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Abstract 
 
In this paper we consider different explanations for why the coefficient associated 
with human capital is often negative in growth regressions once country-specific 
effects are controlled for whereas the coefficient in question is strongly positive in 
cross-sectional or panel results based on the pooling estimator.  In turn, we 
explore: (i) additional sources of unobserved heterogeneity stemming from 
country-specific rates of labor-augmenting technological change, (ii) 
measurement error in the human capital series being used, and (iii) the lack of 
variability in the human capital series once the usual covariance transformations 
are implemented.  Remaining unobserved country-specific heterogeneity and 
measurement error alone are shown to be inadequate explanations. The lack of 
variability in the human capital series is tackled using a new GMM-based 
estimator that combines the Hausman-Taylor (1981) approach, in which the 
impact of time-invariant covariates can be identified through use of covariance 
transformations of the variables themselves as instruments, with the orthogonality 
conditions of the Arellano-Bond (1991) estimator. 
 
Keywords: Economic growth, human capital, measurement error, panel 

estimation. 
 
 

 
Résumé   
 

Pourquoi le coefficient associé  au capital humain 
dans un modèle de Solow Augmenté est-il négatif ? 

 
Cet article a pour objet d’étudier les différentes explications susceptibles de 
conduire dans une estimation de croissance à un coefficient associé à l’éducation 
tantôt négatif en effet fixe et tantôt positif en pooling. Ainsi, nous étudions 
successivement les biais liés (i) à la non prise en compte de l’hétérogénéité non 
observable dans le taux d’accumulation du progrès technologique, (ii) à l’erreur 
de mesure associée à la variable de capital humain traditionnellement utilisée, 
(iii) au manque de variabilité de la variable de capital humain une fois effectuées 
les transformations en effets fixes ou en différence première. Les biais causés par 
la non prise en compte des effets simultanés de l’erreur de mesure et du manque 
de variabilité sont contrecarrés par l’utilisation d’un nouvel estimateur de 
variables instrumentales qui combine à la fois l’approche de Hausman-Taylor 
(1981) et les conditions d’orthogonalités de l’estimateur de Arellano-Bond 
(1991).  
 
Mots clés : croissance économique, capital humain, erreur de mesure, estimation 

en panel. 
 

 
JEL: E13, C230, O400, O150. 
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1.  INTRODUCTION 

 

Since the seminal empirical contributions by Mankiw, Romer and Weil (1992, henceforth 

MRW) and Benhabib and Spiegel (1994), there has been a fundamental tension between 

cross-sectional and panel data results concerning the impact of education on the process of 

economic growth.  Results based on cross-sectional data over 25 year time spans (or longer), 

such as those presented by MRW, indicate a strong positive effect of various measures of 

human capital on economic growth.  In contrast, once country-specific fixed effects are 

controlled for, as in Benhabib and Spiegel (1994) or Islam (1995), the coefficient associated 

with human capital becomes either statistically indistinguishable from zero or negative and 

statistically significant at the usual levels of confidence.1  Table 1 summarizes a number of 

recent empirical findings that follow this pattern, and underscores their worrisome nature.  

Given the high proportion of government expenditures devoted to education, the question that 

immediately arises, as it was cogently put by Pritchett (1997) is : Where has all the education 

gone ?2 

 

The reason for including human capital in an empirical implementation of the Solow growth 

model  –the point of departure for the contribution of MRW– was to reduce the point estimate 

of the coefficient associated with physical capital, held to be much too high in light of the 

mean value of labor’s share in GDP across countries and across time periods.3  In a restricted 

Solow growth regression estimated over the period 1960-1985, the point estimate of α , the 

share of capital in GDP, was found by MRW to be equal to 0.6.4  Including human capital in 

the specification brought it down to the much more acceptable level of 0.31, with education’s 

                                                 
1 As Benhabib and Spiegel (1994, p. 154) put it, “the coefficient for human capital is insignificant and enters 
with the wrong sign…. whether we use the Kyriacou, Barro-Lee, or literacy data sets as proxies for the stock of 
human capital,” while Islam (1995, p. 1153) states that “the coefficient on the human capital variable now 
appears…with the wrong sign….Whenever researchers have attempted to incorporate the temporal dimension of 
human capital variables into growth regressions, outcomes of either statistical insignificance or negative sign 
have surfaced.” 
2 Pritchett uses one human capital stock and instruments using another in his specification.  This method, known 
as the "indicator variable" approach, is well described in Wooldridge (2002). 
3 The issue of the “appropriate” value of capital's share has been considered by a number of authors. Hamilton 
and Monteagudo (1998) consider a vintage capital model that explains the lack of correspondence between the 
coefficient on capital in the estimation and the share of capital in GDP (see their references on p. 506).  Gollin 
(2001) revises the estimates of labor’s share of income (usually based on employee compensation) using data on 
self-employment and small enterprises, and shows that conventional estimates are likely to be severely biased for 
poor countries. 
4 MRW, 1992, Table I, p. 414; Islam, 1995, obtains 0.83, Table 1, p. 1141. 
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share coming in at 0.28.5  As such, the augmented Solow specification on cross-sectional data 

can be said to have accomplished its mission. 

 

With the increasing availability of internationally comparable panel data, however, it became 

difficult to justify estimating growth regressions on cross sections, given that the data, as well 

as the appropriate econometric techniques, allowed one to control for country-specific 

unobserved heterogeneity.  As is well-known, failure to control for individual effects tends to 

bias point estimates upwards, when the individual effects in question are positively correlated 

with the variable whose marginal impact one is trying to estimate.  As such, panel estimation 

through some sort of covariance transformation (such as fixed effects) provides one with an 

additional tool that can, a priori, bring down the point estimate of the coefficient associated 

with physical capital, and provide more robust estimates of the marginal impact of human 

capital on growth (presumably reducing, though not, hopefully, eliminating it). 

 

The puzzle being tackled in this paper stems from the fact that, once country-specific fixed 

effects are controlled for, the baby has been thrown out along with the bath-water:  the 

marginal impact of human capital on growth, within the admittedly limiting confines of the 

augmented Solow growth model, becomes negative.6  A similar finding by Hamilton and 

Monteagudo (1998) leads them to the rather unpalatable conclusion that : “The suggestion 

that countries can significantly improve their growth by further investments in public 

education does not seem to be supported by the data.”7 

 

The purpose of this paper is, first, to understand why human capital’s role vanishes once 

country-specific effects are controlled for and, second, to provide an empirical answer that 

restores human capital to the key positive role that is predicted by almost all growth theories.  

It is worth stressing that the reasoning, and the empirical results, presented in this paper apply 

to the augmented Solow model of economic growth.  On the one hand, this approach is rather 

limiting, in that richer empirical specifications are possible if one considers more 

sophisticated theoretical underpinnings.  On the other, the augmented Solow model provides a 

simple unifying framework within which to analyze the role of human capital: moreover, if 

                                                 
5 MRW, 1992, Table II, p. 420. 
6 See, e.g., Islam, 1995, Table V, p. 1151, where the coefficient associated with human capital becomes negative 
and statistically significant for his NONOIL sample; it is statistically indistinguishable from zero in the INTER 
and OECD samples. 
7 Hamilton and Monteagudo (1998), p. 508. 
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human capital is not a significant determinant of growth even within the augmented Solow 

model, its purported positive role hinges on much more tentative and specific mechanisms 

(such as the capacity to adopt new technologies).  In addition, despite the popularity of 

endogenous growth theories as theoretical constructs within which the determinants of growth 

can be understood, it is difficult to test them structurally:  the Solow model can certainly not 

be criticized in this respect.8 

 

The structure of this paper is as follows. In part 2, we set out the basic empirical specification 

of the augmented Solow model.  In part 3 we consider the two simple covariance 

transformation habitually used to control for country-specific heterogeneity (the within and 

first-difference transformations) and discuss the upward biases that arise when these 

corrections are not implemented: this may be one reason for which the coefficient associated 

with human capital is large in the pooling and cross-sectional results.  We also consider 

additional sources of country-specific heterogeneity that are not addressed by these 

procedures.  Given the impact of controlling for country-specific effects on the coefficient 

associated with human capital, the main conclusion of this section is that some other source of 

negative bias is exacerbated by the usual covariance transformations such as the within or 

first-differencing procedures. 

 

In part 4, we consider the classic errors in variables problem that may affect the education 

variable (and which is inevitable, given the method by which the Barro-Lee dataset was 

constructed), and show how this problem may bias the coefficient associated with human 

capital downwards.  We discuss ways, suggested by Griliches and Hausman (1986), in which 

different covariance transformations may be combined to obtain, under certain conditions, 

consistent estimates of the parameters of interest, and why these conditions do not hold in the 

case under consideration.  We also show, using results due to Dagenais (1994), how 

correcting for serial correlation in the pooling results provides additional evidence that the 

errors in variables problem affecting the education variable is severe, particularly once 

variables have been first-differenced.  We then move on to instrumental variables estimation 

using the Arellano-Bond (1991a, 1991b) GMM estimator, which is often advocated as the 

                                                 
8 For a critical review of the contribution of the endogenous growth literature to our understanding of economic 
growth, see Bardhan (1996).  On the other hand, Klenow and Rodriguez-Clare (1997) stress the recent 
exaggerated use of the Neoclassical model in explaining differences in growth performance. Krueger and 
Lindahl (2001) provide a good discussion of the different manners in which human capital is entered into growth 
regressions. 
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best means of controlling for measurement error, and show that this approach does not solve 

the human capital puzzle, in that the usual tests of the overidentifying restrictions are rejected 

and, more pointedly, the coefficient associated with human capital remains either negative 

and statistically significant.   

 

In part 5, our focus is on the low variance of the human capital variable, once the within or the 

first-difference transformations have been performed. We show that most of the variance in 

the Barro-Lee education variable stems from the initial level of education, and that the process 

that generates human capital can be approximated by constant, country-specific rates of 

growth of human capital.  The impact of this dramatic fall in variance is that the effect of 

human capital on economic growth becomes almost impossible to identify, and that 

measurement error may become relatively large, in contrast to what obtains when country-

specific effects are not controlled for.  We then propose a new estimator based on the 

Hausman-Taylor (1981) approach, in which the impact of time-invariant covariates can be 

identified in panel data while controlling for individual effects through the use of covariance 

transformations of the variables themselves as instruments, which we combine with the 

orthogonality conditions of the Arellano-Bond (1991a, 1991b) estimator.  We show that this 

new estimator solves the human capital puzzle, and yields point estimates of the coefficients 

on physical and human capital that are more consistent with a priori expectations than are 

those provided by other estimation methods.  Part 6 concludes. 

 

2.  THE BASIC AUGMENTED-SOLOW EMPIRICAL SPECIFICATION 

 

Let the production technology for country i  at time t  be given by the usual Cobb-Douglas 

functional form with labor-augmenting technological change  
1( )it it it it itY K H L Aα ϕ α ϕ− −= ,  

where itY   is GDP, itK  is the stock of physical capital, itH  is the stock of human capital, itL  

is population, and itA  represents the level of technology (here, the productivity of labor).  As 

is usual, we assume constant population growth /it itn L L= & , a constant depreciation rate δ , 

and an exogenous rate of labor augmenting technological progress /it itg A A= &  (MRW, 1992, 

and Islam, 1995).  Assuming neoclassical savings behavior (in both physical and human 

capital) yields the pair of dynamic factor accumulation equations  



CERDI, Etudes et Documents, E 2002.27 

 7

(1) ˆ ˆ ˆ ˆ( ) ,it K it it itk s k h n g kα ϕ δ= − + +
&

 

(2) ˆ ˆ ˆ ˆ( ) ,it H it it ith s k h n g hα ϕ δ= − + +
&

 

where ˆ ˆ/ , /it it it it it it it itk K A L h H A L≡ ≡  represent variables expressed in terms of efficiency 

units of labor, and Ks  and Hs  represent the investment rates in physical and human capital, 

respectively. 

 

Since Hs , the investment ratio in human capital, is not directly observable in the data, the 

usual practice in the empirical growth literature is to assume that one has an acceptable proxy 

for the steady-state level of human capital, and to work solely with the first of these 

equations.9  Imposing the steady-state condition ˆ 0itk =
&

 yields the steady-state level of 

physical capital per efficiency unit of labor as  
1

1
1ˆ ˆK

it it

s
k h

n g

ϕα
α

δ

−
∗ ∗ −

 
=  + + 

, 

and therefore steady-state GDP per capita as 

(3) 
1

1ˆK
it it it

s
y h A

n g

α
ϕα
α

δ

−
∗ ∗ −

 
=  + + 

, 

where îth∗  represents the steady-state level of human capital per efficiency unit of labor.  By a 

first-order Taylor expansion around the steady-state in terms of convergence from time t τ−  

to time t , by letting the investment ratio and the rate of population growth be functions of  i  

and t , and by appending a disturbance term, one obtains the usual estimating equation: 

(4) 

( )

( ) [ ]

( ) 0

ln ln ln 1 exp{ } ln

ˆ1 exp{ } ln ln( ) ln
1 1

( exp{ }( )) 1 exp{ } ln ,

it it it it

Kit it it

i i t it

y y y y

s n g h

g t t A

τ τλτ

α ϕ
λτ δ

α α

λτ τ λτ µ η ε

− −

∗

∆ ≡ − = − − −

 + − − − + + + − − 
+ − − − + − − + + +

 

where λ  is the annual rate of convergence towards the steady-state, τ  is the time that elapses 

between two time periods and i t itµ η ε+ +  is the composite disturbance term.  In order to 

lighten notation, we shall rewrite the basic specification as 

                                                 
9 A notable exception is Caselli, Esquivel and Lefort (1996), who assume that the enrollment ratio constitutes a 
proxy for Hs . 
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(5) [ ]0 1 2

0 0 0

ˆln ln ln ln( ) ln

( ) ln ,
it it Kit it it

i i t it

y y s n g h

g g t A
τγ γ δ γ

τ γ τ γ µ η ε

∗
−∆ = − + − + + +

+ + − + + + +
 

where   ( ) ( )0 1 21 exp{ }, 1 exp{ } , 1 exp{ }
1 1

α ϕ
γ λτ γ λτ γ λτ

α α
≡ − − ≡ − − ≡ − −

− −
. 

This paper will focus on the sign of 2γ , the coefficient associated with human capital in the 

augmented Solow model, as well as with the point estimate of ϕ . The usual practice in the 

empirical growth literature is to replace îth∗  by ith , the average number of years of schooling in 

the population above 15 years of age at the end of the period considered.  In what follows, we 

approximate this by the Barro-Lee (1993, 1996) measure of human capital.  The growth rate 

of GDP per capita (in constant domestic currency) comes from the World Bank, the initial 

level of GDP per capita comes from the Heston-Summers (1988) dataset, the source for the 

annual population growth rate and the investment rate in physical capital is the GDN.10 

Equation (5) constitutes the basic empirical specification that underlies all econometric 

studies of the augmented-Solow model, including the remainder of this paper.11  

 

In order to estimate equation (5) using cross-sectional data as in MRW (1992), a strong 

identifying restriction needs to be imposed.  Indeed, the only identifying restriction possible 

here is to assume that 0 0ln i iAγ µ+  is identical across countries.  Panel data allows one to 

relax this restriction, as noted by Islam (1995).  This, and other identifying restrictions are the 

subject of the next section. 

                                                 
10 Our dataset is available upon request. 
11 Our choice of dependent and explanatory variables (particularly in terms of the price indices used to evaluate 
the variables in question) is based on the motivations set out very clearly in Nuxoll (1994). 
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3.  UNOBSERVED, COUNTRY-SPECIFIC HETEROGENEITY 

 

Country-specific initial levels of technology 

 

The principal contribution of Islam (1995) was to estimate equation (5) using country-specific 

effects thereby controlling for differences stemming from heterogeneity across countries in 

the initial value of 0ln iA .  This is because the within transformation sweeps out the term 

(6) 0 0ln i iAγ µ+ , 

which would otherwise be included in the disturbance term, leading to biased estimates of the 

coefficients because of the correlation thereby induced between the explanatory variables and 

the error term.   

 

In the absence of the within transformation, the bias in least squares estimation of the 

coefficient associated with human capital ( 2γ ) in the basic growth regression is given by 

(7) 2
2 2 0 0ˆ ˆplim cov ln ,

h

h
OLS i i it eA eγ γ γ µ σ = + +  , 

where 2
heσ  is the variance of the residual from the auxiliary regression of human capital on the 

other included regressors itX  (the initial value of GDP per capita, ln ity , the log of the 

investment ratio minus the population growth rate, and time dummies). That is 2
he

σ ˆvar[ ]h
ite=  

ˆvar[ ]it it OLSh X ω= − , where ˆOLSω  is the coefficient vector from the auxiliary regression.12 

 

Since it is likely that the initial level of technology and the level of human capital are 

positively correlated (after purging the effect of the other covariates), it follows that 

0 0 ˆcov[ ln , ] 0h
i i itA eγ µ+ >  and estimation of the growth regression by OLS should lead to an 

upward bias in the estimate of 2γ . The within and first-difference procedures are the two main 

covariance transformations generally used to account for this bias, although both suffer from 

their respective limitations. 

  

The equation being estimated through the within procedure is given by : 

(8) [ ] 1
0 1 2 0 0

ln ln ln ln( ) ln ( ) ,
t T

it it Kit it it t itt
y y s n g h g t T tτγ γ δ γ γ η ε

=−
− =

∆ = − + − + + + + − + +∑% %% % % % %  
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where  1
0

t T
it it i it itt

x x x x T x
=−

• =
= − = − ∑% , represents variables expressed in terms of deviations 

with respect to their country-specific means ( ix •  represents variables in terms of their 

country-specific means).  Note that the entire term 1
0 0

( )
t T

tt
g t T tγ η

=−
=

− +∑ %  can be accounted 

for by time specific dummies.13  The main weakness of the within transformation, as first 

noted by Anderson and Hsiao (1981), is that the resulting estimator will be inconsistent if 

some variables at time t  are correlated with random shocks in any period s t≤  (some 

elements of ix •  will then be correlated with the error term). We shall return to this problem 

later in the context of the issue of GMM estimation and autocorrelation.  

 

An alternative means of eliminating the country specific effect is to first-difference the data.  

This yields the equation 

(9) 
[ ]

2

0 1 0 2

ln ln ln

ln ln ln( ) ln ,
it it it

it Kit it it t it

y y y

y s n g g h
τ

τγ γ δ γ τ γ η ε
−

−

∆ = ∆ − ∆

= − ∆ + ∆ − ∆ + + + + ∆ + ∆ + ∆
 

where ln ln lnit it itx x x τ−∆ ≡ −  and 2 ln ln lnit it itx x x τ−∆ ≡ ∆ − ∆ .  This approach is similar to 

that used by Hamilton and Monteagudo (1998), who estimate over two ten-year periods 

(1960-70, 1975-85) using the MRW data, while allowing parameter estimates to vary by 

decade.14 They then impose an increasingly stringent set of restrictions, ending up with a first-

differenced form that imposes the theoretical constraints suggested by the augmented Solow 

model.15 Note that first-differencing results by construction in correlation between 

2ln lnit ity yτ τ− −− (the differenced lagged-dependent variable) and it it τε ε −− (the differenced 

error term), an issue that will be explicitly addressed below in the context of GMM 

estimation.  For the moment, this source of bias in the first-differenced results will be ignored. 

 

Estimation results corresponding to pooling (estimation by OLS in levels), the within 

procedure, and first-differencing are presented in columns (1), (2) and (3) of Table 2, and 

largely reproduce those obtained by other authors (see the summary provided by Table 1).   In 

particular, we obtain a negative and statistically significant coefficient associated with human 

capital using the within procedure and a negative and statistically insignificant coefficient in 

                                                                                                                                                         
12 Griliches and Hausman, 1986, p.97, Hsiao, 1986, p. 64, equation (3.9.3). 
13 Alternatively, a second covariance transformation, in which variables are expressed as deviations with respect 
to time-specific means, will eliminate that portion of the disturbance term given by the previous expression. 
14 Hamilton and Monteagudo (1998), equation 14, p. 500. 
15 Hamilton and Monteagudo (1998), equation 15, p. 500, and equation 16, p. 502. 
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first-differences.  In Figures 1 through 3, we present graphs of the type popularized by Robert 

Barro, in which the growth rate of GDP per capita, purged of the effects of all explanatory 

variables except the variable of interest (education), is plotted on the vertical axis, with 

education being plotted on the horizontal axis.  The regression line also appears in the figure, 

and passes through the origin by construction: its slope is equal to the value of 2γ  (the 

coefficient associated with human capital) estimated by each procedure.   

 

Note that, despite what one might think in terms of what appear to be outliers (in Figures 2, 3 

and 4), the unbounded nature of the influence function associated with the within and first-

difference estimators does not lie behind the negative 2γ  coefficient.  For example, when one 

re-estimates the equation in first-differences by least absolute deviations (LAD), rather than 

by least squares, a method that is robust to leptokurtic (i.e., “fat tailed”) disturbance terms, 

and which is often used when one wishes to obtain results that are robust to outliers, the 

estimated value of 2γ  goes from 2ˆ 0.0125OLSγ = −  with an associated t-statistic of -1.629, to 

2ˆ 0.0188dLADγ = −  with an associated t-statistic of -3.415 (the same result obtains, qualitatively, 

when one estimates by LAD after the within transformation).  Controlling for influential 

observations therefore simply reinforces the puzzling negative coefficient associated with 

human capital.16 

 

These results highlight the main issue tackled by this paper, namely the instability of the sign 

of the coefficient associated with human capital, which ranges from being positive and 

statistically significant (pooling results), to being negative and statistically significant 

(within). 

 

At this point, it is worthwhile explicitly stating those hypotheses under which the within and 

first-differenced results will be unbiased, as well as alternative, weaker, hypotheses that will 

be considered at greater length in what follows. 

 

ASSUMPTION 1 (exogeneity): [ln ] [ln( ) ] [ln ] 0, ,it is it is Kit isE h E n g E s s tε δ ε ε′ ′′= + + = = ∀ . 
 

                                                 
16 Temple (1999b) is able to obtain a positive coefficient on human capital on the Benhabib and Spiegel (1994) 
dataset, using OLS on first-differenced data, following use of least trimmed squares which allows him to 
eliminate 14 outliers.  This specification does not, however, correspond to the augmented Solow model and 
involves only 64 observations (our first-differenced results involve 635 observations). 



CERDI, Etudes et Documents, E 2002.27 

 12

ASSUMPTION 2 (predeterminedness) : [ln ]it isE y ε′  [ln ]it isE h ε′=  [ln( ) ]it isE n g δ ε′= + +  

[ln ]Kit isE s ε′=  0, s t= ∀ > . 
 

ASSUMPTION 3 (correlated effects) : 0 0[ln ( ln )],it i iE h Aγ µ′ +  0 0[ln( ) ( ln )],it i iE n g Aδ γ µ′+ + +  

0 0[ln ( ln )]Kit i iE s Aγ µ′ +   0≠ . 
 

Both the within and first-differencing procedures are explicitly designed to deal with 

ASSUMPTION 3 (correlated effects), and the within procedure will yield unbiased estimates 

when ASSUMPTION 1 (exogeneity) holds.  On the other hand, the within procedure will be 

biased when ASSUMPTION 1 (exogeneity) is not satisfied, while first-differencing induces 

correlation between the differenced lagged dependent variable and the differenced error term, 

as previously noted, even when ASSUMPTION 1 is satisfied.  ASSUMPTION 2 

(predeterminedness) is crucial in allowing one to overcome this particular hurdle using 

instrumental variable or GMM estimation.  This issue will be addressed in section 4. 

 

Country-specific rates of labor-augmenting technological change 
 
A potential source of bias not accounted for by Islam (1995) is constituted by country-specific 

rates of technological progress.17  Consider the basic growth regression, which may now be 

expressed as: 

(10) 
[ ]0 1 2

0 0 0

ln ln ln ln( ) ln

( ) ln ,
it it Kit it i it

i i i i t it

y y s n g h

g g t A
τγ γ δ γ

τ γ τ γ µ η ε
−∆ = − + − + + +

+ + − + + + +
 

where the difference with equation (9) is that g  has been replaced with the country-specific 

growth rate of labor productivity ig .  In order to assess the magnitude of the bias induced by 

failure to control for differences in ig , consider a first-order Taylor expansion around itn δ+ , 

which allows one to write 1ln( ) ln( ) ( )it i it it in g n n gδ δ δ −+ + = + + + . It follows that the basic 

growth regression can be rewritten as: 

[ ]0 1 2

1
1 0 0 0

ln ln ln ln( ) ln

( ) ( ) ln .
it it Kit it it

it i i i i i t it

y y s n h

n g g g t A
τγ γ δ γ

γ δ τ γ τ γ µ η ε
−

−

∆ = − + − + +

− + + + − + + + +
 

Neither the within procedure nor first-differencing eliminates this source of bias.  In the case 

of the within procedure, the term  
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( ) ( )1 1 1 1
0 10 0

( ) ( )
t T t T

it i i it itt t
g t T t g n T nϑ γ γ δ δ

= =− − − −
= =

= − − + − +∑ ∑  

remains, leading to a bias given by 

(11) 2
2 2ˆplim cov[ , ]

h

h
w it it eeγ γ ϑ σ= +

%

% , 

where 2 ˆvar[ ] var[ln ]
h

h
e it it it we h Xσ ω= = −

%

% % %  is the variance of the residual from the auxiliary 

regression of human capital on the other regressors using the within procedure.  Similarly, the 

equation to be estimated by least squares after first-differencing is now given by 

(12) 
[ ]2

0 1 2

1
1 0

ln ln ln ln( ) ln

( ) ,
it it Kit it it

i it i t it

y y s n h

g n g
τγ γ δ γ

γ δ γ τ η ε
−

−

∆ = − ∆ + ∆ − ∆ + + ∆

− ∆ + + + ∆ + ∆
 

with the bias being given by   

(13) ( )1 2
2 2 0 1ˆplim cov ( ) ,

h

h
d i it it eg n eγ γ γ τ γ δ σ

∆

− ∆ = + − ∆ +  , 

where 2 ˆvar[ ] var[ ln ]
h

h
e it it it de h Xσ ω
∆

∆= = ∆ − ∆  is the variance of the residual from the 

corresponding auxiliary regression.  Since it is likely that the level of human capital is 

positively correlated with the country-specific rate of technological progress, failure to 

account for this problem is likely to bias estimates of the impact of human capital on growth 

upwards.18 

 

The solution to this problem is to move to second-differences, which will eliminate 0 igγ τ  

from equation (12), and to assume multiplicative country-specific fixed effects to account for 

the remaining source of heterogeneity ( 2 1
1 ( )i itg nγ δ −∆ + ) since the equation to be estimated by 

least squares is now given by: 

(14) 
3 2 2 2 2

0 1 2

2 1 2 2
1

ln ln ln ln( ) ln

( ) .

it it Kit it it

i it t it

y y s n h

g n

τγ γ δ γ

γ δ η ε

−

−

 ∆ = − ∆ + ∆ − ∆ + + ∆ 
− ∆ + + ∆ + ∆

 

Note that, if second-differencing alone is performed, the bias will be equal to 

 1 2
2 2 1ˆplim cov ( ) ,

h

h
d it i it en g eγ γ γ δ σ

∆

− ∆ = + − ∆ +  . 

                                                                                                                                                         
17 This issue is considered explicitly by Lee, Pesaran and Smith (1998) who consider a stochastic version of the 
Solow growth model. It is also worth emphasizing that the assumption of country-specific rates of technological 
change is linked to the debate concerning σ -convergence. 
18 More precisely, and as with the bias stemming from uncontrolled for differences in the initial level of 
technology, we assume that the residual from the auxiliary regression is, like human capital itself, positively 
correlated here with the country-specific rate of technological change. 
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Estimates of the parameters of the growth regression in second-differences and in second-

differences with multiplicative country-specific effects are presented in columns (6) and (7) of 

Table 2. Figure 4 presents a Barro-type graph corresponding to the second-differenced results. 

 

Note that there is some evidence that the specification in terms of labor-augmenting 

technological change employed in the basic MRW specification is itself misplaced. Boskin 

and Lau (2000) find, for the G7 countries, that "technical progress is simultaneously purely 

tangible capital and human capital augmenting, that is, generalized Solow-neutral…. 

Technical progress has been capital, not labor, saving."  On the other hand, this should not 

present particular problems in the context of empirical implementations of the augmented 

Solow model since different forms of technological progress cannot be identified.19  

 

It is also worth noting that other sources of unobserved heterogeneity can readily be found in 

the augmented Solow model.  The most obvious stems from the linearization around the 

steady-state used to move from equation (3) (the steady-state level of GDP per capita) to 

equation (4) (the basic growth regression).  This is because, while it is customary to write the 

annual rate of convergence towards the steady as a constant ( )(1 )n gλ δ α ϕ= + + − − , one 

should really be writing ( )(1 )it itn gλ δ α ϕ= + + − − .  The speed of convergence should 

therefore vary over time.  It should also vary across countries.  

 

The first problem is considered implicitly by Hamilton and Monteagudo (1998), who allow 

for coefficients that vary over the two time periods of their estimations.20  It is also dealt with 

partially by Rappaport (1999), who explicitly considers variations over time in the speed of 

convergence, although his empirical specification is chosen (rightly, in his case) for its 

tractability rather than its faithfulness to the theoretical construct of the Solow model.  The 

second problem (country-specific rates of convergence) is implicitly tackled in Durlauf, 

Kourtellos and Minkin (2001) in that their non-parametric approach allows all coefficients to 

                                                 
19 In the basic augmented Solow specification, if we change the production function so that it is specified in 
terms of Solow-neutral technological change, 1( )Y A K H Lit it it it it

ϕ α ϕα − −= , with all other assumptions remaining the 

same, the country-specific term in the growth regression becomes [(1 )/(1 )]ln 0Ai iϕ α µ+ − + .  The within procedure 

or first-differencing will therefore eliminate this source of bias.  The same discussion goes for country-specific 
rates of technological change in the second-differencing procedure.  Note, however, that the magnitude of the 
bias stemming from the failure to account for country-specific effects will be changed by dint of the fact that the 
country-specific term is now multiplied by (1 )/(1 )ϕ α+ − . 
20 Hamilton and Monteagudo (1998), equation 9, p. 498 in theoretical terms, equation 14, p. 500 for the 
empirical results. 



CERDI, Etudes et Documents, E 2002.27 

 15

vary over countries, as a function of the initial level of GDP per capita.  However, as they do 

not seek to impose the restrictions implied by the Cobb-Douglas functional form, they do not 

furnish one with estimates of country-specific heterogeneity in the rate of convergence.  It is 

interesting to note, in terms of the human capital puzzle, that their estimate of 2γ  is positive 

for values of log GDP per capita lying roughly between 6.3 ($544) and 7.5 ($1,808), and is 

negative otherwise.21 

 

Simple covariance transformations  
and the coefficient associated with human capital: lessons learned 

 

The upshot of these three simple covariance transformations, and the likely direction of bias 

induced by the failure to control for unobserved country-specific heterogeneity in pooling 

regressions or cross-sectional studies, is that there is probably significant positive bias 

introduced by failure to control for differences in 0iA  and ig . The fact that the coefficient 

associated with human capital goes from being positive to being negative (as well as the fact 

that the point estimate of α  is significantly reduced –similar expressions for the bias in the 

coefficient associated with physical capital hold) is evidence enough of that.  However, given 

that the estimates of ϕ  are either negative and statistically significant, or statistically 

indistinguishable from zero, there must be other sources of bias, not controlled for by the 

within, first-differencing, or second-differencing procedures, which bias estimates of ϕ  

downwards.  Moreover, these potential sources of bias may be exacerbated by the procedures 

in question.  The natural candidate is of course measurement error in the human capital 

variable. 

 

4.  MEASUREMENT ERROR 

 

As with most authors, we use the measure of the stock of human capital (average number of 

years of schooling in a given population) constructed by Barro and Lee (1993, 1996). This 

variable was generated partly by using census information on school attainment. 

Unfortunately, available census data only give information for a subset corresponding to 40 

                                                 
21 Durlauf, Kourtellos and Minkin (2001), Figure 1, p. 934.  An additional source of bias in the standard tests of 
the augmented Solow model involves the imposed functional form. Duffy and Papageorgiou (2000) show that a 
CES functional form is preferred over the usual Cobb-Douglas specification, although they use a human capital 
adjusted measure of the labor input (i.e. education does not enter as a separate input or, more precisely, its 
coefficient is restricted to being the same as that associated with labor) and do not consider the augmented Solow 
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percent of time periods. Barro and Lee were therefore obliged to infer missing data from 

enrollment ratios (as well as from adult illiteracy rates which allows one to construct a good 

proxy of the no-schooling category). As noted by Krueger and Lindahl (2001), and many 

other authors, “errors in measurement are inevitable because the enrollment ratios are of 

doubtful quality in many countries...errors cumulate over time, the errors will be positively 

correlated over time.”22  For the time being, the serial correlation aspect of the Barro-Lee 

human capital variable, as well as the impact of any serial correlation that there may be in the 

associated measurement error will be ignored: our focus, in this section, will be on the 

classical measurement error problem.23 

 

Assume that one observes an error-ridden measure of human capital ith′  given by the true 

value of human capital ith  plus an error term : 

 

ASSUMPTION 4 (classical measurement error):ln lnit it ith h u′ = + , where itu  is distributed i.i.d. 

with mean zero and variance 2
uσ .   

 
ASSUMPTION 4 (classical measurement error) implies that the bias in the coefficient associated 

with human capital is given by 

(15) 2 2 2 2
2 2 2ˆplim cov[ , ] ( 1) ( ) ,

h h

h
w it it e u e ue T Tγ γ ϑ σ γ σ σ σ = + − − + % %

%
 

in the case of the within estimator, and by  

(16) ( )1 2 2 2 2
2 2 0 1 2ˆplim cov ( ) , 2 ( )

h h

h
d i it it e u e ug n eγ γ γ τ γ δ σ γ σ σ σ

∆ ∆

− ∆   = + − ∆ + − +    

in the case of the first-difference estimator (there is simply an extra term in each equation 

with respect to the expressions given in equations (11) and (13)).  In the case of second-

differences with multiplicative country-specific effects, the bias should be equal to  

(17) 
2

2 2 2
22 2 2ˆplim 4 ( )

h
d u e uγ γ γ σ σ σ

∆
= − + , 

where 
2

2
2 2

22ˆvar[ ] var[ ln ]h
it it it dh

e e h X ω∆
=

∆
= ∆ − ∆ . These three expressions are standard 

examples of attenuation bias stemming from an errors in variables problem.  Computing the 

                                                                                                                                                         
model per se since their focus is on an aggregate production function. 
22 Nehru, Swanson and Dubey (1995) provide an alternative measure of the human capital stock that is 
sometimes used in empirical studies of the augmented Solow model (see, e.g. Temple, 1999a). 
23 Temple (1999b) considers the robustness of the MRW cross-sectional results to classical measurement error, 
using the Klepper and Leamer (1984) reverse regression technique as well as classical method of moments 
estimators (Carroll, Ruppert and Stefanski, 1995).  He does not, however, consider the robustness of the panel 
data literature.  He finds that estimates of ϕ  lie between 0.15 and 0.38 (p. 371). 
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attenuation bias due to measurement error is much more complicated in the case where 

several variables are affected.  Nelson (1995) shows that the vector of OLS parameters is also 

asymptotically biased towards zero.  While this does explain why the coefficient associated 

with human capital might be biased downwards, it implies that, far from being overestimated, 

the coefficient associated with physical capital may be underestimated (the opposite of what 

is usually believed). 

 

Note that it may be the case that the two sources of bias (upward from the failure to control 

for unobserved country-specific heterogeneity, downward for measurement error) cancel each 

other out in the pooling results.  A similar argument could be made for the remaining 

unobserved heterogeneity stemming from ig  and measurement error on human capital in the 

within and first-difference estimations; the fact that the coefficient associated with human 

capital is negative would suggest that the downward bias from measurement error 

overwhelms the upward bias from ig  in these estimations.  Simply controlling for unobserved 

heterogeneity stemming from uncontrolled for differences in 0iA  and iµ  by the within 

procedure or first-differencing leaves the negative measurement error bias intact (moreover, it 

worsens it with respect to the corresponding expression for the pooling estimator in that the 

denominator falls, since 2 2
h he eσ σ

∆
<  —more on this fall in variance in section 5).  This might 

be conjectured to be a reason why the pooling results yield a reasonable, that is positive, 

estimate of ϕ  whereas correcting for unobserved heterogeneity in 0iA  and iµ  yields a 

negative ϕ . 

 

Within versus first-differences: 
estimating the magnitude of the bias due to measurement error 

 

Can anything be said concerning the magnitude of the bias in the estimates of 2γ  stemming 

from classical measurement error using the simple covariance transformations that have been 

the subject of the paper up until now?  As is well-known (Griliches and Hausman, 1986), 

different covariance transformations that control for the country-specific fixed effect can be 

combined in order to obtain consistent estimators for 2γ  and 2
uσ .  In particular, when one 

combines the first-difference and within estimators, one obtains:24 

                                                 
24 Hsiao, 1986, p. 65, equations (3.9.8) and (3.9.9); similarly, there are / 2 1 3T − =  other estimators, using other 
“long” differences, that allow one to deduce the magnitude of the bias. 
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(18) 

1

2 2
2 2 2 2 2

ˆ ˆ2 ( 1) 2 ( 1)ˆ
h hh h

w d

e e e e

T T
T T

γ γ
γ

σ σ σ σ
∆ ∆

−
   − −

= − −   
      % %

, 
2

2 2 2

2

ˆ ˆ
ˆ

ˆ 2
hed

u

σγ γ
σ

γ
∆ −

=  
 

. 

Computing the empirical counterparts to equation (18) on the basis of the results presented in 

columns 2 and 3 of Table 2 yields 2γ̂ = -0.2247 and 2ˆuσ =  0.006.  Combining the two 

covariance transformations therefore still leads us to a negative point estimate for 2γ̂ , which 

runs counter to common sense.  Part of the answer to this additional puzzle must surely lie in 

the relative magnitudes of the within and first-difference coefficients: it is usually expected 

that the bias is greater in the within than in the first-difference results, although here (if the 

true coefficient is positive) the opposite obtains.  This means that one or more of the 

maintained assumptions needed to implement the Griliches and Hausman approach must be 

violated. The problem is that it is impossible to say at this stage which one it is. 

 

The issue of the potential for sign-reversal induced by the two covariance transformations 

brings this question into sharper focus.  If one ignores the bias stemming from unobserved 

country-specific heterogeneity in the within results, classical measurement error per se cannot 

explain a reversal of the sign of the coefficient since, from equation (15), one can deduce that 

2ˆsign[plim ]wγ 2 2 2 2
2sign[ ( ) / ( )]

h he u e uT Tγ σ σ σ σ= + +
% % 2sign[ ]γ= . In the case of the first-difference 

estimator, on the other hand (and again ignoring the bias stemming from failure to account for 

country-specific ig ), the formula given in equation (16) implies that it suffices that 2 2
he uσ σ

∆
<  

for sign reversal to obtain.  It follows that, while classical measurement error can explain a 

statistically insignificant coefficient associated with human capital in the within results, it 

cannot explain a statistically significant negative coefficient, if one accepts the basic 

hypothesis that the true coefficient is indeed positive.  On the other hand, classical 

measurement error can account for the sign reversal that appears in the first-difference results, 

since the first-difference transformation will result (usually) in a large reduction in the 

variance of the human capital variable.  This last issue will be explored at much greater length 

in section 5. 

 

A further indication of the presence of measurement error: 
 the impact of correcting for serial correlation in the first-differenced results 

 

As was first noted by Grether and Maddala (1973), and more recently by Dagenais (1994), the 

combination of serially correlated errors in the equation’s disturbance term ( itε  in equation 



CERDI, Etudes et Documents, E 2002.27 

 19

(5)) and measurement error in one of the variables (human capital) can lead to extremely 

puzzling results when corrections for serial correlation are carried out.  Assume that the 

disturbance term in the growth regression follows a first-order autoregressive process: 

1it it itεε ρ ε ξ−= + , where itξ  is white noise.   

 

If human capital were the only variable in the regression, and if it and the measurement error 

are not serially correlated (ASSUMPTION 4, classical measurement error), the bias in 2γ̂  

induced when one corrects for serial correlation in the presence of measurement error 

(ignoring unobserved country-specific heterogeneity) is exactly the same as given above (for 

example, equation (17)).  On the other hand, if one assumes that human capital is serially 

correlated, with 

(19) 1it h it ith hρ ζ−= + , 

where itζ  is white noise, the expression for bias becomes:25 

(20) 
2 2

2
2 2 2 2 2

(1 2 )ˆplim
(1 2 ) (1 )

h h

h h u

ε ε

ε ε ε

γ σ ρ ρ ρ
γ

σ ρ ρ ρ σ ρ

∗ ∗

∗ ∗ ∗

+ −
=

+ − + +
,  

where 
2 2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2

2

( ) ( )
( )[ ( ) ]

h u u h h

u h h u u h

ε ε
ε

ε

ρ σ σ σ γ σ ρ σ
ρ

σ σ σ σ σ γ σ σ
∗ + +

=
+ + +

. 

It should be apparent from equation (20) that bias which induces sign reversal is a possibility, 

if one corrects for serial correlation (it suffices for the numerator to be negative and the 

denominator to be positive, which is entirely possible).  Moreover, Dagenais shows that the 

bias induced by correcting for serial correlation is increasing in the ratio of the variance 2
uσ  of 

the measurement error to the variance 2
hσ  of the true variable. When one re-estimates the 

pooling regression (column (1) in Table 2) while correcting for first-order serial correlation, 

the parameter estimates change very little.26  In light of the previous comments, this may be 

taken as indication that the variance of the measurement error is relatively small with respect 

to the variance of the education variable in levels.   

 

On the other hand, when one re-estimates the regression in first-differences while correcting 

for first-order serial correlation (in the first-differenced residuals), the change in the point 

                                                 
25 See Dagenais (1994), equations (10)-(12), p. 155, for the general case in which the measurement error is itself 
serially correlated. 
26 Not presented but available upon request. 
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estimates is impressive.27  In particular, the coefficient associated with human capital more 

than doubles (in absolute value), and becomes statistically significant at the usual levels of 

confidence.  Results are presented in column (4) of Table 2.  What can be inferred from this 

last finding ?  Assume that the disturbance term of the growth regression in first-differences 

follows a first-order autoregressive process: 1it it itεε ρ ε ξ∆ −∆ = ∆ + , where itξ  is white noise.  

Then an expression similar to equation (20) obtains where we substitute 2
hσ ∆ , 2

ερ ∗
∆ , hρ∆ , and  

2
uσ ∆  for their counterparts in levels.  The implication is that the variance of the measurement 

error is relatively large with respect to the variance of the education variable, when both are 

expressed in first differences.  Of course, while this result does indicate that measurement 

error is a potentially serious problem, we are still left with the puzzle of why sign-reversal 

obtains in the absence of correcting for serial correlation. 

 

Instrumental variables estimation 

 

The traditional cure for an errors in variables problem is, of course, estimation by 

instrumental variables. Concomitantly, we now return to the issue of the correlation, induced 

by first-differencing, between the first-differenced disturbance term and the first-differenced 

lagged dependent variable, that was mentioned earlier.  Again, the standard cure, first 

advocated by Anderson and Hsiao (1981), involves instrumental variables estimation. 

 

Recall, from equation (9), that first-differencing induces correlation between 

2ln ln lnit it ity y yτ τ τ− − −∆ = −  and it it it τε ε ε −∆ = − , since ln ity τ−  is correlated with it τε − .   We 

now make the following identifying assumption: 

 

ASSUMPTION 5 (no autocorrelation in the error term): [ ] 0,it isE s tε ε = < . 

 

In the absence of serial correlation in itε , and under ASSUMPTION 2 (all right-hand-side 

variables are predetermined) a valid instrument for ln ity τ−∆  is given by 2ln ity τ− .  This is 

because 2ln ity τ−  is orthogonal to it it it τε ε ε −∆ = −  (if itε  were autocorrelated, this would no 

                                                 
27 We present evidence below in the context of Arellano-Bond GMM estimation that the residuals of the growth 
regression in first-differences are indeed serially correlated of order one, although this serial correlation is 
negative. 
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longer be the case because one could write 2it it itτ ε τ τε ρ ε ξ− − −= + , with it τξ −  white noise and 

2ln ity τ−  would no longer be orthogonal to 2( )it it it it itε τ τ τε ρ ε ε ξ ξ− − −∆ = − + − ).  Moreover, 

given ASSUMPTION 5, 3ln ity τ− is also a valid instrument for ln ity τ−∆ , as is any ln , 2it ny nτ− ≥ .  

This is expressed by the following orthogonality condition: 

 

ASSUMPTION 6 (orthogonality condition on lagged dependent variable): 

[ln ]it n itE y τ θ−
′∆ 0, 2n= ≥ ,where itθ∆ t itη ε= ∆ + ∆ 2

0ln lnit ity y τγ −= ∆ + ∆

[ ]1 ln ln( )Kit its n gγ δ− ∆ − ∆ + +  2 0ln ith gγ γ τ− ∆ − . 
 

In terms of the other explanatory variables, we pose the following additional orthogonality 

conditions, which simply formalize ASSUMPTION 2 (predeterminedness) in GMM 

terminology : 

 

ASSUMPTION 7 (orthogonality conditions on explanatory variables): [ln ]it n itE h τ θ−
′′ ∆  

[ln( ) ] [ln ] 0, 2it n it Kit n itE n g E s nτ τδ θ θ− −
′′= + + ∆ = ∆ = ≥ . 

 

Note that  using the human capital variable lagged two periods and more as instruments will 

be valid only when ASSUMPTION 4 and ASSUMPTION 5 both hold, that is when there is no 

autocorrelation in the disturbance term in the growth regression and well as no autocorrelation 

in the measurement error affecting human capital.  Autocorrelation in itε  renders the 

explanatory variables lagged two periods inadmissible as instruments for the same reasons as 

for 2ln ity τ− .  On the other hand, autocorrelation in the measurement error, which one may 

write as ln lnit it ith h u′ = + , where it u it itu u τρ υ−= + , with itυ  white noise, implies that 

1 1
2it u it u itu uτ τ τρ ρ υ− −

− − −= − .  Since ASSUMPTION 7, for the specific case of the human capital 

variable, may be written as 2 2[(ln ) ( )] 0it it t it itE h uτ τ τη ε ε− − −
′+ ∆ + − = , substitution implies that  

2

1 1
2[(ln ) ( )] 0

it

it u it u it t it it

h

E h u
τ

τ τ τ τρ ρ υ η ε ε
−

− −
− − − −

′

′+ − ∆ + − ≠1444442444443 , 

since itu τ−  is correlated with it τε − .  Autocorrelation in the measurement error therefore results 

in a violation of the orthogonality condition given by ASSUMPTION 7. 
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Current econometric technique combines the instruments defined by ASSUMPTIONS 6 and 7 in 

an optimal manner through the use of the generalized method of moments (GMM) estimator.  

The key to understanding the GMM approach, pioneered by Arellano-Bond (1991a, 1991b), is 

to note that the number of lags that may be used as instruments depends upon the time 

dimension of the panel.  In the case at hand, 8T = .  Formally speaking, we set up the problem 

as a set of 6 growth regressions in first-differences because: (i) the first time period is lost 

through first-differencing ( 1T − ) and (ii) two additional time periods are lost because the 

minimal set of instruments is constituted by the explanatory variables lagged two periods, 

although we retrieve the period lost through first-differencing in terms of instruments 

( 1 2 1 6T − − + = ).  These six equations are estimated as a system, imposing the restrictions 

that the coefficients are equal across equations.  In our notation, the system of equations is as 

follows, where we indicate the set of valid instruments for each equation in parentheses: 

 

[ ]

[ ]

2
0 0 1 2

2
4 0 0 5 1 4 4 2 4 4

7

ln ln ln ln( ) ln

(instruments ln ,ln , 2,...,7)

ln ln ln ln( ) ln

(instruments ln

it it Kit it it it

it n it n

it it Kit it it it

it

y g y s n g h

y x n

y g y s n g h

y

τ

τ τ

τ τ τ τ τ τ

τ

γ τ γ γ δ γ θ

γ τ γ γ δ γ θ

−

− −

− − − − − −

−

∆ = − ∆ + ∆ − ∆ + + + ∆ + ∆

= =

∆ = − ∆ + ∆ − ∆ + + + ∆ + ∆

=

M M

[ ]
7 6 6

2
5 0 0 6 1 5 5 2 5 5

7 7

,ln ,ln ,ln )

ln ln ln ln( ) ln

(instruments ln ,ln )

it it it

it it Kit it it it

it it

x y x

y g y s n g h

y x

τ τ τ

τ τ τ τ τ τ

τ τ

γ τ γ γ δ γ θ
− − −

− − − − − −

− −









∆ = − ∆ + ∆ − ∆ + + + ∆ + ∆


=
 

This means that for those observations where 5ln ity τ−∆  is regressed on 6ln ity τ−∆  and 5ln itx τ− , 

7ln ity τ−  and the matrix of explanatory variables 7ln itx τ−  are the admissible instruments, 

whereas for those observations where 4ln ity τ−∆  is regressed on 5ln ity τ−∆  and 4ln itx τ− , 

7ln ity τ− and 6ln ity τ−  are both admissible, as are 6ln itx τ−  and 7ln itx τ− , and so on as one moves 

forward in time.  

 

A well-known example of the application of this estimator to the augmented Solow model is 

the paper by Caselli, Esquivel and Lefort (1996), who find, estimating over the 1960-1985 

time period with 5τ =  and 5T = : (i) substantially higher rates of convergence than was 

previously found using conventional panel techniques ( ˆ 0.10λ ≈ ), (ii) an implied capital share 

that is much more in line with conventional wisdom than those obtained using simple cross-

sections ( ˆ 0.49α ≈ ) and, unfortunately, (iii) a negative and statistically significant coefficient 
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associated with the human capital variable ( ˆ 0.25ϕ ≈ − ).28  On the basis of this last finding, 

Caselli, Esquivel and Lefort (1996) reject the augmented Solow model outright. 

 

Caselli, Esquivel and Lefort (1996) are careful to test for first-order serial correlation in the 

disturbance term in the growth equation which, in the presence of measurement error in the 

human capital variable, is equal to 2 it ituγ ε+ .  The absence of first-order serial correlation in 

the disturbance term of the growth equation in levels is implied, in the growth equation 

expressed in first-differences, by : (i) the presence of negative first-order serial correlation 

and (ii) the absence of second-order serial correlation:29 they cannot reject the null hypothesis 

that ASSUMPTIONS 4 and 5 hold.  This last statement follows because the absence of serial 

correlation in the composite disturbance term 2 it ituγ ε+  implies its absence in both of its 

components.30 

 

As a further test for the presence of autocorrelation in the measurement error, Caselli, 

Esquivel and Lefort (1996) re-estimate their specification while dropping the most recent 

instruments.  They show that the results are not very different according to whether they use 

the restricted or unrestricted  matrix of instruments.31 

 

In the first column of Table 2, we present results corresponding to application of the Arellano-

Bond estimator to our data.  Our results are similar to those of Caselli, Esquivel and Lefort 

(1996), in that our estimate of ϕ  is negative and highly significant. Moreover, the situation is 

even worse in that the point estimate is twice that found by Caselli, Esquivel and Lefort.  As 

with their specification, the Sargan test of the overidentifying restrictions strongly rejects the 

specification, with a p-value coming in at the 3 percent level. Manifestly, the Arellano-Bond 

estimator does not provide one with a solution to the human capital puzzle. As we shall see 

                                                 
28 Caselli, Esquivel and Lefort, 1996, Table 3, p. 376. 
29 Arellano and Bond, 1991a, pp. 281-2. 
30 Note that some authors reject the use of lagged right-hand-side variables altogether as instruments, even in the 
absence of serial correlation concerns.  For example, Rappaport (2000) notes that “the potential for a reverse 
causal link from the current income level to any of the “stock” conditioning variables (i.e., right-hand-side 
variables constrained to a finite time derivative) ” should be of great concern in any instrumental variable 
procedure based on the Arellano-Bond approach.  As he puts it: “To the extent that an included right-hand-side 
stock variable is a normal good, its level will increase with income; education and public capital seem obvious 
examples.  The persistence of stock variables along with optimization by forward-looking agents rule out using 
lagged values as instruments” (Rappaport, 2000, p. 13).  
31 A further development on the methodology implemented by Caselli, Esquivel and Lefort (1996) is provided by 
Bond, Hoeffler and Temple (2001), who use the system GMM estimator proposed by Arellano and Bover (1995) 
and Blundell and Bond (1998).  This approach combines equations in levels with those in first-differences, 



CERDI, Etudes et Documents, E 2002.27 

 24

below, part of the problem lies in the low variability of the human capital variable once first-

differencing is performed, with an additional source of difficulty probably stemming from the 

weakness of the instruments used in the standard GMM procedure.  It is this “weak 

instrument” problem that the new estimator introduced in the next section is designed to 

overcome. 

 

5. LOW VARIABILITY IN THE HUMAN CAPITAL VARIABLE 

 

There are two additional standard reasons that could explain the lack of significance of the 

human capital variable (though not sign-reversal per se) once country-specific effects have 

been accounted for through a covariance transformation such as first-differencing.  The first 

involves multicollinearity induced by the covariance transformation. The second involves a 

reduction in the variance of the human capital variable following the covariance 

transformation.  This is because the least squares estimate of the variance of 2ˆ wγ  is given by 

2 2 2
2ˆvar[ ] / (1 )w h hRεγ σ σ= −% %% , where 2

hR%  is the R-squared of the auxiliary regression of human 

capital on the other explanatory variables and 2
hσ %  is the variance of the human capital variable 

after the covariance transformation. 

 

The term 2 1(1 )hR −− % , which is known as the variance inflation factor (VIF), is a measure of the 

collinearity that exists between human capital and the other included regressors.32  If the 

degree of collinearity is high, 2ˆvar[ ]wγ  will be large, ceteris paribus.  Similarly, if the 

covariance transformation results in a dramatic fall in 2
hσ %  with respect to 2

hσ  (its counterpart 

in levels), then again, 2ˆvar[ ]wγ  will be large when compared with 2ˆvar[ ]OLSγ .33  If we 

consider the pooling and the within results, the VIFs are almost identical in that the 2R  of the 

auxiliary regressions come in at 0.6676 for the pooling regression and 0.6675 for the within 

regression.  It is therefore not an increase in collinearity stemming from the within 

transformation that is driving the human capital puzzle.   

 

                                                                                                                                                         
where the variables in the equations in levels are instrumented using twice lagged first-differenced variables. 
32 We include the VIF for the human capital variable for all estimations presented in Table 2, as well as the 
variance of the residuals of the auxiliary regression of human capital on the other explanatory variables. 
33 When we speak of a reduction in 

2
hσ % , we mean of course, a reduction with respect to 2

εσ % . 
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On the other hand, the within transformation does result in a substantial reduction in the 

variance of the human capital variable, which goes from 2
hσ = 0.6935 in levels to 2

hσ =% 0.1321 

after the within transformation.  Removing country-specific means therefore does result in a 

substantial loss in the variance that could be the cause of insignificant coefficients associated 

with the human capital variable.  The situation is even worse when one carries out first-

differencing, with 2
hσ ∆ = 0.0230.  This dramatic fall in variance is illustrated in Figure 5, 

where we plot different kernel density estimates of the human capital variable following 

various transformations (all variables have had their unconditional mean subtracted, which 

explains why all the kernels are centered on zero): it is obvious that the within and first-

difference transformations correspond to substantial mean-preserving decreases in the 

"spread" (in the sense of Rothschild and Stiglitz) of the distribution of ln ith , with respect to 

the situation in levels (graphically, the estimated distributions become much more 

concentrated around zero).  As one would expect from the respective variances reported 

above, this decrease in the spread is much more noticeable for the first-difference 

transformation than for the within transformation. 

 

In order to counter this problem, Mairesse (1990, p. 92, 1993, p. 435) suggests carrying out a 

"between" estimation after performing the first-difference transformation.  The first step 

eliminates the country-specific effect, while the second should ensure that variables expressed 

in first-differences recover sufficient variance for their effect to be identifiable.  In terms of 

the problem at hand, this approach will be worthwhile only if the second transformation 

allows one to recoup a sufficient amount of variance: this is not the case, since the variance of 

the education variable after the second transformation falls once again, to 2
b hσ ∆ = 0.0060.  

Results corresponding to the between regression on first-differences are presented in column 

5 of Table 2.  Once again, the procedure in question does not solve the human capital puzzle. 

 

The growth process of human capital 

 

The preceding findings in terms of the variances associated with various covariance 

transformations of the human capital variable naturally leads one to investigate its statistical 

properties more closely. Recall that the within transformation purges the human capital 

variable of its country-specific mean over the period.  All that remains are within-country 

changes in human capital, and if that rate of growth is roughly constant (the variable is in 
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logs), the within transformation will have removed inter-country differences due to 

differences in the initial level of education, leaving only relatively small differences in the 

between-period growth rate of human capital.  The same is true of the first-difference 

transformation.  In order to illustrate this point formally, consider the following exponential 

growth process for human capital: 0 exp{ }it i ih h a t=  which implies that  

(21) 0ln lnit i ih h a t= + , 

where 0ih  is the (country-specific) initial level of human capital, and ia  is its (country-

specific) growth rate.  If we consider the first-difference transformation, equation (9) may 

then be re-expressed as : 

(22) [ ]2
0 1 0 2ln ln ln ln( ) .it it Kit it i t ity y s n g g aτγ γ δ γ τ γ τ η ε−∆ = − ∆ + ∆ − ∆ + + + + + ∆ + ∆  

What is clear in equation (22) is that the entire effect of human capital in the regression will 

be identified through the variations in ia .34  How great can one expect the fall in variance of 

the human capital variable to be when one moves from estimation in levels to estimation in 

first-differences, when human capital follows the process defined by (21)? Let 2var[ ] ,i aa σ=  

and 
0

2
0var[ln ]i hh σ= .  Then it can be shown that the variance of the logarithm of human 

capital in a pooling regression over T  periods is given by: 

0

12 2 2 2 2
1

( 1)
t

n T
h h a n

T nσ σ τ σ
= −

=
= − + ∑ .35 

Now consider a regression in first-differences.  The variance of the first-difference of the 

logarithm of human capital, where the equation is estimated over 1T −  periods, is given by: 
2 2 2( 1)

th aTσ τ σ∆ = − . 

The ratio of the variances of log human capital in levels and log human capital in first-

differences is therefore given by: 

(23) 0

2 2
2 2

2 2 2 1

1
1

1
t

t

n Th h

n
h a

n T
T

σ σ

σ τ σ
= −

=
∆

= + + −
− ∑ .36 

                                                 
34 Note that, if this were indeed the true process generating human capital, the effect of the latter would not be 
identifiable at all in the equation estimated in second-differences ? this is indeed what happens, in the sense that 
the standard error associated with human capital becomes extremely large when one moves to second-
differences; see the results presented in Table 2, column 6. 
35 See APPENDIX 1 for the derivation. 
36 It is interesting to note that this expression provides part of the explanation for why the coefficients (and 
especially their standard errors) vary as the time frame (2 twenty-year periods, 4 ten-year periods, etc.) over 
which growth regressions in first differences are estimated changes. 
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Here 5τ =  and 8T =  which implies that 
0

2 2 2 2/ 20 ( /25 )
t th h h aσ σ σ σ∆ = + .  Thus, if human capital 

follows the process given by (21), one expects the variance that is performing the function of 

identification to fall by a factor of at least 20.  This is indeed what happens when one 

performs the first-difference transformation: the resulting ratio of variances is approximately 

equal to 30 (here 
0

2
1960var[ln ]i hh σ= = 1.013). 

 

How good an approximation of the behavior of the human capital variable is the process 

described by equation (21)?  In order to assess its empirical validity, we simply performed the 

regression suggested by (21), thereby estimating country-specific, time-invariant growth rates 

of human capital.  For the regression in question 2R = 0.8519, and the resulting estimate of 
2
aσ  is equal to 0.00029 (the F-test associated with the null-hypothesis that the estimated ˆia  

are equal across countries, and thus that 2 0aσ = , is rejected with a p-value below 0.001).  If 

we constrain the growth rates to be equal ( i ja a a= =  and thus 2 0aσ = ), the mean rate of 

growth of human capital is equal to 0.024 per five-year period. The results are represented 

graphically in Figure 6, where we plot the actual value of ln ith  against the value predicted by 

(21):  as should be obvious from the Figure, the fit is extremely good.   

 

Note that the preceding argument is a powerful explanation for the imprecision of the 

estimates of the coefficient associated with human capital, after the first-difference 

transformation.  It does not, however, explain a negative and statistically significant 

coefficient.  In order to do so, measurement error must again be invoked. If the measurement 

error takes a form such that its magnitude is relatively important, relative to that of the 

transformed human capital variable, then (i) the process generating the human capital 

variable, (ii) measurement error and (iii) the first-difference transformation which results in a 

dramatic fall in the variance of the human capital variable may explain the negative 

coefficient associated with human capital.   

 

Suppose that there is measurement error in the country-specific growth rate of human capital.  

We pose this as follows: 

0ln ln ( ) ,it i i ith h a tθ′ = + +  where itθ  is i.i.d. 2(0, )N θσ: . 

Under this assumption, the equation in first-differences is given by 
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(24) 
[ ]2

0 1

0 2 2

ln ln ln ln( )

.
it it Kit it

i it t it

y y s n g

g a
τγ γ δ

γ τ γ τ γ τθ η ε
−∆ = − ∆ + ∆ − ∆ + +

+ + + + ∆ + ∆
 

Ignoring problems stemming from uncontrolled-for heterogeneity in the growth rate of labor 

productivity ( ig ), the bias resulting from the measurement error on the growth rate of human 

capital is then given by: 

2 2 2
2 2 2ˆplim 2 ( )

hd eθ θγ γ γ τσ σ σ
∆

 = − +  , 

where (as in equation (13)), 2
heσ

∆
 is the variance of the residuals from the auxiliary regression 

of ln ith∆ on the other explanatory variables, expressed in first-differences).  The key issue is 

that 2
θσ  may be of the same order of magnitude as 2

thσ ∆  (or more precisely, 2
heσ

∆
): it will 

nevertheless be extremely small (by a factor of 30, as shown in equation (23)) with respect to 
2
thσ .  The point being made here is that the instrumental variables method that one is looking 

for must simultaneously deal with the measurement error problem (and, therefore, 

orthogonalize, lnh′∆  with respect to the error term), and inject enough "between" variance 

(i.e., cross-country variance) for the impact of human capital to be precisely identified after 

the first-difference transformation, which deals with ASSUMPTION 3 (correlated effects) but 

leaves very little variance in the transformed variable.  Given that external instruments are 

unavailable, the next logical step is to consider instrumental variable estimators that use 

covariance transformations themselves as instruments, first proposed by Hausman and Taylor 

(1981), and developed further by Amemiya and McCurdy (1986), Breusch, Mizon and 

Schmidt (1989) and Cornwell, Schmidt and Wyhowski (1992), although this approach will 

have to be modified in order to take the orthogonality conditions given by ASSUMPTIONS 6 

and 7 into account. 

 

Hausman-Taylor estimation 

 

To the best of our knowledge, no use of the Hausman-Taylor (1981) estimator has been made 

in the empirical growth literature, and this is surprising.37  Although Judson (1995) does 

mention their paper, she confines her estimations to the within, variance components (random 

                                                 
37 In related work, we (2002) have found that the impact on economic growth of many time-invariant variables 
identified in the empirical literature using pooling regressions is dramatically altered once country-specific 
effects are controlled-for using the Hausman-Taylor approach.  The basic point being made is that it is 
empirically dubious to present results concerning time-invariant variables when an appropriate and well-
established (since 1981) empirical technique does exists which simultaneously controls for unobserved 
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effects), and GLS estimators. Hausman and Taylor (1981) provide consistent and efficient 

estimators for the coefficients associated with time-invariant variables when these variables 

are correlated with unobserved heterogeneity, when we have no external exogenous 

instruments, and when ASSUMPTION 1 (exogeneity) is satisfied. The principle of this method 

consists in using the transformations in terms of deviations with respect to their country-

specific means of the exogenous explanatory variables and their country-specific means as 

instruments.  

 

Consider a growth equation in which 1 2[ ; ]it itX X X=  are the time-varying explanatory 

variables and 1 2[ ; ]it itZ Z Z=  are the time-invariant explanatory variables. 1itX  and 1itZ   are 

assumed to be doubly exogenous, in that they are uncorrelated with the disturbance term itε  

and the unobserved country-specific effects 0 0ln i iAγ µ+  (i.e., ASSUMPTION 1 (exogeneity) 

holds but there are no correlated effects). We express the lack of correlation between 1itX  and 

1itZ  with 0 0ln i iAγ µ+
 
by posing: 

 

ASSUMPTION 8 (orthogonality of 1itX  and 1itZ  with the individual effect): 

1 0 0[ ( ln )] 0i i iE Z Aγ µ′ + =  and 1 0 0[ ( ln )] 0it i iE X Aγ µ′ + = . 
 

The 2itX and 2itZ variables, on the other hand, are singly exogenous in that they are assumed 

by Hausman and Taylor to be correlated with 0 0ln i iAγ µ+  but uncorrelated with 

itε (ASSUMPTIONS 1 and 3 hold for them).  The set of instruments proposed by Hausman-

Taylor (1981) is : 

(25) 1 1[ ; ; ]HT v it v it iA Q X P X Z= , 

where vP  and vQ  are the idempotent matrices that perform the between and within 

transformations, respectively; under ASSUMPTION 1 (exogeneity) v itQ X  is a legitimate  set of 

instruments since [( ) ] 0v it itE Q X ε′ =  (alternatively, one may specify the set of instruments as 

1 1[ ; ; ]HT v it v it v iA Q X P X P Z= ).  These results have been extended by Amemiya and McCurdy 

(1986) and Breusch, Mizon and Schmidt (1989) (henceforth, AM and BMS) who suggest the 

wider set of instruments given by :  

                                                                                                                                                         
heterogeneity and allows one to identify the impact of time invariant covariates. 
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(26) * * *
1 2 1[ ; ; ], [ ; ; ; ],AM v it it v i BMS v it it v it v iA Q X X P Z A Q X X Q X P Z= =  

where *
itX and *

2itX  are defined as in Amemiya-McCurdy (1986). The Amemiya-McCurdy 

instrument set assumes that the doubly exogenous variables are uncorrelated with the country-

specific effect, at each t . The Breusch-Mizon-Schmidt instrument set assumes that 

2 0 0[ ( ln )]it i iE X Aγ µ′ +  is the same, t∀ .  Notice, that the HT, AM and BMS instrument sets 

are all admissible only if ASSUMPTION 1 (exogeneity) holds.  This is because that portion of 

the country-specific means given by it itx x τ−+  will be correlated with itε  under ASSUMPTIONS 

6 and 7.  This suggests using the remaining portion (
2

0

j t
ijj

x
τ= −

=∑ ) as instruments that will 

satisfy the predeterminedness assumptions that one is willing to impose in the context of 

GMM estimation. 

 

A new instrumental variables estimator 

 

Assume that the right-hand-side variables satisfy ASSUMPTION 2  (predeterminedness), as well 

as the corresponding orthogonality conditions given by ASSUMPTIONS 6 and 7.38  Consider the 

following projection matrix T jP − , which transforms time-varying variables into their 

individual  conditional means from time 1 to time t j− ; that is : 

(27) 1
( )1

( )
t j

T j it i i t jP X t j X X
τ

ττ

= −−
− • −=

′ = − ≡∑ .   

For example, if 4T =  and we want to consider individual means of a variable, conditional on 

the mean being computed from time 1t −  backwards (i.e., 1j = ), one obtains for 4iX : 

 ( )3 3 2 1 /3i i i iX X X X• = + + . 

One can think of T jP −  as being the product of two matrices, T j A T jP P S− −= , where AP  is a 

conventional idempotent matrix (of dimension [( ) ] [( ) ]T j N T j N− × − ) that transforms a 

( ) 1T j N− ×  vector of variables into its individual means, and T jS −  is a [( ) ]T j N TN− ×  

matrix that deletes the most recent j  observations from each individual.  If we premultiply a 

time-invariant variable by T jP − , we simply obtain a ( ) 1T j N− ×  vector of the T j−  earliest 

elements of the variable itself, where the most recent j  observations for each individual will 

                                                 
38 Note that we have no time-invariant variables (be they correlated or not with the country-specific effect) in our 
growth regressions, although our proposed instrument set can readily be expanded, as with the HT, AM and 
BMS instrument sets, to accommodate them. 
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have been deleted.  In what follows, most of the discussion will be phrased in terms of the 

case where 1j = . 

 

The reason for doing this transformation, rather than the usual Hausman-Taylor (henceforth 

HT) one is that, despite the absence of exogeneity, and thanks to ASSUMPTIONS 5, 6, 7 and 

8: 1 ( 1)[ ] 0i t iE X λ• −
′ =  (trivially, by ASSUMPTION 8), and 1 ( 1)[ ] 0i t itE X ε• −

′ =  (by ASSUMPTIONS 5, 6 

and 7).  The combination of these two conditions implies that we can use 1 ( 1)i tX • −  as 

instruments for 2iZ , and the same necessary condition for identification as in HT holds. If 

there are no time-invariant variables in the regression, as is the case in the context of the 

augmented Solow growth regressions considered here, 1 ( 1)i tX • −  is not needed as an instrument 

for the non-existent 2iZ .  The second result is essential when time-invariant variables are 

present in that it ensures that 1 ( 1)i tX • −  is a valid instrument since it will be orthogonal to the 

composite error term i itλ ε+ .  On the other hand, a useful property of the two results is that 

they imply that 1 ( 1)i tX • −  will be a valid instrument for 2itX . If we had some 3itX  variables 

which we knew to be orthogonal to itε  ( 3[ ] 0, ,it isE X t sε′ = ∀ ), then we could add the 

conventional HT instruments given by 3iX •  to 1 ( 1)i tX • −  so as to obtain a broader instrument set 

for 2iZ . 

 

Now consider our twist on the "within" transformation : 

(28) 1( 1) 1 ( 1)it t it i tX X X− − − • −≡ −% . 

One can think of this as premultiplying the variables by the "anihilator matrix" 

1 ( 1) 1 1( )T T N T TQ P S− − − −= −I , where ( 1)T N−I  is the identity matrix of dimension 

( 1) ( 1)T N T N− × − .  1TQ −  transforms a variable, after deleting the observation at time t  for 

each individual, into deviations of the variable lagged one period, with respect to its 

individual mean, measured from 1t −  backwards.  (Of course, if we premultiply a time-

invariant iZ  vector by 1TQ − , we simply get a 1T −  dimensional vector of zeroes.)  For 

example, for 4T = , one obtains, starting from 4iX : 

 [ ]3(3) 3 3 2 3 1 3i i i i i i iX X X X X X X• • •′ = − − −% . 
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This second transformation of variables yields the following properties: 1 1( 1)[ ] 0it t iE X λ− −
′ =% , 

(trivially, by ASSUMPTION 8); 1 1( 1)[ ] 0it t itE X ε− −
′ =%  (by ASSUMPTIONS 5, 6 and 7); 

2 1( 1)[ ] 0it t iE X λ− −
′ =%  ( 2itX  has been purged of its component that is correlated with iλ ); 

2 1( 1)[ ] 0it t itE X ε− −
′ =%  (by ASSUMPTIONS 5, 6 and 7). 

 

The preceding discussion suggests the following instrument set as an alternative to HT, when 

exogeneity does not hold, but conditions by ASSUMPTIONS 5, 6, 7 and 8 do, in the context of 

an augmented Solow growth regression : 

(29) 1 1( 1) 2 1( 1) 1 ( 1)it t it t i tX X X− − − − • −  
% % . 

APPENDIX 2 provides additional developments geared towards expanding this instrument set, 

as well as some remarks concerning the future potential for extensive hypothesis testing. 

 

Results 

 

In column 2 of Table 3, we present results corresponding to application of the conventional 

Hausman-Taylor instrument set. More explicitly, our assumptions are that (i) all variables, 

except for the 7 time period dummies, are correlated with the country-specific effects, (ii) the 

education variable is correlated with the time-varying component of the disturbance term 

because of a classical measurement error problem and (iii) the two other explanatory variables 

are not.  Formally, this means that the HT instrument set being used is given by  

(30) 1 1[ ln [ln ln( )] ]v it v Kit it v it v itQ y Q s n g Q X P Xτ δ− − + + ,  

where 1itX  is constituted by the time period dummies.  In essence, this is the conventional HT 

instrument set given in equation (25), modified for the absence of time-invariant covariates 

( 1iZ  vanishes), and where one of the elements of v itQ X  has been dropped as an instrument 

because it is believed to be correlated with the time-varying component of the error term 

because of a classical measurement error problem.39  

 

In comparison with the results presented in Table 2, as well as those corresponding to the 

Arellano-Bond estimator (column 1 of Table 3), the results are encouraging.  First, the point 

estimate of α  is equal to 0.509, which is extremely close to that which is obtained in the 

                                                 
39 The degrees of overidentification is therefore equal to 7 +1 (time dummies + constant) - 1 (dropped element of 
Q Xv it ) = 7. 
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within results (Table 2, column 2).  Second, and more importantly, the point estimate of ϕ  is 

equal to 0.490, and is statistically significant at the 6 percent level.  Interestingly, and in line 

with what one would expect if time-invariant, country-specific measurement error that is 

negatively correlated with the schooling variable (not the classical measurement error dealt 

with in part 4) were present, the point estimate of ϕ  is substantially greater than in the 

pooling results, by a factor of 3. The estimated rate of annual convergence (λ ) is in line 

(roughly 0.5 percent per year) with the results stemming from the pooling estimation, and is 

much smaller than that which obtains using the within estimator.  Unfortunately, the test of 

the overidentifying restrictions yields a p-value of 0.008 leading one, at any level of 

confidence, to reject.  It is probable that the assumption that lnv itQ y τ−  and 

[ln ln( )]v Kit itQ s n g δ− + +  are admissible HT instruments is untenable, because of a 

contemporaneous correlation with the time-varying portion of the disturbance term.40 

 

In column 3 of Table 3, we present results corresponding to a simple version of our new 

instrument set, in which instruments are limited to the deviations of the variables with respect 

to the conditional country-specific means only for the initial period (1960).  More explicitly, 

the instrument set being used is 

(31) 2 1( 1)[ ]it tX − −
% , 

since we assume that no 1itX  variables (those uncorrelated with the country-specific effects) 

obtain in the equation (therefore, 1 1( 1)it tX − −
%  and 1 ( 1)i tX • −  drop out from the instrument set given 

in equation (29)).  This specification is overidentified with 3 degrees of freedom,41  and yields 

a point estimate of α  equal to 0.65, roughly halfway between the pooling and within results, 

and larger, by 0.15, than the conventional HT results.  As with the conventional Hausman-

Taylor estimates, the point estimate of ϕ  is slightly below 0.50 (with an associated p-value of 

9 percent), while the convergence rate falls even further, to 0.33 percent per year.  

                                                 
40 When one relaxes this assumptions, and allows for only the time dummies in deviations and country-specific 
means to constitute the HT instruments, the overidentifying restrictions continue to be rejected.  This should not 
be surprizing, by dint of the fact that these variables have extremely weak explanatory power in the 
corresponding instrumenting equations. 
41 Given that deviations with respect to conditional means are used as instruments, we are left with only 5 five-
year periods for estimation purposes, since variables expressed as deviations with respect to conditional means 
must be lagged at least two periods, and conditional means must span at least two periods to be meaningful.  
This implies that there are 8 parameters to be estimated: 5 period-specific constants, and the three parameters 
presented in the Tables.  In the results presented in column 3 of Table 3, there are 11 instruments, constituted by 
10 deviations with respect to conditional means plus the constant.  This yields 3 degrees of freedom for the test 
of the overidentifying restrictions.  A similar computation yields the 11 degrees of freedom for the results 
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Unfortunately, in terms of the validity of our choice of instruments, the specification fails the 

test of the overidentifying restrictions: the p-value associated with the test is equal to 0.05 

which, at conventional levels of confidence, would lead one to reject. 

 

In column 4 we extend the instrument set to include deviations of variables over the last two 

time periods (1965 and 1960) with respect to their country-specific conditional means. The 

results are striking.  First, the point estimate for ϕ  comes in at 0.98, and is significant at the 1 

percent level of confidence.  This seems too large, but it cannot be denied that human capital 

is thereby restored to its position of prominence as an important determinant of economic 

growth.  The point estimate of α  falls back to the value found with the conventional HT 

estimator, and is equal to 0.50; the annual rate of convergence also moves back towards the 

conventional HT level, and is equal to 0.64 percent per year, surprizingly close to the number 

obtained using the pooling estimator.  Finally, and this provides us with some confidence in 

the relative robustness of our results, the instrument set is not rejected by the test of the 

overidentifying restrictions, with the p-value of the associated test statistic (with degrees of 

freedom equal to 11) being equal to 0.60:  this is the first instance presented in Table 3 where 

an instrumental variables-based estimator is not rejected by a test of the corresponding 

overidentifying restrictions.  It is also in sharp contrast to what happens when the Arellano-

Bond estimator was used. 

 

6. CONCLUDING REMARKS 

 

In this paper, we have attempted to explain why, once conventional panel estimation 

techniques such as the within procedure or first-differencing are performed, the coefficient 

associated with human capital, which is positive and statistically significant in cross-sectional 

or pooling regressions, becomes either statistically indistinguishable from zero or negative 

and statistically significant.  After reviewing the forms of bias that are likely to arise in the 

augmented Solow model, we showed that the crucial issue revolves around the lack of 

variability in the education variable once country-specific heterogeneity is accounted for, and 

how standard covariance transformations result in the measurement error that affects human 

capital becoming the dominant source of identifying variance.  We have proposed an 

estimator, based on the Hausman-Taylor (1981) approach, which allows one to identify the 

                                                                                                                                                         
presented in column 4, since here there are 18 deviations with respect to conditional means. 



CERDI, Etudes et Documents, E 2002.27 

 35

impact of time invariant variables while controlling for individual effects, which we combined 

with the orthogonality restrictions that appear to be reasonable in the context of cross-country 

panel data.  A first application of this new estimator revealed that it may allow one to solve 

the negative human capital coefficient puzzle, although further testing would be desirable. 

 

The contributions of this paper to the literature on economic growth are, we believe, two-fold.  

First, we have shown, sometimes (and unfortunanely) rather laboriously, that a clear 

understanding of the underlying data-generating process is essential for one to be able to 

choose the right empirical instrument.  The Barro-Lee human capital variable is an extremely 

useful creation which does, however, bring with it important problems, that have led to an 

econometric puzzle that has baffled growth-specialists in recent years.   

 

Second, from the methodological perspective, we have shown that the Hausman-Taylor 

approach can be fruitfully applied to the empirics of economic growth.  Concomitantly, we 

have shown that it is a viable alternative, when modified to take into account the milder 

identifying assumptions recently popularized by the GMM literature, to the Arellano-Bond 

approach which is sometimes, especially in parsimonious specifications such as the 

augmented Solow model, plagued by a problem of weak instruments.  Further investigations 

will involve exploring the broader instrument sets made possible by our approach, as well as 

developing a battery of hypothesis tests that will provide further checks on the validity of the 

identifying assumptions. 
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APPENDIX 1 

 
The variance of human capital in a pooling regression over T  periods when 0 exp{ }it i ih h a t=  
is given by : 
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In first-differences over 1T −  periods, the corresponding expression is obtained as : 
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APPENDIX 2 
 
 
One can expand the instrument set proposed in equation (29) by adding instruments of the form: 

1 ( ) 2 ( ) 1 ( )it j t k it j t k i t kX X X− − − − • −  
% % , 1, 1j k> > .   

This is easy to set up in a GMM framework with a separate equation for each time period (with cross-equation 
restrictions on the parameters). One can then test the ensuing overidentifying restrictions.  An important concern, 
however, is that high values of j  and k  will end up being akin to using successively lagged values of the 
variables themselves after first-differencing, as in Arellano and Bond (henceforth, AB).  As a result, we have 
preferred to keep things simple, and stick to (29).  
 
As a general econometric point, the issue here is not only to be able to identify the impact of time-invariant 
variables while controlling for individual effects, but also to be able to precisely identify the impact of particular 
time-varying variables, correlated with the individual effects, whose variance falls dramatically once first 
differencing is performed.  This suggest that the instrument set proposed in (29) may constitute a possible 
solution to the problem of weak instruments caused by first-differencing.  In some sense, the basic idea is that 
many time varying variables that are correlated with the individual effect become "almost time-invariant" after 
first-differencing (as with log human capital in a growth regression) and the only way of estimating the 
coefficients associated with such a variable while controlling for individual effects is to use a procedure based on 
Hausman and Taylor, modified to take the correlation between the time varying variable and the time varying 
component of the error term into account. 
 
As in the original HT paper, our instrument set suggests the following approach to testing. First, run the 
regression using the "consistent" instrument set proposed in (29).  Concomitantly, run the regression in first 
differences, using twice-lagged levels (as in Anderson and Hsiao, 1981, 1982, henceforth AH, although their 
focus is of course on a lagged dependent variable), to control for endogeneity.  It is then straightforward to 
construct a Hausman test of the overidentifying restrictions (whereas the AH estimates will be just-identified).  
Though not as clean as the original test proposed in HT which uses the "within" estimates (but which cannot be 
used because of the lack of exogeneity), this is the appropriate procedure.  Second, as with conventional 
consistent HT, carry out (a) a Sargan test of the overidentifying restrictions and, in the spirit of AB, (b) a test for 
first order serial correlation of the residuals in levels (to test the critical identifying condition given by 
ASSUMPTION 5).  One can check the consistency of the AH counterfactual by doing the usual test for the absence 
of second order serial correlation and the presence of first-order serial correlation in the first-differenced 
residuals, given in AB.  On the other hand, if AB were the counterfactual used to construct the Hausman test 
described above, one could perform the same tests for serial correlation in the first-differenced residuals, plus a 
Sargan test of the overidentifying restrictions of the AB estimator. 
 
If the results pass this first battery of tests, one can be reasonably confident that one can get consistent estimates 
of the variance components, and proceed to θ -differencing.  One can then construct the corresponding Hausman 
test of the efficient versus consistent estimates using the proposed instrument set, or using our efficient modified 
HT versus AH.  In the context of a dynamic panel data setup with a lagged dependent variable (as in the growth 
regressions considered here), one simply adds the lagged dependent variable transformed as in equation (28) to 
the instrument set.  Then the Hausman test proposed above using the AH estimator as the counterfactual really 
comes into its own.  
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Figure 1.  Annual growth rate of GDP per capita and human capital: Pooling ( 2OLSγ = 0.0062) 

Note: “Purged” growth rate of GDP per capita plotted on vertical axis obtained after purging it of the effects of initial GDP 
per capita, the investment ratio, population growth rate and time dummies; based on the parameter estimates presented in 
column 1 of Table 2. 

 
Figure 2.  Annual growth rate of GDP per capita and human capital: Within ( 2wγ = -0.0122) 

Note: based on the parameter estimates presented in column 2 of Table 2. 
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Figure 3.  Annual growth rate of GDP per capita and human capital: First-differences ( 2dγ = -0.0125) 

 
Note: based on the parameter estimates presented in column 3 of Table 2. 

 
 
Figure 4.  Annual growth rate of GDP per capita and human capital: Second-differences ( 22 dγ = x.xxxx) 

 
Note: based on the parameter estimates presented in column 6 of Table 2. 
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Figure 5.  The changing distribution of ln ith . Kernel density estimates of log education :  

Pooling, within, first-difference, second-difference and Hausman-Taylor transformations 
 

Note: the lower kernel density with no symbol corresponds to the standard Hausman-Taylor transformation. 
 
Figure 6.  The growth of human capital as a country-specific,  
exponential process: 0 exp{( ) }it i i ith h a tθ= + ; actual versus predicted value of  ln ith  

Lo
g 

sc
ho

ol

Predicted log school
-4 3

-4

3

 

 Pooling  Within
 First-differences  Second differences

-3 2
0

3



CERDI, Etudes et Documents, E 2002.27 

 46

 
 
Table 1.  Cross-Section versus Panel: A Summary of the Human Capital Puzzle 
 
 
Authors 

 
Type of 
estimation 

 
Sample 

 
Estimation 
method 

 
Additional 
explanatory 
variables 

 
Coeff.  
on 
human 
capital 

 
Education  
variable 

 
Implied 

α  
(s.e.) 
where 

available 

 
Implied 

ϕ  
(s.e.) 
where 

available 
MRW (1992) 
Table II 

Cross-section, 
1960-85 

 OLS  Pos. & 
signif. 

Sec. enrol. 
rate 

0.31 0.28 

Islam (1995) 
Table V, col. 1 

Cross-section, 
1960-85 

non-oil OLS  Pos. & 
signif. 

Barro-Lee 0.686 
(0.069) 

0.235 
(0.101) 

Islam (1995) 
Table V, col. 2 

Panel, 5 
periods,  
1960-85 

non-oil Pooling-OLS  Insignif. Barro-Lee 0.801 
(0.053) 

0.054 
(0.102) 

Benhabib & 
Spiegel (1994) 

Panel, 2 
periods,  
1960-1980 

 First 
differences 

 Insignif. Barro-Lee   

Islam (1995) 
Table V, col. 3 

 non-oil Chamberlain 
min. dist. 

 Neg. & 
signif.  

Barro-Lee 0.522 
(0.064) 

-0.199 
(0.109) 

Islam (1995) 
Table V, col. 3 

 Intermediate Chamberlain 
min. dist. 

 Insignif. Barro-Lee 0.494 
(0.059) 

-0.006 
(0.126) 

Islam (1995) 
Table V, col. 3 

 OECD Chamberlain 
min. dist. 

 Insignif. Barro-Lee 0.207 
(0.105) 

-0.045 
(0.145) 

Knowles & 
Owen (1995) 

        

Caselli, 
Esquivel & 
Lefort (1996), 
Table 3 

Panel, 5 
periods,  
1960-85 

 Arellano-
Bond GMM 

 Neg. & 
signif. 

Sec. enrol. 
rate 

0.491 
(0.114) 

-0.259 
(0.124) 

Hamilton & 
Monteagudo 
(1998), eq. (16) 

Panel, 2 
periods: 1960-
70 and 1975-
85 

Same as 
MRW 

First 
differences 

 Neg. & 
signif. 
 

% of work. 
age pop. in 
sec. sch. 

0.468 
(0.084) 

-0.121 
(0.079) 

Temple 
(1999b), Table 
1, col. 4 

Benhabib-
Spiegel Cross-
section, 
1960-85 

Different 
subsamples 

LTS-OLS 
(RWLS) 

Region. dum. Pos. and 
signif. 

Sec. enrol. 
rate 

 0.15 to 
0.38 

Bond, Hoeffler 
&Temple 
(2001), Table 2 

Panel, 5 
periods,  
1960-85 

Same as 
Caselli, 
Esquivel & 
Lefort  

Arellano-
Bover GMM 

 Insignif. Sec. enrol. 
rate 

  

Bräuninger & 
Pannenberg 
(2002), Table 2, 
col. 1 

Panel, 6 
periods: 5 
year intervals, 
1960-90 

13 OECD 
countries 

Within Unempl. Insignif. Barro-Lee 0.23  

Table 2, col. 2   Arellano-
Bond GMM 

Unempl. Insignif. Barro-Lee 0.48  

McDonald & 
Roberts (2002) 
Table 1, col. 1 

Panel, 6 
periods: 5 
year intervals, 
1960-90 

MRW with 
available 
human cap. 

Within Infant mort. 
or life expect. 

Insignif. Nehru  
et al 

0.40 0.00 

Table 1, col. 7  OECD Pooling  Pos. and 
signif. 

Nehru  
et al  

0.53 0.19 
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Table 2.  Restricted Estimation of the Augmented Solow Models: 1960-2000 
Eight five -year periods. Simple covariance transformations 
(p-values in parentheses below coefficients) 

 (1) (2) (3) (4) (5) (6) (7) 
Estimation method Pooling Within First diff. First diff. 

corrected for 
first order  
serial corr. 

Between 
on first 

diff. 

Second 
diff. 

Second 
diff. 

+ multiplic. 
country eff. 

α  0.8447 0.4974 0.2250 0.3042 0.5301 0.1075 0.1636 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
ϕ  0.1459 -0.1925 -0.0839 -0.2205 -0.0730 -0.0189 0.0380 
 (0.003) (0.001) (0.101) 0.001) (0.749) (0.612) (0.357) 

λ  0.0066 0.0327 0.1228 0.0891 0.0250 0.2442 0.3104 
 (0.000) (0.000) (0.000) (0.000) (0.019) (0.000) (0.000) 

0 : 1 0α ϕ+ − =H   0.0092 -0.6951 -0.8588 -0.9163 -0.5428 -0.9114 -0.7982 

             [p-value] 0.795 0.000 0.000 0.000 0.053 0.000 0.000 
2R  0.4769 0.2452 0.3453 0.3076 0.0845 0.5205 0.7080 

σ  0.0265 0.0219 0.0285 0.0269 0.0088 0.0410 0.0358 
 Variance of fixed effects  n.a. 0.0527 n.a. n.a. n.a. n.a. n.a. 
 First-order ρ  0.2350 -0.0452 -0.2442 n.a. n.a. -0.5329 -0.3843 
 (4.74) (0.316) (0.000)   (0.000) (0.000) 
Variance of human capital 0.6935 0.1321 0.0230 0. 0230 0.0063 0.0383 0.0383 
Skewness of human capital -1.231 -0.525 2.048 2.048 1.078 1.529 1.529 
Kurtosis of human capital 5.040 5.931 20.753 20.753 4.076 29.205 29.205 
VIF (collinearity diagnostic) 3.008 3.008 1.068 1.068 1.134 1.051 1.112 
Var. of res. from aux. reg. 0.486 0.041 0.021 0.021 0.0720 0.038 0.031 
No. of observations 737 737 635 535 100 535 535 

Note: α  is the coefficient associated with physical capital in the Cobb-Douglas production function; ϕ  is the coefficient 
associated with human capital; λ  is the annual rate of convergence. Time dummies included in all specifications. Correction 
for 1st-order serial correlation carried out using a simple Cochrane-Orcutt transformation (hence the reduction in the number 
of observations); VIF is the “variance inflation factor”; variance of residuals from auxiliary regression corresponds to that of 
the human capital variable on the other explanatory variables. 
 
Table 3. Restricted Estimation of the Augmented Solow Models: 1960-2000 
Eight five-year periods.  Arellano-Bond GMM, Hausman-Taylor, and AH HT-GMM estimators 
(p-values in parentheses below coefficients) 

 (1) (2) (3) (4) 
Estimation method Arellano- 

Bond GMM 
Conventional 

Hausman-Taylor 
AH Hausman-
Taylor-GMM 
(earliest dev.) 

AH Hausman-
Taylor-GMM 
(2 earliest dev.) 

α  0.5403 0.5099 0.6523 0.5027 
 (0.017) (0.000) (0.000) (0.000) 
ϕ  -0.4906 0.4909 0.4812 0.9817 
 (0.008) (0.065) (0.093) (0.011) 

λ  0.0308 0.0049 0.0033 0.0064 
 (0.296) (0.000) (0.010) (0.005) 

0 : 1 0α ϕ+ − =H   
             [p-value] 

-0.9502 
[0.000] 

-0.0391 
[0.852] 

0.1336 
[0.485] 

0.4844 
[0.065] 

 Sargan test of overid. restrict.: p-value 0.0357 0.008 0.0541 0.6013 
 No. of observations 535 737 420 420 

Note: 1st column is Arellano-Bond estimator as in Caselli, Esquivel and Lefort; p-value associated with the test for first-order 

serial correlation in itε∆  is equal to 0.0000 ; for the corresponding test for second order serial correlation in itε∆ , the 
associated p-value is equal to 0.3200 ; 2nd column is the conventional Hausman-Taylor (1981) estimator where education is 
assumed to be correlated with country-specific effect; 3rd and 4th columns correspond to our GMM-based Hausman-Taylor 
type estimator based on internal instruments constructed from deviations with respect to country-specific conditional means; 
in column 3, only the deviation of the observation for 1960 with respect to the conditional mean is used as an instrument; in 
column 4, both 1960 and 1965. 
 


