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Abstract

A response style denotes a certain mapping of latent preferences to a rating scale
that is common among a certain group of individuals. For example, individu-
als from the same country may assign high ratings to the majority of objects
regardless of the specific preferences for the objects. The existence of response
styles causes problems in international and cross-cultural research as it makes
it hard to compare findings. Moreover, even within homogeneous samples, re-
sponse styles make it difficult to expose the underlying preference structure.
Detecting the existence and influence of a response style is typically a difficult
issue as the underlying preferences are not directly observable. Hence, we can
never be sure if the observed ratings are the result of a response style or an
adequate representation of the preferences. In this paper, we consider the use
of dual scaling as a tool to detect the existence of a response style. By means
of a simulation study, we assess the performance of the proposed method.

1 Introduction

For the analysis of attitudes or preference, researchers frequently use rating data.
In rating data, objects or attributes are evaluated by individuals on a, usually
predefined, scale. For example, in marketing research, a researcher may ask
individuals to rate a set of soft drinks or attributes of these softdrinks according
to their preferences. Rating data are a popular format for several reasons: Sub-
jects generally understand the task without great effort, the ratings are easy to
administer and there exist many methods to analyse the ratings. Popular meth-
ods for the analysis of rating data are principal component analysis, unfolding
analysis, dual scaling or correspondence analysis.
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When analyzing rating data, one often implicitly assumes that the ratings
can be regarded as interval data. That is, differences between ratings have equal
meaning across individuals. This, however, may not always hold. In particular,
in studies where individuals come from different backgrounds, e.g. different
nationalities, cultures or levels of education, ratings may have different meanings
across individuals. For example, individuals with a certain background may be
inclined to give high ratings regardless of their true underlying preferences. Such
behavior is usually referred to as a response style. The existence of response
styles may severely influence the results of an analysis that does not acknowledge
their existence.

A response style can be seen as a, possibly non-linear, mapping of the un-
derlying latent preferences to a rating scale that is common among a group of
individuals. For example, for a group of individuals, there may be a tendency to
give high ratings to all items regardless of the actual latent preferences. Conse-
quently, the obtained ratings do not immediately reflect the latent preferences
that one wishes to measure. The existence of response styles has been acknowl-
edged in several areas (e.g., Marin, Gamba and Marin, 1992, Baumgarter and
Steenkamp, 2001, Van Herk, Poortinga and Verhallen, 2004). However, as the
latent preferences are unobservable, one can never disentangle the true prefer-
ences from the observed ratings. It is therefore difficult to detect a response
style.

In this paper, we consider dual scaling of rating data to detect response
styles. In particular, we consider dual scaling of successive categories. Dual
scaling of successive categories is a mathematically simple method that yields
optimal scaling values for items as well as for inter-rating boundaries. By ob-
serving the scores for the inter-rating boundaries, we may be able to detect
certain response styles. To assess the performance of the method, we use a sim-
ulation study. In the simulation study we are able to generate ratings that are
the result of certain response styles. Moreover, by generating data, we are able
to explicitly consider ”true” preferences as well as the observed ratings. Hence,
we are able to see whether, and under which conditions, dual scaling can be
used to detect a response style.

The remainder of this paper is organized as follows. In the next section,
the dual scaling of successive categories methodology is briefly explained. The
simulation study and its results are described in Section 3 and we finish with
concluding remarks and suggestions for future research.

2 Dual Scaling of Successive Categories

Dual scaling (Nishisato, 1980) is a versatile multivariate method that is typi-
cally used for the analysis of categorical data. The method is closely related
and mathematically equivalent to correspondence analysis (Greenacre, 1984).
However, for the analysis of preference data the two methods are not the same.
First of all, Nishisato (1994) explicitly distinguishes between three types of
preference data; paired comparison data and rank order data, rating data. In



correspondence analysis on the other hand, only rating data are treated ex-
plicitly. Secondly, for the three types of data, Nishisato proposes to transform
the raw data to a so-called dominance matrix. Dual scaling is then applied to
the dominance data. As the dominance matrix contains negative entries, an
impossibility in ordinary dual scaling, the usual method must be applied in a
modified fashion. See Nishisato (1994) for details on this modified approach. In
correspondence analysis a completely different route is taken: The original rat-
ing data are doubled with respect to the items and an ordinary correspondence
analysis is applied to the doubled matrix (e.g., Benzécri, 1973, Greenacre, 1984).
Although the ”doubling” approach appears to differ considerably from the ap-
proach proposed by Nishisato, Van de Velden (2000), and Torres and Greenacre
(2002), showed that Nishisato’s method can also be expressed as dual scaling
of a doubled data matrix. There are, however, important differences between
the two approaches, see van de Velden (2003) for a complete treatment of these
differences.

In addition to the mathematical differences, which have been clarified in
the aforementioned references, Nishisato’s treatment of rating data differs from
the correspondence analysis approach with respect to the specific coding that
he proposes. In correspondence analysis it is customary to use the ratings as
they are. Hence, they are implicitly assumed to be interval data. Nishisato,
on the other hand, proposes two strategies: 1) Compare the ratings for the
objects and recode the data as paired comparison data (i.e., count how many
times objects received higher ratings than other objects). 2) Recode the data
by using successive categories before applying dual scaling. In this paper, we
shall concern ourselves with the latter approach.

2.1 Successive Categories

Dual scaling of successive categories is based on the work by Nishisato (1980) and
Nishisato and Sheu (1984). The successive categories approach is best explained
by means of a small example. Suppose that three objects are to be rated on a
1-5 scale. The scale can then be represented as a line with boundaries between
the scale values. Hence, for this example, we have 4 boundaries. Now, suppose
that the three objects, say A, B, and C, received ratings 1, 2, and 5 respectively.
We can then place the objects on the scale. This is depicted in Fig. 1, where
b1, ..., b4 denote the boundaries. The data can be collected in a matrix where
the first 3 columns correspond to the objects, the next 4 columns correspond to
the boundaries and the rows correspond to individuals. The ijth cell element
corresponds to the number of times that, for individual 4, an object or boundary
is greater than the other objects and boundaries. In other words, boundaries
and objects are rank ordered. When equal ratings are assigned to objects, the
tied objects are assigned the average rank number. For the example data, we
obtain the row: [0 2 6 1 3 4 5]. It is not difficult to generalize the example to
the case with p objects and a rating scale ranging from 1 to ¢. Nishisato (1994,
p.223) gives an algorithm to transform the ratings to successive categories.
Dual scaling of successive categories yields optimal scaling values for the



Figure 1: Successive categories

objects and the boundaries. If there exists a tendency to mainly use, for ex-
ample, the end-points of the scales, this leads to a relatively large gap between
the end-point boundaries and small gaps between the middle rating boundaries.
Similarly, if the ratings are mapped predominantly to the middle of the scale,
the higher boundaries are closer to each other whereas there is a bigger gap
between the middle boundaries. This property of dual scaling may be exploited
to detect response styles.

3 Simulation Study

To see whether the differences between boundaries can be used to expose a re-
sponse style, we use a simulation study. In the simulation study, we randomly
generate preferences and map these preferences to a rating scale. For the map-
ping of the generated ratings, we use different functions representing different
response styles. Than, by applying dual scaling of successive categories to the
data, we obtain dual scaling scores for objects and boundaries. If no response
pattern exists, the distances between the boundaries should be approximately
equal. Therefore, deviations from this equal spaced pattern may indicate the
existence of a response style. To assess the deviation from the equal spaced
pattern, we first calculate the difference between the scores for the highest and
lowest boundaries and divide this by the number of boundaries minus one (that
is, the number of intervals between the boundaries). This is the equal space dis-
tance between boundaries. Note that this equal space distance differs from data
set to data set. To account for this, we shall consider the deviation with respect
to the equal space differences. We call this measure the relative inter-boundary
deviations. To calculate the relative inter-boundary deviations we divide the
differences between the obtained inter-boundary differences and the equal space
distances through the equal spaced distances. If the boundaries are equally
spaced, the relative inter-boundary deviations are equal to zero.

3.1 Data Generating Process

We consider a situation in which 5 objects are to be ranked on a 1-7 scale. First
we draw the underlying preference structure from a uniform [0,1] distribution.
We denote this latent structure by p. We generate preferences for individuals
by adding noise to the underlying latent preference u. The noise is generated by
drawing from a normal distribution and multiplying this by a factor «. In the
simulations, we vary the a parameter to study its influence on the outcomes.
The thus obtained preferences are mapped to a 1-7 rating scale. For this map-



Table 1: Rating Functions; The rows give the assigned ratings, the columns
indicate the corresponding intervals of the generated preferences

No response Style  Aquiescence  Midpoint Extreme
Rating 1 [-00,1/7) [ -00,0.10) [-00,0.02) [-00,0.35)
Rating 2 [1/7,2/7) [0.10,0.15) [0.02,0.05) [0.35,0.45)
Rating 3 [2/7,3/7) [0.15,0.18) [0.05,0.20)  [0.45,0.49)
Rating 4 3/7,4/7) (0.18,0.20)  [0.20,0.80)  [0.49,0.51)
Rating 5 [4/7,5/7) [0.20,0.40) [0.80,0.95) [0.51,0.55)
Rating 6 [5/7,6/7) [0.40,0.70) [0.95,0.98) [0.55,0.65)
Rating 7 [6/7,00 ) [0.70, o0) [0.98, o) [0.65, c0)

ping of the ”true” preferences to the rating scale we consider four functions.
The first function corresponds to the situation in which no response style exists.
We model this by dividing the [0,1] interval into 7 equal sized intervals. Rat-
ings are then assigned by considering the interval in which the true preference
falls. Note that the true preference may be negative or larger than 1 and we
assign the ratings 1 and 7 to such preferences respectively. The second function
corresponds to the so-called aquiescence response style. In this response style
there is a tendency towards the positive ratings. The third function represents
an extreme response style in which there is a tendency to assign either high or
low ratings. Finally, the fourth function we consider represents the midpoint
response style. In this response style there is a tendency to assign the middle
rating. For more details on these, and other, response styles see, for example,
Greenleaf (1992). The exact functions that we use to model the response styles
as well as the no response style mapping, are collected in Table 1 The rows of
Table 1 give the assigned ratings and the elements indicate to which preference
values these ratings correspond for the three response styles.

3.2 Design of the experiment

We consider two experiments to study the ability of dual scaling to detect a re-
sponse style. In the first experiment, we randomly generate 50 latent preference
structures p and for each randomly generated preference structure p and noise
level «, we generate 20 data matrices. We then transform the ”true” preferences
to ratings by using the functions summarized in Table 1. To obtain the scores
for the boundaries, we apply dual scaling of successive categories to the ratings.
Finally, using the dual scaling results, we calculate the relative inter-boundary
deviations.

The second experiment is concerned with the question whether it is possible
to distinguish an actual response style from a true preference structure that
resembles a response style. To study this question we conduct a simulation
where we fix the preferences to the three response styles used in this paper.
That is, preference structure 1, with as mean vector p, = [0 1 1 1 1] corresponds



Table 2: Relative Inter-Boundary Deviations: No Response Style

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 -0.03 0.13 | -0.03 0.09 | -0.02 0.05
2-3 0.02 0.08 0.02 0.05 0.01 0.03
3-4 0.03 0.04 0.03 0.02 0.02 0.01
4-5 0.02 0.08 0.02 0.05 0.01 0.03
5-6 -0.04 0.12 | -0.04 0.08 | -0.03 0.05

Table 3: Relative Inter-Boundary Deviations: Aquiescence Response Style

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 -0.24 0.05 -0.23 0.04 -0.19 0.02
2-3 -0.28 0.04 -0.26  0.03 -0.22 0.01
3-4 -0.30 0.03 | -0.28 0.02 | -0.24 0.01
5-4 0.23 0.10 0.22 0.07 0.19 0.03
5-6 0.59 0.16 0.55 0.10 0.46 0.05

to the Aquiescence style. Similarly, let pu. = [1 1 0.5 0 0] and u,, = [0.5 0.5
.5 0.5 0.5] denote preference structures for the extreme and midpoint styles
respectively. Now, using these vectors as underlying preference structure, we
simulate, for each structure and noise level a;, 100 data sets. The thus obtained
true preferences are mapped to the rating scale without using a rating style.
That is, we use the first column of Table 1 to map the preferences to ratings.
We then apply dual scaling of successive categories.

3.3 Results

For each p we have 20 observation matrices. We first calculate the mean relative
inter-boundary deviations over these 20 observations. We then calculate the
mean and standard deviation of these averages over the 50 simulations. The
thus obtained means and standard deviations are collected in Tables 2 through
5. Each Table corresponds to the dual scaling results for a certain response
style.

The results in Tables 2 through 5 indicate that the response styles may
indeed be detected by dual scaling of successive categories. For example, for the
aquiescence style (Table 3) we see that the inter-boundary differences between
the 5th and 6th boundary (i.e. between ratings 6 and 7) is much larger than
the differences between the 1st and 2nd boundaries. Recall that a value of zero
would indicate no deviation from the equal spaced pattern, whereas a value
of 0.5 indicates that the deviation was half the equal spaced difference. In



Table 4: Relative Inter-Boundary Deviations: Extreme Response Style

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 0.14 0.06 0.13 0.04 0.11  0.03
2-3 -0.07 0.01 | -0.06 0.01 | -0.06 0.01
3-4 -0.15 0.02 -0.14 0.01 -0.11 0.01
4-5 -0.07 0.01 | -0.06 0.01 | -0.05 0.01
5-6 0.14 0.06 0.13 0.05 0.11 0.03

Table 5: Relative Inter-Boundary Deviations: Midpoint Response Style

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 -0.40 0.04 | -0.37 0.03 | -0.33 0.02
2-3 -0.15 0.13 -0.14 0.09 -0.11  0.05
3-4 1.09 0.16 1.03 0.10 0.89 0.05
4-5 -0.15 0.12 -0.14 0.09 -0.11  0.05
5-6 -0.40 0.04 -0.37 0.03 -0.33 0.02

other words, the inter-boundary difference for the highest boundaries was 1.5
times the equal space difference. For the extreme response style, we see that
the differences between the 1st and 2nd as well as between the 5th and 6th
boundaries are larger than the equal space difference. The difference between
the other boundaries, in particular between 3 and 4, are smaller than the equal
space difference. For the midpoint response style, a large gap surfaces between
boundaries 3 and 4 due to the high number of individuals assigning the middle
rating. Finally, as shown in Table 2, when no response style is employed, the
relative deviations are close to zero.

For all response styles we see that the surfacing of the response patterns
becomes stronger if less noise is added. That is, for smaller values of o the ab-
solute values of the relative deviations increase. At the same time, the standard
deviations of the relative deviations increase indicating higher variability in the
boundaries when less noise is added. This is porbably due to the fact that the
preference structures are randomly drawn from a uniform (0,1) distribution. For
each structure we draw 20 samples. By decreasing the noise, these samples be-
come more homogeneous. Consequently, the original variability stemming from
the uniform distribution, plays a larger role when « increases.

The results for the second experiment are reported in Tables 6 through 8.
We see that, especially when the noise level is relatively high; o = 1/2, the
inter-boundary differences show no clear response styles for all three preference
structures . For the extreme response structure, this situation is hardly influ-
enced by the reduction of noise. For the other two patterns, we see that if less



Table 6: Relative Inter-Boundary Deviations: Aquiescence Preferences

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 -0.09 0.03 | -0.11 0.03 | -0.08 0.03
2-3 -0.13 0.03 | -0.10 0.03 | -0.05 0.03
3-4 -0.10 0.03 -0.04 0.04 -0.01 0.04
4-5 0.03 0.04 0.05 0.04 0.05 0.04
5-6 0.28 0.05 0.19 0.05 0.09 0.05

Table 7: Relative Inter-Boundary Deviations: Extreme Preferences

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 0.03 0.04 0.01 0.04 -0.01 0.04
2-3 -0.01 0.04 -0.00 0.04 0.01 0.04
3-4 -0.04 0.04 | -0.02 0.04 0.00 0.04
4-5 -0.01 0.04 | -0.01 0.04 0.01 0.04
5-6 0.03 0.04 0.01 0.04 -0.01 0.04

noise is added, i.e., if the data are closer to the mean patterns u, or p,,, the
response styles do surface, albeit less pronounced as previously.

Note that although the dual scaling solution exhibits more or less equal
spaced boundaries, the objects receive scores that are in accordance with the
underlying preferences. Hence, for the aquiescence response style, the first four
objects receive similar, high, scores whereas the other object receives a distinc-
tively lower score. These results are not reported here for the sake of brevity.

The role played by the noise level is crucial for detecting response styles.
When no response style exists, the noise is distributed more or less evenly across
the ratings. Consequently, the boundaries will be spread out. On the other
hand, when noise is mapped according to a response style, the spacing between
the boundaries is influenced according to the response style and will surface as
such.

4 Conclusion

In this paper, dual scaling of successive categories was considered as a tool for
the detection of response styles. By means of a simulation study, we showed
that this mathematically simple and straightforward approach appears to pick
up response styles quite well. Even when the original preference structure is
similar to a response style, dual scaling can be used to detect a response style
provided that the amount of noise in the sample can be assumed to be sufficiently
large.



Table 8: Relative Inter-Boundary Deviations: Midpoint Preferences

a=1/4 a=1/3 a=1/2
Boundaries | Mean  Std | Mean  Std | Mean  Std
1-2 -0.16 0.04 | -0.09 0.04 | -0.04 0.05
2-3 0.07 0.05 0.04 0.05 0.01 0.05
3-4 0.16 0.05 0.09 0.05 0.04 0.05
4-5 0.07 0.05 0.04 0.05 0.02 0.05
5-6 -0.15 0.04 | -0.08 0.04 | -0.03 0.04

As with any study, our study suffers from some limitations. First of all,
in our simulation study we considered a design with 7 rating categories and 5
objects. It remains to be seen what the changes will be if one or both of these
parameters are varied. Secondly, one may consider different response functions
from the ones used in the simulation study. Thirdly, one may consider different
ways to model the noise in our model. Perhaps different distributions lead to
different outcomes. Important with respect to this is of course the question
how the noise can be generated in a realistic fashion. Perhaps other simulation
studies, used for example in the context of latent class analysis, can give some
insights into this matter. Fourthly, related to the previous point, it may be
interesting to compare the dual scaling method with respect to other methods
that can be applied in this context. These limitations, and probably others that
are not mentioned here, should be addressed in future work on this topic.

The existence of response styles in an important measurement problem. Es-
pecially in the context of international research the problem gains in urgency.
In this paper, we addressed this issue by considering dual scaling as a detection
tool for the response styles. The results of this novel application of dual scaling
of successive categories are promising and indicate that dual scaling may indeed
serve as a tool to to gauge the existence of response styles.
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