · · 0

is the next production plan, where • · · · • is the same sequence in both plans, and if

Sj = 1 · · · 10 · · · 00

is a production plan, then

Sj+1 = 1 · · · 10 · · · 01

is the successive production plan. We will call this the ‘in’-plans. For instance, the in-plans

corresponding to T = 4 are 1000, 1001, 1010, 1100, 1101, 1110, 1111.

The main idea of the proof is as follows. If we only consider the ‘in’-plans, we will show that

these plans all contribute to the lower envelope. Then, if we consider the remaining production

plans, the ‘out’-plans (for instance, 1011 is an out-plan for T = 4), we will show that they will not

contribute to the lower envelope. Therefore, we will first show some properties of the production

plans. Note that we can construct all production plans by binary counting, starting with the

number 10 · · · 0 and ending with 11 · · · 1.

The first property is that the slopes of all plans are decreasing. Let S1 be a production plan

and S2 be the successive production plan. Furthermore, let k ≤ T be the last non-production

period and n be the first production period before k of plan S1 (see the following picture).

n k

S1 = 1 • · · · • 10 · · · 0 01 · · · 1
S2 = 1 • · · · • 10 · · · 0 10 · · · 0
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If we denote the (negative) slope b(Si) of plan Si by

b(Si) =
∑

i∈S

ci

s(i)−1∑

t=i

1,

then we have that

b(S1)− b(S2) = (8)

∑

i∈S1

ci

s(i)−1∑

t=i

1−
∑

i∈S2

ci

s(i)−1∑

t=i

1 = (9)

cn +
T∑

t=k+1

ct − ck(T − k + 1) ≥ (10)

T · TT−k+1 +
T∑

t=k+1

TT−k+1 − (T − k + 1)TT−k+1 ≥ (11)

T∑

t=k+1

TT−k+1 > 0. (12)

Note that the third inequality holds, because n ≤ k − 1 which implies that cn ≥ ck−1 = Tck and

the last inequality holds because k ≥ 2 so that T − 1 ≥ T − k + 1.

If K is sufficient small, then we can show that the intercepts of the production plans (con-

structed by binary counting) are also decreasing. Recall that the intercept a(Si) of production

plan equals

a(Si) =
∑

i∈Si


Ki + ci

s(i)−1∑

t=i

αt


 .

If we neglect the term
∑

i∈Si
Ki and because demand is constant, we have

a(Si) =
∑

i∈Si

ci

s(i)−1∑

t=i

D = Db(Si).

Because b(Si) is decreasing, it is clear that the intercepts a(Si) are also decreasing.

For the intercepts of the in-plans we can prove a stronger result. Namely, the difference between

the slopes of consecutive plans are decreasing, i.e., b(Si)− b(Si+1) > b(Si+1)− b(Si+2). If Si, Si+1

and Si+2 are of the following structure

n k

Si = 1 · · · 1 0 · · · 000 10 · · · 0
Si+1 = 1 · · · 1 0 · · · 001 00 · · · 0
Si+2 = 1 · · · 1 0 · · · 010 00 · · · 0,

(13)

then it holds that

b(Si)− b(Si+1) = cn − (T − k + 1)ck + (T − k + 2)ck−1
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and

b(Si)− 2b(Si+1) + b(Si+2) = (T − k + 3)T 2 − 2(T − k + 2)T + (T − k + 1) > 0

for T ≥ 1 and T − k + 1 ≥ 0, so that b(Si) − b(Si+1) > b(Si+1) − b(Si+2). For other consecutive

in-plans one can obtain the same result.

Now we consider the intersection points of two plans S1 and S2. It follows from 6 that if

S1(p) = S2(p), then

pS1,S2 = D +

∑
i∈S1

Ki −
∑

i∈S2
Ki

b(S1)− b(S2)
. (14)

Consider two consecutive in-plans Si and Si+1. If we have a transition from plan Si to Si+1

according to (13), then we have

∑

j∈Si

Kj −
∑

j∈Si+1

Kj = Kk −Kk−1 = (T − k + 1)K − (T − (k − 1) + 1)K = −K

and if we have a transition according to

Si = 1 · · · 10 · · · 00

Si+1 = 1 · · · 10 · · · 01,
(15)

then
∑

j∈Si

Kj −
∑

j∈Si+1

Kj = −KT = −K.

This means that
∑

j∈Si
Kj −

∑
j∈Si+1

Kj is constant. Because b(Si) − b(Si+1) is decreasing,

it follows from (14) that the intersection points are decreasing, which implies that all in-plans

contribute to the lower envelope.

We will now show that the out-plans will not contribute to the lower envelope. Therefore,

consider the following production plans

n k

Si = 1 · · · 1 0 · · · 00 10 · · · 0
Si+1 = 1 · · · 1 0 · · · 00 1 ◦ · · · ◦
Si+2 = 1 · · · 1 0 · · · 01 00 · · · 0,

(16)

where Si+1 is a plan with at least one setup in the period(s) with a ◦-sign. Thus, Si is an in-plan

with Si+2 as a successor and Si+1 is an out-plan. To show that Si+1 does not contribute to the

lower envelop, it is sufficient to show that pSi+1,Si+2 > pSi,Si+2 . We have that

∑

i∈Si+1

Ki ≥
∑

i∈Si

Ki + Km ≥
∑

i∈Si+2

Ki,

for some k < m ≤ T , because Kk + Km ≥ Kk−1. But then it follows from (14) that

pSi,Si+2 < D ≤ pSi+1,Si+2 .
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Because all out-plans have the same structure as Si+1 in (16), only the in-plans contribute to the

lower envelope.

To count the number of breakpoints of the lower envelope, we have to count the number of

in-plans. We have exactly one in-plan with a setup in period 1, T −1 in-plans with 2 setups, T −2

in-plans with 3 setups, etc. This means that the total number of line pieces equals

1 +
∑

t=1,...,T−1

t = 1 +
1
2
T (T − 1)

and the number of breakpoints equals 1
2T (T − 1).

6 Conclusion & Future research

In this paper we have presented an exact algorithm to solve the ELSP with deterministic demand

functions. We improved the heuristic algorithm proposed by Kunreuther and Schrage (1973) by

showing that the problem is a parametric analysis on the demand vector of the ELSP. Therefore

we applied on step of the Eisner Severance method to restart the Kunreuther Schrage algorithm

in cases of no convergence. Furthermore, we have shown that the running time of our algorithm

is polynomial in the number of periods T under certain conditions.

For future research one may consider the capacitated version of the ELSP, the so-called capac-

itated lot-sizing model (CLSM). This problem is NP-hard in general, but there are some special

cases that can be solved in polynomial time. If we add the extension of deterministic demand func-

tions to these problems, maybe they are still solvable in polynomial time. However, these problems

are more difficult to solve, because the cost function in the capacitated case is not piecewise linear

concave anymore, but the cost function is discontinuous in general.

A Appendix

Lemma 4 For n ≥ 1 it holds that

n∑

i=1

i2n+1−i = −2(n + 2) + 2n+2. (17)

Proof We will prove lemma 4 by induction. It is easy to verify that both the left and right hand

side of (17) equal 2 for n = 1. Assume now that lemma 4 holds for some n ≥ 1. We will show

that it also holds for n + 1. We have
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n+1∑

i=1

i2n+2−i =
n∑

i=1

i2n+2−i + (n + 1)2

= 2
n∑

i=1

i2n+1−i + 2n + 2

= 2(2n+2 − 2n− 4) + 2n + 2

= 2n+3 − 2(n + 3),

which completes the proof. ¤
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