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Abstract 
 
Nonparametric matching estimators are frequently applied in evaluation studies. The 
general idea of the methodology is to determine the impact of treatment on the 
treated using information from treated and from similar non-treated observations to 
build a counterfactual of no treatment. I discuss the methodology for both the binary 
treatment case as well as for the multiple treatment case.  
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METODOLOGÍA DE ESTIMADORES DE PAREO: UNA 
INTRODUCCIÓN  

 
 
 

Resumen 
 
Los estimadores de pareo no paramétricos son utilizados frecuentemente en estudios 
de evaluaciones de impacto. La idea general de la metodología es determinar el 
impacto de tratamiento sobre los tratados utilizando información de tratados y de 
individuos similares que no recibieron el tratamiento.  A partir de esta información 
se construye el contrafactual de no tratamiento. El documento discute esta 
metodología para el caso en que existe un único tipo de tratamiento y para el caso de 
varios tratamientos.   
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There are several reasons why traditional parametric regression analysis may not 

be suited for analyzing the impacts of endogenous (non-random) policies such as training 

programs where the participants self-select into treatment or policies on urban planning 

based on characteristics such as population density or geographical attributes of particular 

areas.  Berhman, Cheng and Todd (2004) discuss the shortcomings of parametric 

regression analyses in these cases.  First, it is possible that the participants in a particular 

program are quite different from the average non-participant.  If these differences are 

important in affecting the desired outcomes then the non-participant group as a whole 

does not provide good information on the outcome of the participants had the participants 

not received the treatment.  Using methods such as matching these differences are 

reduced since the control group individuals, that is those individuals used to build the 

counterfactual of no treatment, are re-weighted to better match the treatment group.  

Second, the true relationship between explanatory variables and the outcome variable 

may be very nonlinear.  Since nonparametric estimation methods do not make any 

assumptions on the functional form (as do parametric analyses) it is not necessary to 

know the exact relationship between the explanatory and the outcome variables.1  Third, 

in traditional regression analysis there may be problems of nonoverlapping support.  It is 

possible that only treatment observations are found over certain ranges of  x, and only 

control observations over other ranges. Traditional parametric regression analyses 

extrapolate the results to these regions where there are no observations.  Non-parametric 

methods restrict the analysis to only those ranges that are similar.  The objective of this 

                                                 
1 Strictly speaking, propensity score matching is a quasi-parametric approach.  Propensity scores used in 
constructing control groups are estimated parametrically, but treatment effects are nonparametrically 
determined.    
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paper is to outline one non-parametric methodology, the propensity score matching, both 

when there is only one type of treatment and when multiple treatments are available.   

 

The propensity score matching methodology has been applied in various types of 

policy analyses. The methodology has been used extensively to evaluate the impacts of 

employment programs (for example, Dehejia & Wahba, 2002; Heckman, Ichimura & 

Todd, 1997; Sianesi 2004; Smith & Todd, 2005) and the impacts of education or training 

programs (for example, Black & Smith, 2004; Lechner, 2000; Saiz & Zoido, 2005).  Also 

the methodology has been used to assess the impact of anti-poverty programs (Jalan & 

Ravallion, 2003b), of infrastructure (Jalan & Ravallion, 2003a) and of environmental 

policies (Greenstone, 2004).  Recently it has also been applied in spatial context to 

determine the impact of zoning on land values (McMillen & McDonald, 2002), on job 

creation (O’Keefe, 2004) and on urban development patterns (Vinha, 2005).  In general 

the above studies evaluate the impacts of a single treatment option.  There are, however, 

also several studies that have analyzed the impacts of programs with multiple modalities 

(Frölich, Heshmati & Lechner, 2004; Lechner, 2002) or varying doses (Lu, Zanutto, 

Hornik & Rosenbaum 2001; Vinha, 2005).   

 

Binary propensity score matching estimator 

One objective of program evaluation is to calculate the mean impact of the 

program on those treated.  If the treatment condition is denoted by  T=1  for those who 

received the treatment and  T=0  otherwise, and the impact variable of interest is denoted 

by  y1  if treatment was received and  y0  if not, then the objective is to estimate the 
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equation ( ) ( )11 01 =−= TyETyE , the difference in the outcome with and without the 

treatment for the treated group.  Unfortunately the second term is not observable, since 

for an individual in the treatment no outcome without the treatment exists.  Thus, the 

challenge is to be able to say something about the unobserved counterfactual for those 

who have been part of the program.   

 

When the treatment is assigned randomly, then it can be assumed that the 

covariates and unobservables do not differ in any systematic way between the treated and 

non-treated groups.  That is, they come from the same distribution.  In this case, to 

estimate the average treatment effect on the treated, ϕ, of the outcome variable,  y, one 

can compare the after treatment outcome levels of the two groups.  The average treatment 

impact in a randomized experiment can be calculated as: 

ϕ = E(y1 | T=1) - E(y0 | T=0)      (1) 

where the assumption is that E(y0 | T=1) = E(y0 | T=0).  That is, those in the treatment 

group would have had, on average, the same outcome level as the control group 

participants had they been assigned to the control group.   

 

In the case of a non-randomized program, such as the building of a subway 

system, the treatment and control groups may vary in a systematic way, and it no longer 

can be assumed that E(y0 | T=1) = E(y0 | T=0).  Therefore, the treatment outcome 

measure for the non-participant group is not a valid counterfactual for the treatment 

group without treatment.  As a specific example, if the location of subway stations is 

based on some characteristics of the area, such as population and employment densities, 
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then one would expect outcome measures in the treatment areas to be quite different from 

those in an average control area, even without the treatment.   In this case, the outcome 

levels of the average non-treated areas are not good proxies for unobserved outcomes of 

the treatment group.   

 

When there are no experimental data available, when assignment to the treatment 

group is non-random, and the treatment status is determined by some set of covariates, x, 

then an alternative mechanism needs to be employed to determine the treatment impact.  

One such mechanism is to establish a control group that is similar in  x  to the treatment 

group.  The set of  x  ought to capture both the variables that affect the treatment decision, 

as well as those that influence the outcome measure.2  The average treatment effect is 

based on the difference in the average outcomes of the individuals in the treatment group 

and this “matched” control group with similar set of  x.   

 

Matching on the covariates guarantees that the two groups have similar 

distributions of covariates and a treatment impact mimics that of a randomized 

experiment.  Formally, the treatment impact is captured by  

ϕ = E(y1 |x, T=1) - E(y0 |x, T=0)    (2) 

                                                 
2  The covariates do not need to include variables that are strictly from the pre-treatment period.  That is, if 
the objective is to analyze the impact of a job-training program on wages or unemployment rates, it is not 
necessary to have information on the wages or unemployment status prior to entering the program.  It is 
assumed that by matching on factors such as formal education, age, etc. that determine wages and 
unemployment status these pre-treatment conditions are also captured.   However, the measures included in  
x  that may influence the outcome measure should not have been affected by the treatment.  For example, if 
the objective is to evaluate the impact of subway stations on the distribution of employment within a 
metropolitan area, it would not be possible to use current population density in the set of covariates that 
explain current employment density given that population density may have also been affected by the 
treatment (proximity to a subway station).   
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where the outcomes are conditioned on the covariates that determine treatment 

participation. 

 

The above approach works only when (i) outcomes, conditional on the set of 

covariates, are independent of the group to which the individual belongs; and (ii) there is 

no covariate that unequivocally decides the treatment assignment.  Mathematically, these 

conditions of strong ignorability3 can be represented as:  

(y0, y1) ⎦⎣ T | x   and   0 < Pr (T=1) | x < 1.   (3) 

When the above conditions apply, the control group can be used to infer information 

about the treatment group.  If there are any unobservables that influence the treatment 

decision and the first condition of strong ignorability does not hold, then the control 

group does not provide the necessary counterfactual information.  The second condition 

rules out the possibility that any particular condition or characteristic unequivocally 

determines inclusion in or exclusion from the treatment.4

 

Rosenbaum and Rubin (1983) show that it is not necessary to match individuals 

based on the vector of observable characteristics,  x, per se; matching on balancing 

scores, such as the propensity score, b(x), is sufficient.  The propensity score is, in effect, 

the conditional probability of being assigned to the treatment group given the individual’s 

covariates.  In Theorem 3, the authors demonstrate that when treatment assignment is 

strongly ignorable in  x  then it is also strongly ignorable in b(x).  That is if 

                                                 
3 Strong ignorability is the same as conditional independence, unconfoundedness, or selection on 
observables. 
4 For example, it cannot be the case that all areas within  x  miles from the CBD are within a subway station 
treatment zone and no areas farther than x miles are outside station treatment zones.   
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(y0, y1) ⎦⎣ T | x   and   0 < Pr (T=1) | x < 1 

then also 

(y0, y1) ⎦⎣ T | b(x)   and   0 < Pr (T=1) | b(x) < 1.         (4) 

The above theorem greatly aids in the assignment of individuals into the control group 

since a univariate score can be used instead of a vector of individual covariates (or 

subclassification of the observations based on the covariates).  Therefore, it is not 

necessary to match the observations based on multiple dimensions but only on a 

“summary” measure.   

 

Rosenbaum and Rubin (1983) further show that if the treatment assignment is 

strongly ignorable, the average treatment effect can be obtained by comparing the 

treatment and matched control groups solely conditioned on the propensity score. 

Therefore, the treatment impact,  is given by: ,Ê

Ê =E{y1 | b(x), T = 1} – E{y0 | b(x), T = 0} = E{y1- y0 | b(x)}.       (5) 

The average treatment effect is the average outcome level of those in the treatment group 

minus the average outcome level of those in the control group after conditioning on the 

propensity score.  The methodology, besides determining the appropriate control group to 

use and reducing the bias in the treatment impacts, is also desirable because it allows for 

the control of covariates when the sample size is small (Rosenbaum and Rubin, 1983).   

 

The impact, however, is valid only for the observations within the common 

support—that is, the range of propensity scores for which there are both control and 

treatment observations.  For example, if there are no observations with high propensity 
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scores in the control group, then those observations with high propensity scores are 

outside of the region of support.  Common support, CS, is defined as the set of propensity 

scores for which the distributions of  T=1  and  T=0  have positive values, such that 

.  That is, the common support is the range of 

propensity scores for which there is a positive probability of observing both treatment 

and control observations.  It is possible that there is no exact match for a treatment 

observation’s propensity score.  As long as within a pre-specified interval of propensity 

scores (i.e. within 0.05 points) there is a control observation then the two observations are 

said to be within the same support.   

( ) ( ) 0001 >=∩>== TpdfTpdfCS

 

In practice, the first step is to estimate a binary choice model (logit or probit) 

where the dependent variable is whether or not the observation is in the treatment group 

and the covariates include all the variables that influence the treatment condition as well 

as those that may affect the impact measures.  These probabilities, , are then used to 

construct the counterfactual of no treatment for the treated based on the non-treated 

individuals.  There are several ways to construct the counterfactual, or several methods of 

matching the observations.  These include counterfactuals based on one control 

observation per treatment observation, as well as counterfactuals based on some weighted 

average of several control observations.   

)(ˆ xP

 

In choosing the matching algorithm, the first decision is to determine the number 

of control observations.  On the one hand, choosing only one control observation per 

9



treatment observation5 reduces the bias that is introduced when the matched pairs are less 

similar in their probability of receiving treatment.  On the other hand, with a greater 

number of comparison observations the precision of the estimates, or the magnitude of 

the standard errors, is better.  As often the case in empirical work, the trade-off is 

between unbiasedness and precision.   

 

After determining the number of observations, it is necessary to define the 

matching estimator, or the manner in which the counterfactual is determined for each 

treatment observation.  The generic matching estimator for observation  i  in the 

treatment group is given by 

( )( ) ( ) ( )(∑
=

=
0

1

00 ˆ,ˆˆ
N

j
jjii yxPxPWxPyE )     (6) 

where  determines the weight of each control observation  j  in the counterfactual for 

observation  i.  The various matching algorithms differ in the weights they place on the 

control observations to build the counterfactual.   

( )⋅W

 

If only one control is used per treatment observation, then the logical match for 

each treatment observation is the control observation with the closest propensity score, or 

nearest neighbor matching.  In this case a weight of one is given to the control 

observation with the closest propensity score. That is, the treatment impact is given by 

(∑
=

−
1

1

01

1

1 N

i
ji yy

N
)

                                                

 where  N1  is the number of treatment observations,  is the outcome for 1
iy

 
5 The control observation in a pairwise-matching will be the observation with the closest propensity score 
to the treatment group observation. 
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treatment group observation i, and  is the outcome for the control group observation j 

which has the closest propensity score to observation i. The nearest neighbor to 

observation i is defined as observation j such that 

0
jy

jIkxPxPxPxP okiji ≠∈∀−≤− )(ˆ)(ˆ)(ˆ)(ˆ  where I0 is the set of all possible 

control observations.   For nearest neighbor matching, it is also possible to set a 

maximum value, d, (often called a caliper) for the difference, such that 

dxPxP ji ≤− )(ˆ)(ˆ  in order to limit the differences between treatment and control 

observations.  A caliper can also serve as a measure for observations to be within a 

common support.  In this case, it is possible that not all treatment observations have a 

control observation within this maximum difference and that particular treatment 

observations will thus be dropped from the analysis.6  As noted by Smith and Todd 

(2005) there is no way of determining, a priori, an acceptable size for d. 

 

With nearest neighbor matching, one also needs to determine whether or not to 

match with replacement.  When matching with replacement each control observation can 

serve as the counterfactual for more than one treatment observation.  Dehejia and Wahba 

(2002) show that without replacement (and without imposing a caliper) the later matched 

pairs can differ considerably in their propensity scores.  This is especially the case when 

there are relatively few possible controls for some range of propensity scores.  Allowing 

replacement, the number of “better” matches increases.  However, the variance of the 

                                                 
6 That is, observations are not used since they do not fulfill the common support condition.  
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estimator increases given that less control group information is used and it possible that 

several control group observations are relied upon very heavily.   

 

When multiple controls are assigned to a given treatment observation,  then it is 

necessary to determine how to weight the control group observations to construct the 

counterfactual.  Adapting the notation of Heckman, Ichimura and Todd (1997, 1998), the 

general form to calculate the average treatment impact, ( )TM̂ , can be given as: 

( ) ( ) ( )∑ ∑⊂∈ ∈
−=

CSIi Ij ji yjiWyiTM
1 0

],[ˆ 01ω               (7) 

where  is the outcome with treatment for observation i,  is the outcome for the 

control observation j, and W(i,j) is the weight that appears in equation (2.6).  is the 

weight given to observation j in the control group when comparing with observation  i  in 

the treatment group, such that 

1
iy 0

jy

( jiW , )

( )∑ ∈
=

0
1,

Ij
jiW .  That is, for each treatment observation, 

the weights of the controls used sum to one.  I0  and  I1  are the sets of observations in the 

control group and the treatment group, respectively. Only those treatment observations 

within the common support are used.7 Finally, ( )iω  is  the weight of each treatment 

observation,  i,  in the construction of the average treatment impact.  In general ( )iω  is  

1/N1, such that each treatment observation is weighted equally in the average treatment 

impact.   

 

                                                 
7 Certain matching estimators impose the common support condition “automatically.”  In other cases it 
needs to be explicitly defined and thus the set of observations for which the weights are determined may 
not include all the treatment observations.  An example of the first is the kernel matching estimator and of 
the second the local linear matching estimator.   
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The different matching algorithms differ in the way that the  W  matrix is 

determined.  The simpler algorithms include N-neighbor matching and radial matching.  

In the first, the counterfactual outcome is made up of the average of the  N control group 

observations closest in their propensity score to the treatment observation. 8  The average 

can be a simple average of the control group observations or an average weighted by the 

distance of the control group observation from the treatment observation.  In radial 

matching an average of all the control observations with a propensity score within a 

certain distance, d, from the propensity score of the treatment observation is calculated.  

That is, the number of control observations used for each treatment observation may 

differ.  Again, it is possible to use a weighted average instead of weighting all 

observations equally.   

 

Additionally, when multiple controls are used other, more complex, matching 

algorithms are possible.  Heckman, Ichimura and Todd (1997, 1998) propose two 

alternative estimators – kernel matching and local linear matching estimators – that build 

the counterfactual using additional information from the control group observations.  

 

In a kernel estimator the matrix  W  is determined by a kernel function, ( )⋅K .9  

Following the general notation of Smith and Todd (2005), W(i,j)  in this case is given by 

                                                 
8 The formula is a generalized formula for the matching estimator.  For example, for the case of 10- 
neighbor matching algorithm with simple weights, the W(i,j) matrix is such that for row i,  the matrix has a 
value of  in the columns for the ten control observations,  j, with the closest propensity score to 
treatment observation  i, and 0 otherwise.  

10/1

9 In essence the kernel function, ( )⋅K , is a histogram but instead of determining the frequency of 
observations in non-overlapping intervals, the kernel estimator estimates the density using overlapping 
intervals.  Kernel functions used are symmetric and ( ) 1=∫ dzzK . 
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( )
∑ ∈ ⎟⎟
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⎞
⎜⎜
⎝

⎛ −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=

0

ˆˆ

ˆˆ

,

Ik
ik

ij

h
PPK

h
PP

K
jiW  if Zz <  and 0 otherwise, where 

h
PPz ik
ˆˆ −

=   (8) 

where  h  is the bandwidth of the kernel, and  and  are the probabilities of receiving 

treatment for treatment observation  i  and control observation  j, respectively, and 

iP̂ jP̂

Z is 

some upper limit for a kernel value.  This upper limit depends on the kernel used.  There 

are several choices for the kernel function.  They differ in the way they assign weight to 

observations depending on the distance of the two probabilities.  For example, the 

rectangular kernel, which gives the same weight to all control observations (within a 

particular bandwidth), is 

( ) 5.0=zK  if 1<z  and 0 otherwise, where 
h

PPz ik
ˆˆ −

=  . 

The Epanechnikov kernel, which gives more weight to control observations with similar 

propensity scores, is  

( ) ( ) 5/2.0175.0 2zzK −= if  5<z  and 0 otherwise 

where 
h

PPz ik
ˆˆ −

= . 

In general the choice of the kernel has been shown to have little impact on the estimated 

weight matrix; the choice of the bandwidth, however, does typically impact the weights 

(DiNardo & Tobias, 2001). 

 

The bandwidth, h, in the kernel functions determines the interval over which 

positive weights are given to the control observations.  A kernel with a small bandwidth 
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will use only control observations with very similar propensity scores to that of the 

treatment observation.  A kernel with a larger bandwidth gives weight to less similar 

observations. 10  A sufficiently small bandwidth may not find any matches for the 

treatment observations.  A sufficiently large bandwidth will give weight to all of the 

control observations such that the weight vector for a particular treatment observation 

will take on the shape of the kernel function.11  Given the above property of the kernel 

estimator, it also limits the analysis to only those observations within a common support.  

That is, only observations with a probability of existing in both the treatment and the 

control groups, given the distribution of probabilities, are included.  Figure 1 shows an 

example of the weights given to various control observations when the treatment 

observation has a propensity score of 0.5.   

Figure 1: Countefactual using an Epanechnikov Kernel
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10 For the same difference in the propensity scores, , a larger  h  will decrease the numerator 

quotient,  z,  of  W  such that more of the control observations will fulfill the 

iPjP ˆˆ −

( )⋅K rule. 
11 For example, if the rectangular kernel is used with a sufficiently large bandwidth, then all the control 
observations are used to calculate the counterfactual for each of the treatment observations, and the weight 
matrix would be a matrix of  1/N0, where  N0  is the number of control observations. 
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Given that the weight matrix (and therefore also the estimated treatment impacts) 

is in general sensitive to the choice of bandwidth, it is important to objectively determine 

the bandwidth.  This can be done in several ways.  The easiest way is to visually inspect 

the data and determine which bandwidth gives a good fit.  However, one would like to 

determine more objectively, and in an automated manner, a good bandwidth (Härdle, 

1990; Pagan and Ullah, 1999).  The procedures to objectively determine the optimal 

bandwidth take as the basis the minimization of some global error.   

 

The method that has been used in the evaluation literature is that of cross-

validation, or the leave-one-out method (Black and Smith, 2004; Frölich, 2004a, 2004b).  

The objective of cross validation is to minimize the mean squared error when estimating 

the outcome measure  yj   based on the information from the rest of the observations  yk 

such that .  That is, the mean squared error, jk ≠ ( )( )2
0 0

1 ∑ ∈
−Ij jj yy

N
, is calculated 

for various bandwidths, where  yj  is the outcome for observation  j  and ( )jy  is the 

predicted outcome using the kernel estimator when observation  j  is not part of the 

sample.  Given that the outcome without treatment only exists for the non-treated group, 

the measure is based on the non-treated sample.  Efron and Gong (1983) summarize the 

methodology as consisting of the following:  

(a) deleting the points  xi  from the data set one at a time; (b) 

recalculating the prediction rule on the basis of the remaining  n-1  

points; (c) seeing how well the recalculated rule predicts the 
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deleted point; and (d) averaging these predictions of all  n  

deletions of an  xi.  (pg. 37) 

 

Of the different bandwidths tested the one that minimizes the mean squared error is 

chosen as the “optimal” bandwidth.   

 

The other matching estimator proposed by Heckman, Ichimura and Todd (1997, 

1998) is the local linear estimator.  Adapting the notation in Smith and Todd (2005) the 

estimator is given by: 

( )
( ) ( )[ ] ( )[ ]

( ) ( )( )∑ ∑ ∑
∑ ∑

∈ ∈ ∈

∈ ∈

−−−

−−−−
=

0 0 0

0 0
22

2

ˆˆˆˆ

ˆˆˆˆˆˆ
,

Ij Ik Ik ikikikijij

Ik Ik ikikikijikikij

PPKPPKK

PPKPPKPPKK
jiW  

where Kij=K((Pj-Pi/h). Again, any kernel function can be used.  

 

Asymptotically all of the matching estimators will converge since in 

asymptotically large datasets the matches will be perfect.  However, in finite samples 

there are differences.  There are several studies that have compared the various matching 

estimators.  The first set uses randomized experiments where E(y0 | T=1) = E(y0 | T=0) 

and compares the impacts obtained with those derived from various matching algorithms 

on another dataset with non-participants that were not part of the experiment.  Using this 

methodology, Dehejia and Wahba (2002) do not find any significant differences between 

nearest neighbor matching and radial matching.  Smith and Todd (2005) also compare 

different matching estimators and similarly do not find any consistent results as to the 

superiority between nearest neighbor matching and local linear matching with reasonable 
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bandwidths.  Based on the asymptotic properties of various estimators, Heckman, 

Ichimura and Todd (1997) advocate the use of local linear weights given that the 

estimator converges faster than kernel estimators.  Frölich (2004a) using Monte Carlo 

studies finds, however, that ridge matching12 and kernel matching are in general superior 

to pair-wise matching, and that local linear matching, multiple-neighbor estimators 

generally perform the poorest.13  He finds that the local linear matching estimator does 

not perform as well as the other estimators, even if it asymptotically converges faster, 

when there are regions with low density of propensity scores.  He finds that when the 

ratio of control observations to treatment observations is large, kernel matching is a good 

option.  

 

When matching is done using a propensity score measure it is also necessary to 

determine whether or not the resulting non-treated sample is similar in the observables to 

the treated sample.  That is, whether or not the two samples are balanced in the 

observables after the appropriate matching algorithm has been applied to obtain the 

counterfactuals for each treatment observation.  The common support condition 

guarantees that only observations within the range of positive probabilities for both 

treatment and control groups are included.  Balancing tests check via the use of t-tests 

that the means of the covariates,  x, are statistically similar in the two groups (after 

weighting the control group observations by the weights used to construct the 

counterfactual).  If the two samples are not similar then additional higher order terms, 

                                                 
12 A weighted average of the local linear regression estimator and the Nadaraya Watson estimator.   
13 Furthermore Frölich finds that the weighting estimator is sensitive to trimming and states that there 
currently is no way to determine the optimal trimming level.  Trimming is one method of imposing the 
common support condition, by excluding from the analysis the tails of the probability distributions of 
propensity scores.  
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such as squares of the covariates used, or interaction terms of the covariates need to be 

included in the construction of propensity scores until the two samples are similar 

(Dehejia and Wahba, 2002).  

 

In order to obtain a confidence interval on the estimated treatment impact, 

bootstrapping methods are used.  The standard errors are calculated by resampling the 

data with replacement and recalculating the treatment impact using the chosen estimator,  

NB  number of times.  Each of the  NB  samples is (potentially) different since a particular 

treatment observation may appear more than once.  The distribution of the  NB  different 

average treatment impacts are used to calculate the standard error or confidence intervals.   

 

There are three options for determining the interval.  If the underlying distribution 

is symmetric then either the standard error of the normal distribution or the percentile 

based confidence interval can be used.  Ordering the treatment impacts,  ,  from the 

lowest to highest, the percentile based confidence interval uses the  and 

 treatment impacts as the limits for a  (100-2x)%  confidence interval.  When 

the underlying distribution is asymmetric then the bias-corrected bootstrap confidence 

intervals yield more accurate coverage probabilities (Efron and Tibshirani, 1998).   In the 

bias-adjusted confidence intervals the percentile based confidence limits are adjusted by a 

factor taking into account the proportion of times in the true estimated impact using the 

full sample,  , is greater than the bootstrapped replication (Efron and Tibshirani, 1998).  

iθ̂

100/
ˆ

xN B ⋅
θ

100/)1(
ˆ

xN B −⋅θ

θ̂
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In effect, the confidence interval is adjusted for the difference in the median and mean 

impact values.14   

 

Multiple treatment matching propensity score estimator 

In some cases, the treatment is not a binary condition; there may be varying doses 

of treatment or a set of different treatment options.  Joffe and Rosenbaum (1999), Imbens 

(2000) and Lechner (1999, 2002) expand the analysis the use of propensity score 

matching estimators when there are multiple mutually exclusive treatments.  

 

In the multiple treatment case, it is necessary to determine for the M possible 

treatments the M theoretically possible outcomes, Y1, Y2,…, YM for each individual.  

Again, only one of the possible outcomes is realized for each individual and the other 

outcomes are “missing.”  The challenge is to be able to determine the counterfactual for 

all of those treatments that the individual did not experience.15   

 

Imbens (2000) weakens the initial conditions imposed by Joffe and Rosenbaum 

(1999) for obtaining the average treatment impact in the multiple treatment case.  He 

shows that it is not necessary for the treatment type to be independent of all the potential 

                                                 
14 When there is no bias, that is, 50 percent of the replications are below the true estimated impact, the bias 
corrected and the percentile confidence intervals are the same.   
15 Lechner (1999) identifies three different average impacts that can be obtained.  Namely, the expected 
average treatment effect of being in treatment  t  relative to treatment  s  for: 

(1) a randomly chosen individual from the whole population, ,  )()(,

0

stst yEyE −=γ
(2) a randomly chosen individual who received either treatment  t  or  s, 

( ) ( )stTyEstTyE stst ,|,|,

0 =−==α , and  

(3) a randomly chosen individual who was in treatment  t, ( ) ( )tTyEtTyE stst =−== ||,

0θ .   
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outcomes.  The average treatment impacts can be estimated if there is only pairwise 

independence.  This weaker condition (weak unconfoundedness) requires that the 

treatment type  t  is independent of the outcome, Yt,  when subjected to treatment  t 

conditional on the covariates.  Using the notation of Imbens (2000), if Di(t) is an indicator 

for each individual  i  such that: 

( )
( ) otherwisetD

tTiftD

i

ii

0
1

=
==

 

then weak unconfoundedness can be expressed as  

xYtD t |)( ⊥      ∀  t. 

The outcome Yt  is independent of whether or not treatment t  is applied rather than of the 

treatment level per se.   

 

Furthermore, Imbens (2000) shows that, as in the binary case, the propensity score 

can be used to condition the outcomes instead of the vector of observables,  x.  When the 

treatments are weakly unconfounded, then the average treatment effects are equal 

whether conditioning on the covariates or on the propensity score.  Theorem 1 of Imbens 

(2000) states that  

(i) ( ) ( ){ } ( ){ }rxTrtTYErxtrYErt t ====≡ ,,|,|,β  

(ii) { } ( )( ){ }xtrtEYE t ,,β=  

where r(t, x) is the generalized propensity score.  That is, the conditional expectation of 

the impact evaluated at a particular treatment level, ( )rt,β ,  is equal to the average 

treatment impact, { }tYE .    
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Given that there is a propensity score associated with each of the  M  treatments, 

more than one propensity score needs to be determined for each individual.  That is, each 

individual needs to be evaluated for her propensity to receive each of the different 

treatments.  Lechner (2002) describes two different ways – a structural approach and a 

reduced approach – of calculating the propensity scores.  The first estimates the 

probabilities using a multinomial, or ordered, discrete choice model.  The predicted 

probabilities from the model are used to calculate the conditional probabilities  

( ) ( )
( ) ( )xPxP

xPxP t
i

s
i

s
itss

i ˆˆ
ˆˆ |

+
= .     (9) 

where  is the predicted probability of receiving treatment  s  given the vector of 

characteristics  x.  The conditional probabilities are required since the comparisons to be 

made are between two different groups and not all groups at the same time.  

( )xPs
î

 

In the reduced approach separate binary choice equations are estimated for each of 

the possible  M*(M-1)/2  pairs16 of treatments in order to obtain .  That is, only 

observations that received either treatment  t  or  s  are included in the calculation of the 

conditional probability.  Lechner (2002) advocates the use of this second approach on 

two counts.  First, in the ordered multinomial probit “if one choice equation is 

misspecified all conditional probabilities could be misspecified” (pg. 210), given that the 

probabilities are all evaluated at the same time.  Second, it is easier to estimate binary 

models than ordered models.  Lechner (2002) finds that the estimated conditional 

probabilities are highly correlated across the two approaches and thus the treatment 

( )xP tss
i

|ˆ

                                                 
16 Where  M  is the number of different groups, including the no treatment group. 
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impacts are very similar regardless of which approach is used to estimate the propensity 

scores.17   

  

For the multiple-treatment case the common support set is in general determined 

by the minima of the maximum and the maxima of the minimum participation 

probabilities for the various treatment options (Frölich, Heshmati & Lechner, 2004).  

Equations 10 and 11 give the common support conditions for the lower bound and the 

upper bound, respectively. 

( )( )( )TstxPboundLower tss
i ∈∀= ,ˆminmax |    (10) 

( )( )( )TstxPboundUpper tss
i ∈∀= ,ˆmaxmin |    (11) 

For example, if there are three distinct treatment groups and the lowest probability of 

receiving treatment C is 0.1 in among those observations belonging to treatment group A 

and it is 0.05 among observations in group B, and 0.01 for those in treatment group C, 

then all those observations with a probability of receiving treatment C less than 0.1 are 

dropped from the sample.  The procedure is applied to all of the different treatments. 

 

Becuase with multiple treatments it is necessary to match on more than one 

conditional probability, in general, the matching is done using a nearest neighbor 

algorithm. The treatment impact is given by  

( ) ( )∑ ∑∈∈ ∈
−=

CSIi Ij
s
j

t
i

t
t s

yjiWy
N

TM ],[1ˆ     (12) 

                                                 
17 All correlation coefficients for his sample were greater than 0.98.   
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where the  W(i,j)  is 1 for observation  j  in treatment  s  that is the ( )( )sIjjid ∈∀,min , 

where d(i, j) is the closeness of the two conditional probabilities  and  for 

.   

( )xP tss
k

|ˆ ( )xP tst
k

|ˆ

{ }st IIk ,∈∀

 

The distance metric generally used in the literature is the Mahalanobis distance.18   

Formally, the Mahalanobis distance d(i, j),  between observations  i  and  j  is defined as:  

( ) ( ) ( )s
j

t
i

s
j

t
i PPVPPjid −−= −1',  

where    is a vector of propensity scores for treatments  t  and  s for observation  i in 

treatment group  t,    is the same vector of propensity scores for observation  j in the 

alternative treatment group s.   V  is the covariance matrix based on the all the subset of 

observations from  I

t
iP

s
jP

t  and  Is  such that,   

( ) ( ){ } ( )211 −+−+−= stsstt NNVNVNV  

where  Nk  is the number of observations in treatment  k, and  Vk  is the sample covariance 

of the relevant propensity scores,  P, in group  k,  k = t,s (Rubin, 1980).   

 

As a summary, the algorithm proposed by Lechner (1999) for calculating the 

impact of different treatments is given in Table 1.  

                                                 
18 There are not many applications of multiple treatment matching. Frölich, Heshmati and Lechner (2004), 
Lechner (2002) use the Mahalanobis distance as the metric to determine the nearest neighbor.  Behrman, 
Cheng and Todd (2004) use local linear regression estimators, where the weights are given by the closeness 
of the observations in terms of the observable characteristics and dose.   
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Table 1:  Algorithm for calculating multiple treatment impacts 

Step 1 Specify and estimate a multinomial choice model to obtain 
( ) ( ) ( )[ ]XPXPXP M

NNN
ˆ...,,ˆ,ˆ 10  

Step 2 Estimate the expectations of the outcome variables condition on the respective 
balancing scores.  For a given value of  m  and  l  the following steps are 
performed: 

a) Compute ( ) ( )
( ) ( )XPXP

XP
XP

m
Ni

l
N

l
imll

N ˆˆ
ˆ

ˆ |

+
= or use ( )[ ]XPP l

N
m

N
ˆ,ˆ  directly.  

Alternatively step 1 may be omitted and the conditional probabilities 
may be directly modeled (as in the binary case). 

b) Choose one observation in the subsample defined by participation in  m  
and delete it from that pool. 

c) Find an observation in the subsample of participants in  l  that is as close 
as possible to the one chose in step a) in terms of  or (XP mll

N
|ˆ )

( )[ ]XPP l
N

m
N

ˆ,ˆ .  In the case of using ( )[ ]XPP l
N

m
N

ˆ,ˆ  “closeness” can be based 
on the Mahalanobis distance.  Do not remove that observation, so that it 
can be used again. 

d) Repeat a) and b) until no participant in  m  is left. 
e) Using the matched comparison group formed in c) compute the 

respective conditional expectation by the sample mean.  Note that the 
same observations may appear more than once in that group. 

Step 3 Repeat step 2 for all combinations of  m  and  l. 
Step 4 Compute the estimate of the treatment effects using the results of step 3. 
Source: Lechner, 1999. 
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