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by Ivan Faiella* 
 

Abstract 

While there is a wide consensus in using survey weights when estimating population 
parameters, it is not clear what to do when using survey data for analytic purposes (i.e. with 
the objective of making inference about model parameters). In the model-based framework 
(MB), under the hypothesis that the underlying model is correctly specified, using survey 
weights in regression analysis potentially involves a loss of efficiency. In a design-based 
perspective (DB), weighted estimates are both design consistent and can provide robustness 
to model mis-specification. In this paper, I suggest that the choice of using survey weights 
can be seen in a regression diagnostic set. The survey data analyst should check if the design 
information included in survey weights has some explanatory power in describing the model 
outcome. To accomplish this task a set of econometric tests is suggested, that could be 
supplemented by the analysis of model features under the two strategies.  
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All models are wrong; some models are useful.
George Box, 1979.

1 Introduction

Microdata are often collected using sample surveys and their design typi-
cally involves specific techniques such as clustering and stratification which,
if ignored, generally lead to an inaccurate estimation of the variance. Fur-
thermore, when the process of sample selection and the response mechanism
is non-ignorable,1 disregarding survey weights can result in biased estima-
tors. Incorporating all the design features requires the use of survey weights
and a strategy to estimate the sampling variance that includes information
about the sampling process.

While there is a far-reaching agreement about using survey weights in
descriptive inference, it is less clear cut if their use must be automatically
extended when studying relationships among survey variables. This case is
referred to in the literature as the “analytic use of sample surveys” (Skinner
et al., 1989). The objective of analytic inference is to draw conclusions
about a super-population assumed to have generated the actual population
(Särndal, Swensson, and Wretman 1992). Generally, analytic inference relies
on a regression model linking the study variables with a set of explanatory
variables (covariates). The optimal estimators (e.g. OLS) for this class of
models relies on assumptions usually not met by complex survey data.

First, sample observations typically have different selection probabilities.
Nathan and Smith (1989) show that, unless the selection of the sampling
units is ignorable subject to the covariates of the model, OLS estimates are
biased and inconsistent. Note that this selection pattern depends both on
the actual sampling scheme (i.e. how the population elements are included
in the sample) and on the response process.2 When this information is not
relevant for the model a condition of design ignorability is met and it is
possible to make recourse to more efficient estimators.

Secondly, the usual standard errors formula for LS and ML estimates are
not appropriate because the sampling units are not identically and indepen-
dently distributed across all possible samples. The observed sample is in fact

1The design is ignorable when the selection of the theoretical sample and the response
mechanism that leads to the actual sample depend only on the observed data. More on
this in the next sections.

2It is common practice to incorporate non-response adjustments in survey weights.
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the output of a selection on a stratified population and often the sampling
elements are “clusters” of the statistical units, suggesting that variance esti-
mators could be negatively biased unless they account for the similarity of
the units pertaining to the same cluster (intra-cluster correlation).

The present study is focused on the first point only. All the variance
estimates subsequently used will adopt the randomization level determined
by sampling design. It will later be shown that this stance can be seen as a
natural extension of the “sandwich” estimator routinely used by practitioners
to derive standard errors robust to model variance mis-specification; it is also
the same as the procedures adopted in the econometrics of cluster samples
(see for example Wooldridge, 2006).

Fundamentally, the questions we want to answer in this study are three:

1. What are the pros and cons of using survey weights when modelling
sample survey data?

2. Is there a simple way to test if survey weights provide the model with
additional information?

3. Can the choice of using survey weights be incorporated among the
model diagnostic tools?

The paper is structured as follows: in the next section I briefly recall the
differences between the design and the model-based approach to inference
with particular reference to the use of survey weights in regression analysis
(an excellent reference on the topic is Binder and Roberts, 2003); I will then
briefly touch on the fact that model builders often implement randomiza-
tion based estimators to correct variance-covariance model matrices for het-
eroskedasticity and cluster samples; in section 3, I briefly evaluate if there
is an alternative to using survey weights augmenting a model with survey
information; in section 4 I present a set of procedures that can help the data
analyst decide whether to use survey weights; in section 5 all the previous
findings are put into action using microdata from the two surveys conducted
by the Bank of Italy; finally the main conclusions are formulated.

2 The theoretical debate

2.1 The design-based approach

The foundation of design-based (henceforth DB) inference lies on the concept
of randomization. Consider a finite survey population U as a collection of N
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elements: U = {1, 2, 3, ..., i, ..., N} . To select a sample we need to define a
sampling design that establishes all the samples - the set S - that it is possible
to draw from this population: S = {s1, s2, .., sr} . Given a sampling design
p(s), it is possible to associate all the population elements with an indicator
variable Ii equal to 1 if the i-th element of the population is included in the
sample and zero otherwise: I = {I1, I2, .., Ii, ..., IN} .When an actual sample
s is drawn from the set S of the possible samples, the indicator variable
is conditioned to this sample: is = {i1s, i2s, .., iis, ..., iNs} . Then a formal
definition of sampling design will be p(s) = P (S = s) = P (I = is) and each
i − th unit will be included in a sample s with probability πi =

∑
s3i p(s)

(the inclusion probability of element i).
For each sample element it is possible to measure (for hypothesis without

error) one or more characteristics (for example a study variable yi and a
vector of auxiliary variables xTi ). These elements are fixed both in the
sample and in the population. What governs the randomness of the
process is the sampling distribution; this in turn depends on the inclusion
probabilities of the sample elements. The inference process is founded on
the variability across all the possible samples (determined, as seen, by p(s)).

In the DB context, the analyst uses models as a statistical tool to study
the correlation structure between the dependent variable and a set of pre-
dictors.3 Model estimators are usually seen as the combination of a class
of design-unbiased estimators known in the survey literature as the Horvitz-
Thompson-like (HT) estimator of the form ŶHT = f(y, xT , π), also known
as the π-estimator (Särndal, Swensson, and Wretman 1992).4 The rationale
of this approach is to inflate each sample observation yi, x

T
i dividing it by

its inclusion probability πi. In the literature, the resulting estimators are
termed as Census parameters (Chambers and Skinner 2003) or Descriptive
population quantities (Pfeffermann 1993).

Consider for example the linear regression model. We have a sample with
n observations. For each i-th observation we can observe the study variable
yi, a vector of k predictors xTi and the survey weight wi computed by the
survey organization. The well known formula for the least square solution if
we plug-in survey weight is

β̂w =
(
XTWX

)−1
XTWY (1)

where W is a n × n diagonal matrix with the survey weights in the
diagonal, Y is a n× 1 vector and X is a n× k matrix. Note that the vector

3He focuses more on “estimable” than on “structural” models (Wooldridge 2002)
4The HT estimator is also referred to as the Horvitz-Thompson-Narain estimator, as

Narain independently presented a similar general theory in 1951.
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β̂w is the ratio of two HT estimators. The resulting estimator is biased but
its bias is of the order of n − 1, negligible in large samples; furthermore its
relative bias is bounded by the coefficient of variation of the denominator
(X ′WX), usually very small for large samples (Kish,1965). This approach
can be extended to Generalized Linear Models. In this case the score function
is rewritten to resemble an HT estimator (see for example Binder, 1983 and
Nordberg, 1989).5

A potential shortcoming of the DB estimator is related to its potential
inefficiency. If the sampling design conveys no additional information into
the model (the design is ignorable) survey weights pointlessly risk inflating
the variance of the estimators. In presence of large sample sizes this problem
can be overstated. Moreover, in univariate context, Little and Vartivarian
(2005) show that calibration, in the presence of the right choice of post-
strata, i.e. strata formed at the estimation stage, can actually decrease the
variance of the weighted estimator. Other scholars show that the efficiency
of the DB estimator can be improved by smoothing survey weights with an
appropriate model (Beaumont 2008).

Briefly, what are the benefits and the drawbacks of the DB approach?
Advantages of the DB approach:

1. Using DB inference, no assumption is necessary regarding the distri-
bution of the residuals.

2. In a DB perspective, π-weighted estimators are both design consistent
and provide robustness to model mis-specification (e.g. they are robust
to the problem of omitted variables). The advocates of this method
underline that the parameters estimated using survey weights are more
robust because they are model unbiased if the model is true and design
consistent if it is not (Kott 1991).

Disadvantages of the DB approach:

1. Within the DB framework, in building the model the analyst does not
have a clear rationale on how to choose among competing estimators
(Little 1981).

2. DB models are not always useful for prediction: in some cases, the
reference population can be misleading in generalizing the results to
other possible populations.6

5For GLM, a more sophisticated approach that also leads to a HT-like estimator is
described in Pfeffermann and Sverchkov, 2003.

6Kalton (1989), presents an example regarding the extrapolation of weighted propor-
tions to a general population in a simple Markov chain model.
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3. The properties of the β̂w in small samples are unknown (Pfeffermann
and Sverchkov 1999).

2.2 The model-based approach

In a model-based framework (henceforth MB) the focus is on the data gen-
erating process. In a finite population context, the actual population can
be seen as a realization of the infinite possible ones generated by a super-
population mechanism: a population model is specified and a sample is
drawn - using Simple Random Sampling (SRS) with replacement - from
the population so that, in case of a linear specification,

yi = βxTi + ei (2)

where y, xT are observed on the i-th unit while e is an error term (unob-
servable) assumed orthogonal to the covariates. β is the parameter vector
(constant in a frequentist framework) to be estimated. MB-inference studies
the sampling distribution of the statistics over repeated realizations gener-
ated by the model: the selected sample is held fixed.

When using MB tools, the researcher is usually interested not in the
particular population observed, but rather in the causal process linking the
predictors and the response variable (econometricians call these “structural”
models).

The benefits and drawbacks of the MB are the following:
Advantages of the MB approach:

1. If the model is correctly specified the unweighted estimator performs
better than any competing estimator in terms of variance (it is BLUE).

2. Analysts can rely on a huge literature covering model building and
diagnostics.

Disadvantages of the MB approach:

1. If the model is mis-specified and the predictors correlated to the re-
sponse variable are omitted, MB estimates might be biased and incon-
sistent.

2. MB variance estimators usually rest on tight assumptions on the dis-
tribution of the unobserved errors, thus underestimating the actual
variance.
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2.3 A note on estimating model variance

While the use of survey weights is rarely dealt with in econometric textbooks
(with the exception of Wooldridge, 2002 and Cameron and Trivedi, 2005),
there is in general a wide acceptance that MB standard errors are downward
biased thus impairing the validity of the computed confidence intervals.

In the MB framework the usual hypothesis about the distribution of
errors is that they are independently and identically distributed (i.e. they
follow an iid process). This means that data are sampled from the population
using SRS with replacement and that the size of the errors is the same across
different observations.

To deal with the problem of a non-identical distribution of the residuals
across the sample, an asymptotic variance-covariance matrix robust to mis-
specification can be adopted (Greene 2002).

An equivalent procedures used by survey statisticians is to define a score
such as ẑi = xTi (yi − xTi β̂) and compute the deviance as ẑT ẑ, where ẑ is the
score vector. 78

Likewise, the assumption of error independence across the sample is usu-
ally not met when using sample survey data. The sampled populations are
finite and sampling is without replacement.9 Moreover sample design typi-
cally involves specific techniques such as clustering and stratification.

Because in stratified-clustered samples observations within a stratum are
correlated, central limit theory does not hold (Wooldridge 2002). Ignoring
these sampling features generally leads to an inaccurate estimation of the
variance. Hence, in the presence of cluster samples, the assumption of inde-
pendence must be relaxed at cluster level (i.e. model errors are independent
between clusters).

7Binder (1983) devises a general estimation procedure to estimate the variance of the
parameters of general linear models. This method requires that the variance of the score
is “sandwiched” between the first derivatives of the score function.

8A formal argument to justify why a randomization-based estimator is consistent for
the “correct” MB estimator relies on the concept of anticipated variance: this is defined as
the variance of the estimator with respect to the sampling design and the superpopulation
model (Isaki and Fuller 1982).

9This feature is not relevant if the sampling fraction (the share of the population
sampled) is negligible (a common circumstance in household sample surveys).
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3 Handling design information when modelling sample
survey data

Some scholars tried to find a bridge between DB robustness and MB com-
pleteness. Pfeffermann (1993) and more recently other authors (e.g. Gelman
2007, Little 2004), propose a sort of “third way” to take the best from the DB
and the MB approaches. This strategy relies on specifying a model using MB
tools for inference, but focusing on estimators that are design consistent for
a given census parameter (i.e. they consistently estimate a corresponding
parameter in the population). This means relaxing some optimality rules
in exchange for design consistency protection from model failure. A seminal
work of Scott and Smith (1969), then developed by Pfeffermann and Lavange
(1989), suggested setting up a multi-level model, exploiting the hierarchical
structure of survey data. Strata are treated as fixed effects (population
effect) and clusters as random effects (sample effect).10

Some studies advocate taking full advantage of the hierarchical mod-
elling: if sample design and population information is available it is possible
to build models that account at the same time for the factors underlying
the analysed phenomenon and for the sample selection process (clusters and
strata information and associated covariates), survey units participation (non
response rates, as in Yuan and Little, 2007a, 2007b), population information
in some relevant dimensions (thus including post-stratification as in Little,
2004 and Gelman, 2007).11

What all these approaches have in common is that they structure the
model in order to control for design ignorability (henceforth DI). We have
DI whenever the information on how the population elements are included in
the sample is not relevant in explaining the modelled outcome. The practical
limit of this approach arises form the consideration that design variables are
not always available for the analyst. More formally, given the definition
of a ξ model to estimate a parameter β, the concept of design ignorability
implies that, under ξ model validity, the data collection process and response
mechanism do not provide any additional information to estimate β (for an
analytical description see Chapter 7 of Gelman et al. 2003).

It is often the case that cluster and stratum information is not dissemi-
10If a more parsimonious approach is followed, the information on clusters can be col-

lapsed to the strata then estimated as random effects (Pfeffermann and Lavange 1989).
This idea can be explored to solve the problem of data confidentiality.

11Other scholars (using a more “econometric” approach), rely on simultaneous proce-
dures where the phenomenon and the selection of the sampling units are modelled jointly
(see for example Magee et al., 1998 and De Luca and Peracchi, 2007).
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nated due to confidentiality protection. Geographical information (an ordi-
nary choice for stratification) is disseminated at the aggregate level.12 The
proposal of those scholars pushing for an MB that “augments” model infor-
mation with survey design variables is thus limited by this practice of the
survey organizations. Those that can exploit this wealth of information, are
then a limited number of researchers or the officers within the survey orga-
nizations.13 In this study I take the perspective of data users (and not
that of data producer) and therefore the possibility of implementing such a
complex model will not be explored.

4 Testing for design ignorability

If the analyst does not have access to survey design information he/she has
two alternatives:

1. disregard all the survey design information taking a standard MB
stance incurring the risk of relying on inconsistent estimators;

2. adhere to the DB approach thus accepting some inefficiency as a price
for protection against model mis-specification.

But there is another option: he/she can use the information embodied in
survey weights to establish what the consequences are of excluding it from
the model. In practice this means testing to see if the design is ignorable.

In the literature, DuMouchel and Duncan (1983) first proposed testing
for the difference between weighted and unweighted estimators. This can be
accomplished by various strategies.

4.1 Formal testing

Consider model (2) and add survey weights and their cross-products to form
the augmented model yi = γzTi +ui. It is straightforward to perform a Wald
to evaluate if the coefficients of survey weights and their cross-products with
the predictors are statistically different from zero. If Rb = r denotes the set
of q linear hypotheses to be jointly tested, then the Wald test statistic is:

12For example, the Survey on Household Income and Wealth SHIW, releases the nuts-2
(region) information; in the microdata of Eurostat coordinated surveys on living conditions
(EU-SILC) and of the Federal Reserve Survey of Consumer Finances, only the nuts-1
variables (geographical area) are supplied in the dataset.

13A recent survey of the possible use of MB approach by data producers is in van den
Brakel and Bethlehem, 2008.
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W = (Rb− r)(RV R′)−1(Rb− r) ∼ χ2
q;W/q ∼ F (q, df) (3)

The number of degrees of freedom (df ) in the presence of a complex
survey should reflect the randomization level. For example, in the case of
a multi-stage, stratified design, they should be computed as n◦ of clusters
- n◦ of strata - n◦ of predictors. When using replication-based variance
estimates, the degrees of freedom are given by the number of replications
(Faiella 2008). Such a test can be easily implemented with the functions
usually embedded in the statistical software packages (e.g. regTermTest in
the R survey package, test in the svy: Stata environment).

A Hausmann test is suggested by Pfefferman (1993) . Define β̂w as the
weighted least squares estimator, β̂ as the standard LS estimator, and let
var(β̂w − β̂) be some robust measure of the variance of the difference in the
two estimators (estimated using replication techniques). Then(

β̂w − β̂
)′ [

var
(
β̂w − β̂

)]−1 (
β̂w − β̂

)
(4)

is a statistic asymptotically distributed as a χ2
p where p = dim(β̂). This

is a test of DI in the sense that it verifies if excluding survey weights has a
significant effect on the consistency of β̂. In fact, under the null both β̂ and
β̂w are consistent, while under the alternative only β̂w is consistent.

When models are non-linear in the parameters it is better to use a statis-
tic whose specification is invariant to non-linear transformations of the pa-
rameters. This property is violated by the Wald statistic but satisfied by the
Lagrange Multiplier (LM) statistics (Kleibergen 2008).

An LM-score test can be derived as follows. Regress yi = (xTi β) obtain
the residuals ûi = yi − (xTi β̂) and run a second regression of the residuals
on xTi ∗ (1 + wi). The LM statistic is computed as the sample size times
the coefficient of determination of this regression and it is compared with a
χq, where q is the number of restrictions on the previous equation (in this
case the number of predictors). This test can be extended to non-linear
regressions comparing the ratio of the squares of efficient scores to model
variance with a χq (Greene 2002).

This version of the LM is biased towards type I error. Kiviet (1986)
proposes an F-test form of the LM test statistic with improved performances,
defined as LMF = n−k

q
R2

1−R2 . Under the null LMF ∼ F (q, df).
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4.2 Parameter exploration and other heuristics

A complement of formal testing consists in plotting the residuals (or a
transformation of the residuals) of the unweighted regression against survey
weights or design variables (if available) to look for correlation patterns that,
if present, would suggest that survey weights have some role in predicting
the outcome variable, even after controlling for a group of predictors.

Another useful check relies on the graphical representation of the un-
weighted and weighted parameters distribution. Given β̂ and β̂w and the
associate standard errors, draw m random variates β̂sim ∼ N(β̂, σ̂β̂) and
β̂wsim ∼ N(β̂w, σ̂β̂w

). Then compare the MB and the DB estimators, look-
ing at the distribution of these variates (graphical inspection such as density
estimation or boxplots can help in spotting differences between the two).

5 Hands-on survey data

In this section I will look how to implement in practice the tests and the
other diagnostic tools presented to help the researcher to choose between an
MB and a DB estimator. As an example, I will make use of two surveys
conducted by the Bank of Italy.

The first is the Survey on Household Income and Wealth (SHIW), con-
ducted to collect information on the economic behaviour of Italian house-
holds. The sample comprises about 8,000 households and is drawn in two
stages (municipalities and households), with the stratification of the primary
sampling units (municipalities) by region and demographic size. Microdata,
documentation and publications (in Italian and English) can be downloaded
free of charge from the Bank of Italy’s website.14

The second is the Survey of Industrial and Service Firms (SISF), that
collects information on about 4,000 non-financial private service firms with 20
or more employees. The survey adopts a one-stage stratified sample design.
The strata are combinations of the branch of activity, size class and regional
location of the firm’s head office.15 Microdata can be elaborated using the
Bank of Italy’s Remote access to micro Data (BIRD) (Bruno, D’Aurizio, and
Tartaglia-Polcini 2008).

The first is a complex survey (involving stratification, multiple stages of
sampling, probability proportional to size selection methods and a split-panel

14www.bancaditalia.it/statistiche/indcamp/bilfait.
15Further details are available in the SISF report freely downloadable from the Bank

website (http://www.bancaditalia.it)
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design) with a rather low response rate (40 per cent) and this complexity
is reflected in an elaborate multi-step construction of the survey weights
(Faiella and Gambacorta 2007). SISF sample is instead a one stage strat-
ified sample with a good response rate (75 per cent) and a more standard
weighting set-up.

In the next section I estimate a linear model on these survey data with
and without survey weights and I run the battery of tests and the heuristic
procedures previously described to check if MB estimates capture the same
information of the estimators that incorporate survey weights (DB).

Following the indications given in section 2.3, the variance of the es-
timators is computed using a randomization-based method. In practice a
replication-based method known as Jackknife Repeated Replications (JRR) is
adopted (details on the properties of this method are provided in Faiella,
2008).

5.1 A model for household expenditures

As a first example, I make use of a linear model of household expenditures.
The analysis is based on SHIW 2006 data (7,768 households). The outcome
variable is the log of household expenditures. The predictors, listed in Table
A.1, are grouped in three categories: attributes of the head of household
(defined as the main income earner within the household) such as age, job
status etc.; characteristics of the household (household size, number of earn-
ers; etc.); indicators of the household economic situation such as household
income, presence of liabilities, etc.

Table A.5 presents model results without survey weights (MB estimates),
while Table A.6 shows the weighted (DB) estimates.

Table A.3 reports the results of the 3 tests previously presented: all the
tests show that at 1 per cent confidence level the null hypothesis that design
is ignorable is rejected. Hansen, Madow and Tepping (1983) and Lohr
(1999) suggest that the decision to include survey weights in regression
models implies a trade-off between bias and variance of the estimators; then
a rule of thumb can be to include them when sample size is large and the
sample size helps to mitigate the possible loss of efficiency. To test how
sample size influences results, I perform the tests on a SHIW subsample that
excludes the panel component (about 50 per cent of the full sample, about
3,900 observations). The results, in the bottom part of Table A.3, confirm
the full-sample outcome.

I then check the difference in model features exploring the distribution
of the parameters in the DB and the MB context. The relevant moments
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of the parameters distribution are computed (Table A.7) and a panel con-
taining 4 figures is graphed: the first two report the density estimation of
the MB and DB parameter. The third plots the MB simulated parameter
against the DB one: if they are equal they should lie on the bisecting line.
If points lie below (above) the bisecting line, it means that the simulated
MB parameters are systematically lower (higher) then the DB parameters.
Finally a boxplot of the MB and DB parameters summarizes the information
on their distribution.16

Exploring the table and the panels we can conclude that:

1. it is not always the case that the DB estimator presents more variabil-
ity: looking at the columns of the coefficient of variation (CV) of Table
A.7 for 13 predictors out of 17, DB parameters are more volatile than
MB parameters, but for the other 3 the reverse happens;

2. while for the majority of the parameters DB and MB estimates pro-
duce pretty similar results, the correlation between household expendi-
ture and geographical information regarding household residence and
household size appears to be quite different (see Figure 3-5).

It is apparent that, in the case under examination, both test results and
the diagnostics exercise suggest that the DB estimator should be preferred
over the MB estimator. In particular, the difference in the parameters related
to the geographical location of the household (a typical piece of information
used in designing the sample) seems to indicate that the sample is somehow
“unbalanced” if compared with the distribution in the population. Note also
that the deviance of the residuals of the DB model is (slightly) smaller,
thus indicating that DB performs better in terms of explained variance (DB
R-squared is 0.632, MB R-squared is 0.626).

5.2 A model to explain firms’ turnover

In the second example, I model firms’ turnover using SISF data. The analysis
is based on 2008 data (about 4,000 firms). The outcome variable is the log
of the turnover per employee. The predictors, listed in Table A.2, cover firm
characteristics (age, sector, location and size), overseas sales, the intensity
of activity during the year and the investment level in the previous year.

16In order not to burden the reader, I present the diagnostic plots of selected covariates
only. Complete results and the code to generate this diagnostic is available from the
author.
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Table A.8 presents model results without survey weights (MB estimates),
while Table A.9 shows the weighted (DB) estimates.

Table A.4 reports that as with SHIW data all the tests reject the null
hypothesis that design is ignorable. To test how sample size influences tests
results, I perform the same tests on a subsample that randomly excludes
about 50 per cent of the observation. The results, in the bottom part of
Table A.4, confirm the full-sample outcome.

Exploring the table and the panels with the distribution of the parameters
we can conclude that:

1. using SISF data the DB estimator is always more variable: looking at
the columns of the CV of Table A.10 for 7 predictors out of 10, DB
parameters are at least twice more variable than MB parameters;

2. while for the majority of the parameters DB and MB estimates pro-
duce pretty similar results, the association with firm location and with
investment shows important discrepancies (see Figure 6-7).

SISF analysis confirms that the DB estimator should be preferred over the
MB estimator and it suggests that the sample distribution is “unbalanced”
if compared with the distribution in the population.

6 Conclusions

In this paper, I have presented the benefits and the costs of using MB or DB
estimators. What I pointed out is that:

1. in estimating the variance of the parameters randomization-based meth-
ods are robust to mis-specification thus suggesting that this should be
the preferred strategy by the researcher;

2. instead of deciding what approach to use on the basis of devotion to
a theory, the survey data analyst should look at the differences in DB
and MB estimators;

3. to accomplish this task a set of econometric tests is suggested. These
tests are somewhat modified to be sure that the underlying variance
and degrees of freedom measures account for the randomization pro-
cess;
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4. the result of the tests should be supplemented by the analysis of model
features. For this reason a set of diagnostic tools (heuristics) is sug-
gested, simulating DB and MB parameters and looking (also graphi-
cally) at their distribution.

I applied these principles to a linear model using a survey whose weights
reflect a sophisticated procedure (SHIW) and a survey with a more standard
weighting process (SISF). The results indicate that in both cases it is safer
to use survey weights, because MB specification seems to fail in capturing
the information incorporated in the survey weights.

The alternative approach to set-up a multilevel model is not explored be-
cause its application is constrained by the limited design information that the
majority of researchers are provided with. In fact for reasons of confidential-
ity protection, strata and cluster information are usually not disseminated
in sample survey micro-data.

I would like to conclude with this 1987 ASA communication from Alexan-
der: “[...] the proponents of weighting (such as the author) would assert that
no model will include all the relevant variables, and that few analysts will
wish to include in their model all the geographic and operational variables
which determine sampling rates. It is difficult to object in principle with
the goal of correctly modelling all relevant variables, including the variables
relating to sampling. However, the theoretical and empirical tasks of deriv-
ing, fitting, and validating such models seem formidable for many complex
national demographic surveys.”(Alexander 1987)

Modern PC’s computational power and the availability of statistical soft-
ware (in the case of , even in the public domain) it is as revolutionary
for research in the behavioural sciences as the microscope in biology (Hiaschi
and Selvin, 1967, cited in Skinner et al., 1989).

Giving the increasing opportunity to explore microdata to fully account
for the heterogeneity in the individual behaviour, the modellers should check
if the information about the population that survey practitioners adopt in
building survey weights is relevant in explaining the object of the analysis
(i.e design ignorability). If this condition is not met, the model should in-
corporate design information.
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APPENDIX: Tables and Figures
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Table A.1. Predictors for the (log) consumption equation

Name of the variable Description
Head of Household
I(SEX == 2) Female=1; 0 otherwise
ETA Age
I(ETA2) Age squared
SICK Household head sick=1 (self reported); 0 otherwise
I(STUDIO > 3) Holds at least a secondary school diploma=1; 0 otherwise
I(CIT == 1) Italian citizen=1; 0 otherwise
I(STACIV == 1) Married=1; 0 otherwise
I(Q == 2) Self-employed=1; 0 otherwise
Household
I(NCOMP > 2) Size (n◦ of members) >2=1; 0 otherwise
I(NPERC > 1) Income earners>1=1; 0 otherwise
I(AREA3 == 3) Residing in the South and Islands=1; 0 otherwise
I(ACOM4C == 3) Municipality with 500k+ inhabitants=1; 0 otherwise
Household economic condition
y Log of household income
I(CLW < 3) Net wealth less than the 30th percentile=1; 0 otherwise
I(CLW > 8) Net wealth more than the 80th percentile=1; 0 otherwise
I(PF > 0) Debt ownership=1; 0 otherwise

Table A.2. Predictors for the (log) turnover per employee

Name of the variable Description
I(SETTOR3! = MANIFATT.) 1=Service sector; 0=Manufacturing sector
fattest Foreign turnover (log)
ladd Employees (log)
ladd2 Employees (log) squared
orelav Number of hours worked in the year (log)
orestra Number of hours worked in the year – overtime (log)
linv0 Previous year investments (log)
I(AREAG4 == 4) 1=South and Islands; 0 otherwise
eta Age of the firm
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Table A.3. Test results for Design Ignorability (SHIW data)

Full sample (7768 obs.)
Distribution under H0 P-value

Wald χ2
df=q 0.000

Hausmann χ2
df=dim(β) 0.004

LM score [LMF version] χq[F (q, df)] 0.000[0.000]
Excluding the panel component (about half of the sample=3881 obs.)

Distribution under H0 P-value
Wald χ2

df=q 0.001
Hausmann χ2

df=dim(β) 0.001
LM score [LMF version] χq[F (q, df)] 0.011[0.010]

Table A.4. Test results for Design Ignorability (SISF data)

Full sample (3848 obs.)
Distribution under H0 P-value

Wald χ2
df=q 0.000

Hausmann χ2
df=dim(β) 0.000

LM score [LMF version] χq[F (q, df)] 0.000[0.000]
Excluding randomly about half of the sample=1,899 obs.)

Distribution under H0 P-value
Wald χ2

df=q 0.000
Hausmann χ2

df=dim(β) 0.000
LM score [LMF version] χq[F (q, df)] 0.000[0.000]
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Table A.5. Expenditure equation: unweighted (MB) estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.988 0.365 16.401 < 2e-16 ***
y 0.343 0.039 8.715 < 2e-16 ***
I(SEX == 2) -0.014 0.012 -1.148 0.252
ETA 0.007 0.002 3.961 0.000 ***
I(ETA2) 0.000 0.000 -4.986 0.000 ***
SICK -0.068 0.034 -2.012 0.045 *
I(STUDIO > 3) 0.124 0.014 8.992 < 2e-16 ***
I(NCOMP > 2) 0.084 0.011 7.373 0.000 ***
I(NPERC > 1) 0.020 0.018 1.106 0.269
I(CIT == 1) 0.151 0.028 5.383 0.000 ***
I(STACIV == 1) 0.115 0.011 10.709 < 2e-16 ***
I(Q == 2) -0.003 0.015 -0.192 0.847
I(CLW < 3) -0.072 0.016 -4.398 0.000 ***
I(CLW > 8) 0.194 0.017 11.367 < 2e-16 ***
I(PF > 0) 0.091 0.010 8.733 < 2e-16 ***
I(AREA3 == 3) -0.127 0.012 -10.187 < 2e-16 ***
I(ACOM4C == 3) 0.085 0.019 4.376 0.000 ***
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1
n=7768, degrees of freedom=329, Resid.Dev=0.10366

Table A.6. Expenditure equation: weighted (DB) estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.949 0.363 16.384 < 2e-16 ***
y 0.343 0.039 8.686 < 2e-16 ***
I(SEX == 2) -0.006 0.013 -0.446 0.656
ETA 0.007 0.002 3.335 0.001 ***
I(ETA2) 0.000 0.000 -4.009 0.000 ***
SICK -0.084 0.047 -1.771 0.077 *
I(STUDIO > 3) 0.121 0.017 7.306 0.000 ***
I(NCOMP > 2) 0.112 0.013 8.801 < 2e-16 ***
I(NPERC > 1) 0.005 0.019 0.244 0.808
I(CIT == 1) 0.179 0.032 5.529 0.000 ***
I(STACIV == 1) 0.106 0.013 8.081 0.000 ***
I(Q == 2) 0.002 0.018 0.106 0.915
I(CLW < 3) -0.064 0.017 -3.786 0.000 ***
I(CLW > 8) 0.196 0.019 10.459 < 2e-16 ***
I(PF > 0) 0.107 0.012 8.626 0.000 ***
I(AREA3 == 3) -0.157 0.018 -8.812 < 2e-16 ***
I(ACOM4C == 3) 0.104 0.015 7.065 0.000 ***
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1
n=7768, degrees of freedom=329, Resid.Dev=0.10351
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Table A.7. Statistics on the parameter distribution (SHIW data)

Mean CV P0 P25 P50 P75 P100
Parameter 1 Intercept

MB estimates 5.98 6.07 4.76 5.73 5.98 6.23 7.11
DB estimates 5.94 6.08 4.73 5.70 5.94 6.19 7.07

Parameter 2 y
MB estimates 0.34 11.45 0.21 0.32 0.34 0.37 0.46
DB estimates 0.34 11.48 0.21 0.32 0.34 0.37 0.46

Parameter 3 I(SEX == 2)
MB estimates -0.01 -84.84 -0.05 -0.02 -0.01 -0.01 0.02
DB estimates -0.01 -211.66 -0.05 -0.01 -0.01 0.00 0.03

Parameter 4 ETA
MB estimates 0.01 25.27 0.00 0.01 0.01 0.01 0.01
DB estimates 0.01 30.04 0.00 0.01 0.01 0.01 0.01

Parameter 5 I(ETA2)
MB estimates 0.00 -19.85 0.00 0.00 0.00 0.00 0.00
DB estimates 0.00 -24.66 0.00 0.00 0.00 0.00 0.00

Parameter 6 MALATO
MB estimates -0.07 -48.84 -0.18 -0.09 -0.07 -0.05 0.04
DB estimates -0.08 -55.40 -0.24 -0.12 -0.08 -0.05 0.06

Parameter 7 I(STUDIO > 3)
MB estimates 0.12 11.09 0.08 0.11 0.12 0.13 0.17
DB estimates 0.12 13.66 0.07 0.11 0.12 0.13 0.17

Parameter 8 I(NCOMP > 2)
MB estimates 0.08 13.53 0.05 0.08 0.08 0.09 0.12
DB estimates 0.11 11.33 0.07 0.10 0.11 0.12 0.15

Parameter 9 I(NPERC > 1)
MB estimates 0.02 91.92 -0.04 0.01 0.02 0.03 0.07
DB estimates 0.00 452.97 -0.06 -0.01 0.00 0.02 0.06

Parameter 10 I(CIT == 1)
MB estimates 0.15 18.56 0.06 0.13 0.15 0.17 0.24
DB estimates 0.18 18.07 0.07 0.16 0.18 0.20 0.28

Parameter 11 I(STACIV == 1)
MB estimates 0.12 9.31 0.08 0.11 0.12 0.12 0.15
DB estimates 0.11 12.35 0.06 0.10 0.11 0.11 0.15

Parameter 12 I(Q == 2)
MB estimates 0.00 -458.87 -0.05 -0.01 0.00 0.01 0.04
DB estimates 0.00 1212.18 -0.06 -0.01 0.00 0.01 0.06

Parameter 13 I(CLW < 3)
MB estimates -0.07 -22.49 -0.13 -0.08 -0.07 -0.06 -0.02
DB estimates -0.06 -26.10 -0.12 -0.08 -0.06 -0.05 -0.01

Parameter 14 I(CLW > 8)
MB estimates 0.19 8.77 0.14 0.18 0.19 0.21 0.25
DB estimates 0.20 9.53 0.13 0.18 0.20 0.21 0.25

Parameter 15 I(PF > 0)
MB estimates 0.09 11.42 0.06 0.08 0.09 0.10 0.12
DB estimates 0.11 11.56 0.07 0.10 0.11 0.12 0.15

Parameter 16 I(AREA3 == 3)
MB estimates -0.13 -9.74 -0.17 -0.14 -0.13 -0.12 -0.09
DB estimates -0.16 -11.26 -0.22 -0.17 -0.16 -0.15 -0.10

Parameter 17 I(ACOM4C == 3)
MB estimates 0.08 22.85 0.02 0.07 0.08 0.10 0.14
DB estimates 0.10 14.13 0.05 0.09 0.10 0.11 0.15

27



Table A.8. Turnover equation: unweighted (MB) estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.6323392 0.6636729 -0.953 0.34076
I(SETTOR3! = MANIFATT.) 0.3036911 0.0329328 9.222 < 2e-16 ***
fattest 0.0771898 0.0045432 16.990 < 2e-16 ***
ladd -1.1162046 0.1058763 -10.543 < 2e-16 ***
ladd2 0.0065252 0.0051963 1.256 0.20929
orelav 0.8021574 0.0876852 9.148 < 2e-16 ***
orestra -0.0459207 0.0151399 -3.033 0.00244 **
linv0 0.1479054 0.0093250 15.861 < 2e-16 ***
I(AREAG4 == 4) -0.1581184 0.0313940 -5.037 4.96e-07 ***
eta 0.0010174 0.0005546 1.835 0.06663
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1
n=3848, degrees of freedom=3780, Resid.Dev=2506

Table A.9. Turnover equation: weighted (DB) estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.738289 1.352248 0.546 0.585118
I(SETTOR3! = MANIFATT.) 0.334894 0.048262 6.939 4.62e-12 ***
fattest 0.077259 0.007828 9.870 < 2e-16 ***
ladd -0.756831 0.227485 -3.327 0.000886 ***
ladd2 -0.002938 0.012520 -0.235 0.814483
orelav 0.587234 0.178975 3.281 0.001043 **
orestra -0.064673 0.024685 -2.620 0.008830 **
linv0 0.112803 0.014619 7.716 1.52e-14 ***
I(AREAG4 == 4) -0.250276 0.054579 -4.586 4.67e-06 ***
eta -0.001326 0.001274 -1.040 0.298262
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1
n=3848, degrees of freedom=3780, Resid.Dev=2784
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Table A.10. Statistics on the parameter distribution (SISF data)

Mean CV P0 P25 P50 P75 P100
Parameter n◦ 1 Intercept

MB estimates -0.6484 -101.798 -2.8671 -1.0963 -0.6452 -0.198 1.4117
DB estimates 0.7055 190.6469 -3.815 -0.207 0.7121 1.6233 4.9031

Parameter n◦ 2 I(d$SETTOR3!=MANIFATT.)
MB estimates 0.3029 10.8143 0.1928 0.2807 0.303 0.3252 0.4051
DB estimates 0.3337 14.3839 0.1724 0.3012 0.334 0.3665 0.4835

Parameter n◦ 3 fattest
MB estimates 0.07708 5.86239 0.06189 0.07401 0.0771 0.08016 0.09118
DB estimates 0.07707 10.10184 0.0509 0.07179 0.07711 0.08238 0.10137

Parameter n◦ 4 ladd
MB estimates -1.1188 -9.4127 -1.4727 -1.1902 -1.1182 -1.0469 -0.7901
DB estimates -0.7623 -29.6794 -1.5228 -0.9159 -0.7612 -0.6079 -0.0562

Parameter n◦ 5 ladd2
MB estimates 0.0064 80.76622 -0.01097 0.00289 0.00642 0.00993 0.02253
DB estimates -0.00324 -384.129 -0.0451 -0.01169 -0.00318 0.00526 0.03562

Parameter n◦ 6 orelav
MB estimates 0.8 10.9012 0.5069 0.7409 0.8005 0.8596 1.0722
DB estimates 0.58289 30.53952 -0.01542 0.46212 0.58377 0.70437 1.13846

Parameter n◦ 7 orestra
MB estimates -0.04629 -32.5319 -0.0969 -0.0565 -0.04621 -0.03601 0.00071
DB estimates -0.06527 -37.6152 -0.14779 -0.08193 -0.06515 -0.04852 0.01135

Parameter n◦ 8 linv0
MB estimates 0.1477 6.2804 0.1165 0.1414 0.1477 0.1540 0.1766
DB estimates 0.11245 12.93049 0.06358 0.10258 0.11252 0.12237 0.15783

Parameter n◦ 9 I(AREAG4==4)
MB estimates -0.15888 -19.6532 -0.26383 -0.18006 -0.15873 -0.13757 -0.06143
DB estimates -0.2516 -21.576 -0.43406 -0.28843 -0.25133 -0.21455 -0.08218

Parameter n◦ 10 eta
MB estimates 0.001 54.93891 -0.00085 0.00063 0.00101 0.00138 0.00273
DB estimates -0.00136 -93.4286 -0.00562 -0.00222 -0.00135 -0.00049 0.0026
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Figure 1. Distribution of the parameter: (log) household income (y)
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Figure 2. Distribution of the parameter: head of household age (ETA)
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Figure 3. Distribution of the parameter: number of household members
greater than 2 (I(NCOMP > 2)
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Figure 4. Distribution of the parameter: household residing in the South
and Islands (I(AREA3 == 3))

−0.22 −0.18 −0.14 −0.10

0
5

10
15

20
25

30

Unweighted estimates (MB)

N = 1000   Bandwidth = 0.002798

D
en

si
ty

−0.22 −0.18 −0.14 −0.10

0
5

10
15

20

Weighted estimates (DB)

N = 1000   Bandwidth = 0.004002

D
en

si
ty

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●●
●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●
●●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

−0.22 −0.18 −0.14 −0.10

−
0.

16
−

0.
12

Unweighted vs Weighted estimates

simbeta.w

si
m

be
ta

●

●

●

●

●

●●

●

●

●

●

●

●
●

−
0.

22
−

0.
18

−
0.

14
−

0.
10

Unweighted and weighted estimates

Distribution of the estimators

I(
A

R
E

A
3=

=
3)

33



Figure 5. Distribution of the parameter: household residing in
municipalities with more than 500k inhabitants (I(ACOM4C == 3))
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Figure 6. Distribution of the parameter: previous year investments (linv0)
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Figure 7. Distribution of the parameter: firms located in the South and
Islands (I(AREAG4 == 4))
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