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Abstract 

The instrumental variable (IV) estimator in a cross-sectional or panel regression model is often 

taken to provide valid causal inference from contemporaneous correlations. In this exercise we 

point out that the IV estimator, like the OLS estimator, cannot be used effectively for causal 

inference without the aid of non-sample information. We present three possible cases (lack of 

identification, accounting identities, and temporal aggregation) where IV estimates could lead to 

misleading causal inference.  In other words, a non-zero IV estimate does not necessarily 

indicate a causal effect nor does the causal direction. In this light, we re-examine the relationship 

between Chinese provincial birth rates and economic growth. This exercise highlights the 

potential pitfalls of using too much temporal averaging to compile the data for cross sectional 

and panel regressions and the importance of estimating both (x on y and y on x) regressions to 

avoid misleading causal inferences. The GMM-SYS results from dynamic panel regressions 

based on five-year averages show a strong negative relationship running both ways, from births 

to growth and growth to births. This outcome, however, changes to a more meaningful one-way 

relationship from births to growth if the panel analysis is carried out with the annual data. 

Although falling birth rates in China have enhanced the country’s growth performance, it is 

difficult to attribute this effect solely to the one-child policy implemented after 1978.  

 

Key words: IV estimator and causality inference, identification, accounting identities, temporal 

aggregation, spurious causality, Chinese provincial growth and fertility relationship. 
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1. Introduction 

 

Growth regressions based on instrumental variables from cross-sectional data are often used to 

examine causality between economic growth and a variable of interest.1 Does the IV estimator 

always deliver valid causal inference in this context is a question of interest. The IV estimator 

has come under some scrutiny recently, especially in relation to the omitted variable bias and 

“natural instruments” or instruments from natural experiments (for both pros and cons see 

Angrist and Krueger, 2001, Rosenzweig and Wolpin, 2000, Deaton, 2009, Heckman and Urzua, 

2009, Imbens 2009 and the references in them).2 The objective of this exercise is not to diverge 

into this literature but to highlight some major concerns of using the IV estimator in growth 

regressions for causality inference and then to analyze the Chinese fertility-growth relationship.  

China’s experience of rapid economic growth and falling fertility stand out as a basket case for 

assessing the usefulness of IV methods for causal inference. Unlike the developed industrial 

countries that experienced reduced family size as a choice outcome, China’s fertility decline was 

precipitated by the one-child policy. This decline coincided with China’s rapid economic growth 

brought about by the market oriented open economy growth strategies. A priori, therefore, one 

may argue that causality should run from the policy induced birth rate to economic growth as 

suggested by Li and Zhang (2007).3 If we go one step further to examine the reverse causality, 

we could expect the growth rate to have little explanatory power on the policy induced birth rate. 

Alternatively, as predicted by the price theoretic model of fertility decisions, we could expect a 

                                                 
1 For example, for trade-growth causality see Frankel and Romer (1999) and finance-growth causality see 
Levine et al. (2000). 

2  Deaton (2009) places his skepticism on the IV estimator as:  “Economists’ claims to methodological 
superiority based on instrumental variables ring particularly hollow when it is economists themselves who 
are often misled. My argument is that for both economists and non-economists, the direct consideration of 
the reduced form is likely to generate productive lines of enquiry.” 

3 Li and Zhang (2007), based on IV estimates, drew a conclusion in support of the neo-Malthusian thesis 
that high birth rates hamper economic growth and therefore, China’s one-child policy was growth 
enhancing. 
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positive effect of higher incomes on fertility if parents try to shun the one-child policy and go for 

a larger family size. 

After highlighting three situations (lack of identification, accounting identities, and temporal 

aggregation) where the IV estimator could produce misleading causal inference we move on to 

analyze the Chinese data by estimating a growth regression and birth rate regression with both 

five-yearly and annual data. The results are summarized in the concluding section. 

 

2. IV estimator and misleading causal effects 

For causality inference from the IV estimator a researcher would typically estimate one of the 

following two regressions in a pure cross sectional or non-dynamic panel setting: 

1 2 1 1 1γ= + +y y X β u           (1) 

2 1 2 2 2γ= + +y y X β v          (2) 

where 1 2, , ,y y u v  are , ( 1N × ) 1X  is 1(N K )× , 2X  is 2(N K )× , N is the number of observations 

and γ s and β s are the parameters. Suspecting endogeneity,4 suppose z is used as an instrument 

for 2y  in (1) or w is used as an instrument for 1y in (2). Now using partitioned matrices in the 

standard IV formula we can obtain 

1 * * 1
1 1 2 1 1 2ˆ ( ) ( )IVγ − − * *

1
′ ′′ ′= =z M y z M y z y z y          =    (3) * * * *

1
1 1

/
N N

i i i i
i i

z y z y
= =
∑ ∑ 2

1 * * 1
2, 2 1 2 2 1 2ˆ ( ) ( )IVγ − − * *′ ′′ ′= =w M y w M y w y w y =    (4) * * * *

2
1 1

/
N N

i i i i
i i

w y w y
= =
∑ ∑ 1

1 )where 1
1 1 1 1( ( )−′ ′= −M I X X X X  and 1

2 2 2 2( ( )− 2 )′ ′= −M I X X X X . Based on the symmetry and 

idempotent properties of these matrices we have written the variables with asterisks (e.g., 

, .* =z 1M z *
1 1 1=y M y ) that are purged of the effects of x  variables. The numerators and 

denominators of (3) and (4) scaled by N converge to the corresponding covariances and if there 

is endogeneity and by the definition of the instruments these covariances are not zero. Given the 

                                                 
4 IV estimators are used to correct for OLS bias resulting from endogeneity, measurement errors, and 
unobserved omitted variables. In this exercise, the focus is only on endogeneity.  
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interdependence, therefore, the role of the IV estimator reduces to establishing the causal effect, 

not the causal direction. 

 

Unfortunately there are circumstances where the IV estimator may provide misleading causal 

effects. We present three such possible cases. First, if 1 2X X X= =  in (1) and (2) and if the 

same instrument is used then we get 2, 1,ˆ 1 /IV IVˆγ γ= . Even if the instruments are different the 

same X leads to 1, 1 2ˆ 1 /IVγ γ→ = γ  and 2, 2ˆ IV 11 /γ γ→ = γ  because one regression is a simple 

algebraic transformation of the other. This identification problem is not an unlikely scenario 

when researchers specify only one of the two equations for estimation.  

 

Second, consider a case where endogeneity results from an explicit or implicit accounting or 

definitional identity, which is quite common in macro models. To illustrate the case consider the 

following simple macro model, a simplification from a large literature on the debate on export-

led growth verses growth-led exports (see Giles and Williams, 2000, for a survey):  
*

1 1
x
t t t t ts x y x uγ β= + +         (5a) 

x n
t t t t ty s x s n≡ +          (5b) 

where u i 2~ (0,t id )uσ , ty  is the GDP growth rate, tx  and  are respectively the growth rates of 

exports and non-exports in the GDP identity, 

tn

x
ts and are the corresponding shares in GDP and n

ts

*
tx  is an index that captures export promotion policies. To assess the causal effect of exports on 

GDP growth it is common to replace exports and non-exports in the GDP identity with some 

derivatives of their production functions and arrive at a behavioral equation. A simplified version 

of this equation is:  

 2 2
x

t t t t ty s x l vγ β= + +          (5c) 

where   is the population growth rate and it is assumed tl
2~ (0,t vv iid )σ . 5 

 

Given that (5a) and (5c) constitute an exactly identified system of equations we can easily derive 

the IV estimates. Since our focus is on 2γ  and using the identity (5b) we obtain 

                                                 
5 Since Feder (1982) the primary focus of many researchers has been on a variant of (5c) and not (5a).  
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2 * *

2, 2 * *

2 * *

2 * *

ˆ

       1 .

t t t t t t t
IV x x

t t t t t t t t t

n
t t t t t t t t t

x x
t t t t t t t t t

l x y x l l y
l x s x x l l s x

l x s n x l l s n
l x s x x l l s x

γ
−

=
−

−
= +

−

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

n
      (6) 

 

This shows that 2,ˆ IVγ  is a mixture of the identity effect (given by unity) and the causal effect. If 

there are no spillover effects from the export sector to the non-export sector ( *( , ) 0n
t t tCov x s n = ), 

and assuming that the denominator of (6) is positive, , and , we 

may get 

( , ) 0n
t t tCov l s n > *( , ) 0t tCov x l ≥

2,ˆ IV 1γ ≤ . If the causal effect is positive we could expect 2,ˆ IV 1γ > .6  In cross-country 

empirical studies, those who used OLS on a general form of (5c) obtained 2,ˆ 1OLSγ <  whereas 

those who used IV obtained estimates slightly bigger than unity (see for example, McNab and 

Moore, 1998, Tables 1 and 3). This, however, does not amount to establishing a causal 

relationship because of the presence of the identity effect.7 As emphasized by Hendry (1995, p. 

790) an identity does not represent a causal relationship. 

 

Third, a case that would be of particular interest, is one-way causality. For example, if 2 0γ =  in 

(2), by substituting (2) into (4) and noting 2 2 =M X 0 , we obtain 2,ˆ 0IVγ → . In this case, both 

OLS and IV estimators are consistent for 1γ  and only the IV estimator is consistent for 2γ . 

Therefore, we could estimate both regressions by both OLS and IV and compare the results and 

then make causal inferences. 

 

This theoretical outcome, however, may not be materialized in practice because of the temporal 

aggregation problem. It is common in panel regressions to use long-term (five years or more) 

averages to capture long-term effects. This, however, does not necessarily make causal inference 

easier.  Even in VAR processes with contemporaneously uncorrelated error terms, as temporal 

                                                 
6 Monte Carlo results based on a more general model similar to that of Feder (1982) re-affirmed these theoretical 
results. 

7 The result in (6) is suggestive of using 2,ˆ 1IVγ −  to test for causality when an identity problem is involved. We 
have not investigated this possibility in detail. 
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aggregation increases, the transformed error terms become highly contemporaneously correlated 

by absorbing the causal information contained in the lagged variables and make causal inference 

difficult.8 To illustrate the problem in focus in this paper, consider the following data generating 

process: 

 11 1 1

12 2 2

1 0
1 0

t

t t

t t

t

y y ug a b
x x vg a b

−

−

− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      (7) 

where 2~ (0,t uu iid )σ , 2~ (0,t vv iid )σ  and ( ) 0,  ,t sE u u t s= ∀ . Now consider estimating one of 

the following models from temporally aggregated (or averaged) data which are represented by 

the upper case letters: 

 1 1 1 1Y X Y Uτ τ τ τα γ β −= + + +         (8a) 

 2 2 2 1X Y X Vτ τ τ τα γ β −= + + + .       (8b) 

Note that parameter values also change with temporal aggregation. To assess the performance of 

the IV estimator under temporal aggregation we carried out a Monte Carlo simulation by 

generating data from (7) based on N(0,1)  and  at the frequency t = 1,2,…,6000 and then 

averaging 

tu tv

ty  and tx  over 12 periods to obtain non-overlapping averages at frequency τ  = 

1,2,…,500. Then using 1Xτ −  and 2Xτ −  as instruments in (8a) and 1Yτ −  and  as instruments in 

(8b) and averaging over 1000 replications we obtained the IV estimates. For brevity we report 

only a few representative cases in Table 1. We also provide OLS estimates in Table 1 simply for 

comparison. Although they are not consistent because of the correlation between U

2Yτ −

τ  and Vτ , 

they are informative. 

                                                 
8  See Rajaguru and Abeysinghe (2002; also references therein) for extensive analytical and Monte Carlo results on 
how stationary VAR processes shrink towards VAR(0) as temporal aggregation increases  and create 
contemporaneous correlations that take positive, negative or zero values depending on the relative magnitudes of the 
VAR parameters. 
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Table 1. OLS and IV estimates from temporally aggregated data 

Original parameters Parameter values after temporal aggregation 

1g  2g  1b  2b  1,ˆ OLSγ  2,ˆ OLSγ  1,ˆ IVγ  2,ˆ IVγ  

0.5 0 0.3 0.8 0.70 1.13 0.74 1.22 
-0.5 0 0.3 0.8 -0.70 -1.13 -0.75 -1.23 
-0.5 0.1 0.3 0.8 -0.65 -1.05 -0.75 -1.31 
-0.1 0.5 0.8 0.3 1.06 0.64 1.27 0.74 
-0.5 0.5 0.1 0.3 -0.09 -0.12 -0.15 -0.25 
-0.5 0.5 0.3 0.1 0.12 0.09 0.20 0.24 

 

The results in Table 1 clearly show that even when 2 0g =  (one-way causality from x to y) 

2,ˆ 0IVγ ≠ . The sign of 2γ̂  is determined by the sign of  in the disaggregate process. An 

interesting case emerges when both  and  are not zero. Although 

1g

1g 2g 2 0γ ≠  in this case, the 

sign of 2,IVγ̂  may not necessarily be that of ; the sign depends on the sign of the dominant 

effect between the two-way relationship. Moreover, as the last two rows of the table highlight, 

there are also possibilities where both parameter estimates

2g

1,ˆ IVγ  and 2,ˆ IVγ may become so small 

that we may end up with the wrong inference that the two variables are unrelated.  

 

The non-zero IV estimates presented above resulting from (i) a lack of identification, (ii) an 

accounting identity, and (iii) temporal aggregation highlight the difficulty involved in making 

causal inference from an IV estimate alone. Although the IV estimators are consistent they lack 

any causal meaning in these cases. There is also a circularity of the argument that the IV 

estimator can be used to test causality; we start assuming endogeneity and this is exactly what 

the IV estimator provides if the testing is done both ways. In general, the IV estimator, like the 

OLS estimator, cannot be used for causal inference without additional information. Note that the 

use of natural instruments does not solve these problems. 

 

Making causal inference from contemporaneous correlations is a challenging one. With reference 

to the temporal aggregation problem, Rajaguru and Abeysinghe (2008) present a solution within 

a cointegrating framework for pure time series models. If we want to use the IV estimator for 
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causal inference in a cross sectional setting, then we have to estimate both the regressions, 

preferably within a well specified structural framework. However, as we shall see in the next 

section, causal inference from the IV estimator may still need a fare amount of non-sample 

information. 

 

 

3. Chinese fertility-growth causality 

As discussed in the previous section we estimate two regressions, a growth regression and a birth 

rate regression. The panel growth regression is essentially that of Li and Zhang (2007): 

      (9a) *
, 1 1 1 , 1 1 1ln( / ) lnit i t it i t it i ity y BR y uγ β η− − ′= + + + +x β

where y is per capita income, BR is the birth rate as conventionally defined,  is a vector of 

control variables, and 

1x

iη  is time-invariant regional effects. Before we move on to the rest of the 

discussion it is important to understand the exact meaning of the regression (9a). Fig 1 provides a 

scatter plot of per capita income growth and birth rates by province for time series data over 

1954-2002. As we can see, there is virtually no relationship between the two variables. Li and 

Zhang (2007), however, find a statistically significant negative relationship between the two 

variables. This is because (9a) is an equivalent transformation of the model  

       (9b) *
1 1 , 1 1ln lnit it i t it i ity BR yγ β η− ′= + + + +x β u

with  which is negative if *
1 1 1β β= − *

1β  is a fraction. Fig 2 is a scatter plot of the relationship between 

log per capita income and the birth rate by province over 1953-2002. Now there is a clear negative 

relationship between the two variables. This negative relationship is exactly what the Li-Zhang regression 

picks up and therefore the regression (9a) should be interpreted as an income-birth model rather than a 

growth-birth model.9  Nevertheless, we continue to refer to it as a growth-birth model.  

 

Insert Fig 1 and Fig 2 

 

                                                 
9 These type of growth regressions typically involve an initial level of per capita income ( , 1ln i ty − ) which 

yields a negative estimated coefficient. This is a technical effect because of the equivalence of the 
transformation involved.  
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To specify the birth rate regression we follow the literature on price theoretic and relative income 

approaches to modeling fertility decisions (Easterlin, 1983, Abeysinghe, 1993):  

 *
2 3 , 1 2 , 1 2 2ln lnit it i t i t it i itBR y y BRγ γ β μ− − ′= + + + +x β

2 , 1 2 3 , 1 2 ,ln( / ) ( ) lnit it i t i t i t

v+     (10a) 

 *
1 2 2it i itBR y y y BRγ γ γ β− − ′= + + + x vμ +− + +β .  (10b) 

In (10) the variables that capture the time cost of women are absorbed into the vector  and 2x iμ  

represent time-invariant regional effects. Both the current income and lagged income ( ln ity  and 

) appear in (10a) to capture the relative income effect; an increase in current income 

relative to a reference income level is expected to increase fertility.

, 1ln i ty −

2 0

10 Therefore, we expect, 

γ >  and 3 0γ < , and if these two coefficients are of equal magnitudes then the coefficient of 

 in (10b) becomes zero. Obviously the choice of control variables in regressions (9) and 

(10) is constrained by the availability of the required data. 

, 1ln i ty −

 

We present two sets of estimation results for (9) and (10). In the first set, for the purpose of 

comparison with Li and Zhang (2007), we use data averaged over five year intervals (except for 

the initial levels) over 1978-2002 for 28 provinces.11 In the second set we use annual data over 

1953-2002. For the estimation, we adopt the GMM-SYS methodology that Li and Zhang have 

adopted that involves estimating the equations in first differences to remove the time-invariant 

provincial fixed effects and then using a system GMM to estimate growth and BR regressions 

separately. As for instruments we use the minority proportion in the first set of regressions as in 
                                                 
10  It is worth mentioning that the non-Malthusian outcome of falling family size as income rises has been 
a puzzle for economists for long time (Becker and Lewis, 1973; Easterlin, 1983). When income elasticity 
from fertility regressions continued to produce negative numbers Leibestein (1975) asked “Are children 
inferior goods”. This puzzle does not seem to arise within a relative income framework (Abeysinghe, 
1993).  

11  The main innovative feature of the Li and Zhang (2007) study was the use the proportion of minority 
population in each province as an instrument for the birth rate in their growth rate regression. 
Unfortunately the data on minority proportions are available only at five year intervals. This forced them 
to use average data over five year time intervals. Ours is an extended sample period. We collected the 
data from the following sources. Demographic variables like the birth rate and the minority proportion are 
from Basic Data of China’s Population (1994, 2003). Economic variables are from the Comprehensive 
Statistical Data and Materials on 55 Years of New China 1949-2004 (2005) and various issues of China 
Statistical Yearbook (1980-2002) and China Population Statistical Yearbook (1980-2002). 
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Li and Zhang (2007). All other instruments are the relevant lags of the internal variables (see 

Bond, 2002; Arellano, 2003; Roodman, 2006). 

Table 2 presents the GMM-SYS estimation results based on five-year averaged data over the 

1978-2002 period. The results for the growth-birth model (columns 1-3) basically lead to the Li-

Zhang conclusion; the reduction in the birth rate has enhanced the growth performance of the 

Chinese economy. If we examine the reverse causality given by the estimates in the birth-growth 

model (columns 3-6) we again obtain a highly significant negative effect leading to the 

conclusion that the higher the growth the lower the birth rate. Does this tell us anything beyond 

the negative association we observe between the two variables? Since we expected a zero or a 

positive effect of growth on fertility, these IV estimates need to be doubted. As we have seen in 

the previous section, it is very likely that too much temporal averaging may have led to this 

outcome and it would become difficult to make causal inference from either of the two 

regressions because of the potential distortions reported in Table 2. It should also be noted that 

China’s birth rate started falling well before the implementation of the one-child policy since 

1978 (Fig 3); in fact the most precipitous fall occurred during the Cultural Revolution period. 

Therefore, confining to the sample period after 1978 may entail a sample selection bias that 

could lead to attributing the positive effect of falling birth rate on growth solely to the one-child 

policy.  

Insert Table 2 and Fig 3 

With the annual-data (1953-2002) models we use a number of step dummies to capture some 

specific effects. The first dummy ( 78 1tD =  for  and zero otherwise) is introduced to 

both equations to capture the effect of both the birth control and openness policy reforms since 

1978. The second dummy (

1978t ≥

6577tD 1=  for 1965 1977t≤ ≤  and zero otherwise) is introduced to 

the growth equation to assess the impact of the falling birth rates before the implementation of 

the one-child policy. The third dummy ( 65tD 1=  for  and zero otherwise) is introduced 

to the growth equation to capture the effect of the steady fall in the birth rate since the mid 

1960s. In this exercise we observe that the use of individual year dummies to control for the time 

effect lead to some distortions of the main results. This problem does not arise if we use time 

dummies for grouped years as in Table 2. We tried regressions with time dummies for three, 

1965t ≥
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four, and five year groups and observed that the main results remain very much un-affected by 

these year groupings. The three-year grouping automatically accounts for the famine period over 

1959-1961 during which the birth rates dived dramatically across the country. Table 3 presents 

some GMM-SYS regression results based on three-year time dummies. In the table “Famine” 

refers to the time dummy that stands for the famine period.  

In contrast to the results in Table 2, the results in Table 3 and many other regressions we ran with 

annual data indicate the presence of a clear one-way negative effect running from the birth rate to 

the growth rate (to per capita income rather). If we start with the birth-growth regression results 

in Table 3 (columns 4-6) we observe that the growth effect on the BR is rather fragile. In some 

regressions the growth coefficient becomes positive and significant as predicted by economic 

theory but the fragility of this effect leads us to conclude that there is no significant growth 

(income) effect on the birth rate. Unlike the growth (income) effect, the time cost effect, as 

proxied by the secondary school enrolment, stays persistently negative in all regressions though 

not necessarily significant all the time. The significant negative coefficient of  captures the 

level-shift in the birth rate as a result of the one-child policy. The significant positive coefficients 

of 

78tD

1tBR −  and  show the increase in the autoregressive effect as a result of the birth 

control policy. Overall, the birth rate dynamics seem to be determined by birth control policies 

and time cost effects. Although some parents may have shunned the one-child policy and opted 

for two or more children as their incomes rose this effect is not strong enough to be picked up by 

the aggregated data. 

178. tD BR −

The results from the growth-birth regressions (columns 1-3) are very instructive. All the control 

variables have the expected signs and mostly statistically significant. If we focus on the impact 

of the BR on growth, the regression in column 1 indicates that after 1978 the fall in the BR has 

enhanced the growth significantly (coefficient of ). We may be tempted to attribute this 

to the one-child policy. However, as we noted earlier the fertility decline in China started well 

before the one-child policy. If we introduce the interaction dummy  also to the 

regression (column 2), we notice that there was no change in the slope of the growth-birth 

relationship, after controlling for the effects of openness on growth, as a result of the one-child 

policy. In column 3 we replace the above two interaction dummies with  to pick up the 

overall negative effect of the BR on growth. What we notice from these results is that there was 

78.D BR

6577.D B

65.D BR

R
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no significant relationship between the birth rate and growth before 1965. However, as the birth 

rate started to fall it has generated a robust income enhancing effect that works out to be about 

nine percent (0.016/0.184 = 0.087) growth in per capita income in the long run for  one unit drop 

in the birth rate. This effect is much lower than that implied by the numbers in Table 2 (about 

19%). What we can conclude here is that although falling birth rates have enhanced China’s 

growth as Li and Zhang (2007) have observed we cannot necessarily attribute this to the one-

child policy.  

 

Conclusion 

Although the IV estimator has become a popular technique in making causal inference from 

contemporaneous correlations in cross-sectional and panel regressions the results in this exercise 

highlight some potential pitfalls involved in such analyses. Apart from the common cause 

problem, lack of identification, accounting identities and temporally aggregated data may render 

highly invalid inference from IV estimates. However, by estimating both regressions and with 

the aid of non-sample information we might be able to make causal inference from the IV 

estimates.  

Our analysis of the Chinese fertility-growth relationship based on five-year average data and 

annual data in a dynamic panel setting reveal the possibility of very different causal inferences. 

Although it is often thought that it would be better to take long-term averages to assess long-term 

effects, making causal inference from the resulting contemporaneous correlations may run into 

difficulties as we have seen in this exercise.  The results from the annual data are consistent with 

our apriori theoretical expectations and therefore are more likely to represent the causal effects 

between the birth rate and the growth rate. Our extensive analysis leads us to conclude that 

causality runs from the birth rate to growth (or income) and if there is any growth (income) 

effect on the birth rate it is negligibly small at a provincial level. The long-run effect generated 

from the annual data model indicates that a sustained one unit fall in the birth rate has increased 

China’s steady-state per capita income by about nine percent.  
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Table 2: Five-year average data models 
 
Growth-birth model Birth-growth model 

Dependent variable:  ln ityΔ itBRDependent variable:  

 (1) (2) (3)  (4) (5) (6) 
itBR  -0.026*** -0.030*** -0.029*** ln ityΔ  -10.841** -10.782** -12.209**

(0.007) (0.007) (0.007) (5.042) (4.206) (5.77) 
, 1ln i ty −  -0.074* -0.157*** -0.154*** , 1ln i ty −  -3.006*** -2.849*** -2.534* 

(0.042) (0.053) (0.048) (0.727) (0.920) (1.404) 
Trade share  0.243*** 0.237*** 1itBR −   0.053 -0.006 

 (0.044) (0.043)  (0.225) (0.288) 
Government 
spending share 

  -0.175 Minority 
proportion % 

0.070*** 0.060* 0.068* 
  (0.388) (0.015) (0.021) (0.039) 

Investment share 0.117 0.295 0.317 Sec-school 
enrollment % 

-0.074** -0.070** -0.086***
(0.182) (0.200) (0.192) (0.036) (0.029) (0.031) 

Sec-school 
enrollment 

-0.190 -0.085 -0.055 Non-agri 
population % 

  0.007 
(0.126) (0.114) (0.106)   (0.054) 

constant 1.438*** 1.843*** 1.800*** constant 44.849*** 42.76*** 43.428***
(0.354) (0.390) (0.363) (4.054) (10.815) (12.669) 

Hansan J-stat 17.38 16.63 16.88 Hansan J-stat 7.94 14.39 18.18 
(p value) 0.43 0.48 0.462 (p value) 0.34 0.496 0.253 
Arellano-Bond 
test for 1st order -2.51 -2.55 -2.55 

Arellano-Bond 
test for 1st order -1.92 -2.19 -1.97 

(p value) 0.012 0.011 0.011 (p value) 0.055 0.028 0.048 
Arellano-Bond 
test for 2nd order -0.12 -0.42 -0.55 

Arellano-Bond 
test for 2nd order -0.36 -0.26 -0.14 

(p value) 0.907 0.675 0.583 (p value) 0.723 0.797 0.892 
Provinces 28 28 28 Provinces 28 28 28 
Obs 136 135 135 Obs 136 136 136 
# of instruments 26 27 28 # of instruments 16 25 26 
Note: Heteroskedasticity consistent standard errors are reported in parentheses. *, **, *** indicate significance at 
the 10, 5 and 1% levels. The lagged variables refer to five-year lagged values (not averages). To control for the time 
effect time dummies are used for the grouped years 1978-1982, 1983-1987,1988-1992,1993-1997,1998-2002. For 
brevity we dropped the time dummy estimates from the table. The birth rate is given on the basis of 1/1000. 
Secondary-school enrolment is the proportion of primary cohort entering secondary schools. Some provinces do not 
have the complete time series. All models are estimated using GMM-SYS method.  
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Table 3: Annual data models 
 
Growth-birth model Birth-growth model 

Dependent variable:  ln ityΔ itBRDependent variable:  
 (1) (2) (3)  (4) (5) (6) 

itBR  0.007 0.014 0.004 ln ityΔ  9.040 -4.168 -4.321 
(0.005) (0.008) (0.005) (5.337) (4.472) (4.409) 

, 1ln i ty −  -0.130*** -0.059 -0.183*** , 1ln i ty −  0.732 -0.463 -0.499 
(0.047) (0.035) (0.033) (1.088) (1.150) (1.149) 

D78 0.318*** 0.020 0.021 D78 -9.263*** -6.325** -5.756** 
(0.067) (0.028) (0.015) (2.714) (2.700) (2.750) 

D78*  itBR -0.014*** -0.018**  1itBR −  0.260** 0.308*** 0.307*** 
(0.003) (0.007)  (0.106) (0.090) (0.090) 

D6577*  itBR  -0.018***  D78* 1itBR −  0.407*** 0.287** 0.288** 
 (0.006)  (0.125) (0.126) (0.126) 

D65*  itBR   -0.016*** Famine* ln ityΔ   14.100*** 14.219***
  (0.005)  (3.711) (3.671) 

Famine -0.861*** -1.014*** -1.305*** D78* ln ityΔ    -5.939 
(0.291) (0.239) (0.242)   (4.693) 

Famine*  itBR 0.028** 0.018 0.032*** Sec-school 
enrollment% 

-0.070*** -0.041 -0.040 
(0.011) (0.012) (0.011) (0.022) (0.024) (0.024) 

Trade share 0.153 0.075  Famine 2.572 0.799 0.851 
(0.112) (0.046)  (2.321) (2.305) (2.292) 

D78*Trade share   0.173* Constant 13.643* 18.847*** 18.960***
  (0.097) (6.679) (6.293) (6.249) 

Government 
spending share 

-0.496*** -0.357*** -0.454**     
(0.176) (0.093) (0.216)     

Investment share 0.094* 0.189*** 0.263***     
 (0.054) (0.064) (0.069)     
Sec-school 
enrollment 0.319*** 0.101 0.339***     

 (0.077) (0.070) (0.071)     
Constant 0.520 0.426* 1.183***     
 (0.339) (0.229) (0.240)     
Hansan J-stat 2.63 1.19 4.78 Hansan J-stat 7.37 9.94 7.28 
(p value) 0.955 0.997 0.997 (p value) 0.391 0.192 0.401 
Arellano-Bond 
test for 1st order 
(p value) 

-2.74 -3.22 -2.69 Arellano-Bond test 
for 1st order -3.27 -3.34 -3.33 

0.006 0.001 0.007 (p value) 0.001 0.001 0.001 
Arellano-Bond 
test for 2nd order -0.26 -1.2 -0.17 Arellano-Bond test 

for 2nd order -0.77 -0.81 -0.80 

(p value) 0.797 0.230 0.864 (p value) 0.438 0.419 0.426 
Provinces 
Obs 

28 28 28 Provinces 28 28 28 
810 810 810 Obs 951 951 951 

# of instruments 34 35 42 # of instruments 30 31 32 
Utilized lags 2-5 2-5 2-9 Utilized lags 2-5 2-5 2-5 
Notes: See notes under Table 2. Lagged values are one-year lags. Time dummies are dropped for brevity. 
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Figure 1: Scatter plot growth of GDP per capita and Birth rate by province, 1954-2002 
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Figure 2: Scatter plot log of per capita GDP and birth rate by province, 1953-2002 
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Figure 3: Birth rate by province, 1953-2002 (vertical line indicating 1978) 
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