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1 Introduction

In many inventory systems, customers belong to different classes, for instance differing in
their willingness to pay for fast delivery of their orders. In order to increase their profits,
some companies provide different customer classes with different levels of service. This can
be achieved by using inventory rationing, a concept in which inventory is withheld from less
demanding, lower profit customer classes to preserve it for future, more critical demands.
A related concept is a critical level policy, in which each customer class is assigned a critical
level. When stock is below the critical level assigned to a particular customer class, the stock
is withheld from that customer class and preserved for more important customer classes.

The problem of multiple demand classes was first described by Veinott (1965), who also
introduced critical level policies. Topkis (1968) shows optimality of critical level policies for a
system with generally distributed demand, periodic review and zero leadtime, in which case
the critical levels depend on the time until the next review. Ha (1997) considers critical level
policies in a make-to-stock system with lost demand, under a Poisson demand assumption.
The production decision is an integral part of the model. He established optimality of
critical levels and shows that demands of the highest criticality should always be satisfied.
Furthermore, he shows that a base stock policy is optimal for managing production. This
work was extended to the back-ordering case by de Véricourt, Karaesmen and Dallery
(2002).

Dekker, Hill, Kleijn and Teunter (2002) consider the optimization of the critical levels
and the base stock level for a problem with independent leadtimes. They derive expressions
for the costs of a given critical level base stock policy. Subsequently, they derive bounds for
the base stock level S on the basis of which the optimal critical level policy can be found,
by solving the optimization problem for each possible S by explicit enumeration. Explicit
enumeration is prohibitively slow for problems with many demand classes and large S.
Therefore, Dekker et al. (2002) propose a fast approach to find good critical levels for which
optimality is not guaranteed. For the case of two demand classes, Melchiors, Dekker and
Kleijn (2000) extend this work to fixed quantity ordering. Deshpande, Cohen and Donohue
(2003) consider a similar model, but with back-ordering of unsatisfied demand. The order
in which back-ordered demands are satisfied leads to additional complications.

Continuing along the lines of Dekker et al. (2002), Kranenburg and van Houtum consider
optimization of the critical levels and the base-stock level. Similarly to Dekker et al. (2002),
the problem is split up into a number of sub-problems for fixed S. Kranenburg and van
Houtum propose three algorithms for solving these sub-problems. In an extensive numerical
experiment, they find that these algorithms are much faster (in the order of 200-1000 times
as fast for problems with 2 to 5 demand classes) than complete enumeration. Moreover, the
algorithms appear to find optimal solutions. Based on this, they conjecture without proof
that the algorithms are optimal for all possible instances.

This paper examines the algorithms proposed by Kranenburg and van Houtum (2007)
for finding good critical level policies in the (S − 1, S) lost sales inventory model with
multiple demand classes. These algorithms resemble local search algorithms; for a precise
description we refer to Section 4, or to the mentioned article. A question arising from their
contribution is whether these algorithms can get stuck in a local optimum. We will answer
this question negatively; we prove that the algorithms result in optimal solutions. This is
a surprising result, because non-randomized local searches are known to get stuck in local
optima in many other problems. We extend this result to a make-to-stock queue in which
a base-stock level is fixed and we search for the optimal critical levels. As a corollary we
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establish the optimality of critical level policies, recovering and strengthening a result that
was essentially derived by Miller (1969). To obtain the results, we rely on general theory
on undiscounted Markov decision problems to derive results regarding the structure of the
bias of “locally optimal” critical level policies. Ultimately, we show that the bias of such
policies solve the optimality equations.

Kranenburg and van Houtum argue that there is a need for fast and accurate algorithms,
and they show that their algorithms are fast. Our main contribution is that these algorithms
can now be used in certainty that optimal solutions will be obtained. Furthermore, we show
that the same general theory used for establishing structural results in many inventory
models can also be used to devise fast special purpose algorithms for finding the optimal
policy in inventory models. Lastly, we show that critical levels are optimal among the class
of all policies for the model we consider.

The remainder of this paper is organized as follows. The model is formulated as a
Markov decision process in Section 2. We then restate some general results from Markov
decision theory in Section 3. The optimality of the algorithms is proved in Section 4. Some
extensions are discussed in Section 5. Section 6 concludes.

2 The model

We consider the model studied earlier by Dekker et al. (2002) and Kranenburg and van
Houtum (2007). They use minimization of the long term average cost as optimality criterion.
To comply with the convention used in Puterman (1994), we will interpret the costs as
negative rewards and use maximization of the long term average reward as optimality
criterion. Clearly, these two formulations are equivalent.

Demands for a part are classified according to criticality. Let J be the set of demand
classes (|J | ≥ 1). For each class j ∈ J , demands occur according to a Poisson process with
rate mj > 0. If an item is not delivered to class j upon request, the demand is lost and a
penalty cost pj > 0 is to be paid, which will be interpreted as a negative reward. Classes are
numbered 1, 2, . . . , |J | such that p1 ≥ p2 ≥ . . . ≥ p|J |. The item is stored in a single stock
location, and stock for the item is controlled by an order-up-to-S policy. We denote the
state of the system by k ∈ {0, . . . , S}, where k denotes the number of items on order. The
heuristics of which we will prove optimality find critical levels for fixed S. We also assume
fixed S, but for optimization purposes S can be enumerated in a separate loop using the
bounds derived by Dekker et al. (2002).

Kranenburg and van Houtum (2007, Remark 1) make the important observation that
under linear holding costs in the amount of stock on hand, we can assume without loss
of generality that holding costs are also charged for items in replenishment. Under this
assumption, the holding costs do not depend on the control of the system for fixed S, and
can be omitted when considering optimization of the critical levels.

We assume i.i.d. exponential leadtimes. In Section 5 we show how to extend this
assumption to the assumption of i.i.d. general leadtimes, as long as the control of the
system is restricted to be of a certain type. We denote the rate by which new parts arrive
in state k by νk = kL−1, where L is the expected leadtime. For convenience of notation,
we include ν0 = 0 in this definition.

In order to model the problem as a Markov decision problem, we consider more general
policies than the critical level policies to which Kranenburg and van Houtum (2007) restrict
their attention. We let Ak be the set of Markovian deterministic decision rules in state k.
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Each decision rule a ∈ Ak prescribes which demand classes to accept and which to reject in
state k. For k < S, each a ∈ Ak is denoted as a subset of the set of demand classes J . E.g.
if a = {1, 3, 4} is selected as the decision rule in state k, then this denotes that under rule
a demand classes 1, 3 and 4 are accepted and other demand classes are rejected in state k.
Thus, Ak is isomorphic with the powerset P(J) of J . In state S all demands are necessarily
rejected. AS thus consists only of the empty set. A Markovian deterministic stationary
policy consists of a decision rule a ∈ Ak for each state k. A policy will be denoted by
d = (d(0), . . . , d(S)) ∈ A0 × . . . × AS = DMD. We will consider only stationary policies, a
restriction that we will motivate in the following.

Because the time intervals between successive events are exponential, the problem can
be modelled as a continuous time Markov decision process. Under the assumption that the
control is only changed when transitions occur (a weak condition that can still be weakened),
uniformization can be applied and the model can be transformed into a discrete-time Markov
decision process which is equivalent in terms of long term average reward (see e.g. Puterman
(1994, Section 11.5.3)). We will apply this transformation, and work with the transformed
model. Under conditions valid for this discrete time model, Puterman (1994, Theorem 8.4.5)
shows that there exists a stationary deterministic average optimal policy, which motivates
our restriction to policies of this type.

The states of the transformed model are the same as the states of the original model.
For a complete description of the discrete time model we further need the rewards and
transition probabilities in state k under decision a ∈ Ak. After transforming the model, the
transition probabilities can be found to be equal to

p(i|k, a) =


ĉ−1

∑
j∈amj i = k + 1, k 6= S,

ĉ−1
(
νS − νk +

∑
j∈J\amj

)
i = k,

ĉ−1νk i = k − 1, k 6= 0,
0 otherwise.

(1)

The reward vector becomes

r(k, a) = −ĉ−1
∑

j∈J\a

pjmj . (2)

In the previous, we used the uniformization constant

ĉ = νS +
∑
j∈J

mj . (3)

By definition, J \ a denotes the elements contained in J , but not in a; it thus denotes the
demand classes which are declined under decision a. We denote the transition matrix under
policy d by Pd, it has p(i|k, d(k)) as its (k, i)th entry. The reward vector for this policy will
be denoted by rd, it has r(k, d(k)) as its kth entry. Note that the model has S + 1 states,
so the transition matrix for any policy d is (S + 1) by (S + 1) and the reward vector has
S + 1 elements.

3 Existing theory

Our proof relies on a number of results in undiscounted Markov decision theory. These
results hold for unichain, finite state Markov decision problems with finite decision sets and,
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consequently, bounded rewards. Note that the model we consider fulfills these conditions.
The model is unichain by noting that state 0 (no orders outstanding) can be reached from
any state in a finite number of steps, under any policy.

We start by defining a function that will enable us to efficiently denote the results that
we need. Let g ∈ R and let h be a real-valued vector in S + 1 dimensions. Define

Bd(g, h) = rd − ge+ (Pd − I)h (4)

where I is the identity matrix and e is the vector with all entries equal to 1, both of
appropriate dimension. This definition is similar to the definition of B(g, h) in Puterman
(1994, (8.4.3)), except that it does not include the maximum over all decisions d ∈ D and
therefore it depends on d.

When a policy d ∈ DMD is fixed, the model reduces to a Markov reward process. For the
model under consideration, this Markov reward process induces a unique long term average
reward gd and a bias vector hd. These quantities satisfy the a relation that will be exposed
in the following lemma.

Lemma 1. For a given policy d ∈ DMD, the Markov decision problem reduces to a Markov
reward process with transition matrix Pd and reward vector rd. The average expected reward
gd and bias {hd}Sk=0 of this unichain Markov reward process satisfy

Bd(gd, hd) = 0. (5)

Furthermore, this equation determines gd uniquely, and hd up to an overall constant.

Proof. The result is a slight reformulation of Corollary 8.2.7 of Puterman (1994) and the
remarks following it.

Now, we will establish a link between the reward of two policies. To this end, we will
need the limiting matrix which we will discuss here first. The results we state here can be
found in Puterman (1994, Appendix A.4). Let P ∗d denote the limiting matrix associated
with Pd

P ∗d = lim
N→∞

1
N

N∑
t=1

P t−1
d .

Denote the (k, i)th element of this matrix by p∗d(i|k). For unichain Markov reward processes,
this matrix has equal rows, and its elements are given by

p∗d(i|k) = p∗d(i)

where p∗d(i) is the long term fraction of time that the system is in state i under policy d.
For recurrent states under policy d, p∗d(i) > 0. Because p∗d(i|k) does not depend on the
initial state k, the long term average expected reward does not depend on the initial state
either. This is reflected by the fact that the average expected reward vector has equal
elements. It is given by gde = P ∗d rd. P ∗d satisfies P ∗dPd = P ∗d . Note also that in a finite state
space P ∗d is stochastic, so P ∗d e = e. These two equations can be used to find the steady
state probabilities. Another approach to finding the steady state probabilities is by using
a queueing theory argument, as is done by Kranenburg and van Houtum (2007). They
subsequently use gde = P ∗d rd, or equivalently

gd =
S∑

j=0

p∗d(j)rd(j)
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to find the long term average reward associated with policy d.
The following result uses the limiting matrix to establish a link between the average

reward of two policies. It will be pivotal in proving a key property of the bias of the policies
found by the algorithms of which we will prove the optimality.

Lemma 2. Let d ∈ DMD and let gd and hd be the gain and bias associated with d. Let d′

denote another policy (∈ DMD) with associated average expected reward gd′. Let P ∗d′ denote
the limiting matrix associated with Pd′. Then we have

gd′e = gde+ P ∗d′Bd′(gd, hd).

Proof. We adapt the proof of Proposition 8.6.1 of Puterman (1994). We know that gd′e =
P ∗d′rd′ . We add and subtract gde at the right hand side of this equation. Now, we note that
P ∗d′(Pd′ − I) = 0 and P ∗d′e = e, and obtain

gd′e = gde+ P ∗d′ (rd′ − gde+ (Pd′ − I)hd) .

The result can be easily recognized using (4).

The next lemma gives conditions under which a policy is optimal.

Lemma 3. Let d ∈ DMD and let gd and hd be the gain and bias associated with d. If

max
d′∈DMD

Bd′(gd, hd) = 0 (6)

then gd is the optimal average expected reward, and d is an optimal policy attaining this
reward.

Proof. gd is the optimal reward by Puterman (1994, Theorem 8.4.1 c). Now, note that

Bd(gd, hd) = 0

by Lemma 1, which means that d attains the maximum in (6). We now apply Puterman’s
(1994) Theorem 8.4.4 to conclude optimality of d.

4 Optimality of the algorithms

The final policies obtained when applying Algorithm 1 and 2 proposed in Section 5 of
Kranenburg and van Houtum (2007) have a number of properties, which we formalize as
follows. For ease of reference, we list the algorithms before Theorem 1.

Definition 1. A policy d will be said to belong to the locally optimal critical level policies
DL if it has the following two properties

i) d is of critical level type, viz, for each demand class j ∈ J there exists a critical level
cj ∈ {0, . . . , S}, such that demands of class j are accepted when k < S − cj, and
declined when k ≥ S − cj. So j ∈ d(k) if and only if k < S − cj. Furthermore, the
critical levels are monotone in demand criticality, i.e. i > j ⇒ ci ≥ cj. Note that
these critical levels fully determine a policy, but that not every policy can be described
by a set of critical levels.
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ii) d is locally optimal, in the sense that a unit increase or decrease of any single critical
level such that monotonicity is not violated does not result in an increase of the average
expected reward.

In the following, we will use the lemmas from the previous section to establish the
optimality of policies d ∈ DL. First, we need to obtain a form for Bd(g, h) specific for our
model. It is straightforward, but it requires some precision and tenacity, to use (1), (2) and
(3) to find the following expression for the kth element of Bd(g, h) as defined in (4):

(Bd(g, h))(k) =− g + ĉ−1

(
−νk (h(k)− h(k − 1))

−
∑

j∈J\d(k)

pjmj +
∑

j∈d(k)

mj (h(k + 1)− h(k))

)
. (7)

We have introduced the variables h(−1) = 0 and h(S + 1) = 0 for convenience of notation,
which necessarily have a pre-factor 0 since d(S) = ∅ and ν0 = 0. In the following lemma,
we show that the Markov reward process induced by a locally optimal critical level policy
has a bias with a certain structure.

Lemma 4. Suppose d ∈ DL. Let gd and hd be the gain and bias associated with d. Let
j ∈ J with associated critical level cj be given.

i) Suppose cj 6= S. Then hd(S − cj)− hd(S − cj − 1) ≥ −pj.

ii) Suppose cj 6= 0. Then hd(S − cj + 1)− hd(S − cj) ≤ −pj.

Proof. For i), suppose first that d can be modified by increasing cj by 1 without violating
monotonicity. Call this modified policy d′. It differs from d only by a unit increase of cj .
d′ thus only differs from d because it rejects demands of class j in state S − cj − 1 instead
of accepting them, viz,

(d′(0), . . . , d′(S − cj − 1), . . . , d′(S)) = (d(0), . . . , d(S − cj − 1) \ {j}, . . . , d(S)).

Using this observation, we can use (7) to show that

Bd′(g, h) = Bd(g, h)− êS−cj−1ĉ
−1mj(h(S − cj)− h(S − cj − 1) + pj) (8)

where êS−cj−1 is the vector with 1 as its (S − cj − 1)th entry, and zero for all other entries.
Now, we apply Lemma 2, and in the second equality we use (8) and Lemma 1.

gd′e = gde+ P ∗d′Bd′(gd, hd)

= gde− P ∗d′(êS−cj−1ĉ
−1mj(hd(S − cj)− hd(S − cj − 1) + pj)).

Referring to the discussion regarding the limiting matrix P ∗d in Section 3 we conclude that

gd′e =
(
gd − p∗d′(S − cj − 1)ĉ−1mj(hd(S − cj)− hd(S − cj − 1) + pj)

)
e. (9)

p∗d′(S− cj − 1) denotes the long term average fraction of time spent in state S− cj − 1. It is
strictly positive because demands for class j are accepted in class 0 trough S− cj − 2 under
policy d′, from which we infer that S − cj − 1 is recurrent. mj > 0 by assumption. Since
d′ differs from d only in the unit decrease of a single critical level, we have gd − gd′ ≥ 0 by
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d ∈ DL. From (9), h(S − cj)− h(S − cj − 1) + pj must be non-negative as well, from which
the result immediately follows.

Now suppose that increasing cj violates monotonicity. Then, let j′ be the demand class
with the least penalty cost, for which cj′ = cj . It is easy to verify from the definitions
that the critical level cj′ can be increased without violating monotonicity. Now, apply the
argument above for j′. We find that

h(S − cj′)− h(S − cj′ − 1) + pj′ ≥ 0

which directly implies the result since pj′ ≤ pj and cj′ = cj by hypothesis.
The proof of ii) is similar. Suppose d′ can be constructed from d by a unit decrease of

cj without violating monotonicity. Then d′ differs from d because it accepts demands for
class j in state S − cj instead of declining them. Thus

Bd′(g, h) = Bd(g, h) + êS−cj ĉ
−1mj(h(S − cj + 1)− h(S − cj) + pj).

Similarly as before

gd′e = gde+ p∗d′(S − cj)ĉ−1mj(h(S − cj + 1)− h(S − cj) + pj)e

from which the result follows readily. Suppose now that cj cannot be decreased without
violating monotonicity. Then, let j′ be the demand class with the highest penalty cost, for
which cj′ = cj . c′j can be increased without violating monotonicity, and we can proceed as
before to conclude that the result continues to hold.

Lemma 4 can be intuitively understood by using the interpretation of hd(k)− hd(k− 1)
as the comparative advantage of being in state k instead of being in state k−1 under policy
d.

In the following lemma, we prove that the bias of the Markov reward process induced
by a locally optimal policy is concave and strictly decreasing in the number of outstanding
orders.

Lemma 5. Suppose d ∈ DL. Let gd and hd be the gain and bias associated with d. Then

i) For k ∈ {0, . . . , S − 1}

hd(k + 1)− hd(k) < 0

ii) For k ∈ {1, . . . , S − 1}

hd(k + 1)− hd(k) ≤ hd(k)− hd(k − 1)

Proof. We start by proving i) for k = 0. From the definition of the critical levels we must
either have a critical level cj for which S − cj = 0, or all demands are accepted in state 0.
In the first case, we apply ii) of Lemma 4 to conclude that hd(1)−hd(0) ≤ −pj < 0. In the
latter case we note first that gd and hd solve (5) by Lemma 1, which implies that

0 = (Bd(gd, hd))(0).
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By using (7) and by noting that d(0) = J for the case under consideration this implies that

0 = ĉ−1
∑
j∈J

mj (hd(1)− hd(0))− gd.

It is easy to see that under any policy there must be at least one recurrent state in which
demands are declined. Therefore, gd is strictly negative. Furthermore, ĉ > 0, |J | ≥ 1 and
mj > 0. The result follows.

We now prove ii) for k = 1 (suppose S > 0). From the definition of the critical levels we
either have a critical level cj for which S − cj = 1, or all demand classes accepted in state
0 are also accepted in state 1 and vice versa. The result immediately follows by combining
i) and ii) of Lemma 4 in the former case. In the latter case we use again that gd and hd

solve (5), from which it follows that

0 = (Bd(gd, hd))(1)− (Bd(gd, hd))(0).

since both terms on the right hand side are zero. Using d(1) = d(0) for the case we are
considering and (7) we find that this implies that

ĉ−1
∑

j∈d(0)

mj (hd(2)− 2hd(1) + hd(0)) = ĉ−1ν1 (hd(1)− hd(0)) .

The right hand side is strictly negative by i) for k = 0. Clearly, d(0) = ∅ contradicts
negativity of the right hand side. We conclude that d(0) 6= ∅, and the result follows.

We now proceed by induction. Note that i) for k follows from ii) for k and i) for k − 1.
To complete our inductive argument, it thus suffices to show that ii) for k ∈ {1, . . . , S − 1}
follows from i) and ii) for k − 1.

Again, we either have a critical level cj for which S − cj = k, or the demands accepted
in state k are also accepted in state k − 1 and vice versa. In the former case, the result
follows immediately by combining i) and ii) of Lemma 4, so we do not need the induction
hypothesis in this case. In the latter case, we have d(k) = d(k − 1). Again

0 =(Bd(gd, hd))(k)− (Bd(gd, hd))(k − 1)

which holds by Lemma 1, implies for k ∈ {1, . . . , S − 1} that∑
j∈d(k)

mj (hd(k + 1)− 2hd(k) + hd(k − 1))

= νk (hd(k)− hd(k − 1))− νk−1 (hd(k − 1)− hd(k − 2)) . (10)

The right hand side of this equation can be shown to be equal to

νk−1 (hd(k)− 2hd(k − 1) + hd(k − 2)) + (νk − νk−1) (hd(k)− hd(k − 1))

The first term is not positive by the induction hypothesis ii) for k−1, and the second term is
strictly negative by induction hypothesis i) for k−1 and by νk−νk−1 > 0. So, d(k) = ∅ leads
to a contradiction, and we conclude that d(k) 6= ∅ and hd(k + 1)− 2hd(k) + hd(k − 1) ≤ 0.
By induction, the result follows.

In the following lemma, we use the results derived in the previous two lemmas to show
that a policy d that is of locally optimal critical level type satisfies the optimality equations.
Therefore, it is also globally optimal.
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Lemma 6. Let d ∈ DL. Then d is an optimal policy, and the average expected reward
associated with d is the optimal reward.

Proof. Let gd and hd denote the average expected reward and bias of the Markov reward
process induced by d. The hypotheses of Lemmas 4 and 5 are satisfied for hd. To show that
the hypothesis of Lemma 3 is satisfied we need to show that

max
d′∈DMD

Bd′(gd, hd)

equals the 0-vector. Since gd and hd satisfy (5) by Lemma 1, it is equivalent to show that
for each k ∈ {0, . . . , S} the following expression

max
d′∈DMD

(Bd′(gd, hd))(k)− (Bd(gd, hd))(k) (11)

equals 0. For k = S, this holds trivially since AS only consists of one element (∅), reflecting
that all demands are necessarily lost in state S. Now consider the case k < S. Using (7)
and remembering that DMD is the Cartesian product of the decision sets Ak for the different
states, it is straightforward to show that (11) is equivalent to

max
d′(k)∈Ak

 ∑
j∈d′(k)∩(J\d(k))

mj (h(k + 1)− h(k) + pj)

−
∑

j∈(J\d′(k))∩d(k)

mj (h(k + 1)− h(k) + pj)

 . (12)

where equal terms were cancelled. Note that d′(k) ∩ (J \ d(k)) denotes the demands that
are accepted under d′ but declined under d in state k.

Take now an arbitrary demand class j ∈ J \ d(k) that is declined under d in state k. We
will show that h(k+1)−h(k)+pj is non-positive. d is of critical level type, so by definition
1 there exists a critical level cj for demand class j. Since j is declined under d in state k,
it is a matter of checking this definition to establish that the critical level cj for j satisfies
S − cj ≤ k. Note that this implies that S − cj ≤ S − 1. We thus can apply ii) of Lemma 4
to conclude that

hd(S − cj + 1)− hd(S − cj) ≤ −pj .

By applying ii) of Lemma 5 repeatedly and by using that S − cj ≤ k we conclude that

hd(k + 1)− h(k) ≤ hd(S − cj + 1)− hd(S − cj).

Combining the above equations yields the result. The first term in (12) is thus non-positive.
Take now an arbitrary demand j ∈ d(k). It can be shown in a very similar manner

as above that h(k + 1) − h(k) + pj is nonnegative. cj now satisfies S − cj > k, implying
S − cj > 0. We then apply i) of Lemma 4, and continue as before.

When including the minus sign, the second term in (12) is thus non-positive as well.
Therefore, the maximum is bounded from above by 0. Now, note that d′(k) = d(k) attains
the bound, from which we conclude that the maximum equals 0. We conclude that the
hypothesis of Lemma 3 is satisfied. The result now immediately follows.
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We are now ready to prove the optimality of the algorithms proposed by Kranenburg
and van Houtum (2007). For ease of reference, we restate the algorithms here, adapted
where needed to our notation and the fact that we have used a reward model to align with
Puterman (1994, Chapter 8). Kranenburg et al. show that it is never optimal to decline
the most critical demand classes, which will be denoted by {1, . . . , jc} where jc = max{j ∈
J |p1 = pj}. The proposed algorithms are

Algorithm 1. Keep cj , j ∈ J , j ≤ jc always fixed at 0. Start with an arbitrary
choice for cj , j ∈ J , j > jc, that satisfies monotonicity. Define the neighborhood as
all policies that still satisfy the monotonicity constraint and that have critical levels
that differ at most one from the corresponding critical levels in the original policy. If
the reward of the cheapest neighbor is strictly larger than the reward of the current
solution, then select this neighbor and set this policy as the current solution, and
repeat the process of evaluating all neighbors for this new policy. Otherwise, stop and
take the current solution as the solution found by the algorithm.

Algorithm 2. Keep cj , j ∈ J , j ≤ jc always fixed at 0. Start with an arbitrary choice
for cj , j ∈ J , j > jc, that satisfies monotonicity. For j = |J |, find cj ∈ {cj−1, . . . , cj+1}
with the highest reward, at fixed values of the other critical levels, and change ci
accordingly (define c|J |+1 = S). When the reward for the current solution ties with
the best alternative, keep the current solution. Repeat this optimization for one
critical level at a time for j = |J | − 1 down to jc + 1. After that, optimize again for
j = |J |. Continue this iterative process until for none of the j-values (> jc) a strict
improvement is found. This is the solution found by the algorithm.

The following theorem establishes the optimality of Algorithms 1 and 2.

Theorem 1. Algorithms 1 and 2 converge in a finite number of steps. When they terminate,
the final solution is optimal among the class of Markovian deterministic policies in general,
and in particular among the class of critical level policies.

Proof. We show that the policy found upon termination of the above algorithms belongs
to DL. Then Lemma 6 guarantees optimality of this policy. A policy dt found upon
termination of either of these algorithms is clearly of critical level type. Also, for both
algorithms, decreasing or increasing a single critical level for a demand class j > jc does
not increase the average expected reward because this would contradict the termination of
the algorithm.

In order for dt to belong to DL, it remains to check that a unit increase in the critical
level cjc associated with jc decreases the expected reward. But this is precisely what is
shown for any policy in Kranenburg and van Houtum (2007, Lemma 2) in order to establish
that the optimal critical levels for demand classes j ≤ jc are 0, which motivated them to
keep these critical levels fixed at 0 in the first place. We conclude that dt ∈ DL. The
final solution is thus optimal. To conclude that the algorithms converge in a finite number
of steps, note that a solution that was visited cannot be visited again because that would
contradict that the rewards are strictly increasing. Because there are only a finite number
of critical level combinations, the algorithms must converge in a finite number of steps.

Note that Lemma 6 can serve as the basis to define other local search based algorithms
which are guaranteed to be optimal. We could for instance adapt Algorithm 2 by decreasing
the neighborhood to unit increases or decreases in the critical levels.
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The following corollary is interesting in our opinion because of the manner in which it
is proven.

Corollary 1. A monotone critical level policy is optimal for the problem we consider. For
the most critical demand classes j ≤ jc the optimal critical level is equal to 0.

Proof. The result follows immediately from Theorem 1, and the fact that Markovian deter-
ministic policies dominate in the model.

By Kranenburg’s (2007) observation with respect to the holding cost, early work by
Miller (1969) becomes applicable for this model. Miller considers a queueing system with n
servers with equal, exponential service rate and controlled admissions. The reward incurred
differs across different customers, which arrive following a Poisson process. His objective is
to maximize the long term average reward. Depending on the number of servers that are
occupied, the gatekeeper may decide to reject customers to save capacity for more critical
customers. Because Kranenburg and van Houtum show the holding costs can be assumed
to be fixed for fixed S, it is not hard to see that Miller’s model is equivalent to the model
considered here.

In terms of the model considered here, Miller shows that critical levels are optimal (even
though he does not use the concept of critical level policies), and that demands of the highest
criticality are always accepted. This result differs from the result derived by Ha (1997), e.g.
because Ha’s model assumes a make-to-stock environment, more general holding costs and
it includes discounted models.

5 Extensions

General leadtimes

Our model assumes i.i.d. exponential leadtimes. Most results obtained in this paper can
be extended to the case of generally distributed i.i.d. leadtimes considered by Kranenburg
and van Houtum (2007), as long as we restrict the decision to accept or reject demands to
depend only upon the criticality of the demand and the number of parts on stock (Note
that Kranenburg and van Houtum (2007) assume that the control of the system is of critical
level type, which imposes an even stronger restriction). The steady state distribution of
outstanding orders and consequently the long term expected reward of such a policy do not
depend upon the distribution of the leadtime. This can for instance be shown by a queueing
theory argument of the type that is employed in Kranenburg and van Houtum (2007), or
by the arguments employed in Dekker et al. (2002). Therefore, a policy that is optimal
in the exponential case is also optimal for the general leadtime case, but only within this
restricted class of policies. Therefore, the algorithms continue to find the optimal critical
level policy among the class of critical level policies.

Note that imposing the control to depend only upon the number of outstanding orders is a
true restriction for general leadtimes, as information about outstanding orders may improve
the quality of stock control. Ha (2000) delves deeper into this question by considering the
optimal control for Erlang distributed production times in a make-to-stock environment.
Because of the special properties of this distribution, the size of the state spaces remains
manageable. Teunter and Klein Haneveld (2008) consider general leadtimes in an (s,Q)
system. The complexity of the analysis is kept within bounds by using the approximative
assumption that only the costs up until the arrival of the next replenishment order are
relevant.
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Dependent leadtimes

Before, we have assumed i.i.d. exponentially distributed leadtimes. This is equivalent
to stating that the orders are served in a queue with S identical servers with rate L−1.
The problem of inventory rationing however also arises in other settings. Make-to-stock,
equivalent with a single server queue, is assessed by Ha (1997). Other examples include
queues with a number of servers larger than 1, but smaller than S.

Before, we had νk = L−1k. We now assume general νk > 0, but such that νk+1 ≥ νk.
This includes the examples mentioned above. The reader can verify that the only properties
of νk that were used until Lemma 6 were the properties νk > 0 (for instance, to establish
that the model is unichain), and νk+1 > νk (in the inductive argument in the proof of
Lemma 5). It requires only minor modification to this proof to allow for νk+1 = νk.

Lemma 7. The results stated in Lemma 5 remain valid for general νk, as long as νk+1 ≥ νk

and νk > 0.

Proof. All results, except the last inductive argument, remain valid without modification.
In the last inductive argument, a possible issue occurs when νk = νk−1; we can no longer
conclude strict positivity of the right hand side of (10), only non-negativity remains. Note
that this still suffices to establish the required result in case d(k) 6= ∅. However, d(k) = ∅
no longer leads to contradiction.

Therefore, we consider the case d(k) = ∅ separately. Note that this implies that d(k+1) =
∅ as well. From Lemma 1 we have

0 =(Bd(gd, hd))(k + 1)− (Bd(gd, hd))(k)

from which it follows that

0 = νk+1 (hd(k + 1)− hd(k))− νk (hd(k)− hd(k − 1)) .

The result immediately follows since νk+1 ≥ νk and hd(k) − hd(k − 1) is negative by the
induction hypothesis.

Thus, under the assumptions in this section, Lemmas 4, 5, 6 remain valid. Theorem
1 and its corollary remain valid, except that Kranenburg and van Houtum’s Lemma 2 no
longer holds. We thus need to consider changing the critical levels for the most critical
demand classes in the search algorithms, and we can no longer keep them fixed at 0.

Note furthermore, that we implicitly assume that the holding cost does not depend on
the rationing decision for fixed S. For the original model, Kranenburg and van Houtum’s
observation ensures that this assumption can be made without severe restrictions. Their
observation is however not valid for the extended model, and assuming fixed holding costs
for fixed S is more restrictive in those cases. It is valid in practical situations in case the
holding costs are also incurred for parts that are in on order, for instance for repairable
components and other closed loop supply chains.

6 Conclusions

We established optimality of 2 of the 3 algorithms proposed by Kranenburg and van Houtum
(2007). We strengthened this result to include resupply conditions other than the one
considered by Kranenburg and van Houtum. In the process, we recovered the result by
Miller (1969), strengthening it by allowing for more general resupply assumptions.
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