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Abstract:  
Consider an n-person economy in which efficiency is independent of distribution but the 
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all agents to either benefit jointly or suffer jointly with any change in production 
possibilities under well-behaved generalized utilitarian bargaining solutions (of which the 
Nash Bargaining and the utilitarian solutions are special cases). We apply the result to 
household decisionmaking in the contex of the Rotten Kid Theorem and in evaluating a 
change in family taxation. 
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1 Introduction

Solidarity is a crucially important consideration whenever individuals coopera-
tively decide on how to allocate resources among themselves: an agreement is
unlikely to be reached if some are hurt while others bene�t in the event of a fore-
seeable shock in the available resources. From a normative standpoint, solidarity
is also a chief concern when making policy recommendations, as illustrated by
the following slightly modi�ed example found in Nash (1950). Suppose Jack
and Bill are siblings and have to share the following items: a book, a whip, a
ball, a bat, a box, a pen, a toy, a knife, and a hat. Now suppose the parents take
away the whip and the knife and replace them with a bucket and a shovel. It
may be a relief for them to know that they will either disappoint both children
or delight them both. In other words, the parents may want to make sure that
their action does not destabilize their childrens�bonding by making one child
better o¤ and the other worse o¤ and thus giving the impression that parents
favor one child over the other. On a larger scale, a government may take a
similar stance when it comes to family policies: it may be desirable to know
that a change in family policies such as changes in parental leave policies or
family taxation, �policies that clearly change a family�s production possibility
set �do not leave some family members worse o¤ and others better o¤, which
could unduly stress intrafamily relationships.
In practice, however, most bargaining situations which draw upon the results

of axiomatic bargaining typically do so using some generalized utilitarian bar-
gaining solution (GUBS). This broad class of solutions consists of maximizing
an additively separable social welfare function and includes the utilitarian and
Nash bargaining solutions. Despite their appealing properties (Moulin 1988),
bargaining solutions in the GUBS class typically fail to satisfy solidarity (Chun
and Thomson, 1988) unless agents� utility is transferable. Yet, transferable
utility (TU) is a very strong assumption which forbids taking into account com-
monly observed features of individual preferences such as diminishing marginal
utility and, by extension, risk aversion. Hence, for most practical purposes, the
use of the class of GUBS seems rather limited in applications.
We remedy the issue by establishing that well-behaved GUBS (to be de�ned)

satisfy solidarity on a broader utility class than TU, which we de�ne and call
Almost TU. Almost TU requires the same ordinal properties as TU but allows
for cardinal properties like diminishing marginal utility as well. Hence, our
result broadens the valid range of applications for bargaining solutions of the
GUBS class.1 Also, from an implementation standpoint, policy makers may be
unsure of the cardinal properties of agents�utility functions when evaluating
the change in welfare due to a change in policy. Hence they may be reassured
to know that the utility of the agents will change in the same direction even in
the event of a misestimation of these cardinal properties, as long as the ordinal

1MasCollel et al. (1995, p. 831) take as given that individuals have cardinal utility func-
tions, when they state:"[...] whereas a policy maker may be able to identify individual cardinal
utility functions (from revealed risk behavior, say), it may actually do so but only up to a
choice of origins and units."
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properties for TU are satis�ed.
More precisely, our main result (Theorem 1) characterizes Almost TU as the

domain on which all well-behaved GUBS satisfy solidarity. We then present two
applications where our main result bears useful consequences. First, in family
policies, changes in family taxation amount to changes in the production possi-
bility set of the household. Consquently, knowing that the solidarity property
holds helps decrease the number of dimensions of possible opposition to a policy
change (i.e., only interhousehold tensions will have to be considered, but not
intrahousehold tensions). The second application we o¤er relates to the ques-
tion of incentive compatibility (Theorem 2) and as an application we present a
version of the Rotten Kid Theorem which holds on the wider domain of Almost
TU instead of TU.
Even if a GUBS satis�es the solidarity property, there is still a possibility

that a change in the utility possibility set a¤ects agents�utilities in opposite
ways. This happens if not only joint production possibilities change but the
stand-alone utilities of agents change as well (see section 6 for examples). Yet,
even in this case, Almost TU in combination with a GUBS remains useful as it
allows us to decompose the impact of such a change into a "utility possibility set"
e¤ect (agents share the gain or the pain holding the disagreement point �xed)
and a "disagreement point" e¤ect (di¤erent agents may experience changes in
their utility at the disagreement point in opposing directions).

2 Related Literature

Many works emphasize the importance of solidarity in allocation problems, be it
with respect to population or to the total amount of goods available (see Moulin,
1988, or Sprumont, 2008, for a survey.) This work belongs to the latter strand
of the literature and is more closely related to Chun and Thomson (1988), which
explicits the parallel between fair allocation problems and bargaining situations.
Chun and Thomson (1988) show that the solidarity property holds in a one-good
economy for some bargaining solutions. Our main result generalizes theirs to a
many-goods production economy when preferences exhibit Almost TU.
In the context of axiomatic bargaining, many characterizations of bargaining

solutions are motivated by at least some notion of solidarity or monotonicity
arguments.2 Xu and Yoshihara (2008) o¤er a systematic treatment of well-
known bargaining rules with respect to solidarity-type axioms.
Although we motivate the interest in the solidarity property as a normative

issue, our result also has implications for incentive compatibility. In an applica-
tion of our main theorem we draw a connection to Bergstrom�s (1989) treatment
of the Rotten Kid Theorem.3 Bergstrom shows that each child behaves so as to

2 Individual monotonicity is the property that distinguishes the Kalai-Smorodinsky solution
from the Nash Bargaining solution (Kalai and Smorodinsky 1975).

3There has been renewed interest in the Rotten Kid Theorem in explaining the economics
of child labor (Baland and Robinson 2000, and Bommier and Dubois 2004). The question of
whether or not TU is a reasonable assumption in this context plays a crucial role in these two

3



maximize the head of household�s altruistic utility function if and only if util-
ity is transferable. By strengthening the assumption on the altruistic parent�s
preferences to be of the form of a well-behaved GUBS rather than just treating
each child as a normal good, we present a Rotten Kid Theorem that holds for
Almost TU, not just TU.
The issue of incentive compatibility also arises in a model in which spouses

need to take individual actions in order to produce goods that they will later
distribute among themselves. Based on Gugl (2009) we provide such a model
of "Rotten Spouses" in section 6.1. Almost TU takes care of two issues at once:
Assuming Almost TU, the class of well-behaved GUBS satis�es the Solidarity
property as well as incentive compatibility.

3 The Model

Consider a population N = f1; 2; :::; ng of agents who produce L � 2 goods.
These goods may include public goods, but at least one good is private. More
precisely, the population faces a production possibility set Y � RL+ that is a
closed, convex and comprehensive set. If we denote by y 2 RL+ a particular
product mix, then @Y , the production possibility frontier of Y , and the corre-
sponding transformation function, F : RL+ ! R, are de�ned as follows:

Y =
�
y 2 RL+jF (y) � 0

	
, and

@Y = fy 2 Y jF (y) = 0g :

We denote by xi = (xi1; xi2; :::; xiL) 2 RL+ agent i�s consumption vector. A
distribution of y is a list of consumption vectors, one per agent, x = (x1; :::; xn)
such that:� P

i2N xil = yl for any private good, l, and
xik = xjk = yk for all i; j 2 N and any public good, k:

For any product mix y, we denote by X(y) the set of distributions of y and by
X(Y ) =

S
y2Y X(y) the set of feasible distributions under Y . An allocation is

a product mix-distribution pair (y; x) 2 Y �X(y):
The preferences of each agent i are represented by a utility function, ui,

which is non-decreasing, concave and twice di¤erentiable from RL+ to R.4 We
denote by U the class of such utility functions. A utility pro�le is a collection
of utility functions, (u1; u2; :::; un) 2 UN , one per agent. An economy is a pair
(Y; u) 2 RL+ � UN .
We denote by U(Y; u) = f 2 RN j9x 2 X(Y ) s.t. u(x) =  g the utility

possibility set corresponding to the economy (Y; u). It follows from our assump-
tions on an economy that U(Y ) is a closed, convex, and comprehensive set.

papers.
4We assume di¤erentiability for expositional purposes, but our results extend to Leontief-

type preferences.
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We denote by @U(Y; u) the Pareto frontier of U(Y; u); i.e., @U(Y; u) = f 2
U(Y; u)j 0 �  =)  0 =2 U(Y; u)g.5
We shall consider that agents cooperatively manage the economy, in the

form of a bargaining process, with the possibility that agents disagree on how
to do so. Hence, we denote by di agent i�s stand-alone utility level and call
d = (d1; d2; :::; dn) 2 U(Y; u) the disagreement point of the bargaining process.
We denote by the pair (U(Y; u); d) the corresponding bargaining problem. Note
that we take the view that the disagreement point may depend on the utility
pro�le, u, but is independent of the cooperative production possibilities, Y .
A bargaining solution is a function, S : RL+ � UN � RN ! U(Y; u), map-

ping to each bargaining problem a utility vector in the corresponding utility
possibility set such that S(U(Y; u); d) = d and S(U(Y; u); d) 2 @U (Y; u). We
denote by S the class of bargaining solutions. A family of bargaining solu-
tions we shall consider is that of generalized utilitarian bargaining solutions
(GUBS) where, for each bargaining solution � in this class, there exists a list
of n concave, strictly increasing, and continuous functions, (1; 2; :::n), such
that �(U(Y; u); d) = argmax 2@U(Y;u)

P
i2N i( i � di). Note that GUBS is a

wide family of bargaining solutions; both the utilitarian solution and the Nash
bargaining solution belong to GUBS, with i = 1 and i = ln(�) for all i, respec-
tively. More precisely, we denote by G the subclass of GUBS for which the i�s
are strictly concave; thus, so the Nash Bargaining solution belongs to G. The
utilitarian solution belongs to another subclass of GUBS, the weighted utilitar-
ian bargaining solutions (WUBS): A bargaining solutionW belonging to WUBS
is characterized by a list of n non-negative weights, (!1; !2; :::; !n) 2 RN+ , withP
!i = 1, such that W (U(Y; u); d) 2 argmax 2@U(Y;u)

P
i2N !i( i � di). To

ensure uniqueness of the solution in case @U(Y; u) is an (n � 1)-dimensional
hyperplane as Pareto frontier, we shall consider only the subfamily of WUBS
which break ties along a non-decreasing path of RN+ : A non-decreasing path is
a function � : R+ ! RN+ s.t. �(t) = (�1(t); �2(t); :::; �n(t)) non-decreasing in
each coordinate with �(0) = d and

P
i �i(t) = t+

P
i di.

W (U(Y; u); d) = arg min
 2argmax 2@U(Y;u)

P
!i( i�di)

 � �� max
 2@U(Y;u)

X
!i( i � di)

�
By convexity of U(Y; u), W (U(Y; u); d) is unique. We denote by W the family
of WUBS breaking ties along a non-decreasing path. We refer to a G [ W as
the class of well-behaved GUBS.
We say that a bargaining solution, S, satis�es Solidarity under utility pro�le

u if one of the following vector inequality holds:

S(U(Y; u); d) = S(U(Y 0; u); d) or S(U(Y; u); d) 5 S(U(Y 0; u); d)

for any Y; Y 0 � RL+, and any d 2 RN+ .
5We adopt the ususal notational convention for vector inequalities: x = x0, x � x0, and

x > x0.
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4 Almost Transferable Utility

In this section we de�ne the new concept of Almost Transferable Utility. In
order to do so, we �rst recall what is meant by a product mix that being e¢ cient
independently of distribution, a necessary (and su¢ cient) condition for (Almost)
TU to hold. The conditions under which a product mix is e¢ cent independently
of distribution are well established in the literature by Bergstrom and Cornes
(1983) and Bergstrom and Varian (1985). Our analysis below is not meant to
reestablish these results but to apply the concept to introduce Almost TU.

4.1 E¢ ciency Independent of Distribution6

We denote by EX(y; u) = fx 2 X(y)j@x0 2 X(y); u(x0) � u(x)g the set of
exchange e¢ cient distributions in X(y) relative to the utility pro�le u and by
P (Y; u) = f(y; x) 2 Y � X(y)j@(y0; x0) 2 Y � X(y0); u(x0) � u(x)g the set of
(Pareto) e¢ cient allocations in the economy (Y; u).
For any given y 2 Y , we say that x 2 X (y) is interior exchange e¢ cient if

and only if:

@ui(xi)

@xli
@ui(xi)

@xmi

=

@uj(xj)

@xlj
@uj(xj)

@xmj

for all i; j 2 N , for all private goods l;m:

We denote by EX� (y; u) the set of interior exchange e¢ cient distributions of
X(y) relative to the utility pro�le u:We say that a product mix and distribution
pair (y; x) 2 Y �X(y) is interior e¢ cient if and only if the following holds:8>><>>:

@ui(xi)

@xli
@ui(xi)

@xmi

=
@F (y)
@yl
@F (y)
@ym

for all i 2 N , and all private goods l;m

and
P
i2N

�
@ui(xi)

@xk
@ui(xi)

@xmi

�
=

@F (y)
@yk
@F (y)
@ym

for any public good k and any private good m.

(1)
The �rst family of equalities states that all agents�marginal rates of substi-
tutions (MRS) between any two private goods, @ui(xi)@xli

=@ui(xi)@xmi
; must equal the

marginal rate of transformation (MRT) between these goods, @F (y)@xl
=@F (y)@xm

. The
second set of equalities are the Samuelson conditions for public goods.
We say that e¢ ciency is independent of distribution if there exists y 2 Y

such that, for all  2 @U (Y; u),  = u (x) for some x 2 X (y) : In words, all
points on the utility possibility frontier are be achieved via vasiour distributions
of the same product mix. It follows from (1) that �y is associated with a vector
of marginal rates of substitution at the exchange e¢ cient distributions� one per
pair of goods� which is independent of the utility level achieved by any agent.
See Figure 1 for a graphical illustration in the case of two private goods, strictly
quasi-concave utility functions and a strictly convex production possibility set.

6Bergstrom and Cornes (1983) call this concept "independence of allocative e¢ ciency from
distribution."
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In the �gure, neither y nor y0 are e¢ cient, because the value of the MRS as-
sociated with EX� (y; u) is di¤erent from the MRT at y; similarly for y0. The
product mix associated with any e¢ cient allocation, y00, lies on @Y between y
and y0, where the MRS of EX� (y00; u) equals the MRT at y00.

Figure 1: E¤�cicency independent of distribution: Anll e¢ cient distributions aggregate up to
the same product mix y00:

In the case of public and private goods, for a product mix to be e¢ cient
independently of distribution requires that the sum of marginal rates of substi-
tution stays the same for a given level of the public good �yk no matter how the
total amount of the private good �yl is distributed.

4.2 Transferable Utility

A utility pro�le, u 2 UN , satis�es Transferable Utility (Bergstrom 1989) if for
any given Y 2 RL+, the following holds:

@U (Y; u) = f 2 U(Y; u) :
X
i2N

 i = � (Y; u)g:

7



Note that resource and technological constraints as given by Y only play a role
in the size of �: If TU holds, e¢ ciency is independent of distribution (Bergstrom
and Cornes 1983, and Bergstrom and Varian 1985). If we take agents�utility
to be ordinal, the converse is also true. Bergstrom and his co-authors give
an exhaustive list of agents�utility functions that lead to TU. Agents�utility
functions must allow the indirect utility representation of the Gorman Polar
Form in an economy with only private goods (Bergstrom and Varian 1985) and
a form dual to the Gorman Polar form in an economy with public and private
goods (Bergstrom and Cornes 1981 and 1983).

Example 1 Finding the utility possibility frontier with TU.
a) Two private goods, two agents. Suppose ui = (x1ix2i)

1=2
: Then @U (Y; u) =

f( 1;  2) 2 U (Y; u) :  1 +  2 = � (Y; u)g; where � = maxy2Y (y1y2)1=2 :Indeed,
because both agents have identical preferences for any given y 2 Y; dividing
all goods equally must be exchange e¢ cient, i.e. x =

�
1
2y1;

1
2y2;

1
2y1;

1
2y2
�
2

EX� (y; u) : Therefore � (y; u) = 1
2 (y1y2)

1=2
+ 1
2 (y1y2)

1=2
= (y1y2)

1=2 and � (Y; u) =

maxy2@Y (y1y2)
1=2

:
b) A private and a public good, two agents. Suppose preferences over a

private good and a public good are quasi-linear such that ui = x1i + hi (x2) ;
where hi (�) is a strictly concave function. Then the segment of the utility pos-
sibility frontier at which TU holds consists of all the points on the line from
( 1 = h1 (y2) ;  2 = y1 + h2 (y2)) to ( 1 = y1 + h1 (y2) ;  2 = h2 (y2)) where the
vector (y1; y2) is found by argmaxy2Y y1+h1 (y2)+h2 (y2) ; and � = maxy2Y y1+
h1 (y2) + h2 (y2) :

More generally, when TU holds, one can �nd @U (Y; u) in two steps. First,
calculate � (y; u) =

P
i2N ui(xi) such that x 2 EX� (y; u) : Second, �nd � (Y; u) =

maxy2@Y � (y; u) :

4.3 Almost Transferable Utility

Whether a product mix is e¢ cient independently of distribution, depends solely
on the ordinal properties of the agents�utility functions. If they are such that a
product mix is e¢ cient independently of distribution, but their cardinal prop-
erties prohibit the particular utility representation that would lead to TU, then
there must exist positive monotonic transformations,fi : R! R, such thatX

i2N
fi ( i) = � (Y; f (u)) :

However, fi ( i) no longer represents an agent�s utility. Hence, we say that
pro�le u 2 UN exhibits Almost Transferable Utility (Almost TU) if, for any
given Y , the utility possibility frontier is of the form

@U (Y; u) = f 2 U(Y; u) :
X
i2N

fi ( i) = � (Y; f (u))g:
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Since ui is assumed to be concave, it follows that fi must be an increasing, and
convex function. The intuition is that in order to recover a linear constraint, one
needs constant "marginal utility" of money. Hence, given that strict concavity of
ui leads to decreasing marginal utility of money, a strictly convex transformation
is required to undo this e¤ect.

Example 2 Finding the utility possibility frontier with Almost TU.
a) Take the same ordinal properties as in Example 1, but di¤erent cardinal

properties. Suppose u1 = (x11x21)
1=3 and u2 = (x12x22)

1=4
; that is, given

u from example 1a), u =
�
u
2=3
1 ; u

1=2
2

�
: Then @U (Y; u) = f( 1;  2) 2 R2+ :

 
3=2
1 +  22 = �

�
Y; u

3=2
1 ; u22

�
g; where � = maxy2Y (y1y2)1=2 :

b) Suppose the cardinal utility function of agent i over a private good (x1i)
and a public good (x2) is given by ui = (x1i + hi (x2))

�i ; where hi (�) is a strictly
concave function and �i 2 (0; 1). Then the segment of the utility possibility fron-
tier at which Almost TU holds consists of the endpoints ( 1 = (h1 (y2))

a1 ;  2 = (y1 + h2 (y2))
�2)

and ( 1 = (y1 + h1 (y2))
�1 ;  2 = (h2 (y2))

�2) and of all points ( 1;  2) between

these endpoints for which  1=�11 + 
1=�2
2 = �

�
Y; u

1=�1
1 ; u

1=�2
2

�
; where the vector

(y1; y2) is found by argmaxy2Y y1 + h1 (y2) + h1 (y2) ; and � = maxy2Y y1 +
h1 (y2) + h1 (y2) :

In the following example (Almost) TU does not hold; although there exists
a Y such that U (Y; u) forms a simplex, it is not the case for all production
possibility sets.

Example 3 Three private goods, two agents. Let u1 and u2 be strictly increas-
ing, strictly quasi-concave and homogenous of degree one. Moreover, let u1 =
u (x11; x21) ; u2 = u (x12; x32) : That is, good 3 replaces good 2 in agent�s 2 utility
function as compared to that of agent 1�s. Let � (Y; u1) = maxy2Y u (x11; x21)
and � (Y; u2) = maxy2Y u (x12; x32) : Consider the production possibility set
given by Y =

�
(y1; y2; y3) 2 R3+jy1 + p2y2 + p3y3 � I

	
with p2; p3; I > 0 and

p2 = p3 = p: Then, � (Y; u1) = � (Y; u2) and @U (Y; u) = f( 1;  2) 2 U (Y; u) :
 1 +  2 = � (Y; u1) = � (Y; u2)g: Suppose Y changes to Y 0 such that Y 0 =�
(y1; y2; y3) 2 R3+jy1 + p2y2 + p3y3 � I

	
with p2 6= p3: Then @U (Y 0; u) = f( 1;  2) 2

U (Y 0; u) :  1
�(Y 0;u1)

+  2
�(Y 0;u2)

= 1g: (Almost) TU is violated. Proof see Appendix.

5 Results

We now consider what happens if Almost TU holds and the production possi-
bility set changes.

Lemma Given Almost TU, a change in the production possibilities of the econ-
omy can only result in an expansion or a contraction of the utility possi-
bility set:8Y; Y 0 2 RL+; [U(Y; u) � U(Y 0; u) or U(Y 0; u) � U(Y; u)]:
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Proof. Consider a change from Y to Y 0: By Almost TU, @U(Y; u) = f 2
U(Y; u) :

P
fi( i) = �(Y; f(u))g and @U(Y 0; u) = f 2 U(Y 0; u) :

P
fi( i) =

�(Y 0; f(u))g. Hence, either � (Y; f (u)) = � (Y 0; f (u)), in which case U (Y; u) =
U (Y 0; u) ; or � (Y; f (u)) > � (Y 0; f (u)) implying U (Y; u) � U (Y 0; u) ; or � (Y; f (u)) <
� (Y 0; f (u)) implying U (Y; u) � U (Y 0; u) :
We now state our main theorem.

Theorem 1 Any bargaining solution, S 2 G [W, satis�es solidarity under
pro�le u if and only if u exhibits Almost TU.

Proof. For su¢ ciency, note that for any S 2 G [W, a �rst step� and, in case
of S 2 G, also the last step� to �nding S is by solving the following:

max 
P
i2N i( i � di)

s:t:
P
i2N fi( i) = � (Y; f (u))

(2)

In what follows, it will be useful to work with vi = fi( i), such that the above
problem becomes

max 
P
i2N i(f

�1
i (vi)� di)

s:t:
P
i2N vi = � (Y; f (u))

(3)

and then �nding the corresponding  i from  i = f�1i (vi): Chun and Thomson
(1988) show that if agents have concave utility functions over one good only,
and this good�s supply increases, both agents bene�t under the Nash bargaining
solution. The authors remark that the result extends to any bargaining solution
in G (Chun and Thomson 1988, p. 19). When problem (2) is presented as (3) ; a
change in � (Y; f (u)) due to a change in Y has the same impact on v as a change
in the only good has on agents�utilities in Chun and Thomson (1988)�s one-
good economy. Thus their proof applies to our problem (3) for any G2G such
that limxi!0 gi = �1. In addition, our proof of su¢ ciency below also handles
the subclass W of GUBS, the possibility of corner solutions7 , and accounts for
d 6= (0; 0) :
Suppose Almost TU holds, and let S 2 G [ W, Y � RL+, u 2 UN and

d 2 U(Y; u): Denote by v� = S(fv 2 RN j
P
i2N vi � � (Y; f (u))g; d) the solution

vector in the v-space.

� Case 1: df2i
d 2i
(f�1i (v�i )) > 0 for at least n�1 values of i 2 N . It follows that

v� is the unique element of @f(U(Y; u)) such that the following expression
holds:8<:

@i
@(f�1i (vi)�di)

df�1i
dvi

(vi) =
@j

@(f�1j (vj)�dj)
df�1j
dvj

(vj) for all i; j 2 N

such that f�1i (vi) > max
�
 i; di

�
and f�1j (vj) > max

�
 j ; dj

�
;

(4)

7The possibility of corner solutions is not a concern in the proof of Chun and Thomson
(1988) as the Nash bargaining solution is necessary interior.
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where  i (resp.  j) is the utility level of agent i (resp. agent j) when she
does not receive any private good. The left hand side of (4) depends on
vi only, and the right hand side of (4) depends on vj only: Since f

�1
i (�) is

increasing and concave, df
�1
i

dvi
is positive and non-increasing. Similarly, i

being concave and f�1i being increasing, @i
@(f�1i (vi)�di)

is non-increasing in

vi. Hence, the product
@i

@(f�1i (vi)�di)
df�1i
dvi

(resp.
@j

@(f�1j (vj)�dj)
df�1j
dvj

) is non-

increasing in vi (resp.vj). Therefore, for (4) to hold as � changes values,
vi and vj must change in the same direction, thus proving the result.

� Case 2: d
2fi
dv2i
(f�1i (v�i )) > 0 for at most n�2 values of i 2 N . If S 2 G, v� is

the unique element of @f(U(Y; u)) for which expression (4) holds and the
argument of Case 1 follows through. Now, suppose S 2 W, with ! 2 Rn+
its associated weights, there may be more than one v 2 @f(U(Y; u)) for
which expression (4) holds. Denote

�(Y; u; !) =

8>><>>:
 2 @U(Y; u)j

!i � df�1i
@vi

(vi) = !j �
df�1j
dvj

(vj) for all i; j 2 N
and  i > max

�
 i; di

�
and  j > max

�
 j ; dj

�
:

9>>=>>; .
We proceed to show that the fact that �(Y; u; !) may not be a singleton
does not a¤ect the comonotonicity of the utility shares. In particular,
despite the fact that S breaks ties along a non-decreasing path, this is not
automatic as the path may not pass through �(Y; u; !):

It follows from elementary convex optimization arguments that if �(Y; u; !)
is not a singleton, then lim!̂t!! �(Y; u; !̂t) is a singleton for any sequence
of Rn+, f!̂tgt2N, such that !̂t 6= ! for all t and limt!1 !̂t = !. Therefore,
an argument similar to that in Case 1, applied to the sequences f!̂tgt2N
implies that, for any Y 0 � RL+ such that, by Lemma 5, U(Y; u) � U(Y 0; u)
(resp U(Y 0; u) � U(Y; u)), the set �(Y 0; u; !) dominates (resp. is domi-
nated by) �(Y; u; !) in the following sense: for any element  2 �(Y; u; !),
there exists  0 2 �(Y 0; u; !) such that  0 �  (resp.  0 �  ). See Figure
2. Thus, the fact that S breaks ties along a non-decreasing path yields the
desired result, regardless of whether this path passes through �(Y; u; !) or
�(Y 0; u; !).

For necessity, let S be a generalized utilitarian bargaining solution and let
u 2 Un be a utility pro�le which does not satisfy Almost TU. Consider a pro-
duction possibility set, Y1 � RL+, and let y 2 @Y1 be an e¢ cient product mix,
so that a 2 EX�(y; u) in the economy (Y1; u). By e¢ ciency:

@ui(ai)
@xli

@ui(ai)
@xmi

=

@uj(aj)
@xlj

@uj(aj)
@xmj

=

@F1(y)
@yl

@F1(y)
@ym

(5)
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Figure 1: By Case 1, A < C and B < D.
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for any pair of agents i and j and any pair of goods l and m. 8

By continuity, and because the pro�le u does not satisfy Almost TU, there
exists an interior exchange e¢ cient distribution b 2 EX�(y; u) such that (y; b)

is not Pareto e¢ cient in the economy (Y1; u). Therefore,
@ui(bi)

@xli
@ui(bi)

@xmi

=

@uj(bj)

@xlj
@uj(bj)

@xmj

for

all i; j 2 N and all l;m 2 L but
@ui(bi)

@xli
@ui(bi)

@xmi

=

@uj(bj)

@xlj
@uj(bj)

@xmj

6=
@F1(y)
@yl

@F1(y)
@ym

for some pair l;m of

goods. Without loss of generality, suppose that

@ui(bi)
@x1i
@ui(bi)
@x2i

=

@uj(bj)
@x1j

@uj(bj)
@x2j

>

@F1(y)
@y1

@F1(y)
@y2

;

for all i; j 2 N .
Now construct another production possibility set, Y2 � RL+, such that y 2

@Y2 and
@F2(y)
@yl

@F2(y)
@ym

=
@ui(bi)

@xli
@ui(bi)

@xmi

=

@uj(bj)

@xlj
@uj(bj)

@xmj

for all l;m 2 L and all i; j 2 N , as shown in

Figure 3 in the two-agent case.

8For clarity, we are presenting the proof in the case of all private goods. The proof with
public goods is similar, with the e¢ ciency condition (5) being replaced by the Samuleson
condition for these goods (Expression (1)).
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Figure 3: Allocation a ( b) is e¢ cient when the production set is Y1 (Y2).

It follows from the construction of Y2 that a is not an e¢ cient allocation

in (Y2; u) because
@F2(y)
@y1

@F2(y)
@y2

>
@ui(ai)

@x1i
@ui(ai)

@x2i

for all i 2 N . Therefore, there exists an

allocation in Y2 which Pareto-dominates a. In other words, if we denote by  a1
the utility vector corresponding to distribution a, (recall that e¢ ciency of a in
the economy (Y1; u) implies that  a1 2 @U(Y1; u)) there exists another vector
 a2 2 @U(Y2; u) such that  a2 >  a1. See Figure 4.
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Figure 4: When utility possibility frontiers cross, solidarity may not hold

Similarly, because the allocation (y; b) 2 P (Y2; u)nP (Y1; u), there exists a
utility vector  b1 2 @U(Y1; u) which dominates  b2 2 @U(Y2; u); i.e.  b1 >  b2.
From the two previous arguments, and from the continuity of @U(Y1; u) and

@U(Y2; u), it must be that @U(Y1; u) and @U(Y2; u) cross at some point in the
utility space. Denote by  12 2 @U(Y1; u) \ @U(Y2; u) such a point.
We now show that there exist bargaining situations where a change from the

production possibility set Y1 to Y2 will bene�t some agents while hurting others.
Consider a disagreement point, d 2 U(Y1; u), such that S(U(Y1; u); d) =  12;
i.e., such that  12 = argmax 2U(Y1;u)

P
i i( i � di). Such a disagreement

point exists due to the continuity and the strict monotonicity and concavity
properties of the i�s, if S 2 G or, if S 2 W, due to the fact that S. breaks ties
along a path. Therefore, invoking again the strict monotonicity and concavity of
the i�s, and the fact that @U(Y1; u) and @U(Y2; u) cross at  12, it follows that
S(U(Y2; u); d) 6=  12.

9 Finally, it follows from the fact that U(Y2; u) is convex
and comprehensive that S(U(Y2; u); d) neither dominates nor is dominated by
S(U(Y1; u); d).

9Recall that we de�ned the disagreement point to be entirely determined by the utility
pro�le and the agents�stand-alone utilities. According to this interpretation, the disagreement
point is una¤ected by changes in the joint production possibilities.
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Remark 4 Many GUBS do not belong to G [W; where the 0is are not strictly
concave everywhere, for which the proof of Theorem 1 readily applies.

Remark 5 Note that Chun and Thomson (1988)�s one-good economy is a spe-
cial case of our economy; with L = 1; and y1 given, it follows that

P
i2N vi =P

x1i and � (y1; f (u)) = y1:

Remark 6 In the case of identical utility functions and a symmetric GUBS, if
d is on the 45 degree line, the solidarity property is satis�ed even if the bargain-
ing solution is not well-behaved. By symmetry of U (�; u) it is impossible that
U (Y1; u) and U (Y2; u) cross at the 45 degree line, yet a symmetric GUBS will
always select  where @U (�; u) crosses the 45 degree line.

6 Applications

Theorem 1 has important policy implications. For example, research on fam-
ily economics frequently uses bargaining rules �most often the Nash bargain-
ing solution � to analyze intrafamily distribution. In this literature parame-
ters that change the disagreement point without changing the utility possibility
set (McElroy (1990) refers to them as extrahousehold environmental parame-
ters) have received substantial attention (Lundberg et al., 1997, Rubalcava and
Thomas, 2000, Chiappori et al., 2002), but policies that have the potential to
a¤ect the disagreement point as well as the utility possibility set are more dif-
�cult to analyze. Examples of policies a¤ecting the utility possibility set and
maybe the disagreement point are parental leave policies, policies subsidizing
child care, and family taxation. We focus on the latter in the application below.

6.1 Change in Family Tax Policy

Many tax expenditures and provisions in income taxation have a quite complex
impact on a family�s full budget set. For example the question of joint or
individual taxation changes the household�s production function of income. To
�x ideas consider the following model based on Gugl (2009).
Consider a household consisting of two spouses (i = f;m) as the set of

agents. Each spouse cares about his or her consumption of a private good (x1i)
and consumption of a household public good (x2). Hence, a spouse�s utility
function is given by ui (x1i; x2) : Total time endowment of each spouse is denoted
by T; which can be divided between employment (li) towards purchasing the
private good (x1f +x1m = y1) and home production (ti) to produce y2.10 Then
a spouse�s time constraint is given by li + ti = T:
Household production is given by

x2 = y2 (lf ; lm) = hf (T � lf ) + hm (T � lm) : (6)

10Home production can be interpreted as raising children, but can also stand for taking care
of household chores like cooking, doing laundry, cleaning the house, gardening etc.
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where hf and hm both satisfy the following properties: hi (0) = 0; @hi@ti
> 0; and

@2hi
@t2i

� 0:

Household Net Income A person�s taxable income is given by the product
of his or her wage rate (wi) times the hours worked (li) : Let �

ind (wili) be
the net wage of a person if taxed individually. Given a progressive tax on
wages, �ind (:) is a strictly increasing and concave function. Thus @�

ind

@wili
wi is the

marginal net-wage rate of spouse i:11

Under joint taxation the net wage of the family as a whole is given by
�joint (wf lf + wmlm) : Given a progressive tax on wages, �

joint (:) is a strictly

concave function of the household�s wage,
P
i=f;m wili. Then

@�joint

@(
P
i=f;m wili)

wi

is the marginal net-wage rate of spouse i under joint taxation:12

Normalizing the price of the private good to 1, the household budget con-
straint is given by

x1f + x1m = y1 = �ind (wf lf ) + �
ind (wmlm) (7)

under individual taxation, and by

x1f + x1m = y1 = �joint (wf lf + wmlm) (8)

under joint taxation.
The couple�s production possibility frontier, @Y; is found by

max (y1; y2)

subject to constraints (6) and (7) under individual taxation and (6) and (8)
under joint taxation. A change from individual to joint taxation is a rather
complex change and it is possible that @Y ind and @Y joint intersect.13

Let the disagreement point be determined by the stand-alone utility of each
spouse, i.e. a person�s utility before marriage. Thus the tax schedule applied
in the disagreement point is individual taxation and does not change with a
change in family taxation.14 Pollak (2006) argues that even if the disagreement
point is determined by a non-cooperative game of spouses and not by the stand-
alone utility, it should not change with a change in family taxation. He also
concludes that "joint taxation provides incentives for specialization but [...] the

11Since the tax schedule starts at a zero tax rate and then increases the tax rate with wage

income, 0 < @�ind

@wili
� 1 for any wili > 0 and @�ind(0)

@wili
= 1:

12Again, the tax schedule starts at a zero tax rate and then increases the tax rate with wage

income, so that 0 < @�joint

@
�P

i=f;m wili

� � 1 for any wili > 0 and @�joint(0)
@
P
i=f;m wili

= 1:

13For example, in the US di¤erent tax schedules exist for singles and couples and a couple�s
tax liability is typically more than twice the amount of the tax liability of a single person
earning half as much as the family as a whole. This form of joint taxation can lead to Y joint

to be neither a subset of, nor contain, Y ind.
14See e.g. Gugl (2009) for such a speci�cation.
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distributional e¤ects of joint taxation, which operate through the feasible set,
are indeterminant" (Pollak 2006, p. 29). Assuming ATU o¤ers a less ambiguous
answer.

Proposition 1 If spouses have utility functions that lead to Almost TU and use
a well-behaved GUBS to determine intrafamily distribution, both people
either bene�t or lose jointly with a change from individual taxation to
joint taxation.

The result presented here establishes conditions under which a change in
family taxation is guaranteed to change each family member�s welfare in the
same direction provided the disagreement point remains the same. Even if the
disagreement point changes, as this would be the case if the tax schedule for
singles also changes as part of a fundamental tax reform, Almost TU allows us to
decompose the impact of a change in income taxation into a "utility possibility
set" e¤ect (family members share the gain or the pain) and a "disagreement
point" e¤ect (di¤erent family members may experience changes in their utility
at the disagreement point in opposing directions).15

If utility is not Almost TU, it is not clear whether a change in the produc-
tion possibility set caused by a change in government policy such as a change
from individual taxation to joint taxation will bene�t both spouses in the same
direction when a GUBS is used to determine intrafamily distribution, even if
the disagreement point is una¤ected by the change in family taxation. In order
to evaluate changes in family taxation, it is therefore useful to know whether
GUBS plus Almost TU is a good approximation to household behavior.
Almost TU implies that a product mix is e¢ cient independently of distri-

bution. Yet empirical studies have found that a change in the disagreement
point without changing the utility possibility set of spouses leads to a di¤erent
household expenditure pattern or division of labor (e.g. Lundberg et. al, 1997,
Rubaclava and Thomas, 2000, Chiappori et al., 2002). A change in expendi-
tures on male vs. female clothing or male vs. female entertainment goods when
interpreted as changes in expenditures on private consumption goods would be
consistent with a model in which spouses have utilities over a household public
good (corresponding to y2 above) and disposable income (corresponding to y1
above) that lead to Almost TU. A change in the division of labor, however,
either refutes the assumption of Almost TU in the family bargaining context or
suggests that more is going on than what is captured in a one period model.16

6.2 Incentive Compatibility

So far, we have considered exogenous changes in the production possibility set
and assumed that agents produce e¢ ciently the goods that they share according

15Gugl (2009) builds on that result in a two-period bargaining model. The model uses TU
rather than Almost TU.
16See e.g. Gugl (2009) for a two-period model with TU that would imply a change in the

division of labor if divorce laws change.
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to a GUBS. Now suppose that agents choose their actions non-cooperatively to
produce goods. In particular, denote by Ai the action set of an agent and by
ai 2 Ai a speci�c action taken by agent i: Denote by a�i the actions taken
by all the other agents except agent i: Each vector a = (ai;a�1) 2 Ai �

Y
j 6=i

Aj

generates y (a) 2 Y
�Q

i2N Ai
�
.

Theorem (Incentive Compatibility) If agents use a S 2 G [ W to deter-
mine the distribution of a given product mix y (a), the unique subgame
perfect Nash equilibrium (SPNE) outcome of the game in which agents
sequentially choose their actions is e¢ cient if and only if Almost TU holds.

Proof: Su¢ ciency: By Almost TU and Theorem 1. S satis�es solidarity.
Therefore, all agents seek to maximize �(y(a); u). The fact that agents play a
sequential game eliminates the possibility of a coordination problem and, hence,
agents will non-cooperatively reach a vector of actions a� 2 argmax

a2
Q

i2N Ai
�(y(a); u):

Necessity follows from Theorem 1: Only if Almost TU holds does a solu-
tion in G [ W guarantee that agents have a common goal (i.e., to maximize
�(y(a); u)).

6.2.1 Incentive Compatibility and Household Decision Making

The above model of spousal decision making also satis�es incentive compatibility
in case of Almost TU: Both spouses have an incentive to provide the e¢ cient
amount of labor.

Corollary 1 Suppose spouses agree to divide produced goods based on a GUBS
but choose their labor supply individually. Each spouse chooses the e¢ cient
labor supply if and only if Almost TU holds.

6.2.2 The Rotten Kid Theorem

Theorem 2 has also implications for Gary Becker (1974)�s Rotten Kid Theorem.
Bergstrom (1989) formalizes the game that rotten kids play with their altruistic
parent: In comparison with the model of spousal decision making introduced
above, children now take the place of the spouses; each child�s action impacts
the production possibility set of the family. The parent in this game has a �xed
amount of money at her disposal and, after observing her kids�actions, deter-
mines monetary transfers to its o¤spring by maximizing her altruistic utility
function. Thus, the parent�s altruistic preferences play the same role that the
GUBS plays in the model of spousal decision making. Therefore, children thus
take into account how the parent will react to their actions when they choose
their own actions. The Rotten Kid Theorem states that even if the children are
completely sel�sh and care only about their own consumption, they will behave
as if they are maximizing the parent�s altruistic utility function.
Bergstrom (1989)�s proof of the Rotten Kid Theorem requires TU, because

he assumes that the parent treats every child�s utility as a normal good in her
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altruistic utility function: Only if any action by a child, given the actions of all
the other children results in a restricted utility possibility set in the form of a
simplex are all the children guaranteed to bene�t from taking e¢ cient actions.
In comparison to Bergstrom, we can weaken the requirement of TU to Almost
TU by imposing a stronger, yet reasonable condition on the parent�s altruistic
utility function.

Corollary 2 Suppose the parent�s altruistic utility function takes on the form
of a general utilitarian social welfare function. Each child behaves as if he/she
would maximize the altruistic utility function of the parent if and only if chil-
dren�s utility functions lead to Almost TU.

7 Conclusion

Many normatively appealing properties are also crucial in determining posi-
tive questions.17 The solidarity property is no exception. We showed that for
well-behaved General Utilatarian Bargaining Solutions the solidarity property
is satis�ed if and only if Almost TU holds. We then showed that if the agents
can agree on how to distribute goods once they are produced, but choose their
actions individually, incentive compatibility is satis�ed if and only if the GUBS
satis�es the solidarity property.
However, Almost TU is an important subdomain of all utility pro�les and we

believe Almost TU, combined with GUBS, to be a useful approach to modelling
joint decisions in a variety of economic situations. We are also aware that one
may take the opposite view, seeing our result as a damnation of GUBS because
Almost TU seems to be rarely satis�ed in practice. In that case the question
becomes which class of bargaining solutions should take its place. The one that
comes to mind immediately is the egalitarian solution (i.e., the solution that
equally splits utility gains) or any other solution that plots a monotonic path
through the disagreement point and pays no attention to the shape of the utility
possibility set. It is obvious that such solutions satisfy the solidarity property
and therefore incentive compatibility regardless of whether the utility pro�le
leads to Almost TU or not.
However, such speci�cations are not without their own drawbacks. For ex-

ample, consider a two stage game, in which agents can choose actions in the �rst
stage that impact their disagreement utility as well as their joint production pos-
sibilities in the second stage. The second stage consists of the joint production
and distribution of goods as modelled in this paper. The more bargaining solu-
tions emphasize the disagreement point the more will agents ine¢ ciently invest
in their disagreement utility (Anbarci et al., 2002).

17See Moulin (1988) for a link between strong monotonicity in voting rules and strategy
proofness.
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9 Appendix

9.1 Proof of Example 3

To �nd (y; x) 2 P (Y; u) ; �rst note that any e¢ cient allocation must satisfy the
following: 8<: y1 = x11 + x12

y2 = x21
y3 = x32

To �nd P (Y; u) and @U (Y; u) we solve:

max
x11;x12;x21;x32

u (x11; x21)

s.t.  2 = u (x12; x32)
x11 + x12 + p2x21 + p3x32 = I

This problem is equivalent to simultaneously

max
x11;x12

u (x11; x21)

s.t. x11 + x12 + p2x21 = I1

and

max
x21;x32

u (x12; x32)

s.t. x11 + p3x32 = I2

subject to
I1 + I2 = I:

It is obvious that the higher agent 1�s share of I; the higher her utility. Thus each
 2 @U (Y; u) must be associated with a di¤erent distribution of I where agent
1 gains utility with every increase in her share and agent 2 loses utility with
every decrease in his share. Homogeneity of degree one implies homotheticity
which in turn implies that it is optimal for agent 1 to consume (x11; x21) in the
same proportion as before as her share of I increases. The same is true for agent
2 with respect to (x12; x32) : By homogeneity of degree 1 of the utility functions,
we also know that an increase in the share of I causes a proportional increase
in ui: Hence, the indirect utility function of agent 1 writes as follows

� (p2; I1) = e� (p2) I1
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where

e� (p2) = max
x11;x21

u (x11; x21)

s.t. x11 + p2x21 = 1

and we can write the indirect utility function of agent 2 as

� (p3; I2) = e� (p3) I2
where

e� (p3) = max
x12;x32

u (x12; x32)

s.t. x12 + p3x32 = 1

Di¤erentiating with respect to Ii:

@�i
@Ii

= e� (pi+1) :
This implies that as agent 1�s share of I increases by one unit, her utility in-
creases by e� (p2), and agent 2�s utility decreases by e� (p3) : Independent of how
many units of I are already allocated to person 1, the decrease in person 2�s
utility and the increase in person 1�s utility will always be the same as person
1 receives an additional unit of I: Therefore any ( 1;  2) is found by

 2 = � (Y; u2)�
e� (p3)e� (p2) 1:

Also note that e� (p3)e� (p2) = e� (p3) Ie� (p2) I = � (Y; u2)

� (Y; u1)
:

Thus

@U (Y; u) =

�
 2 R2+j

 1
� (Y; u1)

+
 2

� (Y; u2)
= 1

�
:

Only in the special case in which p2 = p3 = p such that Y =
�
y 2 R3+jy1 + p (y2 + y3) = I

	
we have

� (Y; u1) = e� (p) I = � (Y; u2) :

Then
@U (Y; u) =

�
 2 R2+j 1 +  2 = �(Y; u1) = � (Y; u2)

	
:
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