
 האוניברסיטה העברית בירושלים
The Hebrew University of Jerusalem         

 
 

 המחלקה לכלכלה חקלאית ומנהל
The Department of Agricultural 

Economics and Management 

 המרכז למחקר בכלכלה חקלאית
The Center for Agricultural 

Economic Research 
 
 
 
 

Discussion Paper No. 7.09 
 
 

Resource Management with Stochastic Recharge 
And Environmental Threats 

 
 

by 
 
 

Arie Leizarowitz and Yacov Tsur 
 
 
 
 

 מאמרים של חברי המחלקה נמצאים
 :גם באתרי הבית שלהם

 

Papers by members of the Department 
can be found in  their home sites: 

http://departments.agri.huji.ac.il/economics/indexe.html 
 

76100רחובות , 12. ד.ת    P.O. Box 12, Rehovot 76100 
    

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6517313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Resource management with stochastic recharge
and environmental threats

Arie Leizarowitz∗ Yacov Tsur
♦

August 18, 2009

Abstract

Exploitation diminishes the capacity of renewable resources to with-
stand environmental stress, increasing their vulnerability to extreme
conditions that may trigger abrupt changes. The onset of such events
depends on the coincidence of extreme environmental conditions (en-
vironmental threat) and the resource state (determining its resilience).
When the former is uncertain and the latter evolves stochastically, the
uncertainty regarding the event occurrence is the result of the com-
bined effect of these two uncertain components. We analyzed optimal
resource management in such a setting. Existence of an optimal sta-
tionary policy is established and long run properties are characterized.
A numerical illustration based on actual data is presented.

Keywords: Stochastic stock dynamics, event uncertainty, Markov decision
process, optimal stationary policy.

∗Department of Mathematics, Technion, Haifa 32000, Israel (la@techunix.technion.ac.il).
♦
Department of Agricultural Economics and Management, The Hebrew University of

Jerusalem, POB 12, Rehovot 76100, Israel (tsur@agri.huji.ac.il).



1 Introduction

We study management of renewable resources with a stochastic state evo-

lution and environmental uncertainty regarding the occurrence of an abrupt

catastrophic event. The effects on management policies of these two un-

certain processes are highly intertwined, as the vulnerability of a resource to

(uncertain) environmental stress depends critically on its (stochastic) state.

Admittedly, numerous uncertain elements prevail in any given resource sit-

uation and the literature addresses many of them (see Pindyck 2007, for a

survey). But the combined effect of stochastic state evolution and uncertain

abrupt events has not been addressed so far.

The economic literature on natural resources with stochastic state dynam-

ics (e.g., Burt 1964, Reed 1974, Pindyck 1984, 2002, Knapp and Olson 1995,

Costello et al. 2001, Singh et al. 2006, Mitra and Roy 2006, Wirl 2007, and ref-

erences they cite) mostly ignores uncertain catastrophic events such as abrupt

regime shift or ecological collapse.1 The sudden occurrence of such events is

related to nonlinear phenomena such as positive feedbacks, hysteresis and the

presence of uncertain thresholds that are prevalent in environmental processes

(Dasgupta and Mäler 2003, Brock and Starrett 2003). Examples include

pollution-induced catastrophes (Cropper 1976, Clarke and Reed 1994, Aron-

sson et al. 1998, Tsur and Zemel 1998), a sudden collapse of an ecosystem

or of animal and plant populations (Reed 1989, Tsur and Zemel 1994, Brock

and Xepapadeas 2003), destruction of coastal aquifers due to seawater intru-

sion (Tsur and Zemel 1995, 2004), phosphorus loading into lakes inducing an

1Some of these works incorporate thresholds, e.g., project investment thresholds in
Pindyck (2002), extinction thresholds in Mitra and Roy (2006) and temperature thresh-
olds in Wirl (2007), but these thresholds are deterministic and the uncertainty emanates
only from the stochastic stock dynamics.
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irreversible transition from oligotrophic (clear) state into a eutrophic (turbid)

state (Harper 1992, Carpenter et al. 1999, Mäler 2000), and global warming

induced catastrophes (Tsur and Zemel 1996, 2009, Broecker 1997, Mastran-

drea and Schneider 2001, Alley et al. 2003, Nævdal 2006, Haurie and Moresino

2006, Roe and Baker 2007, Stern 2007, Bahn et al. 2008, Weitzman 2009).2

This literature strain assumes a deterministic evolution of the resource state.

The most pronounced effect on resource management policies of the pres-

ence of a catastrophic threat shows up in the discount factor, which becomes

policy-dependent, i.e., endogenous. Implications of this property for climate

policies under threats of global warming induced catastrophes have recently

been studied (see, e.g., Tsur and Zemel 2008, 2009) in a deterministic resource

evolution framework. Here we consider stochastic state dynamics in a general

renewable resource situation. The endogeneity of the discount factor requires

extending some properties of Markov decision processes that are known to

hold under constant discounting (see, e.g., Puterman 2005).

The resource setup, with the stochastic state dynamics and the environ-

mental threat, is formulated in Section 2. Section 3 formulates the man-

agement problem. Existence of an optimal stationary policy under policy-

dependent discount factor is established in Section 4. Long-run (steady state)

behavior under the optimal policy is characterized in Section 5. A numerical

illustration, based on actual data, is presented in Section 6. Section 7 con-

cludes and the appendix describes the algorithm used to calculate the optimal

policy, value and steady state distribution of the numerical example.

2The abrupt change may be desirable, as in Bahn et al. (2008) who consider two such
events: the resolution of uncertainty regarding climate sensitivity and technological break-
through regarding a carbon-free energy source.
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2 Resource setup

We formulate the rules governing the evolution of the resource state under

the uncertain environmental event.

2.1 States, actions and recharge

The state of the resource system at time t is denoted St = (S1
t , S

2
t , ..., S

M
t )′,

where Sm
t is the m’th stock, m = 1, 2, ..., M . The resource evolves in time

according to

St+1 = St + R(St) + Xt − gt, t = 1, 2, . . . , (2.1)

where R(St) = (R1(St), R
2(St), ..., R

M(St))
′, Xt = (X1

t , X2
t , ..., XM

t )′ and gt =

(g1
t , g

2
t , ..., g

M
t )′ are M -dimensional vectors representing deterministic recharge,

stochastic recharge and exploitation (harvest, extraction) rates, respectively.

We consider discrete (finite or countable) state, recharge and action spaces,

denoted S, X and A, respectively. Thus, S = {s1, s2, ..., sns}, where sj ∈
IRM , j = 1, 2, ..., ns and ns (possibly infinite) is the number of states.

Let Am(s) consists of stock m’s actions (exploitation rates) feasible at state

s ∈ S and letA(s) = A1(s)×A2(s)×· · ·×AM(s). The admissible action space

is A =
⋃

s∈S A(s) = {a1, a2, ..., ana}, where aj ∈ IRM and na is the number of

actions (finite or countable). An action gt = (g1
t , g

2
t , ..., g

M
t )′ corresponds to

exploiting (harvesting, extracting) source m at the rate gm
t , m = 1, 2, ...,M,

during time period t. The action is feasible if gt ∈ A(St).

In a similar manner we let Xm(s) represent the support of stock m’s

recharge distribution at state s ∈ S and define X (s) = X 1(s) × X 2(s) ×
· · · × Xm(s). The admissible support is X =

⋃
s∈S X (s) = {x1, x2, ..., xnx},

containing nx (possibly infinite) feasible recharge vectors xj ∈ IRM
+ . The
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recharge probability at time t, given St = s, is denoted px|s(·), i.e.,

px|s(x) ≡ Pr{R(St) + Xt = x|St = s}. (2.2)

2.2 Environmental threat

The resource system is under risk of an abrupt shock (regime shift) with

undesirable consequences. The conditions that trigger such events depend on

the resource state and exploitation policy and are uncertain due to genuine

environmental uncertainty or due to our own lack of complete understanding

of the processes that lead to occurrence of the event or both. Let κ denote

the catastrophic state of the resource system and let 1− λ(s, a) be the hazard

probability to end up in κ at time t + 1 when occupying state s 6= κ and

employing action a at time t. Let T denote the time period at which the

event occurs. Then,

Pr{T = τ} = [1− λ(Sτ , gτ )]
τ−1∏
j=1

λ(Sj, gj), τ = 1, 2..., (2.3)

where we use the convention that
∏τ−1

j=1 = 1 for τ = 1.

The event occurrence probability (2.3) represents the environmental un-

certainty conditional on the resource state trajectory and exploitation policy.

The combined effect of the event uncertainty and the stochastic evolution of

the resource state shows up in the resource transition probabilities, specified

next.

2.3 Transition probabilities

Let p(j|i, a) represent the probability of occupying state sj at time t + 1

conditional on St = si, gt = a and T > t (i.e., that the event will not interrupt):

p(j|i, a) = Pr{St+1 = sj|St = si, gt = a, T > t}.
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In view of (2.1)-(2.2),

p(j|i, a) = px|si
(sj − si + a). (2.4)

We let Pa represent the ns × ns matrix with p(j|i, a) as the (i, j) element.

Given the the event has not occurred by time t− 1, the probability during

time t of moving from si to sj and of nonoccurrence is

q(j|i, a) ≡ Pr{St+1 = sj, T > t|St = si, gt = a}

= Pr{St+1 = sj|St = si, gt = a, T > t}Pr{T > t|T > t− 1, St = si, gt = a}

= p(j|i, a)λ(si, a). (2.5)

We denote by Qa the ns × ns matrix with the (i, j) element given by q(j|i, a).

3 Management policies and welfare

We begin by formulating the instantaneous rewards and payoffs. The

decision rules and policies are explained next and subsection 3.3 presents the

welfare criterion.

3.1 Rewards and payoffs

If the event does not occur during time period t, while the resource is at

state St and the action gt is undertaken, the instantaneous reward b̃(St, gt) is

obtained, whereas if the event occurs the post-event value vp(St) is acquired.

The latter represents the present-value, under the optimal post-event policy, of

the benefit flow from the occurrence time onwards, discounted to the beginning

of the occurrence period. We assume that b̃(s, a) and vp(s) are bounded

and that the latter is smaller than the pre-event value (defined below), as we

consider undesirable events.
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With β ∈ [0, 1) representing the (constant) discount factor, the payoff is

given by
T−1∑
t=1

b̃(St, gt)β
t−1 + vp(ST )βT−1. (3.1)

The expectation with respect to the event occurrence time T , noting (2.3), is

∞∑
τ=1

(
τ−1∑
t=1

b̃(St, gt)β
t−1 + vp(Sτ )β

τ−1

)
[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj) =

∞∑
τ=1

τ−1∑
t=1

b̃(St, gt)β
t−1[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj) +

∞∑
τ=1

vp(Sτ )β
τ−1[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj). (3.2)

By changing the order of summation (permitted when b̃ is bounded), the first

term on the right-hand side above is expressed as

∞∑
t=1

b̃(St, gt)β
t−1

∞∑
τ=t

(
[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj)

)
. (3.3)

The inner sum above equals

∞∑
τ=t

(
τ−1∏
j=1

λ(Sj, gj)−
τ∏

j=1

λ(Sj, gj)

)
=

t−1∏
j=1

λ(Sj, gj),

which upon substituting back in (3.3) gives

∞∑
t=1

(
b̃(St, gt)

t−1∏
j=1

βλ(Sj, gj)

)
. (3.4)

This expression is the present value of the benefit flow b̃(St, gt) discounted with

the policy-dependent discount factor

γ(t) =

{
1 t = 1∏t−1

j=1 βλ(Sj, gj) t = 2, 3, ....
(3.5)

The function γ(t) is the compound discount factor corresponding to the run-

ning (single period) discount factor βλ(St, gt).
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The second term on the right-hand side of (3.2) is expressed as

∞∑
t=1

vp(St)[1− λ(St, gt)]γ(t). (3.6)

Combining (3.4) and (3.6), the expectation of the payoff with respect to event

occurrence time T is give by

∞∑
t=1

b(St, gt)γ(t), (3.7)

where

b(St, gt) ≡ b̃(St, gt) + vp(St)[1− λ(St, gt)]. (3.8)

The catastrophic environmental threat affects the payoff in two ways: first,

by changing the instantaneous benefit from b̃(St, gt) to b(St, gt); second, by

changing the discount factor from the constant β to the state-and-action-

dependent discount factor βλ(St, gt). The latter effect is twofold: first, it

decreases the discount factor (βλ(s, a) ≤ β since λ(s, a) ≤ 1), thereby induc-

ing less conservation (since the future is discounted more heavily); second, it

turns the discount factor endogenous to the exploitation policy. The policy

implications of these effects were studied in a deterministic state evolution

model of climate change induced catastrophes (e.g., Tsur and Zemel 2008,

2009). Here we consider stochastic state evolution.

3.2 Decision rules and policies

A decision rule dt(·) determines the action at time t given the available

information {St, St−1, St−2...}, {gt−1, gt−2, ...}. It may be history-dependent or

Markovian (depends only on the current state St), randomized or determinis-

tic. Consequently, the four types of decision rules are history-dependent and

randomized (HR), history-dependent and deterministic (HD), Markovian and

7



randomized (MR), Markovian and deterministic (MD). A policy (or plan)

specifies the decision rules for all time periods, π = {d1, d2, ...}, and is clas-

sified as HR, HD, MR or MD depending on the type of the decision rules

dt, t = 1, 2, .... A policy is stationary if the same decision rule is repeated in

all time periods, i.e., dt(·) = ϕ(·) ∀t. (Thus, a stationary policy is necessarily

Markovian.)

The HR class of policies is the widest and contains all other classes as

special cases, while the MD class is contained in all other classes. Within the

MD class, stationary policies are the simplest, hence are attractive for actual

implementations.

3.3 Welfare

Under a Markovian policy π = {d1, d2, ...}, with gt = dt(St), the (random)

payoff, noting (3.7), is
∞∑

t=1

b(St, d(St))γ(t)

and the expected payoff given S1 = s is

vπ(s) = Eπ

{ ∞∑
t=1

b(St, dt(St))γ(t)

}
. (3.9)

The welfare (value) function is defined as

v∗(s) = sup
π∈ΠHR

vπ(s), s ∈ S. (3.10)

4 Optimal policy

The optimal policy π∗, when exists, satisfies vπ∗(s) = v∗(s) for all s ∈ S.

We denote by vϕ(s) the value corresponding to the stationary policy π =

(ϕ, ϕ, · · · ). As stationary MD policies are attractive for implementation pur-

poses, it is of interest to know if the value v∗ can be attained by such a policy.
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Under a constant discount factor (and some regularity conditions), the answer

is in the affirmative (see Puterman 2005, Chapter 6). We show that this

property is retained with endogenous (policy-dependent) discount factor and,

along the way, characterize the optimal stationary policy. We begin with

some definitions and notation.

Recall that without the catastrophic threat, i.e., when the survival proba-

bility λ(s, a) = 1 for all s ∈ S and a ∈ A, the discount factor is constant and

the optimality equations are

v(si) = max
ai∈A(si)

{
b(si, ai) + β

ns∑
j=1

p(j|i, ai)v(sj)

}
, i = 1, 2, ..., ns,

or in matrix notation

v = max
a∈A

{ba + βPav} ,

where v = (v(s1), ..., v(sns))
′, a = (a1, ..., ans) ∈ A(s1) × · · · × A(sns) = A(s),

ba = (b(s1, a1), ..., b(sns , ans))
′ and Pa is the ns × ns matrix with the (i, j) ele-

ment given by p(j|i, a). In the presence of environmental threat, the discount

factor βλ(si, a) is state-and-action-dependent and the optimality equations

become

v(si) = max
ai∈A(si)

{
b(si, ai) + βλ(si, ai)

ns∑
j=1

p(j|i, ai)v(sj)

}
, i = 1, 2, ..., ns,

(4.1)

or in matrix notation

v = max
a∈A

{ba + βQav}, (4.2)

where Qa is an ns×ns matrix with (i, j) element given by λ(si, a)p(j|i, a) (the

i’th row of Qa equals λ(si, a) times the i’th row of Pa).

Let V be the space of bounded functions on S endowed with the supremum
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norm ‖v‖ = sups∈S v(s). Define the mapping L : V 7→ V :

L(v)i = max
ai∈A(si)

{
b(si, ai) + βλ(si, ai)

ns∑
j=1

p(j|i, ai)v(sj)

}
, i = 1, 2, ..., ns,

or in matrix notation

L(v) = max
a∈A

{ba + βQav} . (4.3)

The optimality equations can be expressed in terms of L as

v(si) = L(v)i, i = 1, 2, ..., ns,

or in matrix notation as

v = L(v). (4.4)

We now establish:

Theorem 4.1. Suppose that (A1) 0 ≤ β < 1, (A2) S is discrete (finite or

countable), (A3) b̃ : S × A 7→ IR and vp : S 7→ IR are bounded and (A4)

b̃(si, a) and λ(si, a)p(j|i, a) are continuous in a, and A(si) is compact for all

si, sj ∈ S. Then:

(i) the optimal value v∗ is the unique fixed point of (4.4);

(ii) a stationary policy ϕ is optimal if and only if the actions ai = ϕ(si), i =

1, 2, ..., ns, realize the maxima in (4.1);

(iii) there exists an optimal, Markovian-Deterministic stationary policy ϕ∗,

i.e., the policy (ϕ∗, ϕ∗, ...) satisfies

vϕ∗(s) = v∗(s) ∀s ∈ S. (4.5)

Proof. Assumptions (A3)-(A4) ensure that the maxima in (4.1) are attained.

For a given v ∈ V , let ai(v), i = 1, 2, ..., ns, denote the actions where the
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maxima in (4.1) are attained. Then, for any u ∈ V we have

L(u)i ≥
{

b(si, ai(v)) + βλ(si, ai(v))
ns∑

j=1

p(j|i, ai(v))uj

}
, i = 1, 2, ..., ns,

which together with

L(v)i = b(si, ai(v)) + βλ(si, ai(v))
ns∑

j=1

p(j|i, ai(v))vj

implies

L(v)i − L(u)i ≤ βλ(si, ai(v))
ns∑

j=1

p(j|i, ai(v))(vj − uj), i = 1, 2, ..., ns. (4.6)

Since
∑ns

j=1 p(j|i, ai(v)) = 1, we conclude from (4.6) that

L(v)i − L(u)i ≤ βλ(si, ai(v)) max
j
|vj − uj|, i = 1, 2, ..., ns.

Since βλ(si, ai(v)) ≤ β < 1, we can further conclude that

max
i
{L(v)i − L(u)i} ≤ β max

j
|vj − uj|.

Interchanging in the above inequality the roles of u and v we obtain

max
i
|L(v)i − L(u)i| ≤ β max

j
|vj − uj|. (4.7)

It follows from (4.7) and (A1) that L is a contraction, implying the existence

of a unique fixed point of (4.4). Denote this fixed point by ṽ. We next show

that ṽ = v∗.

Let a∗i , i = 1, 2, ..., ns, be the actions that realize the maxima in (4.1), and

define ϕ∗(si) = a∗i . Then,

ṽ(si) = b(si, ϕ
∗(si)) + βλ(si, ϕ

∗(si))
ns∑

j=1

p(j|i, ϕ∗(si))ṽ(sj), si ∈ S, (4.8)

or in vector notation

ṽ = bϕ∗ + βQϕ∗ ṽ, (4.9)
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where bϕ∗ = (b(s1, ϕ
∗(s1)), ..., b(sns , ϕ

∗(sns)))
′ and Qϕ∗ is the ns × ns matrix

with the (i, j) element given by λ(si, ϕ
∗(si))p(j|i, ϕ∗(si)).

Evaluating (4.8) at time t, with si = St and gt = ϕ∗(St), gives

ṽ(St) = b(St, ϕ
?(St)) + βλ(St, ϕ

∗(St))
ns∑

j=1

p(j|St, ϕ
?(St))ṽ(sj)

= b(St, ϕ
?(St)) + βλ(St, ϕ

∗(St))E
ϕ∗
t ṽ(St+1), (4.10)

where Eϕ∗
t denotes expectation under the gt = ϕ∗(St) decision rule conditional

on the information available at time t (which includes St). Multiplying (4.10)

by γϕ∗(t), where γ(t) is defined in (3.5) under the gt = ϕ∗(St) decision rule,

and rearranging gives

b(St, ϕ
?(St))γ

ϕ∗(t) = ṽ(St)γ
ϕ∗(t)− γϕ∗(t + 1)Eϕ∗

t ṽ(St+1). (4.11)

Since γϕ∗(t + 1) depends only on information available at time t, the second

term on the right hand side of (4.11) can be written as

γϕ∗(t + 1)Eϕ∗
t ṽ(St+1) = Eϕ∗

t

[
γϕ∗(t + 1)ṽ(St+1)

]

and (4.11) is written as

b(St, ϕ
∗(St))γ

ϕ∗(t) = γϕ∗(t)ṽ(St)− Eϕ∗
t

[
γϕ∗(t + 1)ṽ(St+1)

]
.

Taking the unconditional expectation under the ϕ∗(·) decision rule yields

Eϕ∗b(St, ϕ
?(St))γ

ϕ∗(t) = Eϕ∗γϕ∗(t)ṽ(St)− Eϕ∗γϕ∗(t + 1)ṽ(St+1).

Summing over t = 1, 2, ..., τ gives

Eϕ∗
τ∑

t=1

b(St, ϕ
?(St))γ

ϕ∗(t) = ṽ(S1)− Eϕ∗γϕ∗(τ + 1)ṽ(Sτ+1). (4.12)
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Since γϕ∗(τ) → 0 exponentially (uniformly in the policies), letting τ → ∞ in

(4.12) yields

Eϕ∗
∞∑

t=1

b(St, ϕ
∗(St))γ

ϕ∗(t) = ṽ(S1), (4.13)

where we use the property that si 7→ ṽ(si), si ∈ S, is a bounded function,

namely ṽ is a bounded solution of (4.2), which is guaranteed by (A3).

For an arbitrary policy ϕ(·) we can repeat the above derivation with in-

equalities rather than equalities, obtaining

ṽ(St) ≥ b(St, ϕ(St)) + βλ(St, ϕ(St))
ns∑

j=1

p(j|St, ϕ(St))ṽ(sj)

instead of (4.10) and

Eϕ

∞∑
t=1

b(St, ϕ(St))γ
ϕ(t) ≤ ṽ(S1)

instead of (4.13). It follows that ϕ?(s) is an optimal policy and ṽ(s) = v∗(s),

establishing claims (i) and (ii) of the theorem. As indicated above, the only

condition for the existence of ϕ∗(·) is that there exists a bounded solution for

(4.2), which follows from condition (A3) and claim (i), establishing (iii).

Puterman (2005, Chapter 6,) presents a variety of algorithms for calculat-

ing optimal stationary policies of Markov Decision Process (MDP) problems.

In the empirical example of Section 6 we calculate the optimal policy using an

algorithm based on Linear Programming (LP), adopted to the present case of

a state-dependent discount factor.

5 Long-run behavior

Recalling equations (2.4)-(2.5), Pϕ∗(i, j) = p(j|i, ϕ∗(si)) gives the prob-

ability that the resource system moves from St = si to St+1 = sj when
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the optimal policy gt = ϕ∗(si) is employed, conditional on the event not

occurring during period t. The unconditional transition probabilities are

Qϕ∗(i, j) = λ∗i Pϕ∗(i, j), where

λ∗i ≡ λ(si, ϕ
∗(si)), i = 1, 2, ..., ns. (5.1)

The transition matrix Pϕ∗ is aperiodic, thus classifies each state as either

recurrent or transient. The recurrent states can be arranged in K irreducible

subsets Ek, k = 1, 2, ..., K.3 Recurrent, irreducible subsets are absorbing, i.e.,

once the state process enters Ek it stays there forever. We let nk represent

the number of elements (states) in Ek and denote by Pk the nk×nk submatrix

of Pϕ∗ corresponding to the states contained in Ek, k = 1, 2, ..., K.

We call the state si “safe” or “unsafe” depending on whether λ∗i = 1 or

λ∗i < 1, respectively. The subset

S1 = {si ∈ S|λ∗i = 1} (5.2)

contains all “safe” states. (S1 may well be empty.)

If Ek contains no “unsafe” states, i.e., Ek ⊆ S1, then entering Ek ensures

that the event will never occur. This is so because the probability that the

event will occur during period t given St = si ∈ Ek is 1 − λ∗i = 0 for any

si ∈ Ek and Ek is absorbing. For recurrent, irreducible sets containing only

“safe” states we define the limiting matrix4

P̂k = lim
τ→∞

P τ
k . (5.3)

The (i, j) element of P̂k represents the probability that in the long run the

system will occupy state sj when it starts at state si and the optimal policy

3The subset Ek ⊂ S is closed if Pr{St+τ = sj |St = si, ϕ
∗(·)} = 0 for any si ∈ Ek and

sj /∈ Ek, τ = 1, 2, .... The subset Ek is irreducible if no proper subset of it is closed.
4The limit exists since Pk is aperiodic.
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is employed for any si, sj ∈ Ek. Clearly, P̂k satisfies PkP̂k = P̂k (taking one

extra step cannot change the limiting behavior), implying that P̂k has identical

rows p̂ ′
k , given by the solution of (see Puterman 2005, pp. 591-592)

q′ = q′Pk subject to

nk∑
j=1

qj = 1. (5.4)

The nk-vector p̂k constitutes the steady-state distribution of the nk states

contained in Ek ⊆ S1, provided the optimal state process begins at (or enters

after a finite time) Ek.

If Ek * S1 (i.e., Ek contains at least one “unsafe” state su, say), then

entering Ek implies that the event will (eventually) occur with probability

one. This is so because each time the “unsafe” state su is visited an occurrence

probability of 1− λ∗u > 0 is inflicted and (once in Ek) visits to su never stops

prior to the event occurrence.5 It follows that the limiting probability of

si ∈ Ek * S1 must vanish and the limiting probability of κ (the occurrence

state) is one.

We summarize the above discussion in:

Proposition 5.1. The optimal state process either initiates at or enters after

a finite (transient state) period one of the recurrent, irreducible subsets Ek

(provided the event has not occurred during the transient state period).

(i) If Ek ⊆ S1, then (a) the long run (steady state) probability of states in Ek

is given by p̂k, defined in (5.4), (b) the long run probability of states not in Ek

vanish, and (c) the event occurrence probability is zero.

5Suppose, without loss of generality, that su is the only “unsafe” state in Ek and notice
that, unless interrupted by the event, the recurrent state su will be visited infinite number
of times with probability one. Occurrence may happen on the first visit with probability
1 − λ∗u or on the second visit with probability λ∗u(1 − λ∗u) or on the third visit with prob-
ability λ∗2u (1 − λ∗u) and so on. Summing all possibilities gives the occurrence probability
(1− λ∗u)

∑∞
j=0(λ

∗
u)j = 1.
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(ii) If Ek * S1, then (a) the long run (steady state) probability of all states in

S vanish, and (b) the long run occurrence probability (the limiting probability

of the occurrence state κ) is 1.

6 Empirical illustration

The Kinneret water basin (Lake Kinneret is also known as the Sea of

Galilee) is the largest of Israel’s natural water sources, providing about 40

percent of the country’s annual natural water supply on average. Lake Kin-

neret is a shallow lake, with maximal and average water depths of 46 m and

25 m, respectively (Gvirtzman 2002, p. 34). Like other shallow lakes (Harper

1992, Mäler 2000), it faces a risk of abrupt ecosystem collapse due to pollution

and eutrophication processes (Gvirtzman 2002, pp. 43-55). The risk of such

abrupt regime-shift depends on the lake’s water head (stock). This property,

together with the highly volatile recharge process (Figure 1), render the above

framework particularly suitable for studying optimal management policies.

In the next subsection we describe the basin’s recharge process and derive

its distribution. Subsection 6.2 defines states and actions and subsection

6.3 derives the ensuing transition probabilities. The rewards are specified in

subsection 6.4, paying special attention to the catastrophic threat associated

with over-exploitation. In subsection 6.5 we apply an algorithm based on

Linear Programming (LP) for solving Markov decision Processes (MDPs) and

derive the optimal policy and value (the algorithm is briefly described the

appendix). Finally, the steady state distribution under the optimal policy is

calculated in subsection 6.6.
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6.1 Recharge process

Figure 1 presents the Kinneret’s net (accounting for evaporation) annual

recharge for the period 1932 - 2008.6 We use the gamma distribution to ap-

proximate the recharge distribution, i.e., we assume that the recharge series

consists of iid draws from a gamma distribution with parameters α and θ,

satisfying

αθ = Mean(recharge) - Min(recharge) = 570.38− 157 = 413.38 MCMY

and

αθ2 = Var(recharge) = 77333.8,

where MCMY stands for million m3 per year (the mean, min and standard

deviation of the recharge series are displayed in Figure 1). We obtain α =

2.20967 and θ = 187.077. Figure 2 depicts the empirical distribution of the

recharge series (dots) and the gamma distribution with the above (α, θ) pa-

rameters.

Figure 1

Figure 2

The support of the recharge distribution is denoted X = {x1, x2, ..., xnx},
with x1 = 150 MCMY (the minimal recharge realization – see Figure 1),

xnx = 1450 MCMY (approximately the maximal recharge realization) and

x`+1 − x` = ∆x, ` = 1, 2, ..., nx − 1. Thus,

x` = 150 + (`− 1)∆x, ` = 1, 2, ..., nx, (6.1)

6The help of Miki Zaide, Avihai Hadad and Amir Givati, of Israel’s Water Authority, in
making the data available for our use is gratefully acknowledged.
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and px|s(x`) is calculated as

px|s(x`) =





F (x` + ∆x/2) if ` = 1

F (x` + ∆x/2)− F (x` −∆x/2) if 2 ≤ ` ≤ nx − 1

1− F (x` −∆x/2) if ` = nx

(6.2)

where F (·) is the gamma distribution specified above (and depicted in Figure

2). Since nx and ∆x are related according to xnx = x1+(nx−1)∆x, setting one

parameter determines the other. Setting ∆x = 50 MCMY implies nx = 15.

6.2 States and actions

The Kinneret water-head ranges between the altitudes 208.8 and 215 meter

below sea level (−208.8 m and −215 m, respectively). Above the upper water-

head (−208.8 m) the water overflows the lake’s edges (flooding is avoided by

opening the gates of the Degania dam at the southern outlet of the lake leading

into the lower Jordan river). The lower altitude (-215 m) is the minimal water

head level at which water can be pumped (due to pumping infrastructure) and

is designated as the black line.7 In between there is the so-called red line –

an imaginary water-head level indicating a critical water stock below which

the above-mentioned catastrophic risk increases sharply. The red line is set

at -213 m.8

The water stock corresponding to the black line is normalized at zero and

each meter of water-head above the black line is equivalent to 165 - 170 million

m3 (MCM).9 A water state corresponds to the water stock above the black

line, so s = 0 when the water-head level is at -215 m, s = 300 MCM when the

water head is at the red line (-213 m) and s = s̄ = 1000 when the water-head

7The exact minimal water head from which pumping is feasible is -214.87 m and we
round it to -215 m.

8The red line has been modified in the past in response to pressure to increase pumping
during dry years (see Gvirtzman 2002, p. 36).

9The range is due to differences in the surface of the lake at different water levels.
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level is at -208.8 m. The admissible state set is S = {s1, s2, ..., sns}, where

the sj’s are evenly spread apart. Setting sj+1 − sj ≡ ∆s = 50 MCM gives

ns = 21 states.

An action a corresponds to pumping a million m3 per year (MCMY). The

admissible action set is A = {a1, a2, ..., ana} with a1 = 0, ana = 700 MCMY

(determined by the existing pumping infrastructure) and aj+1− aj = ∆a, j =

1, 2, ..., na − 1. Setting ∆a = 50 MCMY implies na = 15.

A time period (a year) in the present case begins at the end of the rainy

season (the bulk of the rain in Israel’s Mediterranean weather occurs during

the months of November through April) while water extraction occurs mostly

during the dry season (May - October). It is therefore not feasible to extract

more than the water stock available at the beginning of the period, i.e., given

the water stock St at the beginning of period t, gt ≤ St. Thus, A(St) = {ak ∈
A|ak ≤ St}. At the end of the dry season, the water stock will reach the

level St− gt ≥ 0 and this level affects the catastrophic hazard, as explained in

subsection 6.4.

6.3 Transition probabilities

The transition probabilities, conditional on nonoccurrence, are

p(j|i, ak) = Pr{St+1 = sj|St = si, gt = ak}

= Pr{R(St) + Xt = sj − si + ak}

= px|s(sj − si + ak}, j, i = 1, 2, ..., ns, k = 1, 2, ..., na, (6.3)

where px|s(·) is defined in (6.2).
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6.4 Instantaneous benefit

The immediate reward at time t, specified in (3.8), is repeated here for

convenience:

b(St, gt) = b̃(St, gt) + vp(St)[1− λ(St, gt)].

The first term on the right-hand side is the benefit enjoyed during non-occurrence

periods; the second term is the benefit under the interrupting regime-shift,

namely the post-event value weighted by the occurrence probability. The for-

mer consists of the surplus water users (irrigators, households, industry) derive

from the pumped water gt net of the supply cost (extraction, conveyance, treat-

ment, distribution); the latter stems from the forgone benefit associated with

not being able to use the lake for a prolong period of time. We discuss each

in turn.

6.4.1 Immediate benefits during non-occurrence periods

Let D(·) denote the inverse demand facing the Kinneret’s water, i.e., at a

water price $D(a) per million m3 (MCM) the water demand is a million m3

per year (MCMY). Let C(a) represent the cost of supplying a MCMY. The

consumer surplus, net of the supply cost, associated with the consumption of

a MCMY is ∫ a

0

D(ξ)dξ − C(a).

Assuming that the derived demand for water is inversely related to the

water price, i.e., D(a) = c1/a, and that C(a) = c2a, the net consumer surplus

becomes

b̃(s, a) = c1 ln(a)− c2a, (6.4)

where c1 is a positive demand parameter and c2 is the unit cost of water supply.
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Assuming further that at a price of $0.5 × 106 per MCM ($0.5 per m3) the

water demand is 600 MCMY implies c1 = 300× 106. The unit cost of supply

is taken at $0.2× 106 per MCM (c2 = 0.2× 106).

6.4.2 Post-event value and occurrence probability

We consider the case in which the event (the abrupt regime shift) renders

the lake’s water unusable for a very long period and take the post-event value

vp to represent the forgone consumer surplus (i.e., the benefit water users could

derive had the regime shift been prevented) as well as ecological damages and

loss of recreational opportunities. We estimate this forgone value by the

present value of constant flow b̃(s, a) evaluated at a = 550 MCMY (which

is about the average recharge). Thus, with the discount factor β = 0.9434

(corresponding to 6% interest rate) and the above specification of b̃,

vp = −b̃(s, 550)/(1− β) ≈ −3× 1010.

The survival probability λ(St, gt) equals one if St − gt (the minimal water

stock during time period t) does not fall below the critical water stock sc = 300

MCM corresponding to the red line. As soon as the water-head drops below

the red line, the survival probability decreases and reaches λ(0) = λ0 ≥ 0

at s = 0 (the black line). We use the following specification of the survival

probability:

λ(s, a) =

{
λ0 + (1− λ0) exp{δ(s− a− sc)/(s− a)} if s− a < sc

1 if s− a ≥ sc

(6.5)

where δ is a (positive) shape parameter. Indeed for a = s, exploitation brings

the water stock to the black line and λ(s, s) = λ0.

The immediate benefit specializes to

b(s, a) = c1 ln(a)−c2a+vp(1−λ0) max{1−exp[δ(s−a−sc)/(s−a)], 0}. (6.6)
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The function specifications and parameter values are summarized in Table 1.

Table 1

6.5 Optimal policy and value

We calculate the optimal policy using an algorithm based on Linear Pro-

gramming (LP). Appendix A describes the algorithm and its application in the

present case. The algorithm provides the optimal policy ϕ∗(si), i = 1, 2, ..., ns,

depicted in Figure 3.

Figure 3

Noting (4.9) and ṽ = v∗, the value v∗ = (v∗(s1), ..., v
∗(sns))

′ is calculated

by

v∗ = (I − βQϕ∗)
−1bϕ∗ , (6.7)

where bϕ∗ = (b(s1, ϕ
∗(s1)), ..., b(sns , ϕ

∗(sns))
′ and Qϕ∗ is the ns × ns matrix

with λ(si, ϕ
∗(si))p(j|i, ϕ∗(si)) as the (i, j) element. The value is depicted in

Figure 4.

Figure 4

6.6 Steady state

From the optimal extraction policy in Figure 3 we conclude that there is

one recurrent, irreducible subset E1 = {450, 500, ..., 1000}, and all states below

450 MCM are transient. This is so because the optimal extraction policy is

such that it is not optimal to intentionally drop the water stock below 300

MCM (the red line) at the end of the dry season, and the minimal recharge

(during the rainy season) is 150 MCMY. Thus, at the end of the year the
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water stock will be at or above 450 MCM. Water stocks (at the end of the

rainy season) below 450 can only be encountered initially and for a limited

number of periods (until recharge increases the stock), hence are transient.10

The λ∗j data of Figure 3 reveal that E1 contains only “safe” states (λ∗i = 1

for all si ∈ E1). Thus, once the optimal state process enters E1 the event will

never occur (the environmental threat is removed).

The steady state probabilities, characterized in Proposition 5.1 and applied

with the above E1, are depicted in Figure 5. In the long run (steady state),

under the optimal policy, the stock never drops below 450 MCM (the red line,

below which the environmental threat is activated, is at 300 MCM). This

allows pumping at least 150 MCMY without drawing the water head below

the red line (recall that the water head at the end of the dry season reaches

St − gt), thereby providing a buffer against bad draws (dry years).

Figure 5

The average long-run stock and extraction are, respectively,

ŝ =
ns∑

j=1

q∗j sj = 834.003 MCM

and

ĝ =
ns∑

j=1

q∗j ϕ
∗(sj) = 494.211 MCMY.

If the recharge were stable at the mean x̄ = 570.38 MCMY (see Figure

1), the steady-state extraction were set at this rate and this policy could have

been maintained at a much lower stock level, e.g., at 300 MCM corresponding

to the threshold stock (the red line water-head level). The higher (average)

10This state classification can be reached also by applying the procedure described in
Puterman (2005, p. 590) on the transition matrix Pϕ∗ .
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stock constitutes a buffer that allows mitigating extraction fluctuations, in

spite of the stochastically fluctuating recharge, by drawing down the stock

during bad (low recharge) years and filling it up during good (high recharge)

years. On average, extractions are slightly less than the average recharge

(494 MCMY vs. 570 MCMY), while under the steady state distribution the

optimal extractions’ standard deviation,
√√√√

ns∑
j=1

q̂j[ϕ∗(sj)− ĝ]2 = 117.225,

is substantially smaller than the recharge process’ standard deviation of 278.09

(see Figure 1). The latter owes to the buffer role of the water stock (this effect

is similar to, though not the same as, the buffer value proposed by Tsur and

Graham-Tomasi 1991).

The large lung-run probability of the full capacity stock (the steady-state

probability of s = 1000 MCM is about 1/3, implying that, under the opti-

mal policy, in the long run the lake should be filled up every third winter

on average) is an outcome of the policy of maintaining a large average stock

(as a buffer against a series of dry years). Thus, it pays to let more water

flow into the lower Jordan river (by opening the gates of Degania dam at the

lake’s southern outlet during rainy years) in order to have the buffer stock

available during dry years. We note that this property is linked to the particu-

lar specifications and parameter values of Table 1, set for illustration purpose

only.

7 Concluding comments

Exploitation has diminished the capacity of many renewable resources to

endure stress, increasing their vulnerability to extreme environmental condi-
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tions that may trigger abrupt changes. The onset of such events depends on

the coincidence of extreme environmental conditions and the resource state.

Typically, both elements are uncertain and the uncertainty associated with the

event occurrence is the result of their combined effect. We analyzed resource

management in such a setting.

The environmental threat affects management policies in two ways: first,

it changes the immediate benefit flow; second, it turns the discount factor en-

dogenous to the exploitation policy. These effects were studied in a variety

of resource management problems under a deterministic state evolution (e.g.,

Clarke and Reed 1994, Tsur and Zemel 1996, 2008, 2009, Aronsson et al. 1998,

Haurie and Moresino 2006). Here they are investigated in resource situations

involving stochastic state evolution. Existence of an optimal stationary pol-

icy is established and long run properties are characterized. A numerical

illustration based on actual data is presented.

With some modifications, the framework developed here can be extended

to accommodate models that combine resource exploitation and economic

growth, such as integrated assessment models of climate change. The evo-

lution of the various state variables in such models is all but stochastic and

threats of global warming induced catastrophes have become increasingly alarm-

ing (see Nordhaus 2008, Chapter 7). The present framework can be used to

incorporate both types of uncertainty in a coherent (non ad hoc) fashion.
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A Appendix: The LP algorithm for calculat-

ing optimal policies of MDPs

Puterman (2005, Chapter 6) presents a variety of algorithms for calcu-

lating optimal policies of Markov decision processes (MDPs). We use the

algorithm based on Linear Programming (LP), adopted to the present case of

a state-dependent discount factor. We briefly describe the algorithm and its

application.

A.1 The LP approach for solving MDPs

The algorithm is based on the following property:

Proposition A.1. If v ∈ V satisfies v ≥ L(v), then v ≥ v∗.

Proof. The mapping L, defined in (4.3), is monotonic, i.e., for v, u ∈ V , v ≥ u

implies L(v) ≥ L(u). This property follows from β ≥ 0 and Qa(i, j) ≥
0 ∀(i, j). Thus, v ≥ L(v) implies L(v) ≥ L(L(v)) ≡ L2(v), hence v ≥ L(v)

implies v ≥ L2(v). Repeating this reasoning, we find that v ≥ L(V ) implies

v ≥ Lk(v) for k = 1, 2, .... Letting k → ∞, recalling that L is a contraction

and v∗ is the unique fixed point of v = L(v) (Theorem 4.1), establishes the

result.

It follows that the inequality v ≥ L(v), or in component notation

vi ≥ b(si, ak) + βλ(si, ak)
∑

j

p(j|i, ak)vj ∀ak ∈ A(si), i = 1, 2, ..., ns,

can at best hold as equality, in which case v = v∗. This suggests the following

(primal) Linear Programming (LP) problem for finding v∗:

Set αj > 0, j = 1, 2, ..., ns, satisfying
∑

j αj = 1 (any positive αj will do but
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the requirement that they sum to one allows a probability interpretation) and

find (unconstrained) vj, j = 1, 2, ..., ns, in order to minimize

ns∑
j=1

αjvj

subject to

vi − βλ(si, ak)
ns∑

j=1

p(j|i, ak)vj ≥ b(si, ak) ∀ak ∈ A(si), i = 1, 2, ..., ns.

This LP problem has ns unknowns (columns) and
∑ns

i=1 nai
constraints (rows),

where nai
is the number of actions in A(si).

The dual to the above LP problem is formulated as follows:

Find x(si, ak) ≥ 0, i = 1, 2, ..., ns, ak ∈ A(si), in order to maximize

ns∑
i=1

∑

ak∈A(si)

b(si, ak)x(si, ak) (A.1)

subject to

∑

ak∈A(sj)

x(sj, ak)−
ns∑
i=1

∑

ak∈A(si)

βλ(si, ak)p(j|i, ak)x(si, ak) = αj, j = 1, 2, ..., ns.

(A.2)

The dual LP has
∑ns

i=1 nai
unknowns (columns) and ns constraints (rows).

The number of constraints is smaller than that of the primal LP problem,

which renders the dual LP more tractable. Properties of the dual LP problem,

including a verification that a basic solution exists, are discussed in Puterman

(2005, pp. 223-231).

Let x∗(si, ak), i = 1, 2, ..., ns, k = 1, 2, ..., nai
, denote the solution of the

dual LP. Since the dual LP has ns constraints, only ns out of the
∑ns

i=1 nai

elements of x∗ are positive. Moreover, for any state si only one x∗(si, ak) > 0.

The optimal (Markov-deterministic) stationary policy is specified as

ϕ∗(si) =
∑

ak∈A(si)

1(x∗(si, ak) > 0)ak, i = 1, 2, ..., ns, (A.3)
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where 1(·) assumes the values 1 or 0 when its argument is true or false, re-

spectively.

A.2 LP specification in the present case

Let D(i, k) = 1 or 0 as si ≥ ak or si < ak, respectively. Thus, D(i, k) = 1

if the action ak is feasible at si and D(i, k) = 0 otherwise (see discussion in

subsection 6.2). Let B be the ns × na matrix with the i, k element given by

b(si, ak)D(i, k), where b(s, a) is defined in (6.6). The LP objective (A.1) can

be rendered as
ns∑
i=1

na∑

k=1

B(i, k)x(i, k). (A.4)

Similarly, let p̃(j|i, ak) = λ(si, ak)p(j|i, ak)D(i, k), where p(j|i, ak) is defined

in (6.3). Then

ns∑
i=1

∑

ak∈A(si)

p(j|i, ak)x(i, k) =
ns∑
i=1

na∑

k=1

p̃(j|i, ak)x(i, k)

and the dual LP constraints (A.2) can be expressed as

ns∑
i=1

na∑

k=1

D(i, k)x(i, k)−β

ns∑
i=1

na∑

k=1

p̃(j|i, k)x(i, k) = 1/ns, j = 1, 2, ..., ns, (A.5)

where we set αj = 1/ns, j = 1, 2, ..., ns.

The LP problem then is to find x(i, k) ≥ 0, i = 1, 2, ..., ns, k = 1, 2, ..., na,

in order to maximize (A.4) subject to (A.5).
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Table 1: Specifications and parameter values

Function Form Description

b̃(s, a) c1 log(a)− c2a Reward under no occurrence
vp(s) Constant Post-event value
λ(s, a) min

{
1, λ0 + (1− λ0)e

δ(s−a−sc)/(s−a)
}

Survival probability

Parameter Value Description
β 0.9434 Discount factor =1/(1+0.06)
α 2.20967 Recharge dist. parameter
θ 187.077 Recharge dist. parameter
∆s 50 MCM Diff between consecutive states
ns 21 Number of admissible states
∆a 50 MCMY Diff between consecutive actions
na 15 Number of admissible actions
∆x 50 MCMY Diffe between consecutive recharge
nx 26 Number of recharge points
c1 300× 106 Demand parameter
c2 0.2× 106 Unit supply cost
vp −3× 1010 Forgone benefit due to occurrence
sc 300 MCM Critical stock (at red line)
λ0 0.5 Survival prob at s = 0 (black line)
δ 0.2 Hazard parameter
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Figure 1: Lake Kinneret’s recharge series during 1932 - 2008. The descriptive
statistics are calculated for the 1980 - 2008 data.
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Figure 2: The gamma distribution with parameters α = 2.20967 and θ =
187.077 (solid) and the empirical distribution (dots) of the Kinneret’s recharge
series for the period 1980 - 2008.
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Figure 3: The optimal stationary Markov extraction policy ϕ∗(s) (MCMY)
for s = 0, 50, 100, ..., 1000. The data are reported to the right of the figure and
contain also the survival probabilities λ∗j .
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Figure 4: The value vϕ∗(s) (×1010 $) for s = 0, 50, 100, ..., 1000 MCM.
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Figure 5: Long run (steady state) probabilities.
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