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Abstract:  
This paper proposes a new nonparametric test for conditional independence, which is 
based on the comparison of Bernstein copula densities using the Hellinger distance. The 
test is easy to implement because it does not involve a weighting function in the test 
statistic, and it can be applied in general settings since there is no restriction on the 
dimension of the data. In fact, to apply the test, only a bandwidth is needed for the 
nonparametric copula. We prove that the test statistic is asymptotically pivotal under the 
null hypothesis, establish local power properties, and motivate the validity of the 
bootstrap technique that we use in finite sample settings. A simulation study illustrates 
the good size and power properties of the test. We illustrate the empirical relevance of 
our test by focusing on Granger causality using financial time series data to test for 
nonlinear leverage versus volatility feedback effects and to test for causality between 
stock returns and trading volume. In a third application, we investigate Granger causality 
between macroeconomic variables. 
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1 Introduction

Testing in applied econometrics is often based on a parametric model that specifies the conditional

distribution of the variables of interest. When the assumed parametric distribution is incorrectly

specified, there is a risk of obtaining wrong conclusions with respect to a certain null hypothesis.

Therefore, we would like to test the null hypothesis in a broader framework that allows us to

leave free the specification of the underlying model. Nonparametric tests are well suited for this.

In this paper, we propose a new nonparametric test for conditional independence between two

random vectors of interest Y and Z, conditionally on a random vector X. The null hypothesis of

conditional independence is defined when the density of Y conditional on Z and X is equal to the

density of Y conditional only on X, almost everywhere.

We are particularly interested in Granger non-causality tests. Since Granger non-causality is a

form of conditional independence, see Florens and Mouchart (1982), Florens and Fougère (1996)

and Chalak and White (2008), these tests can be deduced from the conditional independence tests.

The concept of causality introduced by Granger (1969) and Wiener (1956) is now a basic notion

when studying the dynamic relationships between time series. This concept is defined in terms of

predictability at horizon one of variable Y from its own past, the past of another variable Z, and

possibly a vector X of auxiliary variables. Following Granger (1969), the causality from Z to Y

one period ahead is defined as follows: Z causes Y if observations on Z up to time t−1 can help to

predict Y at time t given the past of Y and X up to time t−1. Dufour and Renault (1998) generalize

the concept of Granger causality by considering causality at a given horizon h and causality up

to horizon h, where h is a positive integer and can be infinite. Such a generalization is motivated

by the fact that, in the presence of auxiliary variables X, it is possible to have the variable Z not

causing variable Y at horizon one, but causing it at a longer horizon h > 1. In this case, we have

an indirect causality transmitted by the auxiliary variables X; see Sims (1980b), Hsiao (1982),

and Lütkepohl (1993) for related work. More recently, White and Lu (2008) also extend Granger

non-causality by introducing the notion of weak Granger non-causality and retrospective weak

Granger non-causality. They analyze the relations between Granger non-causality and a concept

of structural causality arising from a general non-separable recursive dynamic structural system.

To characterize and test Granger non-causality, it is common practice to specify linear paramet-

ric models. However, as noted by Baek and Brock (1992) the parametric linear Granger causality

tests may have low power against certain nonlinear alternatives. Therefore, nonparametric regres-

sion tests and nonparametric independence and conditional independence tests have been proposed

to deal with this issue. Nonparametric regression tests are introduced by Fan and Li (1996) who

develop tests for the significance of a subset of regressors and tests for the specification of the

semiparametric functional form of the regression function. Fan and Li (2001) compare the power
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properties of various kernel based nonparametric tests with the integrated conditional moment tests

of Bierens and Ploberger (1997), and Delgado and Manteiga (2001) propose a test for selecting ex-

planatory variables in nonparametric regression based on the bootstrap. Several nonparametric

tests are also available to test for independence, including the rank based test of Hoeffding (1948),

the empirical distribution based methods such as Blum, Kiefer, and Rosenblatt (1961) or Skaug and

Tjostheim (1993), smoothing-based methods like Rosenblatt (1975), Robinson (1991), and Hong

and White (2005).

The literature on nonparametric conditional independence tests is more recent. Linton and

Gozalo (1997) develop a non-pivotal nonparametric empirical distribution function based test of

conditional independence. The asymptotic null distribution of the test statistic is a functional of

a Gaussian process and the critical values are computed using the bootstrap. Li, Maasoumi, and

Racine (2009) propose a test designed for mixed discrete and continuous variables. They smooth

both the discrete and continuous variables, with the smoothing parameters chosen via least-squares

cross-validation. Their test has an asymptotic normal null distribution, however they suggest to

use the bootstrap in finite sample settings. Lee and Whang (2009) provide a nonparametric test

for the treatment effects conditional on covariates. They allow for both conditional average and

conditional distributional treatment effects.

Few papers have been proposed to test for conditional independence using time series data.

Su and White (2003) construct a class of smoothed empirical likelihood-based tests which are

asymptotically normal under the null hypothesis, and derive their asymptotic distributions under

a sequence of local alternatives. Their approach is based on testing distributional assumptions

via an infinite collection of conditional moment restrictions, extending the finite unconditional

and conditional moment tests of Kitamura (2001) and Tripathi and Kitamura (2003). The tests

are shown to possess a weak optimality property in large samples and simulation results suggest

that these tests behave well in finite samples. Su and White (2008) propose a nonparametric test

based on kernel estimation of the density function and the weighted Hellinger distance. The test

is consistent and asymptotically normal under β-mixing conditions. They use the nonparametric

local smoothed bootstrap in finite sample settings. Su and White (2007), building on the previous

test which uses densities, also propose a nonparametric test based on the conditional characteristic

function. They work with the squared Euclidean distance, instead of the Hellinger distance, and

need to specify two weighting functions in the test statistic.

In this paper, we propose a new approach to test for conditional independence. Our method is

based on nonparametric copulas and the Hellinger distance. Copulas are a natural tool to test for

conditional independence since they disentangle the dependence structure from the marginal dis-

tributions. They are usually parametric or semiparametric, see for example Chen and Fan (2006a)

and Chen and Fan (2006b), though in the testing problem of this paper we prefer nonparametric
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copulas to give full weight to the data. To estimate nonparametrically the copulas, we use the

Bernstein density copula. Using i.i.d. data, Sancetta and Satchell (2004) show that under some

regularity conditions, any copula can be represented by a Bernstein copula. Bouezmarni, Rom-

bouts, and Taamouti (2009) provide the asymptotic properties of the Bernstein density copula

estimator using α-mixing dependent data. In this paper, under β-mixing conditions we show that

our test statistic is asymptotically pivotal under the null hypothesis. To achieve this result, we

subtract some bias terms from the Hellinger distance between the copula densities and then rescale

by the proper variance. Furthermore, we establish local power properties and show the validity of

the local smoothed bootstrap that we use in finite sample settings.

There are two important differences between our test and Su and White (2008)’s test. First, the

total dimension d of the random vectors X, Y and Z in our nonparametric copula based test is not

limited to be smaller than or equal to 7. Second, we do not need to select a weighting function to

truncate the supports of continuous random variables which have support on the real line, because

copulas are defined on the unit cube. In Su and White (2008), the choice of the weighting function

is crucial for the properties of the test statistic. To apply our test, only a bandwidth is needed for

the nonparametric copula. This is obviously appealing for the applied econometrician since the test

becomes easy to implement. Other advantages are that the nonparametric Bernstein copula density

estimates are guaranteed to be non-negative and therefore we avoid potential problems with the

Hellinger distance. Furthermore, there is no boundary bias problem because, by smoothing with

beta densities, the Bernstein density copula does not assign weight outside its support.

A simulation study reveals that our test has good finite sample size and power properties for a

variety of typical data generating processes and different sample sizes. The empirical importance

of testing for nonlinear causality is illustrated in three examples. In the first one, we examine the

main explanations of the asymmetric volatility stylized fact using high-frequency data on S&P 500

Index futures contracts and find evidence of a nonlinear leverage effect and a nonlinear volatility

feedback effect. In the second example, we study the relationship between stock index returns and

trading volume. While both the linear and nonparametric tests find Granger causality from returns

to volume, only the nonparametric test detects Granger causality from volume to returns. In the

final example, we reexamine the causality between typical macroeconomic variables. The results

show that linear Granger non-causality tests fail to detect the relationship between several of these

variables, whereas our nonparametric tests confirm the statistical significance of these relationships.

The rest of the paper is organized as follows. The conditional independence test using the

Hellinger distance and the Bernstein copula is introduced in Section 2. Section 3 provides the test

statistic and its asymptotic properties. In Section 4, we investigate the finite sample size and power

properties. Section 5 contains the three applications described above. Section 6 concludes. The

proofs of the asymptotic results are presented in the Appendix.
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2 Null hypothesis, Hellinger distance and the Bernstein copula

Let
{
(X ′

t, Y
′
t , Z ′

t)
′ ∈ Rd1 × Rd2 × Rd3, t = 1, ..., T

}
be a sample of stochastic processes in Rd, where

d = d1 +d2 +d3, with joint distribution function FXY Z and density function fXY Z . We wish to test

the conditional independence between Y and Z conditionally on X. Formally, the null hypothesis

can be written in terms of densities as

H0 : Pr
{
fY |X,Z(y | x, z) = fY |X(y | x)

}
= 1, ∀y ∈ Rd2 , (1)

and the alternative hypothesis as

H1 : Pr
{
fY |X,Z(y | x, z) = fY |X(y | x)

}
< 1, for some y ∈ Rd2,

where f·|·(·|·) denotes the conditional density. As we mentioned in the introduction, Granger

non-causality is a form of conditional independence and to see that let us consider the following

example. For (Y,Z)′ a Markov process of order 1, the null hypothesis which corresponds to Granger

non-causality from Z to Y is given by

H0 : Pr
{
fY |X,Z(yt | yt−1, zt−1) = fY |X(yt | yt−1)

}
= 1,

where in this case y = yt, x = yt−1, z = zt−1 and d1 = d2 = d3 = 1.

Next, we reformulate the null hypothesis (1) in terms of copulas. This will allow us to keep

only the terms that involve the dependence among the random vectors. It is well known from Sklar

(1959) that the distribution function of the joint process (X ′, Y ′, Z ′)′ can be expressed via a copula

FXY Z(x, y, z) = CXY Z

(
F̄ X(x), F̄ Y (y), F̄ Z(z)

)
, (2)

where for simplicity of notation and to keep more space we denote F̄X(x) = (FX1(x1), ..., FXd1
(xd1)),

F̄Y (y) = (FY1(y1), ..., FYd2
(yd2)), F̄Z(z) = (FZ1(z1), ..., FZd3

(xd3)), FQi(.), for Q = X,Y,Z, is the

marginal distribution function of the i-th element of the vector Q, and CXY Z(.) is a copula function

defined on [0, 1]d which captures the dependence of (X ′, Y ′, Z ′)′. If we derive Equation (2) with

respect to (x′, y′, z′)′, we obtain the density function of the joint process (X ′, Y ′, Z ′)′ which can be

expressed as

fXY Z(x, y, z) =
d1∏

j=1

fXj(xj) ×
d2∏

j=1

fYj(yj) ×
d3∏

j=1

fZj(zj) × cXY Z

(
F̄X(x), F̄ Y (y), F̄ Z(z)

)
, (3)

where fQj(.), for Q = X,Y,Z, is the marginal density of the j-th element of the vector Q and

cXY Z(.) is a copula density defined on [0, 1]d of (X ′, Y ′, Z ′)′. Using Equation (3), we can show that

the null hypothesis in (1) can be rewritten in terms of copula densities as

H0 : Pr
{
cXY Z

(
F̄X(x), F̄ Y (y), F̄ Z(z)

)
= cXY

(
F̄X(x), F̄ Y (y)

)
cXZ

(
F̄X(x), F̄ Z(z)

)}
= 1, ∀y ∈ Rd2

(4)
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against the alternative hypothesis

H1 : Pr
{
cXY Z

(
F̄X(x), F̄ Y (y), F̄ Z(z)

)
= cXY

(
F̄X(x), F̄ Y (y)

)
cXZ

(
F̄X(x), F̄ Z(z)

)}
< 1,

for some y ∈ Rd2 ,

where cXY (.) and cXZ(.) are the copula densities of the joint processes (X ′, Y ′)′ and (X ′, Z ′)′,

respectively. Observe that under H0, the dependence of the vector (X ′, Y ′, Z ′)′ is controlled by

the dependence of (X ′, Y ′)′ and (X ′, Z ′)′ and not that of (Y ′, Z ′)′. Given the null hypothesis

(4), our test statistic, say H(c, C), is based on the Hellinger distance between cXY Z(u, v,w) and

cXY (u, v)cXZ (u,w), for u ∈ [0, 1]d1 , v ∈ [0, 1]d2 , w ∈ [0, 1]d3 ,

H(c, C) =
∫

[0,1]d

(
1 −

√
cXY (u, v)cXZ (u,w)

cXY Z(u, v,w)

)2

dCXY Z(u, v,w). (5)

Under the null hypothesis, the measure H(c, C) is equal to zero. The advantage of working with

copulas instead of densities is that we integrate over [0, 1]d instead of Rd. The Hellinger distance

is often used for measuring the closeness between two densities and this is because it is simple

to handle compared to L∞ and L1. Furthermore, it is symmetric and invariant to continuous

monotonic transformations and it gives lower weight to outliers [see e.g. Beran (1977)]. The

Hellinger distance in (5) can be estimated by

Ĥ = H(ĉ, CT ) =
∫

[0,1]d

(
1 −

√
ĉXY (u, v)ĉXZ (u, v)

ĉXY Z(u, v,w)

)2

dCXY Z,T (u, v,w)

=
1
T

T∑
t=1

(
1 −

√
ĉXY

(
F̄X(Xt), F̄Y (Yt)

)
ĉXZ

(
F̄X(Xt), F̄Z(Zt)

)
ĉXY Z

(
F̄X(Xt), F̄Y (Yt), F̄Z(Zt)

)
)2

,

where F̄X,T (Xt), F̄Y,T (Yt) and F̄Z,T (Zt) with subscript T is to indicate the empirical analog of

the distribution functions defined in F̄X(X), F̄Y (Y ) and F̄Z(Z), CXY Z,T (.) is the empirical copula

defined by Deheuvels (1979), and ĉXY (.), ĉXZ(.) and ĉXY Z(.) are the estimators of the copula den-

sities cXY (.), cXZ(.) and cXY Z(.) respectively obtained using the Bernstein density copula defined

below. Let us first set some additional notations. In what follows, we denote by

Gt = (Gt1, ..., Gtd) = (F̄X(Xt), F̄Y (Yt), F̄Z(Zt)),

and its empirical analog

Ĝt = (Ĝt1, ..., Ĝtd) = (F̄X,T (Xt), F̄Y,T (Yt), F̄Z,T (Zt)).

The Bernstein density copula estimator of cXY Z(.) at a given value g = (g1, ..., gd) is defined by

ĉXY Z(g1, ..., gd) = ĉXY Z(g) =
1
T

T∑
t=1

Kk(g, Ĝt), (6)
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where

Kk(g, Ĝt) = kd
k−1∑
υ1=0

...
k−1∑
υd=0

AĜt,υ

d∏
j=1

pυj (gj),

the integer k represent the bandwidth parameter, pυj (gj) is the binomial distribution

pυj (gj) =
(

k − 1
υj

)
g

υj

j (1 − gj)k−υj−1, for υj = 0, · · · , k − 1,

and AĜt,υ
is an indicator function

AĜt,υ
= 1{Ĝt∈Bυ}, with Bυ =

[
υ1

k
,
υ1 + 1

k

]
× ... ×

[
υd

k
,
υd + 1

k

]
.

The Bernstein estimators ĉXY (.) and ĉXZ(.) of cXY (.) and cXZ(.) respectively are defined in a

similar way like for ĉXY Z(.). Observe that the kernel Kk(g, Ĝt) can be rewritten as

Kk(g, Ĝt) =
k−1∑
υ1=0

...
k−1∑
υd=0

AĜt,υ

d∏
j=1

B(x, υj + 1, k − υj),

where B(x, υj + 1, k − υj) is a beta density with shape parameters υj + 1 and k − υj evaluated at

x. Kk(g, Ĝt) can viewed as a smoother of the empirical density estimator by beta densities. The

Bernstein density copula estimator in (6) is easy to implement, non-negative, integrates to one and

is free from the boundary bias problem which often occurs with conventional nonparametric kernel

estimators. Bouezmarni, Rombouts, and Taamouti (2009) establish the asymptotic bias, variance

and the uniform almost convergence of Bernstein density copula estimator for α-mixing data. These

properties are necessary to prove the asymptotic normality of our test statistic. Notice that some

other nonparametric copula density estimators are proposed in the literature. For example, Gijbels

and Mielniczuk (1990) suggest nonparametric kernel methods and use the reflection method to

overcome the boundary bias problem, and more recently Chen and Huang (2007) use the local linear

estimator. Fermanian and Scaillet (2003) derive the asymptotic properties of kernel estimators of

nonparametric copulas and their derivatives in the context of time series data.

In the next section, we derive the asymptotic normality of our test statistic Ĥ under the null

hypothesis of conditional independence. A few bias terms and a standardization are required

to obtain a pivotal test statistic that converges to the standard normal distribution. We also

establish the local power properties of the test and show the validity of the local smoothed bootstrap

procedure.

3 Asymptotic distribution and power of the test statistic

Since we are interested in time series data, we need to specify the dependence in the process of

interest. In what follows, we consider β-mixing dependent variables. The β-mixing condition is
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required to show the asymptotic normality of U -statistics as our test statistic; see Tenreiro (1997)

and Fan and Li (1999) among others. To establish the asymptotic normality of the test statistic

Ĥ, we also need to apply the results of Bouezmarni, Rombouts, and Taamouti (2009). The latter

are valid under weak condition of α-mixing processes. However, no asymptotic normality for U -

statistics seems to be available under α-mixing dependence. Now let us recall the definition of a

β-mixing process. For {Wt = (X ′
t, Y

′
t , Z

′
t)′ ; t ≥ 0} a strictly stationary stochastic process and Fs

t a

sigma algebra generated by (Ws, ...,Wt ) for s ≤ t, the process W is called β-mixing or absolutely

regular, if

β(l) = sup
s∈N

E

⎡
⎣ sup
A∈F+∞

s+l

∣∣P (A|Fs
−∞) − P (A)

∣∣
⎤
⎦→ 0, as l → ∞.

To prove the asymptotic normality of our test statistic, additional regularity assumptions are

needed. We consider a set of standard assumptions on the stochastic process and bandwidth

parameter of the Bernstein copula density estimator.

Assumptions on the stochastic process

(A1.1)
{
(X ′

t, Y
′
t , Z

′
t)′ ∈ Rd1 × Rd2 × Rd3 ≡ Rd, t ≥ 0

}
is a strictly stationary β-mixing process

with coefficient βl = O(ρl), for some 0 < ρ < 1.

(A1.2) Gt has a copula function CXY Z and copula density cXY Z . We assume that cXY Z is twice

continuously differentiable and bounded away from zero, i.e., infg∈[0,1]d {cXY Z(g)} > 0.

Assumptions on the bandwidth parameter

(A1.3) We assume that for k → ∞, T k−(d/2)−2 → 0 and T−1/2kd/4 ln(T ) → 0.

Assumption (A1.1), is satisfied by many processes, such as ARMA and ARCH processes, as doc-

umented for example by Carrasco and Chen (2002) and Meitz and Saikkonen (2002). This as-

sumption is required to establish the central limit theorem of U -statistics for dependent data. In

Assumption (A1.2), the second differentiability of cXY Z is required by Bouezmarni, Rombouts,

and Taamouti (2009) in order to calculate the bias of the Bernstein copula estimator. Further, since

we use Hellinger distance, the copula should be positive, i.e. infg∈[0,1]d {cXY Z(g)} > 0. Assumption

(A1.3) is needed to cancel out a bias term in the test statistic and for the almost sure convergence

of the Bernstein copula estimator. The bandwidth parameter k plays the inverse role compared to

that of the standard nonparametric kernel, that is a large value of k reduces the bias but increases

the variance. If we choose k = O(T ξ), then ξ should be in (2/(d + 4), 2/d) in order to satisfy

Assumption (A1.3). We now state the asymptotic distribution of our test statistic under the null

hypothesis.
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Theorem 1 Under assumptions (A1.1)-(A1.3) and H0, we have

BRT =
T k−d/2

σ

(
4Ĥ − C1T

−1kd/2 − B̂1T
−1k(d1+d2)/2 − B̂2T

−1k(d1+d3)/2 − B̂3T
−1kd1/2

)
→ N (0, 1),

where C1 = 2−dπd/2, σ =
√

2 (π/4)d/2 and

B̂1 = −2−(d1+d2−1)π(d1+d2)/2 + T−1
∑T

t=1

∏d1+d2
j=1 (4π Ĝtj(1−Ĝtj))−1/2

ĉXY (Ĝt1,...,Ĝt(d1+d2))
,

B̂2 = −2−(d1+d3−1)π(d1+d3)/2 + T−1
∑T

t=1

∏d1+d3
j=1 (4π Ĝtj(1−Ĝtj))−1/2

ĉXZ(Ĝt1,...,Ĝtd1
,Ĝt(d1+d2+1),...,Ĝtd)

,

B̂3 = 2−(d1−1)π−(d1/2)T−1
∑T

t=1
ĉX(Ĝt1,...,Ĝtd1

)√∏d1
j=1 Ĝtj(1−Ĝtj)

.

ĉX(.) is the Bernstein density copula estimator of the copula density cX(.) of the vector X. For a

given significance level α, we reject the null hypothesis when BRT > zα, where zα is the critical

value from the standard normal distribution.

Note that the above asymptotic normality of the test statistic BRT does not require a limitation on

the dimension d of the vector (X ′, Y ′, Z ′)′. Interestingly, in the typical case when d1 = 1, the bias

correction term B̂3 does not have to be estimated since ĉX(Ĝt1) = 1 and the remaining sum over

the T observations in the denominator is constant. Furthermore, the variance σ2 does not have to

be estimated from the data, it only depends on d. For the bias correction terms and in comparison

with Su and White (2008), our test statistic does not require additional estimators that bring in

extra assumptions.

Now, to evaluate the power of the proposed test, we consider the following sequence of local

alternatives

H1(αT ) : f [T ](y|x, z) = f [T ](y|x) {1 + αT Δ(x, y, z) + o(αT )ΔT (x, y, z)} , (7)

where f [T ](y|x, z) (resp. f [T ](y|x)) is the conditional density of YT,t given XT,t and ZT,t (resp. of YT,t

given XT,t). The process
{
(X ′

T,t, Y
′
T,t, Z

′
T,t)

′, ∈ Rd1 × Rd2 × Rd3 ≡ Rd, for t = 1, .., T and T ≥ 1
}

is

assumed to be a strictly stationary β-mixing process with coefficient βT
k such that supT βT

k = O(ρk),

for some 0 < ρ < 1 and αT → 0 as T → ∞. The functions Δ and ΔT satisfy the power

assumptions below. The local alternatives in (7) are also considered by Gouriéroux and Tenreiro

(2001). Similarly, power properties for other alternatives like Horowitz and Spokoiny (2001) can also

be computed without any problem. The following additional assumptions are needed to establish

the power properties of our test.

Power assumptions
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(A2.1) 1 + αT Δ(x, y, z) + o(αT )ΔT (x, y, z) ≥ 0, for all (x′, y′, z′)′ ∈ Rd and all T ∈ N.

(A2.2)
∫

Δ(x, y, z)f [T ](x, y)f [T ](z|x)d(x, y, z) =
∫

ΔT (x, y, z)f [T ](x, y)f [T ](z|x)d(x, y, z) = 0, for

all T ∈ N.

(A2.3)
∫ |Δ(x, y, z)|2f [T ](x, y, z)d(x, y, z) and

∫ |ΔT (x, y, z)|2f [T ](x, y, z)d(x, y, z) are finite, for all

T ∈ N.

(A2.4) limT c
[T ]
XY Z(u, v,w) = cXY Z(u, v,w), where c[T ] is the copula density of (X ′

T,t, Y
′
T,t, Z

′
T,t)

′.

Assumption (A2.1) guarantees the positivity of f [T ](x, y, z) and assumption (A2.2) ensures that

its integral is equal to one. Assumption (A2.2) is important for the proof of Lemma 1 in the

Appendix. Next, we state the power function of our test.

Proposition 1 Under assumptions (A1.1)-(A1.3) and (A2.1)-(A2.4), and for αT = T−1/2k−d/4,

if H1(αT ) holds then we have

BRT → N
(

1
σ

∫
Δ2
(
F̄−1

X (u), F̄−1
Y (v), F̄−1

Z (w)
)
dCXY Z(u, v,w), 1

)
,

where
F̄−1

X (u) =
(
F−1

X1
(u1), ..., F−1

Xd1
(ud1)

)
,

F̄−1
Y (v) =

(
F−1

Y1
(v1), ..., F−1

Yd2
(vd2)

)
,

F̄−1
Z (w) =

(
F−1

Z1
(w1), ..., F−1

Zd3
(wd3)

)
,

and F−1
Qi

(.), for Q = X,Y,Z, is the inverse distribution function of the i-th element of the vector

Q. Hence, the power of the test based on the Bernstein density copula estimator is asymptotically

1 − Φ
(
zα − 1

σ

∫
Δ2
(
F̄−1

X (u), F̄−1
Y (v), F̄−1

Z (w)
)
dCXY Z(u, v,w)

)
, where Φ(.) is the standard normal

distribution function and zα is the critical value at significance level α.

The above results on the distribution of the test statistic are valid only asymptotically. For finite

samples, the bootstrap is used to compute the p-values. A simple bootstrap, i.e. resampling from

the empirical distribution, will not conserve the conditional dependence structure in the data and

hence sampling under the null hypothesis is not guaranteed. To prevent this from occurring, we use

the local smoothed bootstrap suggested by Paparoditis and Politis (2000). The method is easy to

implement in the following five steps: (1) we draw the sample X∗
t from the nonparametric kernel

estimator T−1h−d1
∑T

t=1 L(Xt − x)/h; (2) conditional on X∗
t , we draw Y ∗

t and Z∗
t independently

from the conditional density, that is h−d2
∑T

t=1 L ((Xt − x)/h) L ((Yt − y)/h) /
∑T

t=1 L ((Xt − x)/h)

and h−d2
∑T

t=1 L ((Xt − x)/h) L ((Zt − y)/h) /
∑T

t=1 K ((Xt − x)/h), respectively; (3) based on the
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bootstrap sample, we compute the bootstrap statistic BRT ∗ in the same way as BRT ; (4) we

repeat the steps (1)-(3) B times so that we obtain BRT ∗
j , for j = 1, ..., B; (5) the bootstrap p-

value is computed as p∗ = B−1
∑B

j=1 1{BRT ∗
j >BRT}. For given significance level α, we reject the null

hypothesis if p∗ < α. To achieve the validity of the local bootstrap for the conditional independence

test using the Bernstein copula estimator, we consider additional assumptions on the kernel K and

bandwidth h.

Assumptions on bootstrap kernel and bandwidth

(A3.1) The kernel L is a product kernel of a bounded symmetric kernel density l : R → R+ such

that
∫

l(u)du = 1 and
∫

ul(u)du = 0.

(A3.2) l is r times continuously differentiable such that
∫

uj l(r)(u)du = 0 for j = 0, ..., r − 1 and∫
url(r)(u)du < ∞, where l(r) is the rth-derivative of l.

(A3.3) As T → ∞, h → 0, and Thd+2r/(ln T )γ → C > 0, for some γ > 0.

Under Assumptions (A3.1)-(A3.3), the almost sure convergence of the smoothed kernel estimators

is fulfilled; see Paparoditis and Politis (2000). The following proposition states the validity of the

bootstrap.

Proposition 2 Under assumptions (A1.1)-(A1.3) and (A3.1)-(A3.3), we have

BRT ∗ → N (0, 1).

4 Finite sample size and power properties

In this section, we study the performance of the BRT test in a finite sample setting. To im-

plement the Bernstein density copula estimator in the simulations and applications, we define

k∗t = (k∗t
1 , ..., k∗t

d ) = [kĜt], where [ .] denotes the integer part of each element, from which we have

Kk(g, Ĝt) = kd
d∏

j=1

pk∗t
j

(gj).

The data generating processes (DGP’s) are detailed in Table 1. The first four DGP’s simulate

data that allow to illustrate the size properties of the tests: DGP3s includes the ARCH model of

Engle (1982) and the DGP4s GARCH model of Bollerslev (1986). In the last six DGP’s, the null

hypothesis of conditional independence is not true and therefore serve to illustrate the power of

the tests: DGP1p to DGP3p exhibit linear and nonlinear causality in the conditional mean and

DGP4p to DGP6p nonlinear causality through the conditional variance.
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Table 1: Data generating processes used in the simulations

DGP Xt Yt Zt

1s ε1t ε2t ε3t

2s Yt−1 Yt = 0.5Yt−1 + ε1t Zt = 0.5Zt−1 + ε2t

3s Yt−1 Yt = (0.01 + 0.5Y 2
t−1)

0.5ε1t Zt = 0.5Zt−1 + ε2t

4s Yt−1 Yt =
√

h1,tε1t Zt =
√

h2,tε2t

h1,t = 0.01 + 0.5Y 2
t−1 + 0.9h1,t−1 h2,t = 0.01 + 0.5Z2

t−1 + 0.9h2,t−1

1p Yt−1 Yt = 0.5Yt−1 + 0.5Zt−1 + ε1t Zt = 0.5Zt−1 + ε2t

2p Yt−1 Yt = 0.5Yt−1 + 0.5Z2
t−1 + ε1t Zt = 0.5Zt−1 + ε2t

3p Yt−1 Yt = 0.5Yt−1Z
2
t−1 + ε1t Zt = 0.5Zt−1 + ε2t

4p Yt−1 Yt = 0.5Yt−1 + Zt−1ε1t Zt = 0.5Zt−1 + ε2t

5p Yt−1 Yt =
√

h1,tε1t Zt = 0.5Zt−1 + ε2t

h1,t = 0.01 + 0.5Y 2
t−1 + 0.25Z2

t−1

6p Yt−1 Yt =
√

h1,tε1t Zt =
√

h2,tε2t

h1,t = 0.01 + 0.1h1,t−1 + 0.4Y 2
t−1 + 0.5Z2

t−1 h2,t = 0.01 + 0.5Z2
t−1 + 0.9h2,t−1

We simulate (Xt, Yt, Zt−1), t = 1, . . . , T . (ε1t, ε2t, ε3t)′ ∼ N(0, I3) and i.i.d.
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As we explained before, our test statistic is asymptotically normally distributed under the

null hypothesis, though we will use the local smooth bootstrap to approximate its finite sample

distribution. The BRT test depends on the bandwidth k to estimate the copula densities. We

take k the integer part of cT 1/2 for c = 1, 1.5, 2. We consider various values of k to evaluate the

sensitivity with respect to the test results. This is common practice in nonparametric testing where

no optimal bandwidth is available. To keep the computing time in our simulation study reasonable,

we consider the sample sizes T = 200 and T = 300, B = 200 bootstrap replications with resampling

bandwidths chosen by the standard rule of thumb. We use 250 iterations to compute the empirical

size and power. As a comparison, we also include the linear Granger non-causality test in the

Monte Carlo experiment to appreciate the loss of power against nonlinear alternatives. This simply

tests if Zt−1 should enter the regression of Yt on Yt−1.

The size properties of the tests are given in Table 2. The linear test, LIN, behaves well as

expected since the null hypothesis of conditional independence is true. The BRT test tends to be

slightly conservative in some situations. For DGP2s with sample size 200 and c = 1, the sizes are

2.8% instead of 5% and 8.4% instead of 10%. As expected, we also see that the realized size varies

with the bandwidth k, in the majority of the cases the relation is positive.

Table 2: Size properties of the tests

DGP1s DGP2s DGP3s DGP4s DGP1s DGP2s DGP3s DGP4s

T = 200, α = 5% T = 200, α = 10%

LIN 0.043 0.053 0.042 0.050 0.084 0.109 0.101 0.090
BRT, c=1 0.040 0.028 0.028 0.040 0.080 0.084 0.084 0.100
BRT, c=1.5 0.048 0.032 0.028 0.044 0.100 0.056 0.048 0.108
BRT, c=2 0.052 0.028 0.032 0.072 0.112 0.056 0.068 0.140

T = 300, α = 5% T = 300, α = 10%

LIN 0.049 0.057 0.054 0.050 0.102 0.109 0.114 0.108
BRT, c=1 0.040 0.032 0.036 0.052 0.076 0.076 0.064 0.084
BRT, c=1.5 0.036 0.028 0.024 0.052 0.080 0.072 0.056 0.104
BRT, c=2 0.048 0.024 0.020 0.092 0.128 0.052 0.044 0.124

Empirical size for a test at the α level based on 250 replications. The number of bootstrap resamples is

B=200. LIN means linear test and BRT our test. The bandwidth k is the integer part of cT 1/2.

The power properties of the tests are presented in Table 3. We observe that the linear test has

only excellent power to detect linear Granger causality. In fact, the power is 1 in DGP1p. For

the other DGP’s which involve nonlinear dependence, the linear test fails to achieve considerable
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power. The BRT tests have high power for all DGP’s and the rise in its power from sample size

200 to 300 is important. Note also that generally the power of the BRT tests goes down with c,

which is not surprising since the bandwidth k in the BRT test plays the inverse role of a kernel

bandwidth in nonparametric density estimation.

Table 3: Power properties of the tests

DGP1p DGP2p DGP3p DGP4p DGP5p DGP6p

T = 200, α = 5%

LIN 0.999 0.337 0.213 0.126 0.163 0.153
BRT, c=1 0.996 0.996 0.972 0.984 0.888 0.772
BRT, c=1.5 0.984 0.992 0.940 0.996 0.936 0.740
BRT, c=2 0.936 0.976 0.864 0.996 0.912 0.684

T = 300, α = 5%

LIN 1.000 0.354 0.250 0.113 0.172 0.143
BRT, c=1 1.000 1.000 0.992 0.996 0.980 0.928
BRT, c=1.5 1.000 1.000 0.992 1.000 0.988 0.928
BRT, c=2 0.988 1.000 0.972 1.000 0.992 0.876

T = 200, α = 10%

LIN 1.000 0.436 0.284 0.175 0.239 0.233
BRT, c=1 0.996 1.000 0.828 0.988 0.932 0.860
BRT, c=1.5 0.992 0.996 0.956 0.996 0.976 0.824
BRT, c=2 0.968 0.988 0.908 0.996 0.952 0.800

T = 300, α = 10%

LIN 1.000 0.442 0.327 0.176 0.253 0.209
BRT, c=1 1.000 1.000 0.992 0.996 0.984 0.932
BRT, c=1.5 1.000 1.000 0.996 1.000 0.992 0.960
BRT, c=2 0.992 1.000 0.988 1.000 0.996 0.928

Empirical power for a test at the α level based on 250 replications. The number

of bootstrap resamples is B=200. LIN means linear test and BRT our test. The

bandwidth k is the integer part of cT 1/2.

5 Empirical applications

In this section, we consider three empirical applications to illustrate the importance of testing for

nonlinear causality and the usefulness of our nonparametric test in this context. In the first exam-

ple, we use high-frequency equity index data to analyze the main explanations of the asymmetric
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volatility stylized fact. In the second example, we study the causality between stock index returns

and trading volume. In the final example, we reexamine the causality between monetary policy

and the real economy.

5.1 Application 1: Nonlinear volatility feedback effect

One of the many stylized facts about equity returns is an asymmetric relationship between returns

and volatility (hereafter asymmetric volatility): volatility tends to rise following negative returns

and fall following positive returns. The literature has two explanations for the asymmetric volatility.

The first one is the leverage effect and means that a decrease in the price of an asset increases

financial leverage and the probability of bankruptcy, making the asset riskier, hence an increase in

volatility, see Black (1976) and Christie (1982). The second explanation is the volatility feedback

effect which is related to the time-varying risk premium theory: if volatility is priced, an anticipated

increase in volatility would raise the rate of return, requiring an immediate stock price decline in

order to allow for higher future returns, see Pindyck (1984), French and Stambaugh (1987), and

Campbell and Hentschel (1992), among others.

Empirically, studies focusing on the leverage hypothesis, see Christie (1982) and Schwert (1989),

conclude that it cannot completely account for changes in volatility. For the volatility feedback

effect, there are conflicting empirical findings. French and Stambaugh (1987) and Campbell and

Hentschel (1992) find a positive relation between volatility and expected returns, while Turner,

Startz, and Nelson (1989), Glosten and Runkle (1993), and Nelson (1991) find the relation to be

negative but statistically insignificant. Using high-frequency data, Dufour, Garcia, and Taamouti

(2008) measure a strong dynamic leverage effect for the first three days, whereas the volatility

feedback effect is found to be insignificant at all horizons [see also Bollerslev, Litvinova, and Tauchen

(2006)].

5.1.1 Data description

We consider tick-by-tick transaction prices for the S&P 500 Index futures contracts traded on

the Chicago Mercantile Exchange, over the period January 1988 to December 2005 (4494 trading

days). Following Huang and Tauchen (2005), we eliminate a few days where trading was thin

and the market was only open for a shortened session. Due to the unusually high volatility at

the opening of the market, we omit the first five minutes of each trading day, see Bollerslev,

Litvinova, and Tauchen (2006). We compute the continuously compounded returns over each five-

minute interval by taking the difference between the logarithm of the two tick prices immediately

preceding each five-minute mark, implying 77 observations per day. Because volatility is latent,

it is approximated by either realized volatility or bipower variation. Daily realized volatility is

defined as the summation of the corresponding high-frequency intradaily squared returns RVt+1 =
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∑h
j=1 r2

(t+jΔ,Δ) , where r2
(t+jΔ,Δ) are the discretely sampled Δ-period returns. Properties of realized

volatility are provided by Andersen, Bollerslev, and Diebold (2003) [see also Andersen and Bollerslev

(1998), Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen and Shephard (2002a),

Barndorff-Nielsen and Shephard (2002b) and Comte and Renault (1998)]. The bipower variation

is given by sum of cross product of the absolute value of intradaily returns BVt+1 = π
2

∑h
j=2 |

r(t+jΔ,Δ) || r(t+(j−1)Δ,Δ) | .Its properties are provided by Barndorff-Nielsen and Shephard (2003)

[see also Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2005)]. The sample paths

for the returns and realized volatility are displayed in Figure 1.
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Figure 1: S&P 500 futures daily data series

5.1.2 Causality tests

To test for linear causality, we estimate a first order vector autoregressive model (VAR(1)). This

yields the following results [t-statistics are between brackets]

⎡
⎣ r̂t

̂ln(RVt)

⎤
⎦ =

⎡
⎢⎢⎣

0.001473
[0.982]

−2.342446
[−24.670]

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

−0.043375
[−2.8974]

0.000150
[0.995]

−6.000874
[−6.3418]

0.764097
[80.178]

⎤
⎥⎥⎦
⎡
⎣ rt−1

ln(RVt−1)

⎤
⎦ R2 = 0.002

R2 = 0.597
.

(8)

The results of linear causality tests between returns and volatility are presented in Table 4 [see also

Equation 8]. We find convincing evidence that return causes volatility. However, given the p-value

of 0.320 we find that there is no impact (linear causality) from volatility to return. Consequently,

we conclude that there is a leverage effect but not a volatility feedback effect. Considering different

orders for vector autoregressive model leads to the same conclusion. Further, replacing realized

volatility (ln(RVt)) with bipower variation (ln(BVt)) also yields similar results.
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To test for the presence of nonlinear volatility feedback and leverage effects, we consider

the following null hypotheses: H0 : f(rt | rt−1, ln(RVt−1)) = f(rt|rt−1) and H0 : f(ln(RVt) |
ln(RVt−1), rt−1) = f(ln(RVt)| ln(RVt−1)), respectively. The results are presented in Table 4. At a

Table 4: P-values for linear and nonlinear causality tests

Test statistic / H0 No feedback No leverage

LIN 0.320 0.000

BRT, c = 1 0.000 0.000
BRT, c = 1.5 0.000 0.000
BRT, c = 2 0.020 0.000

Linear and Nonlinear causality tests between returns (r) and volatility

(approximated by ln(RV )). LIN and BRT correspond to linear test

and our nonparametric test, respectively.

five percent significance level, we reject the non-causality hypothesis for all directions of causality

(from returns to volatility and from volatility to returns) and all values of c. Contrary to the linear

causality tests, we now confirm that both nonlinear leverage and volatility feedback effects can

explain the asymmetric relationship between returns and volatility.

5.2 Application 2: Causality between returns and volume

The relationship between returns and volume has been subject to extensive theoretical and empirical

research. Morgan (1976), Epps and Epps (1976), Westerfield (1977), Rogalski (1978), and Karpoff

(1987) using daily or monthly data find a positive correlation between volume and returns (absolute

returns). Gallant, Rossi, and Tauchen (1992) considering a semiparametric model for conditional

joint density of market price changes and volume conclude that large price movements are followed

by high volume. Hiemstra and Jones (1994) use non-linear Granger causality test proposed by Baek

and Brock (1992) to examine the non-linear causal relation between volume and return and find

that there is a positive bi-directional relation between them. However, Baek and Brock (1992)’s

test assumes that the data for each individual variable is i.i.d. More recently, Gervais, Kaniel,

and Mingelgrin (2001) show that periods of extremely high volume tend to be followed by positive

excess returns, whereas periods of extremely low volume tend to be followed by negative excess

returns. In this application, we reexamine the relationship between returns and volume using daily

data on S&P 500 Index. First we test for linear causality and than we use our nonparametric tests

to check whether there is nonlinear relationships between these two variables.
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5.2.1 Data description

The data set comes from Yahoo Finance and consists of daily observations on the S&P 500 Index.

The sample runs from January 1997 to January 2009 for a total of 3032 observations, see Figure 2

for the series in growth rates. We perform Augmented Dickey-Fuller tests (hereafter ADF-tests) for
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Figure 2: S&P 500 Index returns and volume growth rate. The sample covers the period from
January 1997 to January 2009 for a total of 3032 observations.

nonstationarity of the logarithmic price and volume and their first differences. Using an ADF -test

with only an intercept, the results show that all variables in logarithmic form are nonstationary. The

test statistics for log price and log volume are −2.259 and −1.173 respectively and the corresponding

critical value at 5% significance level is −2.863. However, their first differences are stationary. The

test statistics for log price and log volume are −43.655 and −20.653, respectively. Using ADF -tests

with both intercept and trend leads to the same conclusions. Based on the above stationarity tests,

we model the first difference of logarithmic price and volume rather than their level. Consequently,

the causality relations have to be interpreted in terms of the growth rates.

5.2.2 Causality tests

To test for linear causality between returns and volume we estimate a first order vector autoregres-

sive model. This yields the following results [t-statistics are between brackets]

⎡
⎣ r̂t

Δ̂ ln(Vt)

⎤
⎦ =

⎡
⎢⎢⎣

4.96 10−5

[0.20655]

0.001261
[0.38206]

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

−0.068044
[−3.75188]

0.000503
[0.40386]

−1.338504
[−5.36570]

−0.323437
[−18.8823]

⎤
⎥⎥⎦
⎡
⎣ rt−1

Δ ln(Vt−1)

⎤
⎦ R2 = 0.0047

R2 = 0.1120
.

(9)

Equation (9) shows that the causality from returns to volume is statistically significant at 5%

significance level with t-statistic equal to −5.365 [For p-values see Table 5]. However, the feedback

effect from volume to returns is statistically insignificant at the same significance level with t-
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statistic equal to 0.404. Considering different orders for vector autoregressive model leads to the

same conclusion.

Since volume fails to have a linear impact on returns, next we examine the nonlinear relation-

ships between these two variables by applying our nonparametric test. The p-values are presented

in Table 5. The latter shows that, at 5% significance level, nonparametric test rejects clearly the

null hypothesis of non-causality from returns to volume, which is in line with the conclusion from

the linear test. Further, our nonparametric test also detects a non-linear feedback effect from

volume to returns at 5% significance level.

Table 5: P-values for linear and nonlinear causality tests

Test statistic / H0 returns to volume volume to returns

LIN 0.000 0.654

BRT, c = 1 0.000 0.005
BRT, c = 1.5 0.000 0.045
BRT, c = 2 0.010 0.055

Linear and Nonlinear causality tests between returns (r) and volume (ln(V)).

LIN and BRT correspond to linear test and our nonparametric test, respec-

tively.

5.3 Application 3: Causality between money, income and prices

The relationships between money, income and prices have been the subject of a great deal of

research over the last six decades. The approach commonly taken is based on the view that income

and prices are related to the past and present values of money and vise versa. Sims (1972) shows

using a reduced form model that money supply Granger causes income but that income does not

Granger causes the money supply - thus lending support to the Monetarist viewpoint against the

Keynesian viewpoint which claims that money does not play any role in changing income and

prices. Sims’ model has been reduced to a single equation relating income only to money, thereby

ignoring the specific impacts of other variables. However, using a vector autoregressive model

containing also interest rates and prices variables Sims (1980a) argues that while pre-war cycles

do seem to support the Monetarist thesis, the post-war cycles are quite different. Specifically, he

finds that in the post-war period, the interest rate accounted for most of the effect on output

previously attributed to money. Bernanke and Blinder (1992) and Bernanke and Mihov (1998) also

present evidence consistent with the view that the impact of monetary policy on the economy works

through interest rates. In this application, we reanalyze the linear relationships between monetary

and economic variables using U.S. data until November 2008 and we use our nonparametric test to
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check whether nonlinear relationships between these variables exist.

5.3.1 Data description

The data comes from the Federal Reserve Bank of St. Louis and consists of seasonally adjusted

monthly observations on aggregates M1 and M2, disposable personal income (DPI), real disposable

personal income (RDPI), industrial output (IP) and consumer price index (CPI). The sample runs

from January 1959 to November 2008 for a total of 599 observations; see Figure 3 for the series in

growth rates. Since all the variables in natural logarithms are nonstationary, we perform ADF -
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Figure 3: growth rates of the variables. The sample covers the period from January 1959 to
November 2008 for a total of 599 observations.
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test for nonstationarity of the growth rates of six variables. The results are presented in Table 6

and show that the growth rates of all variables are stationary except for the CPI. We perform a

nonstationarity test for the second difference of variable CPI and find that the test statistic values

are equal to −8.493 and −8.523 for the ADF -test with only an intercept and with both intercept

and trend, respectively. The critical values are equal to −2.866 and −3.418, suggesting that the

second difference of the CPI variable is stationary.

Table 6: Augmented Dickey-Fuller tests for growth rates

With Intercept With Intercept and Trend

test statistic 5% Critical Value test statistic 5% Critical Value
M1 -4.530 -2.866 -4.460 -3.417
M2 -4.032 -2.866 -4.391 -3.418
DPI -29.328 -2.866 -29.751 -3.417
RDPI -17.782 -2.866 -18.000 -3.417
IP -10.492 -2.866 -10.576 -3.417
CPI -2.456 -2.866 -2.625 -3.417

Augmented Dickey-Fuller tests (ADF -test) for growth rates of monetary aggregates [M1 and

M2] and economic aggregates [disposable personal income (DPI), real disposable personal income

(RDPI), industrial output (IP) and consumer price index (CPI)].

5.3.2 Causality tests

To test linear Granger causality between money, income and prices, we consider the following

models:

ΔYt = μ + φΔYt−1 + δΔXt−1 + εt,

where Y �= X and Y,X = M1, M2, DPI, RDPI, IP, CPI. More particularly, we examine the linear

Granger causality from M1 (M2) to DPI, RDPI, IP, CPI, and vice versa. We say that ΔX does

not Granger cause ΔY if H0 : δ1 = ... = δp = 0 is true. Similarly, we test linear Granger causality

from ΔY to ΔX by considering a linear regression model where we regress ΔX on its own past

and the past of ΔY . The results of linear Granger causality between money, income and prices are

presented in Table 7 [see rows named LIN]. The Granger causality tests from M1 to DPI, RDPI,

CPI are statistically insignificant at 5% level. The same conclusion is true for IP at 1% level. When

M1 is replaced by M2, the causality directions from the economic variables DPI, RDPI, IP, CPI to

M2 are statistically significant at 5% level. Further, the causality from M2 to DPI is statistically

significant at the same level. The results do not change when we use the second rather than first

difference of the CPI. As a conclusion, income and prices cause the monetary aggregates, while

monetary policy measured by M1 and M2 has no impact on income and prices.
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Since money fails to have a linear impact on income and prices, next we test for nonlinear rela-

tionships between these variables by applying our nonparametric test. The results are presented in

Table 7. The latter shows that the nonlinear relationship from M1 to DPI is statistically significant

at 5% level, even if the linear relationship does not exist at the same level. Same conclusion holds

for causality from M2 to RDPI. We also find that the feedback from DPI to M2 and from RDPI

to M2 are linearly and nonlinearly exist at 5% level.

Table 7: P-values for linear and nonlinear causality tests

H0 : DPI RDPI IP CPI DPI RDPI IP CPI
does not cause M1 does not cause M2

LIN 0.116 0.219 0.759 0.116 0.007 0.009 0.899 0.406
BRT, c = 1 0.004 0.036 0.600 0.348 0.002 0.018 0.058 0.526
BRT, c = 1.5 0.036 0.160 0.302 0.248 0.028 0.033 0.006 0.426
BRT, c = 2 0.076 0.148 0.422 0.474 0.048 0.046 0.014 0.492

M1 does not cause M2 does not cause
DPI RDPI IP CPI DPI RDPI IP CPI

LIN 0.297 0.870 0.027 0.462 0.058 0.204 0.881 0.561
BRT, c = 1 0.004 0.336 0.996 0.476 0.072 0.012 0.108 0.462
BRT, c = 1.5 0.048 0.674 0.948 0.368 0.096 0.012 0.114 0.676
BRT, c = 2 0.078 0.638 0.978 0.324 0.178 0.011 0.366 0.666
Linear and Nonlinear causality tests between monetary aggregates [M1 and M2] and economic aggre-

gates [disposable personal income (DPI), real disposable personal income (RDPI), industrial output (IP)

and consumer price index (CPI)]. LIN and BRT correspond to linear test and our nonparametric test,

respectively.

6 Conclusion

A nonparametric copula-based test for conditional independence between two vector processes

conditional on another one is proposed. The test statistic requires the estimation of the copula

density functions. We consider a nonparametric estimator of the copula density based on Bernstein

polynomials. The Bernstein copula estimator is always non-negative and does not suffer from

boundary bias problem. Further, the proposed test is easy to implement because it does not

involve a weighting function in the test statistic, and it can be applied in general settings since

there is no restriction on the dimension of the data. To apply our test, only a bandwidth is needed

for the nonparametric copula.

We show that the test statistic is asymptotically pivotal under the null hypothesis, we establish

local power properties, and we motivate the validity of the bootstrap technique that we use in finite

sample settings. A simulation study illustrates the good size and power properties of the test.
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We consider several empirical applications to illustrate the usefulness of our nonparametric

test. In these applications, we examine the Granger non-causality between many macroeconomic

and financial variables. Contrary to the general findings in the literature, we provide evidence on

two alternative mechanisms of nonlinear interaction between returns and volatilities: the nonlinear

leverage effect and the nonlinear volatility feedback effect.

As a further extension of this paper, it would be interesting to investigate deeper the bandwidth

selection for our nonparametric test, similar to the approach of Gao and Gijbels (2008) who test

the equality between an unknown and a parametric mean function. While respecting the size, their

bandwidth maximizes the power of the test. Another interesting direction would be to investigate

analytically the small sample properties of our test along the lines of Fan and Linton (2003).

Appendix

In this appendix, we provide the proofs of the theoretical results developed in Section 3. We begin by

studying the asymptotic distribution of the pseudo-statistic H(ĉ, C) obtained by replacing CXY Z,T

in Ĥ by CXY Z . Thereafter, we show, see Lemma 4, that the distribution of Ĥ is given by the

distribution of H(ĉ, C). The main element in the proof of Theorem 1 and other propositions of

Section 3 is the asymptotic normality of U-statistics. We use Theorem 1 of Tenreiro (1997) to

prove our Theorem 1 and Proposition 1. For dependent data, the central limit theorem of the

U-statistics is also investigated in Fan and Li (1999). To show the validity of the local smoothed

bootstrap in Proposition 2, we use Theorem 1 of Hall (1984).

For simplicity of notation and to keep more space, in what follows we replace the nota-

tions cXY (u, v), cXZ(u,w), cXY Z(u, v,w), and CXY Z(u, v,w) by c(u, v), c(u,w), c(u, v,w) and

C(u, v,w), respectively. We do the same with their estimates ĉXY (u, v), ĉXZ(u,w), ĉXY Z(u, v,w)

and ĈXY Z(u, v,w). Without loss of generality and since

ĉXY Z(F̄X,T (x), F̄X,T (y), F̄Z,T (z)) = ĉXY Z(F̄X(x), F̄Y (y), F̄Z(z)) + O(T−1),

in what follows we will work with

H(ĉ, C) =
1
T

T∑
t=1

{
1 −

√
ĉXY (Ut)ĉXZ(Vt)

ĉXY Z(Gt)

}2

,

where F̄X(.), F̄Y (.), F̄Z(.), F̄X,T (.), F̄X,T (.), F̄Z,T (.) are defined in Section 2 and

Gt = (Gt1, ..., Gtd) = (F̄X(Xt), F̄Y (Yt), F̄Z(Zt)),

Ut = (Ut1, ..., Ut(d1+d2)) = (F̄X (Xt), F̄Y (Yt)),

Vt = (Vt1, ..., Vt(d1+d3)) = (F̄X(Xt), F̄Z(Zt)).
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We will show that the distribution of Ĥ is given by the distribution of H(ĉ, C) which is stated by

the following four lemmas. In the next lemma, we rewrite H(ĉ, C) so that it becomes easier to work

with.

Lemma 1 Under assumptions (A1.1)-(A1.3) and H0, we have

H(ĉ, C) =
1
4

∫
[0,1]d

{
ĉ(u, v,w)
c(u, v,w)

− c(u, v)
c(u, v)

− ĉ(u,w)
c(u,w)

+ 1
}2

dC(u, v,w)+OP (||ĉ(u, v,w)−c(u, v,w)||3∞),

where ||ĉ(u, v,w) − c(u, v,w)||∞ = sup
(u,v,w)∈[0,1]d

|ĉ(u, v,w) − c(u, v,w)|.

Proof: Let’s consider

φ(α) =
∫ (

1 −
√

φ1(α)φ2(α)
φ3(α)

)2

dC(u, v,w), for α ∈ [0, 1]

and
φ1(α) = c(u, v) + αc∗(u, v),

φ2(α) = c(u,w) + αc∗(u,w),

φ3(α) = c(u, v,w) + αc∗(u, v,w),

where c∗(u, v,w), c∗(u, v) and c∗(u,w) are functions in Γi for i = 1, 2 and 3 respectively and Γi is

a set defined as

Γi =
{

γ : [0, 1]pi → R, γ is bounded,
∫

γ = 0 and ||γ|| > b/2
}

with pi = d, d1 + d2, d1 + d3, for i = 1, 2 and 3, respectively. Using Taylor’s expansion, we have

φ(α) = φ(0) + αφ′(0) +
1
2
α2φ′′(0) +

1
6
α3φ′′′(α∗), for α∗ ∈ [0, α].

We can show that:

φ′(α) =
∫ (

1 −
√

φ3(α)
φ1(α)φ2(α)

){
c∗(u, v)φ2(α) + c∗(u,w)φ1(α)

φ3(α)
− c∗(u, v,w)φ1(α)φ2(α)

φ2
3(α)

}
dC(u, v,w),

φ′′(α) =
∫ √

φ1(α)φ2(α)
φ3(α)

{
c∗(u, v)
φ1(α)

+
c∗(u,w)
φ2(α)

− c∗(u, v,w)
φ3(α)

}2

dC(u, v,w)

+

(
1 −

√
φ3(α)

φ1(α)φ2(α)

)
d

dα

{
c∗(u, v)φ2(α) + c∗(u,w)φ1(α)

φ3(α)
− c∗(u, v,w)φ1(α)φ2(α)

φ2
3(α)

}
dC(u, v,w)

and

φ′′′(α) = O(||c∗(u, v,w)||3∞ + ||c∗(u, v)||3∞ + ||c∗(u,w)||3∞).
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Under H0, we have φ(0) = φ′(0) = 0 and

φ′′(0) =
∫ {

c∗(u, v)
c(u, v)

+
c∗(u,w)
c(u,w)

− c∗(u, v,w)
c(u, v,w)

+ 1
}2

dC(u, v,w).

Next, we consider α = 1, c∗(u, v,w) = ĉ(u, v,w) − c(u, v,w), c∗(u, v) = ĉ(u, v) − c(u, v), and

c∗(u,w) = ĉ(u,w)− c(u,w). Using the results of Bouezmarni, Rombouts, and Taamouti (2009), we

get

||ĉ(u, v,w) − c(u, v,w)||∞ = Op(T−1/2kd/4 lnθ(T ) + k−1) = op(1)

and for a positive constant θ, we can show that c∗(u, v,w), c∗(u, v) and c∗(u,w) are in Γi for

i = 1, 2 and 3, respectively. Since the term ||c∗(u, v,w)||∞ dominates the terms ||c∗(u, v)||∞ and

||c∗(u,w)||∞, this concludes the proof of the lemma.

Now, let us take g = (u, v,w) and denote by

ĉ(u, v,w) = 1
T

∑T
t=1 K1(g,Gt),

ĉ(u, v) = 1
T

∑T
t=1 K2(g,Gt),

ĉ(u,w) = 1
T

∑T
t=1 K3(g,Gt),

R̃(g,m) =
∑4

j=1[Rj(g,m) − E(Rj(g,m))],

with

R(g,m) =
K1(g,m)

c(g)
− K2(g,m)

c(u, v)
− K3(g,m)

c(u,w)
+ 1 =

4∑
j=1

Rj(g,m), for m ∈ [0, 1]d

where

R1(g,m) =
K1(g,m)

c(g)
, R2(g,m) = −K2(g,m)

c(u, v)
, R3(g,m) = −K3(g,m)

c(u,w)
, R4(g,m) = K4(g,m) = 1

(10)

and

K1(g,Gt) = Kk(g,Gt), K2(g,Gt) = Kk((u, v), Ut), K3(g,Gt) = Kk((u,w), Vt).

Further, consider

IT =
∫

[0,1]d

{
ĉ(g)
c(g)

− ĉ(u, v)
c(u, v)

− ĉ(u,w)
c(u,w)

+ 1
}2

dC(g) =
∫

r2
T (g)dC(g).

24



We show that

IT − E(IT ) = 2
∫

(rT (g) − E(rT (g)))E(rT (g))dC(g) +
∫ (

[rT (g) − E(rT (g))]2 − E[rT (g) − E(rT (g))]2
)
dC(g)

= 2T−1/2k−1

{
T−1/2

T∑
t=1

ST (Gt)

}
+ 2T−1kd/2

⎧⎨
⎩T−1

∑
1≤t<s≤T

[HT (Gt, Gs) − E(HT (Gt, Gj))]

⎫⎬
⎭

+ T−1kd/2

⎧⎨
⎩T−1

∑
1≤t≤T

[HT (Gt, Gt) − E(HT (Gt, Gt))]

⎫⎬
⎭

= 2T−1/2k−1I1 + 2T−1kd/2I2 + T−1kd/2I3,

where
I1 = T−1/2

∑T
t=1 ST (Gt),

I2 = T−1
∑

1≤t<s≤T [HT (Gt, Gs) − E(HT (Gt, Gj))],

I3 = T−1
∑

1≤t≤T [HT (Gt, Gt) − E(HT (Gt, Gt))],

(11)

and
ST (m) = k

∫
R̃(g,m)E(r(g))dC(g), for m ∈ [0, 1]d

HT (m1,m2) = k−d/2
∫

R̃(g,m1)R̃(g,m2)dC(g), for m1,m2 ∈ [0, 1]d.

Next, we show that I3 = Op(T−1/2kd/4) and we apply Theorem 1 of Tenreiro (1997) for the other

terms I1 and I2. However, observe that under Assumption (A1.3) on the bandwidth parameter,

the term 2T−1/2k−1I1 is negligible. Hence, the asymptotic distribution of T k−d/2(IT − E(IT )) is

the same as the asymptotic distribution of I2.

In what follows, we denote by
∑

υ

=
k−1∑
υ1=0

...
k−1∑
υd=0

. To show that the term I3 defined in (11) is

negligible, we first compute the variance of HT (Gt, Gt). By observing that the term R1, defined in

(10), is the dominant term among R2(.), R3(.) and R4(.), we have

V ar(HT (Gt, Gt)) = k−d V ar

(∫
K1(g,Gt)K1(g,Gt)

c(g)
dg

)

= k−d V ar

(∫ ∑
υ

k2dAGt,υ1,..,υd

∏d
j=1 p2

υj
(gj)

c(g)
dg

)

=
∑

υ

(
k3d

∫
(pυ − p2

υ)

∏d
j=1 p4

υj
(gj)

c2(g)
dg

)
,
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where

pυ =
∫ υd+1

k

υd
k

...

∫ υ1+1
k

υ1
k

c(u)du (12)

=
c(υ1

k , ..., υd
k )

kd
+ O(kd+1), from Sancetta and Satchell (2004).

Consequently

V ar(HT (Gt, Gt))

≤
∫ ⎛⎝ k2d

c2(g)

∑
υ

c(
υ1

k
, ...,

υd

k
)

d∏
j=1

p4
υj

(gj) dg

⎞
⎠

≤ 1
infg {cXY Z(g)}

∫ ⎛⎝ kd

c(g)

∑
υ

c(
υ1

k
, ...,

υd

k
)

d∏
j=1

p2
υj

(gj) dg

⎞
⎠

2

=
kd

infg {cXY Z(g)}
∫

1
4πg(1 − g)

dg, from Bouezmarni, Rombouts, and Taamouti (2009)

= O(kd).

Hence

I3 = Op(T−1/2 kd/2).

The next lemma establishes the independence between the two terms I1 and I2 defined in (11)

and their asymptotic normality. Further, under condition (A1.3), we show that T−1/2k−1I1 is

negligible. The following notations will be used to prove the lemma. For p > 0 and {Ḡt, t ≥ 0}
i.i.d sequence, where Ḡ0 is an independent copy of G0, we define

uT (p) = max
{

max
1≤t≤T

||HT (Gt, G0)||p, ||HT (G0, Ḡ0)||p
}

, (13)

vT (p) = max
{

max
1≤t≤T

||ΨT,0(Gt, G0)||p, ||ΨT,0(G0, Ḡ0)||p
}

, (14)

wT (p) = {||ΨT,0(G0, G0)||p} , (15)

zT (p) = max
0≤t≤T

max
1≤j≤T

max
{||ΨT,j(Gt, G0)||p, ||ΨT,j(G0, Gt)||p, ||ΨT,j(G0, Ḡ0)||p

}
, (16)

where ΨT,j(u, v) ≡ E [HT (Gt, u)HT (G0, v)] and ||.||p = (E| . |p)1/p.
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Lemma 2 Under assumptions (A1.1)-(A1.3) and H0, we have I1 and I2 are independents and

I1
d→ N (0, σ2),

√
2 (π/4)d/2 I2

d→ N(0, 1),

where σ2 = V ar(ζ(G0)) + 2
∑∞

t=1 Cov(ζ(Gt), ζ(G0)) and ζ is defined below.

Proof: To establish Lemma 2, we follow Theorem 1 in Tenreiro (1997). Recall that I1 =

T−1/2
∑T

t=1 ST (Gt), where ST (Gt) = k
∫

R̃(g,Gt)E(r(g))dC(g). By construction E(ST (Gt)) = 0

and by the boundedness of the copula density, supT supm |ST (m)| < ∞. We have,

E(r(g)) = E

(
K1(g,Gt)

c(g)
− K2(g, Ut)

c(u, v)
− K3(g, Vt)

c(u,w)
+ 1
)

= k−1γ(g) + o(k−1) from Bouezmarni, Rombouts, and Taamouti (2009),

where γ(g) = γ∗(c(g))
c(g) − γ∗(c(u,v))

c(u,v) − γ∗(c(u,w))
c(u,w) and γ∗(g) = 1

2

∑d
j=1

{
dc(g)
dgj

(1 − 2gj) + d2c(g)
dg2

j
gj(1 − gj)

}
.

Observe that,

lim
T

E(ST (Gt)ST (G0)) = Cov(ζ(Gt), ζ(G0))

where ζ(m) =
∫

γ(g)c(g)R̃j (g,m)dg, for m ∈ [0, 1]d. Hence, under condition (A1.3), we have

2T−1/2k−1I1 = o(T−1kd/2), this concludes the proof of the lemma.

Now, it remains to show that there exist positive constants δ0, δ1, γ1 and γ0 < 1/2 such that

(1) uT (4 + δ0) = O(T γ0); (2) vT (2) = o(1); (3) wT (2 + δ0/2) = o(T 1/2); (4) zT (2)T γ1 = O(1); and
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thereafter we show that E
[
HT (G0, Ḡ0)

]2 =
(

π
2

)d. First, we show that

kdE
[
HT (G0, Ḡ0)

]2 = E

{∫
R̃(g,G0)R̃(g, Ḡ0)c(g)dg

}2

(17)

≈ E

{∫
K1(g,G0)K1(g, Ḡ0)

c(g)
dg

}2

, the other terms are negligibles

= E

{∫
K1(g,G0)K1(g′, G0)K1(g, Ḡ0)K1(g′, Ḡ0)

c(g)c(g′)
dgdg′

}

= E

⎧⎨
⎩
∫

1
c(g)c(g′)

⎛
⎝k2d

∑
υ

AG0,υ

d∏
j=1

pυj (gj)pυj (g
′
j)

⎞
⎠

×
⎛
⎝k2d

∑
υ′

AḠ0,υ′

d∏
j=1

pυ′
j
(gj)pυ′

j
(g′j)

⎞
⎠ dgdg′

⎫⎬
⎭

=
∫

1
c(g)c(g′)

⎛
⎝k2d

∑
υ

pυ

d∏
j=1

pυj (gj)pυj (g
′
j)

⎞
⎠
⎛
⎝k2d

∑
υ′

pυ′

d∏
j=1

pυ′
j
(gj)pυ′

j
(g′j)

⎞
⎠ dgdg′

≈
∫

1
c(g)c(g′)

⎛
⎝kd

∑
υ

c(υ1/k, ..., υ1/k)
d∏

j=1

pυj (gj)pυj (g
′
j)

⎞
⎠

×
⎛
⎝kd

∑
υ′

c(υ′
1/k, ..., υ′

1/k)
d∏

j=1

pυ′
j
(gj)pυ′

j
(g′j)

⎞
⎠ dgdg′,

where pυ is defined in (12). Now, let’s denote by U = {υ, for all j, |υj

k − gj| < k−δ and |υj

k − g′j| <

k−δ}, for some positive constant δ and observe that:

∑
υ

kdc(υ1/k, ..., υ1/k)
d∏

j=1

pυj (gj)pυj (g
′
j) =

∑
υ∈U

(.) +
∑
υ∈Uc

(.). (18)

Since υ ∈ U and for large k, we have υj

k ≈ gj ≈ g′j . Hence, the first sum of Equation (18) can be
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written as follows

∑
υ∈U

kdc(υ1/k, ..., υ1/k)
d∏

j=1

pυj(gj)pυj (g
′
j) ≈ kdc(g)

∑
υ∈U

d∏
j=1

p2
υj

(gj)

= kdc(g)
d∏

j=1

∑
| υj

k
−gj |<k−δ

p2
υj

(gj)

≈ kd/2c(g)
d∏

j=1

(4πgj(1 − gj))−1/2

from Bouezmarni, Rombouts, and Taamouti (2009).

Let’s denote by J =
{
j, |υj

k − gj | > k−δ
}

. Without loss of generality, suppose that |υj

k − g′j| < k−δ,

for all j in J, and that J contains k0 > 0 elements. Thus, for the second sum of Equation (18) and

using the results of Bouezmarni, Rombouts, and Taamouti (2009), we have

∑
υ∈Uc

kdc(υ1/k, ..., υ1/k)
d∏

j=1

pυj (gj)pυj (g
′
j) ≤ kd sup

g
|c(g)|

⎧⎪⎨
⎪⎩
∏
j∈J

⎛
⎜⎝ ∑

| υj
k
−gj |>k−δ

pυj (gj)

⎞
⎟⎠
⎫⎪⎬
⎪⎭

×

⎧⎪⎨
⎪⎩
∏
j∈Jc

⎛
⎜⎝ ∑

| υj
k
−gj |<k−δ

p2
υj

(gj)

⎞
⎟⎠
⎫⎪⎬
⎪⎭

≤ kd sup
g

|c(g)|
{

Ck−2k0

}{
C ′k−(d−k0)/2

}

= O(kd/2−3k0/2) = o(kd/2).

Consequently

∑
υ

kdc(υ1/k, ..., υ1/k)
d∏

j=1

pυj (gj)pυj (g
′
j) = kd/2c(g)

d∏
j=1

(4πgj(1 − gj))−1/2 + o(kd/2).

Hence

lim
T

E
[
HT (G0, Ḡ0)

]2 = lim
T

k−d

∫
1

c(g)c(g′)

⎛
⎝kd/2c(g)

d∏
j=1

(4πgj(1 − gj))−1/2 + o(kd/2)

⎞
⎠

×
⎛
⎝kd/2c(g′)

d∏
j=1

(4πg′j(1 − g′j))
−1/2 + o(kd/2)

⎞
⎠ dgdg′

= (π/4)d.
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Now, let’s calculate the term uT (p) in (13). Using the triangle inequality and since K1(g,G0)K1(g,Gt)

is the dominant term [K1(g,Gt) is the dominant kernel], we have

||HT (G0, Gt)||p ≤ k−d/2
4∑

j=1

4∑
j′=1

∣∣∣∣∣
∣∣∣∣∣
∫

Kj(g,G0)Kj′(g,Gt)
cj(g)cj′(g)

c(g)dg

∣∣∣∣∣
∣∣∣∣∣
p

= k−d/2

∣∣∣∣
∣∣∣∣
∫

K1(g,G0)K1(g,Gt)
c(g)

dg

∣∣∣∣
∣∣∣∣
p

+ o(k−d/2),

where K4(g,Gt) = 1. Since pυ, pυ′ ≤ 1 and
∑

υ

∏d
j=1 pυ′

j
(gj) =

∑
υ′
∏d

j=1 pυ′
j
(gj) = 1, by the

triangular inequality of Lp we have

∣∣∣∣
∣∣∣∣
∫

K1(g,G0)K1(g,Gt)
c(g)

dg

∣∣∣∣
∣∣∣∣
p

≤ k2d
∑

υ

∑
υ′

∣∣∣∣∣
∣∣∣∣∣
∫ 1{G0∈Bυ ,Gt∈Bυ′}

∏d
j=1 pυj (gj)pυ′

j
(gj)

c(g)
dg

∣∣∣∣∣
∣∣∣∣∣
p

≤ k2d
∑

υ

∑
υ′

(∣∣∣∣∣
∫ ∏d

j=1 pυj (gj)pυ′
j
(gj)

c(g)
dg

∣∣∣∣∣
p

pυpυ′

)1/p

= k2d
∑

υ

∑
υ′

p1/p
υ p

1/p
υ′

∫ ∏d
j=1 pυj (gj)pυ′

j
(gj)

c(g)
dg

= O(k2d)

Therefore, we have 4||HT (G0, Gt)||p = O(k
3d
2 ). Similarly, we can show that ||HT (G0, Ḡ0)||p =

O(k
3d
2 ). Hence, uT (p) = O(k

3d
2 ).

To compute the term vT (p) in (14) we need to calculate ||HT (G0, G0)HT (G0, Ḡ0)||p. Using the

fact that K1(g,G) is the dominant kernel, we have

HT (G0, G0)HT (G0, Ḡ0) = k−d

∫ ∫
K2

k(g,G0)Kk(g′, G0)Kk(g′, Ḡ0)
c(g)c(g′)

dg dg′)

= k−d

∫ ∫
1

c(g′)c(g)

⎛
⎝kd

∑
υ

1{G0∈Bυ}
d∏

j=1

pυj(gj)

⎞
⎠

2

⎛
⎝kd

∑
υ

1{G0∈Bυ}
d∏

j=1

pυj (g
′
j)

⎞
⎠
⎛
⎝kd

∑
υ′

1{Ḡ0∈Bυ}
d∏

j=1

pυj (g
′
j)

⎞
⎠ dg dg′

= k−d
∑

υ

∑
υ′

∫ ∫
1

c(g′)c(g)

⎛
⎝kd1{G0∈Bυ}

d∏
j=1

pυj (gj)

⎞
⎠

2

⎛
⎝kd1{G0∈Bυ}

d∏
j=1

pυj (g
′
j)

⎞
⎠
⎛
⎝kd1{Ḡ0∈Bυ}

d∏
j=1

pυ′
j
(g′j)

⎞
⎠ dg dg′.
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By the triangular inequality of Lp, we have

||HT (G0, G0)HT (G0, Ḡ0)||p ≤ k−d
∑

υ

∑
υ′

∣∣∣∣Bυ,υ′
∣∣∣∣

p

where

Bυ,υ′ =
∫ ∫

1
c(g′)c(g)

⎛
⎝kd1{G0∈Bυ}

d∏
j=1

pυj(gj)

⎞
⎠

2⎛
⎝kd1{G0∈Bυ}

d∏
j=1

pυj (g
′
j)

⎞
⎠

×
⎛
⎝kd1{Ḡ0∈Bυ′}

d∏
j=1

pυ′
j
(g′j)

⎞
⎠ dg dg′.

Consequently

∑
υ

∑
υ′

||Bυ,υ′ ||p =
∑

υ

∑
υ′

⎧⎨
⎩
∫ ∫

1
c(g′)c(g)

⎛
⎝kd

d∏
j=1

pυj (gj)

⎞
⎠

2⎛
⎝kd

d∏
j=1

pυj(g
′
j)

⎞
⎠

×
⎛
⎝kd

d∏
j=1

pυ′
j
(g′j)

⎞
⎠ dg dg′

⎫⎬
⎭ p1/p

υ p
1/p
υ′

= k−2d/p
∑

υ

∑
υ′

⎧⎨
⎩
∫ ∫

1
c(g′)c(g)

⎛
⎝kd

d∏
j=1

pυj (gj)

⎞
⎠

2⎛
⎝kd

d∏
j=1

pυj (g
′
j)

⎞
⎠

×
⎛
⎝kd

d∏
j=1

pυ′
j
(g′j)

⎞
⎠ dg dg′

⎫⎬
⎭ c1/p(υ1/k, ..., υd/k)c1/p(υ′

1/k, ..., υ′
d/k).

Thereafter, ||Bυ,υ′ ||p = O(k−d(1/p−1/2)) and ||HT (G0, G0)HT (G0, Ḡ0)||p = O(k−d(1/p+1/2)). Hence,

vT (p) = O(k−d(1/p+1/2)). Similarly we can show that for the terms wT (p) and zT (p) in (15) and

(16) respectively we have: wT (p) ≤ Constant and zT (p) = O(kd).

The following lemma provides the bias terms of the test statistic.

Lemma 3 Under assumptions (A1.1)-(A1.3) and H0, we have

Tk−d/2E(IT ) =
3
2
πd−1/2 + o(1).

Proof: Observe that

E(IT ) = E

∫
(rT (g) − E(rT (g)))2 c(g) dg +

∫
E(rT (g))2c(g) dg.
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Under Assumption (A1.3) on the bandwidth parameter and using the bias of the Bernstein density

copula estimator [see Bouezmarni, Rombouts, and Taamouti (2009)], we have

T k−d/2E(rT (g))2 = O(T k−d/2−2) = o(1).

Since rT (g) − E(rT (g)) = 1
T

∑T
t=1 R̃(g,Gt), we have

E

∫
(rT (g) − E(rT (g)))2c(g)dg =

1
T 2

T∑
t=1

E

∫
R̃2(g,Gt)c(g)dg

+
2
T 2

∑
t<s

E

∫
R̃(g,Gt)R̃(g,Gs)c(g)dg

= T−1kd/2

(
E(HT (G0, G0)) +

2
T

∑
t<s

E(HT (Gt, Gs))

)
.

We first show that

E(HT (G0, G0)) = k−d/2
∑

1≤j,j′≤4

E

(∫
Kj(g,G0)Kj′(g,G0)

cj(g)cj′(g)
c(g) dg

)
+ o(k−d/2)

= k−d/2
10∑

j=1

Dj

where c1(g) = c(g), c2(g) = c(u, v), c3(g) = c(u,w), c4(g) = 1 and

Dj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
∫ (Kj(g,G0)

cj(g)

)2
c(g) dg, for j = 1, 2, 3, 4

2E(
∫ K1(g,G0)Kj−3(g,G0)

cj−3(g) dg), for j = 5, 6, 7

2E(
∫ K2(g,G0)Kj−5(g,G0)

c2(g)cj−3(g) c(g) dg), for j = 8, 9

2E(
∫ K3(g,G0)K4(g,G0)

c3(g)c4(g) c(g) dg), for j = 10.

We can show that D4 = 1, D7 = 2, D9 = 2 + o(k−(d1+d2)) and D10 = 2 + o(k−(d1+d3)). For the

remainder, we use the properties of Bernoulli random variable and the variance of the Bernstein
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density estimator. Observe that v �= v′ implies that 1{G0∈Av} × 1{G0∈Av′} = 0. For D1, we have

D1 = E

∫
K1(g,G0)K1(g,G0)

c2
1(g)

c(g) dg

= E

∫
k2d
∑

v 1{G0∈Av}
∏d

j=1 p2
υj

(gj)

c(g)
dg

= kd/2

∫
c(g)

c(g)
√

4π
∏d

j=1 gj(1 − gj)
dg + o(kd/2)

= kd/2(4π)d/2πd + o(kd/2)

= 2−dπd/2kd/2 + o(kd/2).

Using similar arguments, we can show that

D2 = k(d1+d2)/2

∫ ∏d1+d2
j=1 (4π uj(1 − uj))

−1/2

c2(g)
c(g) dg + o(k(d1+d2)/2),

and

D3 = k(d1+d3)/2

∫ ∏d1+d3
j=1 (4π uj(1 − uj))

−1/2

c3(g)
c(g) dg + o(k(d1+d3)/2).

For D5, let’s first denote by Aυ′ =
[

υ′
1
k ,

υ′
1+1
k

]
× ...×

[
υ′

d1+d2
k ,

υ′
d1+d2

+1

k

]
and A∗

υ′′ =
[

υ′′
1
k ,

υ′′
1 +1
k

]
×

...×
[

υ′′
d3
k ,

υ′′
d3

+1

k

]
. Given G0 = (U0,W0) and using the variance and the bias of the Bernstein density

copula estimator, we get

D5 = 2E

∫
K1(g,G0)K2(g,G0)

c2(g)
dg

= 2E

∫
⎛
⎝kd

∑
υ 1{G0∈Bυ}

d∏
j=1

pυj(gj)

⎞
⎠
⎛
⎝kd1+d2

∑
υ′ 1{U0∈Aυ′}

d1+d2∏
j=1

pυ′
j
(gj)

⎞
⎠

c2
dg

= 2E

∫
⎛
⎝k2(d1+d2)

∑
υ′ 1{U0∈Aυ′}

d1+d2∏
j=1

p2
υ′

j
(gj)

⎞
⎠
⎛
⎝kd3

∑
υ′′ 1{W0∈A∗

υ′′}
d3∏

j=1

pυ′′
j
(gj)

⎞
⎠

c2(g)
dg

= 2k(d1+d2)/2

∫ d1+d2∏
j=1

(4π uj(1 − uj))
−1/2 du

∫
c(w)dw + o(k(d1+d2)/2),

= 2−(d1+d2−1)π(d1+d2)/2k(d1+d2)/2 + o(k(d1+d2)/2).
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Similarly, we have

D6 = 2−(d1+d3−1)π(d1+d3)/2k(d1+d3)/2 + o(k(d1+d3)/2),

and

D8 = 2kd1/2

∫
c(u)c(g)

(4π)d1/2
∏d1

j=1 uj(1 − uj))
dg + o(kd1/2).

Hence

E(HT (G0, G0)) = k−d/2
[
2−dπd/2kd/2 + k(d1+d2)/2B1 + k(d1+d3)/2B2 + kd1/2B3 + 7

]
+ o(1),

where B1 = D2+D5, B2 = D3+D5 and B3 = D8. Now, we need to show that 2
T

∑
t<s E(HT (Gt, Gs)) =

o(1). Denote by n = [L log T ], where L is a large positive constant such that T 4β
δ/(1+δ)
n = o(1)

for some δ > 0. On the one hand, from Lemma 1 of Yoshihara (1976) and by the fact that

uT (1 + δ) ≤ Ckd(1/2−1/p), we obtain∑
s−t>n

E(HT (Gt, Gs)) < CT−1kd(1/2−1/p)βδ/(1+δ)
n = o(1).

On the other hand, using the fact that uT (1) = O(k−d/2), we get∑
0<s−t<n

E(HT (Gt, Gs)) = O(nk−d/2) = o(1),

and this concludes the proof of the lemma.

Lemma 4 Under assumptions (A1.1)-(A1.3) and H0, we have

Tk−d/2
(
H(ĉ, Ĉ) − H(ĉ, C)

)
= op(1).

Proof: Lemma 4 can be deduced using similar arguments as in Ait-Sahalia, Bickel, and Stoke

(2001) and Su and White (2008) and the properties of the Bernstein density copula estimator in

Bouezmarni, Rombouts, and Taamouti (2009).

Proof of Proposition 1 This result can be obtained using a similar argument as in the proof

of Theorem 1 and the Taylor expansion to calculate H(c[T ], C [T ]) under H1(αT ) and H1(βT , γT ).

Proof of Proposition 2 We obtain this result by using a similar argument as in the proof

of Theorem 1, by replacing the terms, I1, I2 and I3 in (11) by I∗1 , I∗2 and I∗3 obtained using

the bootstrap data G∗ = {G∗
t }T

t=1. Conditional on G = {Gt}T
t=1, {G∗

t } forms a triangular array of

independent random variables, hence ST (Gt) and HT (Gt, Gt) are independent. Further, conditional

on G and using Theorem 1 of Hall (1984), we can show that I∗2 is asymptotically normal with mean

zero and variance σ2.
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sidad Carlos III de Madrid.

Dufour, J.-M., and E. Renault (1998): “Short-Run and Long-Run Causality in Time Series:

Theory,” Econometrica, 66, 1099–1125.

Engle, R. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance

of United Kingdom Inflation,” Econometrica, 50, 987–1007.

Epps, T. W., and M. Epps (1976): “The Stochastic Dependence of Security Price Changes and

Transaction Volumes: Implication for The Mixture-of-Distributions Hypothesis,” Econometrica,

44, 305–322.

Fan, Y., and Q. Li (1996): “Consistent Model Specification Tests: Omitted Variables and Semi-

parametric Functional Forms,” Econometrica, 64, 865–890.

Fan, Y., and Q. Li (1999): “Central Limit Theorem for Degenerate U-Statistics of Absolutely

Regular Processes with Applications to Model Specification Tests,” Journal of Nonparametric

Statistics, 10, 245–271.

Fan, Y., and Q. Li (2001): “Consistent Model Specification Tests: Nonparametric versus Bierens

ICM tests,” Econometric Theory, 16, 1016–1041.

Fan, Y., and O. Linton (2003): “Some Higher-order Theory for a Consistent Non-parametric

Model Specification Test,” Journal of Statistical Planning and Inference, 109, 125–154.

Fermanian, J., and O. Scaillet (2003): “Nonparametric Estimation of Copulas for Time Se-

ries,” Journal of Risk, 5, 25–54.

Florens, J., and M. Mouchart (1982): “A Note on Non-causality,” Econometrica, 50, 583–591.

Florens, J.-P., and D. Fougère (1996): “Non-causality in Continuous Time,” Econometrica,

64, 1195–1212.

37



French, M., W. S., and R. Stambaugh (1987): “Expected Stock Returns and Volatility,”

Journal of Financial Economics, 19, 3–30.

Gallant, R., P. Rossi, and G. Tauchen (1992): “Stock Prices and Volume,” Review of Finan-

cial Studies, 5, 199–242.

Gao, J., and I. Gijbels (2008): “Bandwidth Selection in Nonparametric Kernel Testing,” Journal

of the American Statistical Association, 103, 1584–1594.

Gervais, S., R. Kaniel, and D. Mingelgrin (2001): “The High-Volume Return Premium,”

The Journal of Finance, 56(3), 877–919.

Gijbels, I., and J. Mielniczuk (1990): “Estimating The Density of a Copula Function,” Com-

munications in Statistics - Theory and Methods, 19, 445–464.

Glosten, L. R., R. J., and D. E. Runkle (1993): “On the Relation Between the Expected Value

and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, 48, 1779–1801.

Gouriéroux, C., and C. Tenreiro (2001): “Local Power Properties of Kernel Based Goodness

of Fit Tests,” Journal of Multivariate Analysis, 78, 161–190.

Granger, C. W. J. (1969): “Investigating Causal Relations by Econometric Models and Cross-

Spectral Methods,” Econometrica, 37, 424–459.

Hall, P. (1984): “Central Limit Theorem for Integrated Square Error of Multivariate Nonpara-

metric Density Estimators,” Journal of Multivariate Analysis, 14, 1–16.

Hiemstra, C., and J. Jones (1994): “Testing for Linear and Nonlinear Granger Causality In

The Stock Price-Volume Relation,” Journal of Finance, v49(5), 1639–1664.

Hoeffding, W. (1948): “A Non-parametric Test of Independence,” The Annals of Mathematical

Statistics, 19, 546–557.

Hong, Y., and H. White (2005): “Asymptotic Distribution Theory for Nonparametric Entropy

Measures of Serial Dependence,” Econometrica, 73, 837–901.

Horowitz, J., and V. Spokoiny (2001): “Adaptive, Rate-Optimal Test of a Parametric Mean-

Regression Model Against a Nonparametric Alternatives,” Econometrica, 69, 599–631.

Hsiao, C. (1982): “Autoregressive Modeling and Causal Ordering of Economic Variables,” Journal

of Economic Dynamics and Control, 4, 243–259.

Huang, X., and G. Tauchen (2005): “The Relative Contribution of Jumps to Total Price Vari-

ance,” Journal of Financial Econometrics, 3(4), 456–499.

38



Karpoff, J. M. (1987): “The Relation Between Price Changes and Trading Volume: A Survey,”

Journal of Financial and Quantitative Analysis, v22(1), 109–126.

Kitamura, Y. (2001): “Asymptotic Optimality of Empirical Likelihood for Testing Moment re-

strictions,” Econometrica, 69, 1661–1672.

Lee, S., and Y.-J. Whang (2009): “Nonparametric Tests of Conditional Treatment Effects,”

Discussion paper, University College London and Seoul National University.

Li, Q., E. Maasoumi, and J. Racine (2009): “A Nonparametric Test for Equality of Distributions

with Mixed Categorical and Continuous Data,” Journal of Econometrics, 148, 186–200.

Linton, O., and P. Gozalo (1997): “Conditional Independence Restrictions: Testing and Esti-

mation,” Discussion paper, Cowles Foundation Discussion Paper 1140.

Lütkepohl, H. (1993): Testing for Causation between two Variables in Higher Dimensional VAR

models in H. Schneeweiss and K. Zimmermann, eds, ‘Studies in Applied Econometrics’. Springer-

Verlag, Heidelberg.

Meitz, M., and P. Saikkonen (2002): “Ergodicity, Mixing, and Existence of Moments of a Class

of Markov Models with Applications to GARCH and ACD Models,” Econometric Theory, 24,

1291–1320.

Morgan, I. (1976): “Stock Prices and Heteroskedasticity,” Journal of Business, 49, 496–508.

Nelson, D. B. (1991): “Conditional Heteroskedasticity in Asset Returns: A New Approach,”

Econometrica, 59, 347–370.

Paparoditis, E., and D. Politis (2000): “The Local Bootstrap for Kernel Estimators under

General Dependence Conditions,” Annals of the Institute of Statistical Mathematics, 52, 139–

159.

Pindyck, R. (1984): “Risk, Inflation, and the Stock Market,” American Economic Review, 74,

334–351.

Robinson, P. (1991): “Consistent Nonparametric Entropy-based Testing,” Review of Economic

Studies, 58, 437–453.

Rogalski, R. (1978): “The Dependence of Prices and Volumes,” The Review of Economics and

Statistics, 36, 268–274.

Rosenblatt, M. (1975): “A Quadratic Measure of Deviation of Two-dimensional Density Esti-

mates and a Test of Independence,” The Annals of Statistics, 3, 1–14.

39



Sancetta, A., and S. Satchell (2004): “The Bernstein Copula and its Applications to Modeling

and Approximating of Multivariate Distributions,” Econometric Theory, 20, 535–562.

Schwert, G. (1989): “Why Does Stock Market Volatility Change Over Time?,” Journal of Fi-

nance, 44, 1115–1153.

Sims, C. (1972): “Money, Income and Causality,” American Economic Review, 62, 540–552.

(1980a): “Comparison of Interwar and Postwar Business Cycles: Monetarism reconsid-

ered,” American Economic Review, 70, 250–257.

(1980b): “Macroeconomics and Reality,” Econometrica, 48, 1–48.

Skaug, H. J., and D. Tjostheim (1993): “A nonparametric test of serial independence based on

the empirical distribution function,” Biometrika, 80, 591–602.
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