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Abstract

Master surgical scheduling can improve manageability and efficiency of operating room

departments. This approach cyclically executes a master surgical schedule of surgery types.

These surgery types need to be constructed with low variability to be efficient. Each surgery

type is scheduled based upon its frequency per cycle. Surgery types that cannot be scheduled

repetitively are put together in so-called dummy surgeries. Narrow defined surgery types,

with low variability, lead to a large volume of such dummy surgeries that reduce the bene-

fits of a master surgical scheduling approach. In this paper we propose a method, based on

Ward’s hierarchical cluster method, to obtain surgery types that minimizes the weighted sum

of the dummy surgery volume and the variability in resource demand of surgery types. The

resulting surgery types (clusters) are thus based on logical features and can be used in master

surgical scheduling. The approach is successfully tested on a case study in a regional hospital.
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1 Introduction

Hospitals are complex-structured organizations that are often hard to manage (5; 4). An operating

room department is a typical example of a department where many different actors cooperate,

which leads to a complex organizational situation. Moreover, hospitals consider operating room

departments as the organization part that generates the most revenue and the most costs. Hence,

manageability and the efficiency of this department is subject of a broad range of studies, see for

examples (7; 1; 15). A good overview of operating room planning and scheduling can be found in

Cardoen et al. (2) and McIntosh et al. (10).

One approach to improve efficiency and manageability of operating room departments is the

so-called master surgical scheduling approach (8; 13; 12). It cyclically executes a master surgical

schedule (MSS) of surgery types. An MSS allows not only for optimization of operating room

utilization, robustness, and overtime, but it also takes resource demand on other departments

such as wards into account. The surgery types in an MSS function as its building blocks. Based

on their resource demand profiles the MSS is optimized (13; 12). Constructing surgery types with

little variability in their resource demand is therefore preferred.

Newly arrived patients or patients from waiting lists are assigned to surgery types in an MSS on

a weekly basis. To reduce the probability of non-assigned surgery types, the historical frequencies

of the demand for a surgery types per week are rounded down to obtain the frequencies of surgery

types that are allocated in the MSS. For example, when cataract surgery occurs on average 6.7

times per week, only 6 surgeries of the cataract type are incorporated in the MSS. The remaining

demand fraction will be allocated in so-called dummy surgery types. The positive effect of using

an MSS is reduced when the volume of dummy surgeries becomes large. We therefore aim to

construct a set of surgery types with a low volume of dummy surgeries as well as a low variability

in demand usage.

In this paper we propose a method to obtain such a set of surgery types. We draw more

elaborately the background of the problem in Section 2 and we formally introduce the problem

in Section 3. In Section 4 we provide a brief summary of available method for clustering. Our

suggested solution approach is presented in Section 5 and applied to a case study in Section 6.

We conclude the paper in Section 7.
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2 Problem context

An MSS is built from a set of recurrent surgery types. The problem at hand is to create a

limited number of logistically and medically homogeneous surgery types. Examples of logistical

characteristics are length of stay and surgery duration; examples of medical characteristics are

diagnosis related groups and procedure codes. We assume that a previous period is representative

for the coming period, both for the frequency of occurrence of surgical cases as for the variability

in resource consumption by patients.

We focus in this research on the construction of surgery types for the elective case mix. Aside

from the standard surgery types for elective care, additional types can be defined to cover the

emergency and semi-urgent case mix. The hospital organization may impose restrictions on the

surgery type clustering. For instance, clustering might be done only within a surgical department

as we assume in this paper.

The frequencies of surgery types are calculated as follows. Given historical data, surgery types

are constructed as combination of one or more specific surgical cases. The surgical cases define

the lowest level in the required data. Given a surgery type, and the historical demand for its

underlying surgical cases, an average frequency per MSS cycle is calculated. Management may

require that the MSS cycle length is aligned with other process cycles in the hospital such as

personnel rostering. Furthermore a hospital may not be opened during all weeks. After obtaining

an average frequency per MSS cycle, given its length and the total number of repetitions per

year, the frequency is rounded down. The remaining fractions of surgery types are clustered into

dummy surgery types. Clearly the volume of dummy surgery types depends on the definition

of the surgery types. When a set consists of surgery types that are broadly defined, this tends

to reduce the volume of dummy surgery types, but lead to higher uncertainty in the resource

consumption of patients assigned to such a broadly defined surgery types than a situation where

patients are assigned to narrowly defined surgery types. However, the latter may results in a

substantial volume of dummy surgery types which is conflicting with the MSS approach. Ideally,

only a small proportion of the case mix is covered by dummy surgery types.

An MSS aggregates the level of surgical scheduling from individual patients to patient types.

The loss of information due to this aggregation (e.g., surgery duration will be less predictive) will

be compensated by benefits inherent to the MSS approach (12). Still, when constructing surgery

types, we aim to minimize the loss of information in the process of constructing surgery types.
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3 Problem definition

We denote Z as the set of all surgical cases that are performed in the hospital by a surgical

department, with z ∈ Z a particular surgical case. Let us consider a hospital that wants to

optimize utilization of resources r = 1, . . . , R by means of an MSS. These resources may vary in

importance, for instance by their costs, we therefore scale the different resources r by parameter

wr.

We perform the clustering of surgical cases based upon patient data of the previous period,

hence we use post-classification. For reasons of simplicity we assume that this period equals one

year. Let I be the set of all patients that are operated in that year. We denote their consumption

of resource r, scaled by wr, for patient i by Xir.

Let c ∈ C be a particular surgery type. We introduce subset Iz to denote all patients that were

admitted for surgical case z. Subset Zc denote the surgical cases z that are clustered to surgery

type c. The MSS approach requires that all surgical cases are assigned to exactly one surgery

type, therefore Zc ∩ Z c̄ = ∅ for c 6= c̄ and
∑

c∈C Zc = Z.

Our problem now comprises of optimizing the clustering of surgical cases z in surgery types c

such that the weighted sum of the volume of dummy surgeries and the variability within clusters

is minimal. This way we obtain logistically homogeneous clusters usable in an MSS. Clustering

might be subject to additional constraints, as in our case surgery types are constructed per surgical

department.

4 Literature

Clustering problems and cluster analysis form a large research area. Also in the area of health

care this topic is far from new. An excellent overview of existing techniques and their application

in a health care setting is given by Dilts et al. (3). The complexity of clustering problems rapidly

increases with the problem size (9). Therefore solution algorithms are often derived from available

methods in the field of mathematical programming, see for example Hansen and Jaumard (6).

Algorithms to solve clustering problems are usually subdivided into hierarchical algorithms

and non-hierarchical algorithms (e.g., partitioning algorithms) (3; 9). Constraints may be added

to hierarchical methods to reduce the number of possible splits or merges. The optimal number

of clusters does not need to be known beforehand. An investigator selects the best set of clusters

after all different number of clusters are generated. Hierarchical cluster algorithms are either

agglomerative or divisive in nature. Agglomerative hierarchical methods successively combine
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items closest to one another into a new cluster until one cluster is left. Divisive methods start

with all items grouped in one cluster, and successively split off a set of items to form a new

cluster. The divisive splitting is based on either one variable (monothetic) or upon multiple

variables (polythethic).

Non-hierarchical methods generally start with an initial set of clusters. Based upon the defi-

nition of similarity/distance measure items are assigned to these clusters by some heuristic. Af-

terwards items may be reassigned to further optimize the clustering. The K-means method is

one of the well known methods in this group of cluster algorithms. For a detailed overview of

available clustering techniques and their application we refer to Dilts et al.(3), Romesburg (11),

and Johnson and Wichern (9).

The need to classify patients to allow advanced planning and scheduling has also been ac-

knowledged in the field of health care logistics, see for example Vissers et al.(14). They show

in their paper how classification of patients can be used to improve hospital management using

patient clustering as one of their building block in a logistical framework. Manuster et al. show

the application of clustering techniques to obtain logistic-based patient groups of patients treated

for peripheral arterial vascular diseases. The authors show that the resulting clusters support

improved planning and control of patients to increase the efficiency of resources within hospitals.

In our problem, as addressed in Section 1, the volume of dummy surgeries negatively influences

the performance of an MSS. A large number of clusters/surgery types tends to lead to a high volume

of dummy surgeries. Basically this makes that the number of surgery types cannot be determined

in advance. Therefore hierarchical cluster methods fit our problem better than non-hierarchical

methods do. Furthermore, from a mathematical point of view the cost of the volume of dummy

surgeries can be described by a step-wise cost function on the number of items in the clusters. To

the best of our our knowledge no other papers have been published that use such costs function

in the context of clustering problems.

We aim to construct surgery types with a minimal loss of information compared to using

individual surgical case types. This can be done by Ward’s Hierarchical Clustering Method (16).

We consider this method as most appropriate to use as a starting point for our solution approach

in Section 5.
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5 Solution approach

5.1 Modeling volume of dummy surgeries

Assume that our data concerns a period of one year without a trend that necessitates adjusting

frequencies of surgical procedures in the upcoming period. We denote the length of a single MSS

cycle by T and the number of repetitions per year by A. Then the volume of dummy surgeries

that originates from surgery type c, as denoted by vc, is calculated by

vc := (∪z∈Zc |Iz|) mod A · T (1)

5.2 Modeling resource demand variability

Putting two different surgical case types in one surgery type together leads to loss of information

(regarding the resource consumption) compared to a situation where both procedure types are

individually assigned to a surgery type. We base our solution approach on Ward’s Hierarchical

Clustering Method (16). This method uses the error sum of squares (ESS) as measure for the loss

of information. Let ESSc be the error sum of squares of surgery type c, which is computed by

ESSc :=
∑

z∈Zc

∑
i∈Iz

∑
r∈R

(
Xir −

∑
z∈Zc

∑
i∈Iz Xir

∪z∈Zc |Iz|

)2

(2)

Note that the different resource types r in Formula 2 are already scaled in Xir. The overall ESS

is determined by the sum of the ESS per cluster: ESS = ESS1 + ESS2 + . . . + ESSC .

5.3 Solution heuristic

To cluster surgical cases into surgery types we propose a modified version of Ward’s Hierarchi-

cal Clustering Method. The basic outline, which is similar to most agglomerative hierarchical

clustering methods (3), of this method applied to our problem is the following:

1. Start with N surgery types, each containing a single surgical case type z and an N × N

symmetric matrix of costs D = dmn.

2. Search the distance matrix for the combination of surgery types with minimal costs. Let

this combination consist of surgery types U and V .

3. Merge surgery types U and V . Rename the new surgery type as UV . Update the distance

matrix by adding the new surgery type UV and removing U and V .

4. Record the intermediate set of surgery types and repeat Step 2 and 3 until one surgery type

is left.
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The elements of matrix D represent the additional costs of combining two surgery type com-

pared to the current situation. This is calculated as follows:

dmn = k1(vmn − (vm + vn)) + k2(ESSmn − (ESSm + ESSn)) (3)

where k1 and k2 represent respectively the importance of the volume of dummy surgeries and the

importance of the loss of information (increased variability).

The final step comprises of finding the best solution. Note that the optimal solution is not

necessarily the initial solution, where the ESS is at a lowest level, or the final solution, where the

volume of dummy surgeries is at the lowest level.

6 Case study

In this section we are concerned with the construction of surgery types for Beatrix Hospital, the

Netherlands. Beatrix hospital is a regional hospital for primary hospital care. There are 5 inpatient

and 3 outpatient operating rooms. The hospital has approximately 329 beds. Beatrix hospital

currently implements the MSS approach as described by Van Oostrum et al. (12). Using an MSS,

it aims to optimize operating room utilization and to improve the leveling of ward occupancy.

As part of this implementation, the clustering techniques as described in Section 5 were used to

propose surgery types for the MSS. The experiments were performed by the solution heuristic

(Section 5) coded in MathLab version 7.0.

6.1 Data

To construct surgery types we obtained data of all elective surgical inpatients that were operated

in 2006. From each patient we obtained, among other data, their surgical procedures, their length

of stay (LOS) in the hospital, and their surgery duration (SurDur) (r ∈ {LOS, SurDur}). Surgical

data was registered in the operating room by nurses and retrospectively approved by surgeons.

LOS data was registered by nurses at wards for financial purposes.

To scale the resource variables, Beatrix hospitals assumes that one day admission equals one

hour of operating room time in costs (wLOS = 1, wSurDur = 1
60 ). Beatrix hospital considers

implementation of an MSS with a length of either one or two weeks (T = 1 or 2). The operating

room department runs on an annual basis during a period equivalent with 46 weeks (A = 46).

Table 1 presents a summary of the Beatrix hospital data. In the first column all seven surgical

departments are given. The second column presents the total number of patients (set I), while

the third column presents the total number of different surgical cases (r = 1, . . . , R). We solve the
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cluster problem in Beatrix hospital for each surgical department separately.

We vary the parameter values k1 and k2 indicating the importance of the volume of dummy

surgeries relative to the loss of information. We take as values k1 = {0, 0.5, 1, 5, 10, 20} and keep

k2 constant at k2 = 1.

6.2 Case study results

Table 2 presents the number of surgery types resulting after application of our solution heuristic.

As can be expected the number of resulting surgery types equals the number of different case

types in the data when k1 = 0 is taken. However, when k1 > 0 is taken the number of different

surgery types sharply declines. Table 3 shows the increase in the loss of information (ESS) and the

volume of dummy surgeries. This data can be visualized to determine the best trade-off between

ESS increase and the volume of dummy surgeries, see for an example Figure 1. It is clear that

obtaining the lowest volume of dummy surgeries lead to a high increase in ESS and contrarily that

the lowest increase in ESS causes a high volume of dummy surgeries.

6.3 Discussion

In Beatrix hospital the proposed surgery types were used as input in discussions with surgeons

to determine the actual surgery types. They checked for instance whether the surgical cases that

were clustered in a single surgery type could be performed by a single surgeon. This enhances

easy scheduling of surgeons. Surgery types were adjusted when required.

Another issue is whether the data of a previous year is representative for the upcoming year.

We believe that in general the variability in length of stay and surgery duration in a upcoming

period will be equivalent to a previous period. However, there may be trends in arrival patterns

of patients. This may cause the need of adjusting frequencies of surgical cases, which in turn may

cause that the solution heuristics would have produced a different set of surgery types. Beatrix

hospital did expect trends in arrival patterns (for instance more hip and knee replacements).

However, since such high volume surgical cases typically ended up in a surgery type without any

other surgical case we have chosen to adjust frequency of surgery types after their construction.

7 Conclusion

In this paper we suggest a method for the constructing of surgery types to allow master surgical

scheduling. The method is based on Ward’s hierarchical cluster method that uses the error sum
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of squares as measure for the loss of information. We adjusted this model to account for the

volume of dummy surgeries resulting from the clustering of surgery types, as this is important for

the functioning of an MSS approach. The method was successfully applied to the case of Beatrix

hospital.
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Number of Mean Std. dev. Std. dev.

Surgical Number of different surgical surg. dur. surg. dur. LOS LOS

department patients case types (minutes) (minutes) (days) (days)

General surgery 1428 153 72 56.2 2.7 4.7

Gynecology 783 47 57 43.8 2.3 2.4

ENT 1432 42 27 29.8 1.2 0.8

Eye surgery 1194 24 29 10.3 1.0 0.6

Orthopedic surgery 1751 89 47 37.5 2.2 3.0

Plastic surgery 369 20 39 25.3 1.6 3.2

Urology 434 53 71 68.6 3.4 2.7

Overall 7391 428 47 44.1 2.0 2.9

Table 1: Overview patient mix data Beatrix Hospital in 2006. Surg. dur. = surgery duration,

Std. dev. = standard deviation, and LOS = Length of stay.
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k1

0 0.5 1 5 10 20

T=1 General surgery 152-153 31 40 13 13 13

Gynecology 47 14 14 5 2 2

ENT 42 15 15 6 1 1

Eye surgery 22-24 10 10 10 10 10

Orthopedic surgery 86-89 17 17 5 6 6

Plastic surgery 20 16 6 6 1 1

Urology 53 22 13 13 13 5

T=2 General surgery 152-153 40 42 18 20 11

Gynecology 47 16 13 7 5 5

ENT 42 7 7 10 10 3

Eye surgery 22-24 5 5 5 5 5

Orthopedic surgery 86-89 29 19 7 7 7

Plastic surgery 20 7 7 7 2 2

Urology 53 22 23 15 15 15

Table 2: Number of surgery types in the best solution found for different values of k1. Multiple

solution are denoted as a range.
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k1

0 0.5 1 5 10 20

T=1 General surgery Increase ESS 0% 1% 1% 3% 3% 3%

Volume dummy surgery 65% 13% 13% 7% 7% 7%

Gynecology Increase ESS 0% 1% 1% 8% 33% 33%

Volume dummy surgery 82% 18% 18% 6% 0% 0%

ENT Increase ESS 0% 4% 4% 19% 60% 60%

Volume dummy surgery 26% 7% 7% 4% 0% 0%

Eye surgery Increase ESS 0% 0% 0% 0% 0% 0%

Volume dummy surgery 11% 4% 4% 4% 4% 4%

Orthopedic surgery Increase ESS 0% 1% 1% 4% 7% 22%

Volume dummy surgery 37% 5% 5% 3% 3% 3%

Plastic surgery Increase ESS 0% 0% 1% 1% 11% 11%

Volume dummy surgery 75% 25% 13% 13% 0% 0%

Urology Increase ESS 0% 2% 9% 9% 9% 81%

Volume dummy surgery 79% 26% 15% 15% 15% 5%

T=2 General surgery Increase ESS 0% 0% 1% 2% 4% 5%

Volume dummy surgery 48% 11% 11% 5% 5% 5%

Gynecology Increase ESS 0% 1% 2% 11% 19% 19%

Volume dummy surgery 50% 9% 6% 3% 3% 3%

ENT Increase ESS 0% 4% 4% 6% 6% 42%

Volume dummy surgery 15% 2% 2% 2% 2% 0%

Eye surgery Increase ESS 0% 2% 2% 2% 2% 2%

Volume dummy surgery 8% 2% 2% 2% 2% 2%

Orthopedic surgery Increase ESS 0% 0% 1% 3% 3% 3%

Volume dummy surgery 21% 7% 4% 1% 1% 1%

Plastic surgery Increase ESS 0% 0% 1% 1% 5% 5%

Volume dummy surgery 38% 13% 7% 7% 0% 0%

Urology Increase ESS 0% 1% 2% 10% 10% 10%

Volume dummy surgery 68% 21% 21% 10% 10% 10%

Table 3: Trade off between the increase of ESS and the volume of dummy surgeries when k1 is

varied.
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Figure 1: Visualization of the results of Orthopedic Surgery in case of an MSS cycle of one week.

Volume of dummy surgeries is represented as a percentage of the total Orthopedic case volume.
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