ICLARM Technical Reports 17

Growth, Mortality and Recruitment of Commercially Important Fishes and Penaeid Shrimps in Indonesian Waters

A. Dwiponggo T. Hariati S. Banon M.L. Palomares D. Pauly

SH 207 TR4 #17

c l

RESEARCH INSTITUTE FOR MARINE FISHERIES JAKARTA, INDONESIA INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES Growth, Mortality and Recruitment of Commercially Important Fishes and Penaeid Shrimps in Indonesian Waters

> A. Dwiponggo J. Hariati S. Banon Research Institute for Marine Fisheries Agency for Agricultural Research and Development Ministry of Agriculture Jalan Krapu 12, Jakarta-Kota Indonesia

M.L. Palomares

and

D. Pauly International Center for Living Aquatic Resources Management MC P.O. Box 1501, Makati, Metro Manila Philippines

1986

RESEARCH INSTITUTE FOR MARINE FISHERIES

INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES

5H 207 TR 4 #17 e, 1

AUG 1 7 1987

Growth, mortality and recruitment of commercially important fishes and penaeid shrimps in Indonesian waters

A. DWIPONGGO T. HARIATI

S. BANON M.L. PALOMARES

AND

D. PAULY

1986

Published jointly by the Research Institute for Marine Fisheries, Agency for Agricultural Research and Development, Ministry of Agriculture, Jalan Krapu 12, Jakarta-Kota, Indonesia and International Center for Living Aquatic Resources Management, MC P.O. Box 1501, Makati, Metro Manila, Philippines

Dwiponggo, A., T. Hariati, S. Banon, M.L. Palomares and D. Pauly. 1986. Growth, mortality and recruitment of commercially important fishes and penaeid shrimps in Indonesian waters. ICLARM Technical Reports 17, 91 p. Research Institute for Marine Fisheries, Jakarta, Indonesia and International Center for Living Aquatic Resources Management, Manila, Philippines.

ISSN 0115-5547 ISBN 971-1022-26-5

ICLARM Contribution No. 351.

Published and distributed with the support of the L.J. and Mary C. Skaggs Foundation, Oakland, CA

Table of Contents

Abstract	1
Introduction	1
Project Background, Material and Methods	2
Results and Discussion	7
Acknowledgements	10
References.	10
Index	12
Plates 1-61	15
Appendix Tables A1-A61	76

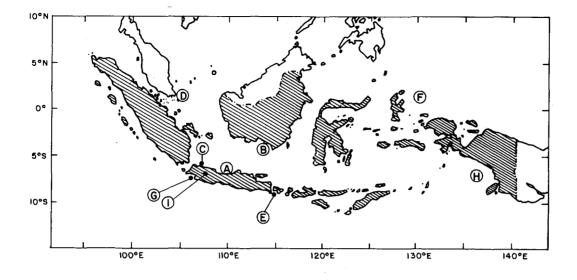


Fig. 1, Geographic distribution of stocks for which data were analyzed for this atlas.

Α	Central and East Java (Tegal, Pekalongan)	33	stocks
в	South coast of Kalimantan	4	
С	Jakarta Bay	3	
D	Bintan/Riau Archipelago	4	
Е	Bali Strait	4	
F	Sorong/West Pacific	2	
G	Pelabuhan Ratu/Indian Ocean	2	
н	Arafura Sea (shrimp stocks)	9	
I	Jatiluhur Lake/West Java	1	

Project Background, Materials and Methods

NARRATIVE OF PROJECT

The work leading to this document started in early 1983, after an agreement formalizing the project was signed by the late M. Unar, Director of the Marine Fisheries Research Institute (now Research Institute for Marine Fisheries, or RIMF), Jakarta and then ICLARM Director General Dr. Richard Neal, which outlined how both institutions were to cooperate on a joint project for the analysis of length-frequency and abundance data on commercially important fish and invertebrate stocks in Indonesian waters. The agreement further included ICLARM supplying a microcomputer, line printer and appropriate software (notably the ELEFAN programs) to the project staff in Jakarta, and regular visit by ICLARM staff to the project site. The project as a whole was to be the "Indonesian Module" of ICLARM's "Management-Oriented Fisheries Research Project" and its progress has been reported upon in ICLARM's annual reports from 1983 onwards. Since the start of the active phase of this project

Abstract

Estimates of von Bertalanffy growth parameters (L_{∞} and K) were derived through application of the ELEFAN I program to lengthfrequency data from 52 stocks and 36 species of commercially important bony fishes from Indonesian waters, and to 9 different cohorts of a stock of penaeid shrimp (*Penaeus merguiensis*) from the Arafura Sea. Derived quantities such as total, natural and fishing mortality estimates, as well as selection and recruitment patterns were then obtained by application of the ELEFAN II program to these same length-frequency data. Some generalizations on the status of the stocks included are presented, notably on the demersal fishes off the north coast of Java, and on *P. merguiensis* in the Arafura Sea.

1

Introduction

Indonesia, as a large archipelagic country spanning the Sunda and Sahul shelves, has considerable fishery resources. Most of them are presently exploited, but there are some which could support increased fishing effort, notably in the eastern part of the country (Sujastani 1981; Dwiponggo 1982).

The vastness of Indonesian waters and the diversity of her fish and fisheries are both a blessing and a curse, however. Assessing the status of the various fisheries such as to eventually ensure that each exploits its stocks in optimal fashion is particularly difficult in view of the distances that must be covered, the logistical problems that must be solved when a given sampling scheme is to be applied and, last but not least, in view of the dearth of Indonesian personnel trained in fish population dynamics and stock assessment.

In this context, the application of the length-based method, such as the ELEFAN package of programs seems particularly useful, as it allows for preliminary assessments on the basis of a minimum of information, i.e., reasonably well-sampled length-frequency data.

This document presents results obtained by the systematic application of the ELEFAN approach to those length-frequency data that became available to the authors from 1983 to 1985. These data cover fishes ranging in size from 10 in *Secutor ruconius* to 80 cm in *Katsuwonus pelamis* and from areas as far apart as Jakarta Bay and the Arafura Sea (see Fig. 1). Altogether, 52 stocks of fish are covered, distributed in 36 species, 21 genera and 15 families of bony fishes, as well as 9 annual cohorts from the Arafura Sea stock of banana prawn *Penaeus semisulcatus*. the last author of this document visited the project site thrice, while the first author came twice to ICLARM headquarters in Manila. These exchanges made it possible to pattern our work after a similar undertaking, conducted simultaneously in the Philippines and which led to an "Atlas of the growth, mortality and recruitment of Philippine fishes" (Ingles and Pauly 1984), and yet to include a more detailed analysis of some of the results presented here, notably as concerns the shrimp *Penaeus merguiensis* (see below). With completion of the project phase involving length-frequency data acquisition, standardization and analysis using ELEFAN I and II (end of 1984), ICLARM donated the microcomputer, line printer and software supplied to its counterpart organization, and Mr. M. Saleh (RIMF) began drafting the plates for presentation of the results.

Simultaneously, a number of preliminary papers presenting selected project results were prepared by the first author (Dwiponggo 1984), by Sadhotomo et al. (1983) and by Drs. Nurzali Naamin and Purwito Martosubroto, who based parts of their dissertation (Martosubroto 1982; Naamin 1984) on analyses by the project staff of size-frequency data obtained by them and by staff of the Directorate General of Fisheries from vessels fishing in the Java Sea, and in the Arafura Sea for *P. merguiensis*, respectively.

In November 1983, ICLARM received a generous grant from the L.J. and Mary C. Skaggs Foundation, of Oakland, California, USA, which offset some of ICLARM's costs for supporting this project, notably the printing of the present document.

Project results pertaining to abundance (i.e., catch/effort) data will be presented in a subsequent contribution.

MATERIALS

The size-frequency data used here were all length-frequency data, except in the cases of the shrimp *P. merguiensis* which were expressed in tails per pound. The source of the size-frequency data used here are given for each data set in the

legends of Plates 1 to 61, while the size frequency themselves are given in Appendix A as Tables A1 to A61.

METHODS (This section is adapted from Pauly and David 1981, Pauly et al. 1980 and Ingles and Pauly 1984)

The ELEFAN I program, run on a Radio Shack microcomputer (Model III, 48K) was used to estimate, for each set of length-frequency data, the value of the parameters L_{∞} and K of a growth equation of the form

$$L_{t} = L_{\infty} (1 - e^{-K (t - t_{o})})$$

that is, of the VBGF (von Bertalanffy 1938), where

- L is the mean length at age t,
- L_{∞} is the asymptotic length, that is the mean length the fish of a given stock would reach if they were to grow indefinitely,
- K is a growth constant which may be conceived as a "stress factor",
- to is the "age of the fish at zero length" if they had always grown in the manner described by the equation (note that to is generally negative).

No attempt was made to estimate the values of the parameter t_o , because it cannot be estimated from the lengthfrequency data alone, and because it is not needed for most assessments (see below). With t_o remaining unknown, all growth curves shown refer to *chronological* time: they indicate what size the fish of a given cohort had at a certain *time* but do not indicate the *absolute ages* of the fish, i.e., they do not give the *age* corresponding to a given *size*.

No attempt was made to investigate seasonal growth oscillation, although such oscillations occur in tropical waters and ELEFAN I could have picked them up. The quantity and quality of the data processed were too high and too low, respectively, to justify this effort. To estimate the set of growth prameters which best "fits" a set of growth parameters, ELEFAN I does the following:

- "restructures" the length-frequency sample(s) that have been entered, such that small but clearly identifiable peaks are attributed a number of "points" similar to peaks based on a larger number of fishes. The procedure used here essentially consists of calculating running average frequencies (over five length classes), dividing each length-frequency value by the corresponding running average frequency, then subtracting 1 from the quotient. A few other minor adjustments are then made to prevent certain types of samples from generating biases;
- calculates the maximum sum of points "available" in a (set of) length-frequency sample(s), where "available points" refer to points which can possibly be "accumulated" by one single growth curve (see below). This sum is termed "available sum of peaks" (ASP);
- 3. "traces" through the (set of) length-frequency sample(s) sequentially arranged in time, for any arbitrary "seed" input of L_{∞} and K, a series of growth curves started from the base of each of the peaks, and projected backward and forward in time to meet all other samples of the sample set and/or the same sample repeated again and again;
- accumulates the "points" obtained by each growth curve when passing through peaks (positive points) or through the troughs separating peaks (negative points);
- 5. selects the curve which, by passing through most peaks and avoiding most troughs best "explains" the peaks in the (set of) sample(s) and, therefore, accumulates the largest number of points. This new sum is called "explained sum of peaks" (ESP);
- 6. increases or decreases the "seeded" values of L_{∞} and K until the ratio ESP/ASP reaches a maximum, and outputs the growth parameters corresponding to this optimum ratio.

The validity of the procedure outlined here rests on the following assumptions:

1. that the sample(s) used represents the population investigated;

- 2. that the growth pattern in the population is the same from year to year;
- 3. that the VBGF describes the average growth of the investigated stock;
- 4. that all fishes in the (set of) sample(s) have the same length at the same age, and that, therefore, differences in length can be attributed to differences in age.

Of these four assumptions, the first is a sampling problem and need not be discussed here. Assumptions 2 and 3 appear to be realistic, and they are in fact made, explicitly or not, every time the growth parameters of fish are calculated on the basis of annual markings on skeletal parts.

The last of these assumptions does not strictly apply, since it is known that fishes having the same age may have different lengths. Simulations show, however, that this assumption, which is essential to the operation of the program, does not generate a marked bias.

The reader is reminded that the growth curve which has been superimposed on the length-frequency data is the single growth curve which gave the best fit, not the only one that could have been fitted. Thus in most cases, or more precisely, in all cases where two cohorts recruit annually to the stocks, a second growth curve could have been fitted to the data by shifting the original growth curve by about five to seven months.

Some of the growth curves may generate *ages* that appear too high due to the values of L_{∞} being too low because the samples were not representative of the stock (e.g., from migration out of the sampling area). In most cases, however, growth curves and parameter values appear reasonable and generally compare well with values available in the literature.

The length-converted catch curves are generally straight, justifying the computation of a single value of Z for all sizes (ages) in the exploited phase.

The ELEFAN I program used to fit the growth curves presented here has been modified since the bulk of the work in this atlas was completed. It is expected, therefore, that any reader attempting to reproduce the results using lengthfrequency data in this document and a recent version of ELEFAN I would find slightly different growth parameter values to give the best fit. These small differences should not detract from the overall usefulness of this atlas, however.

The ELEFAN II program has four main subroutines, all of which require growth parameter estimates (as generated by ELEFAN I) and the same length-frequency data used for growth parameter estimation. These routines are:

- 1. The estimation of total mortality (Z) from the straight right arm of a length-converted catch curve (Pauly 1984);
- 2. The estimation of natural mortality (M) from the built-in empirical relationship (Pauly 1980):
 - \log_{10} M = -0.0066 0.279 \log_{10} L_{∞}
 - $+0.6543 \log_{10} K + 0.4634 \log_{10} T;$
- 3. The derivation of a "selection pattern", i.e., of a graph giving probabilities of capture by length, based on the method described in Pauly (1984);
- 4. The derivation of a "recruitment pattern", i.e., of a graph showing the seasonality of recruitment into the stock investigated.

The first of these routines usually provides estimates of Z that are very close to the true values when the length-frequency data used are representative of the population investigated (Pauly 1984). As with the latest version of this program, the version of ELEFAN II used pooled the various samples of a data set into one single sample, such that the effect of seasonal recruitment pulses on the length-converted catch curves was evened out as far as possible. However, the early version of ELEFAN II differed from the latest versions in that each sample of a data set was given the same weight before pooling (through re-expression in percentages); in newer versions, several weighting modes are offered, including weighting of the percentage samples by the square root of their original sample sizes.

The estimates of M, obtained from equation (4) using a mean water temperature set at $T = 27^{\circ}C$ throughout, were subtracted from the values of Z obtained from the length-converted catch curves to obtain approximate values of fishing mortality (F = Z - M), which were used to compute exploitation rates (E = F/Z). The latter may be used to assess stocks, in the absence of catch and effort data, if the generali-

zation of Gulland (1971) is accepted that the optimum fishing mortality in an exploited stock should be approximately equal to natural mortality or $E_{opt} \approx 0.5$.

Because of the uncertainties inherent in the various estimates used to compute the values of E, no attempt should be made to assess a *single* stock using the technique outlined here. On the other hand, a predominance of estimates of values of E > 0.5, in a *number of stocks* should be suggestive of over-exploitation.

The selection patterns presented were obtained from the left, ascending arm of the length-converted catch curves, using the analytical method described in Pauly (1984), which is run automatically every time a length-converted catch curve is derived by ELEFAN II (Pauly et al. 1981). Throughout, the computations were run with a straight, backward projection of the descending right arm of the curve. This leads to estimates of mean size at first capture very close to those that would have been obtained, had a more elaborate computational method been used to estimate the probabilities of capture (see Pauly 1984). However, it should be noted that the estimates of mean size at first capture (L_c) presented in this atlas are usually higher than would have been obtained based on mesh selection experiments, because the method used here cannot account for the masking effect of incomplete recruitment.

The method by which recruitment patterns are derived from a set of length-frequency data and growth parameter values has been described in Pauly and Navaluna (1983); it is also part of the user's instruction for ELEFAN II (Pauly et al. 1981). Recruitment patterns are generated by a backward projection, using the growth parameter at hand, of the available length-frequency data.

Typically, recruitment patterns have the bell-shape of a normal distribution when recruitment occurs as a single annual event. When annual recruitment occurs as two major events (more than two are unlikely, see Pauly and Navaluna 1983), this usually results in a single asymmetric structure, or in a bimodal pattern. Recruitment patterns as obtained by ELEFAN II can then be decomposed into their component distributions and inferences can then be drawn on the seasonality of the recruitment and on the relative strength of different recruitment pulses (see Pauly and Navaluna 1983 for an example).

The set of methods outlined above were applied to the fish data in Plates 1-52. In the case of shrimp (Plates 53 to 61), the nature of the available raw data (commercial tail counts) required application of some modifications, while precluding application of some methods.

Shrimp tail counts are actually weight-frequency distributions with unequal class intervals. They were here transformed into length-frequency distribution based on the following steps:

- 1. The shrimp tail counts (i.e., number of shrimp tails per pound) were converted to shrimp tail weight-frequency data.
- 2. The shrimp tail weights were converted to shrimp total weights through multiplication by a factor of 1.6.
- 3. The total weight-frequency data were converted to total length-frequency data through application of the appropriate length-weight relationships (Naamin 1984), based on the assumption of even distribution of shrimps within each weight class.

This procedure provides "length"-frequency data which will reflect the gross features of the actual length-frequency distribution of the catch and hence allow estimation of growth and mortality but which are too crude to allow estimation of parameter requiring detailed information on the distribution of the smaller animals such as the recruitment and selection patterns. For this reason, these two types of graphs are omitted in Plates 53 to 61 pertaining to *Penaeus merguiensis*.

The availability of time series of data on the shrimp *Penaeus* merguiensis in the Arafura Sea (Table 1) on the other hand, allowed application of various stock assessment models. of which we have selected here the following:

- plot of Z on effort to estimate natural mortality (M) and catchability coefficient (q) as intercept and slope, respectively, of the regression line;
- parabolic surplus production model (Schaefer 1957) to estimate Maximum Sustainable Yield (MSY) and optimum effort (f_{opt});

- "logarithmic" surplus production model (Fox 1970), to obtain a second set of estimates of MSY and f_{oot} , and
- surplus production model of Csirke and Caddy (1983), to show that estimates of total mortality (Z) obtained from length-converted catch curves can indeed replace effort in production modelling.

EXPLANATION OF THE GRAPHS ON PLATES 1 TO 61

Graphs of length-frequency data with superimposed growth curves, length-converted catch curves, recruitment pattern and selection pattern, are given for each fish "stock" recognized here in Plates 1 to 52. An index to these stocks, which are arranged by families, themselves arranged according to Greenwood et al. (1966), is provided on p. 12 and 13.

The upper graph in each plate referring to fish gives lengthfrequency histograms, which are shown as percentages rather than absolute numbers, for months in which data were available. The number of fish in each monthly sample is shown beside each histogram. The sequence of histograms is repeated to show how ELEFAN I uses the data repetitively. Best-fit lines of growth resulting from ELEFAN's analysis are shown for *one* cohort only (two cohorts are recruited each year in the majority of fish species investigated). Note that the projection back to zero of the growth curve *does not* necessarily provide the time at hatching of the fish, because t_o cannot usually be assumed equal to zero (see above).

In plates referring to fish, the lower left graph is a lengthconverted catch curve. Relative age is given since the growth curves provide only relative, not absolute, age (t_o is not known). Black dots are those used in calculating the parameters of the straight line, the slope of which (with sign changed) is an estimate of Z. Open dots represent fish not fully selected by the gear used in the fishery and/or not used in mortality estimates.

The central lower graph in each plate referring to fish is the pattern of annual recruitment into the fishery as obtained

from ELEFAN II. The data are expressed as percentage of annual recruitment by month.

In most fish stocks the graphs suggest that two annual pulses of recruitment have occurred; fewer species show one (bell-shaped curve); the remainder are somewhat ambiguous, the result of insufficient data.

The lower right graph presents the probability of capture of fish by length class as estimated from ELEFAN II. Mean length at first capture (L_c) was estimated, using a cumulative method, as the length at which P = 0.5.

Parameters determined from these graphs (L_{∞} , K, L_c , Z, M and E) are provided beneath each plate referring to fish.

together with a reference to literature on the species concerned.

The plates referring to shrimp (Plates 53 to 61) differ from those referring to fish in that they include neither recruitment nor selection patterns (see above) and by being arranged differently. The upper part of each plate referring to shrimp presents an outline drawing of the shrimp species in question as in the case of the fish—along with details on the sampling data and location and, to the right, a length-converted catch curve. The original length-frequency data with superimposed growth curve and legend form, as in the case of the fish, the lower part of each graph.

Results and Discussion

Plates 1 to 62 present the key results of our project, and readers are encouraged to look at each plate separately, then to assess our overall interpretation of the available data.

The astute reader will not fail to notice that the quality of the data analyzed here is, for most stocks, such that one would not (and in fact should not) put a great amount of trust in a given isolated set of growth and mortality estimates. However, when our results are grouped, general trends emerge which will tend to reflect the underlying reality.

Two of these data groupings will be presented and discussed in some detail here, the demersal fishes of the northern coast of Central Java and the population dynamics of banana prawn in the Arafura Sea. These accounts are followed by a more general discussion of our results.

STATUS OF DEMERSAL FISHES OF THE NORTH JAVA COAST PRIOR TO THE TRAWLING BAN OF 1980

The analyses of length-frequency data of fishes of the north coast of Central Java (see Fig. 1) allows an assessment of the

status of these resources in the late 1970s, when these data were collected.

Fig. 2 presents (on its left side) a frequency distribution of values of the exploitation rate (E = F/Z) for 24 stocks of fishes

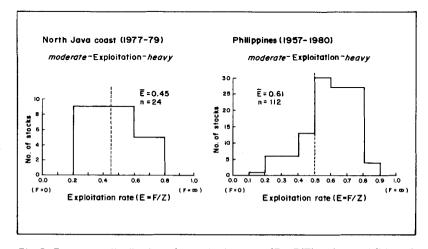


Fig. 2. Frequency distribution of exploitation rates (E = F/Z) in demersal fishes of the north Java coast, and in Philippine fishes, as based on the same analytic approach (application of ELEFAN I and II) (see text for interpretation).

8

exploited by demersal trawlers from 1977 to 1979. As might be seen, this frequency distribution has a mean of $\overline{E} = 0.45$ suggesting that the majority of species were exploited more or less optimally.

This finding confirms the contention of Martosubroto (1984) that the demersal stocks of the Java Sea were, at the time trawling was banned (Sarjono 1980), in a lesser state of exploitation than those of some neighboring countries, e.g., Thailand (see Pauly 1979) or the Philippines (see Fig. 2, right side). This does not imply that the trawl ban was unjustified. Rather it puts the trawl ban where it belongs, into the political sphere, as a measure to alleviate the plight of the small-scale fishermen who—especially along the North Java coast—had a minuscule share of the "optimally" exploited stocks.

POPULATION DYNAMICS OF *PENAEUS MERGUIENSIS* IN THE ARAFURA SEA, 1969-1981 (This section is based on Naamin 1984 and Pauly and Neal 1985)

The analysis of the size-frequency data of *Penaeus merguien*sis from the Arafura Sea area of Indonesia yielded particularly interesting results because these data, covering the period from 1969 to 1981 encompass a wide range of catch levels, extracted with a wide range of effort (Table 1).

Hence it was possible to use, in conjunction with the available catch and effort data, and with the total mortality estimates, a number of population models, all showing that the banana prawn population in the Arafura Sea tend to behave very much as predicted by the Theory of Fishing.

Thus, the plot of Z on effort in Fig. 3 shows a highly linear response of Z to fishing effort, leading to an estimate of natural mortality (M) extremely close to values estimated using different approaches and/or elsewhere (Table 2).

This is confirmed here by Fig. 4, i.e., an application of the model of Csirke and Caddy (1983)—the first ever to shrimp—which, besides producing a value of M extremely close to that provided by Fig. 3, also provides a value of maximum sustainable yield that is very close to those produced by conventional surplus production models (Fig. 5).

Table 1: Catch, e			
Sea, Indonesia (Su			

Year	Annual catch (t)	Effort (vessel days) (Z) standard	Total mortality	Data in plate number
1969	673	857	2.71	53 .
1970	1,056	1,542	3.05	n.a. ^c
1974	5,777	12,247	8.62	54
1975	4,177	11,124	8.56	Sec. 66
1976	3,628	15,701	10.96	56
1977	4,049	11,215	8.79	57
1978	4,508	10,436	8.41	58
1979	3,845	10,040	7,47	59
1980	3,940	9,795	8.01	60
1981	4,038	10,132	7.93	61

^OThe length-frequency data for 1970, and used by Naamin (1984) for his dissertation were not available at the time this atlas was completed.

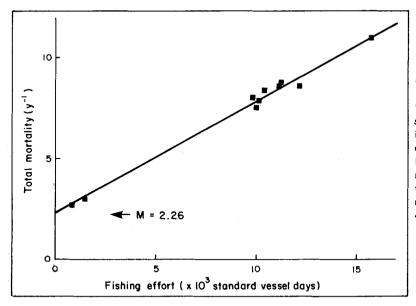


Fig. 3. Plot of total mortality (Z, as estimated using ELEFAN 11) on effort in *Penaeus merguiensis*, Arafura Sea (based on data in Table 1); note very close fit of data points to regression line and estimate of natural mortality (M) very close to that obtained using alternative methods (see also Table 2, Fig. 4 and text).

GENERAL DISCUSSION

As noted in numerous publications dealing with the theory and applications of the ELEFAN programs, the reliability of The results presented here were obtained using some of the earliest versions of the ELEFAN programs. Following a fire at the printer's shop(!) which destroyed an earlier, cameraready layout of this contribution (inclusive of all hand-drafted graphs prepared by Mr. M. Saleh), the present document was recreated at ICLARM by Ms. M.L. Palomares and Mr. O. Espiritu, Jr. based on raw data and (small) photocopied versions of Mr. Saleh's graphs, as well as on more recent, faster

Acknowledgments

The authors' sincere thanks are due to the late Mr. M. Unar, former Director of Research, Institute for Marine Fisheries, and Dr. N. Naamin, present Director, for their encouragement. The cooperation of the scientist and staff of the Research Institute for Marine Fisheries, the Ocean Research Institute (LON), Directorate General for Fisheries (DGF), in providing length-frequency data, is highly appreciated. Authors and colleagues who contributed length-frequency data for use in this atlas are acknowledged on the corresponding plates. We wish here, however, to state our appreciation to Messrs, M. versions of the ELEFAN programs, which also generate HIRES graphics output.

Readers interested in these versions, which run on Apple II (CP/M) and IBM PC and their compatibles may write to the Director, Resource Assessment and Management Program, ICLARM, MC P.O. Box 1501, Makati, Metro Manila, Philippines.

Badrudin, U. Beck, Djamali, P. Martosubroto, S. Nurhakim, Purwanto, R. Rustam, B. Sadhotomo, Setiadi, Subroto, A. Sudradjat, G. Tampubolon and J.C.B. Uktolseya.

The assistance given to the authors by Mrs. Maria Wahiono at the early stage of the project, by Ms. M.L. Palomares when results were assembled, and by Messrs. M. Saleh and O. Espiritu, Jr. for drafting graphs, is gratefully acknowledged along with, last but not least, the generous support of the L.J. and Mary C. Skaggs Foundation.

References

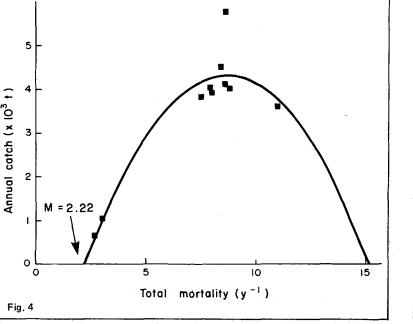
- Bertalanffy, L. von. 1938. A quantitative theory of organic growth (inquiries in growth laws II). Hum, Biol. 10: 181-213.
- Csirke, J. and J.F. Caddy. 1983. Production modelling using mortality estimates. Can. J. Fish. Aquat. Sci. 40: 43-51 (with errata in Can. J. Fish. Aquat. Sci. 40: 255-256).
- Dwiponggo, A. 1982. Perkiraan potensi suberdaya perikanan laut di wilayah perairan Indonesia. Bull. Pen. Perikanan 2(1): 1-16.
- Dwiponggo, A. 1984. Notes on the demersal fishery of the Java Sea and population parameters of some demersal species, p. 58-71. *In* Report of the Fourth Session of the Standing Committee on Resource Research and Development. Indo-Pacific Fisheries Commission, Jakarta, 23-29 August 1984, FAO Fish, Rep. No. 318, 108 p.
- Fox, W.W. 1970. An exponential yield model for optimizing exploited fish populations. Trans. Amer. Fish. Soc. 99: 80-88.

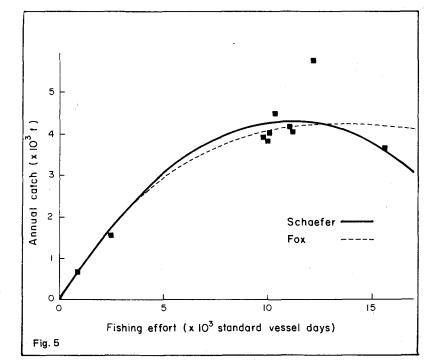
- Greenwood, P.H., D.E. Rosen, S.H. Weitzmann and G.S. Myers. 1966. Phyletic studies on teleostean fishes, with a provisional classification of living forms. Bull. Amer. Mus. Nat. Hist. 131(4): 339-455.
- Gulland, J.A. 1971. The fish resources of the ocean. Fishing News Books, Ltd., Surrey, England.
- Gwyther, D. 1982. Yield estimates for the banana prawn (*Penaeus merguiensis* de Man) in the Gulf of Papua fishery. J. Cons. CIEM 40: 245-258.
- Ingles, J. and D. Pauly. 1984. An atlas of the growth, mortality and recruitment of Philippine fishes. ICLARM Technical Reports 13, 127 p. Institute of Fisheries Development and Research, College of Fisheries, University of the Philippines in the Visayas, Quezon City, Philippines and International Center for Living Aquatic Resources Management, Manila, Philippines.

Method	M (1/year)	Area, source and remarks
Plot of Z on effort	2.26	Arafura Sea, see Fig. 2
Parabolic plot of catch on Z	2.22	Arafura Sea, see Fig. 3
Empirical equation	2.06	Arafura Sea (Naamin 1984 based on Pauly 1980) ⁶
M = Z in a little-exploited stock	2.60	Gulf of Carpentaria (Lucas et al. 1979); authors noted that their M is an over estimate
M = Z — M, with F estimated from area swept by trawlers	2.70	Gulf of Papua (Gwyther 1982) see original paper for prob lems within estimation of 2 and F

Table 2. Estimates of natural mortality (M) in Penaeus merguiensis, as obtained by

results obtained will depend largely on the quality (i.e., representativeness) of the size-frequency data upon which the analyses are based.


In the case of the data analyzed here, representativeness is certainly a problem, as the data used have been sampled rather haphazardly, for purposes other than detailed analysis with the ELEFAN programs (which in fact was not available at the time the data were collected).

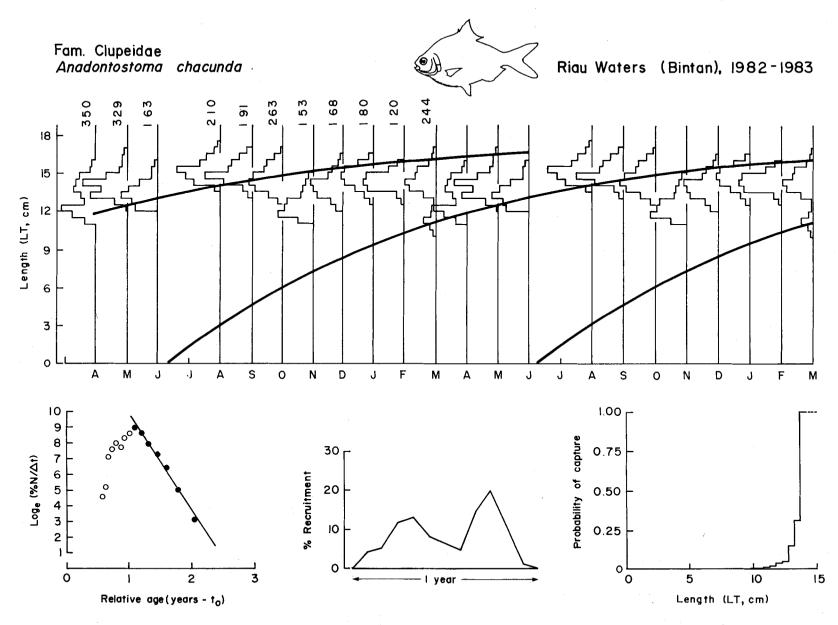

Thus, as mentioned above, results based on any single data set must be viewed with caution. Generalizations based on aggregated results, on the other hand tend to confirm inferences drawn from independent sources, as shown above with references to Java Sea fishes and the banana prawns of the Arafura Sea.

This suggests that continued analyses of length-frequency data, using the ELEFAN programs and/or related computerbased approaches deserve to be encouraged.

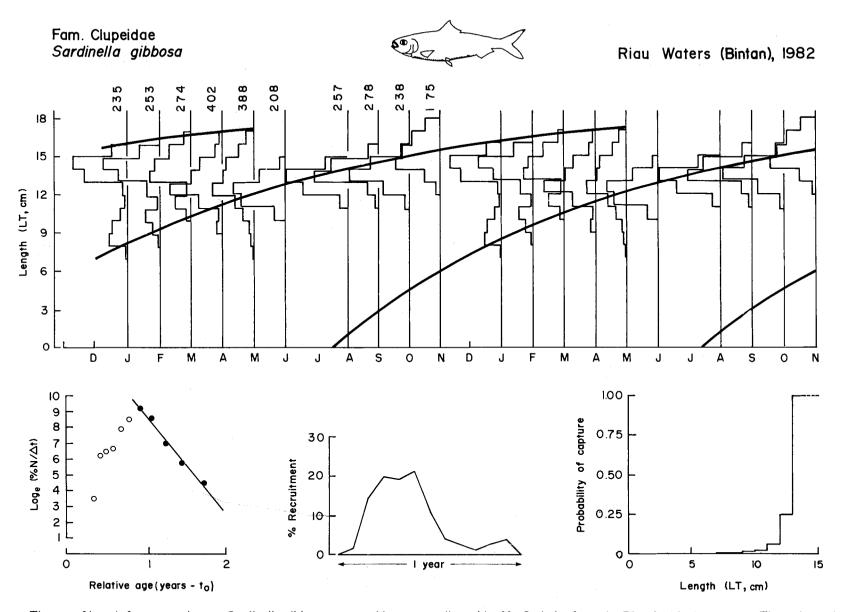
Fig. 4. Application to the Arafura Sea stock of *Penaeus merguiensis* of Csirke and Caddy's yield model (based on data in Table 1); note relatively good fit of this first application of the model to a shrimp stock, and estimate of M close to those obtained using different methods (Fig. 3, Table 2 and text).

Fig. 5. Application of Schaefer and Fox's production models to the Arafura Sea stock of banana prawn (*Penaeus merguien*sis). Note that estimate of MSY $(4.0-4.5 \times 10^3 \text{ t/year})$ are similar to the MSY estimate obtained using the model of Csirke and Caddy (see Fig. 4 and text; based on data in Table 1).

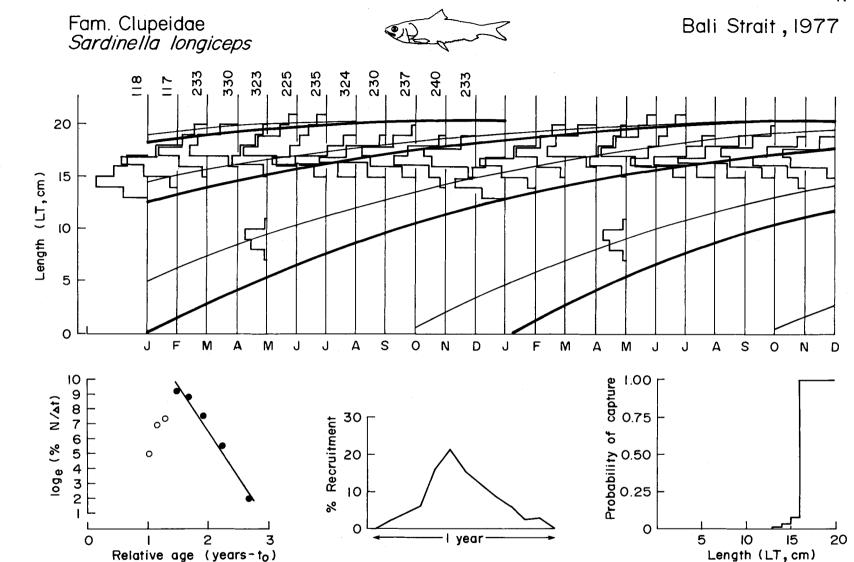
- Lucas, C., G. Kirkwood and I. Somers. 1979. An assessment of the stocks of the banana prawn *Penaeus merguiensis* in the Gulf of Carpentaria, Aust. J. Mar. Freshw. Res. 30: 639-652.
- Martosubroto, P. 1982. Fishery dynamics of the demersal resources of the Java Sea. Dalhousie University, N.S., Canada. 218 p. Ph.D. Thesis.
- Naamin, N. 1984. Population dynamics of banana prawn (*Penaeus merguiensis* de Man) in the Arafura Sea, and an alternative management plan. Bogor Agricultural University, Bogor, Indonesia, 256 p. Ph.D. Thesis. (In Indonesian)
- Pauly, D. 1979. Theory and management of tropical multispecies stocks: a review, with emphasis on the Southeast Asian demersal fisheries. ICLARM Studies and Reviews 1, 35 p. International Center for Living Aquatic Resources Management, Manila, Philippines.
- Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J. Cons. CIEM 39(2): 175-192.
- Pauly, D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Studies and Reviews 8, 325 p. International Center for Living Aquatic Resources Management, Manila, Philippines.
- Pauly, D. and N. David. 1981. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforsch. 28(4): 205-211.
- Pauly, D., N. David and J. Ingles. 1980. ELEFAN I: user's instructions and program listings. pag. var. (mimeo)

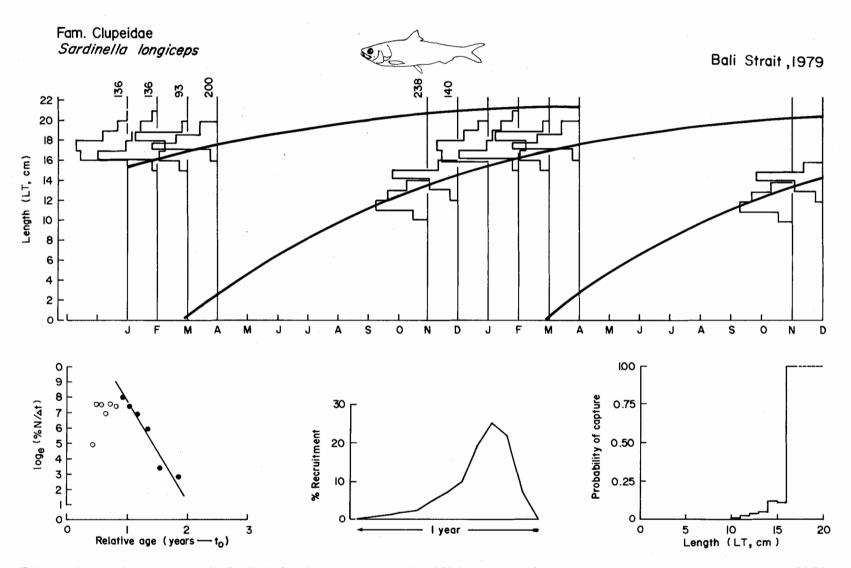

- Pauly, D., N. David and J. Ingles. 1981. ELEFAN II: user's instructions and program listings. pag. var. (mimeo)
- Pauly, D. and N.A. Navaluna. 1983. Monsoon-induced seasonality in the recruitment of Philippine fishes, p. 823-833. *In* G.D. Sharp and J. Csirke (eds.) Proceedings of the Expert Consultation to Examine Changes in Abundance and Species Composition of Neritic Fish Resources, San José, Costa Rica, 18-29 April 1983. FAO Fish. Rep. No. 291, Vol. 3.
- Pauly, D. and R.A. Neal. 1985. Shrimp vs. fish in Southeast Asian fisheries: the biological, technological and social problems. Chapter 10, p. 487-510. In A. Yañez-Arancibla (ed.) Recursos pesqueros potenciales de Mexico: la pesca accompañante del camaron. Progr. Univ. de Alimentos, Inst. Cienc. del Mar y Limnol., Inst. Nal. de Pesca, UNAM, Mexico, D.F.
- Sadhotomo, B., Basuherman and S. Nurhakim. 1983. Estimates of growth parameters, instantaneous mortality and yield per recruit of round scad *Decapterus maruadsi* (Temminck and Schlegel) in the Java Sea. Mar. Fish. Res. Rep. (Jakarta) No. 27: 1-11. (In Indonesian)
- Sarjono, I. 1980. Trawlers banned in Indonesia. ICLARM Newsletter 3(4): 3.
- Schaefer, M.B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Inter-Amer. Trop. Tuna Comm. Bull. 2: 247-268.
- Sujastani, T. 1981. The state of Indonesian marine fishery resource exploitation. Indon. Agric. Res. Dev. J. 3(1): 13-20.

¹² Index to families, genera, species and stocks

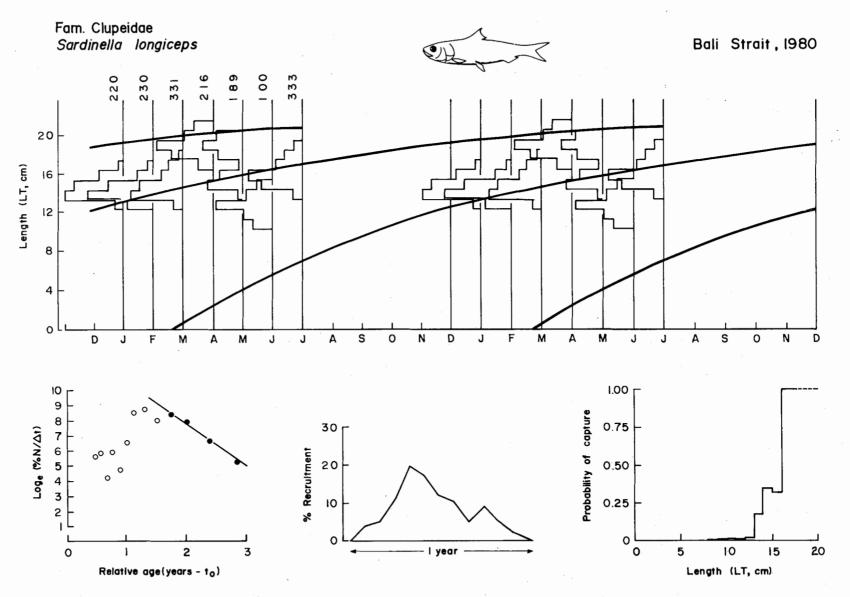

Plate No.	Family	Species	Fishing ground	Location on Fig. 1	Year(s)	N	Page
			ground			· · · · · · · · · · · · · · · · · · ·	
1	Clupeidae	Anadontostoma chacunda	Riau waters (Bintan)	D	1982/1983	2,371	15
2		Sardinella gibbosa	Riau waters (Bintan)	D	1982	2,708	16
3		Sardinella longiceps	Bali Strait	E	1977	2,845	17
4		Sardinella longiceps	Bali Strait	Е	1979	943	18
5		Sardinella longiceps	Bali Strait	Е	1980	1,619	19
6		Sardinella longiceps	Bali Strait	Е	1981	1,656	20
7		Sardinella sirm	Java Sea (Pekalongan)	Α	1982/1983	6,276	21
8	Synodontidae	Saurida longimanus	Java Sea (Central Java)	А	1977/1978	7,495	22
9		Saurida micropectoralis	Java Sea (Central Java)	Α	1978/1979	470	23
10		Saurida undosquamis	Java Sea (Central Java)	А	1977/1978	263	24
11	Cyprinidae	Hampala macrolepidota	Jatiluhur Lake (West Java)	I	1983/1984	275	25
12	Ariidae	Arius maculatus	Java Sea (Tegal)	А	1978	495	26
13		Arius thalassinus	Java Sea (So. Kalimantan)	B	1976	325	27
14	Priacanthidae	Priacanthus macracantus	Java Sea (Central Java)	Α	1977/1978	2,537	28
15		Priacanthus macracantus	Java Sea (Central Java)	А	1978/1979	649	29
16	Carangidae	Decapterus macrosoma	Java Sea (Pekalongan)	А	1982/1983	5,692	30
17		Decapterus maruadsi	Java Sea (Tegal)	А	1981/1982	765	31
18		Decapterus maruadsi	Java Sea (Tegal)	Α	1982/1983	1,238	32
19		Decapterus maruadsi	Java Sea (Pekalongan)	Α	1981/1982	4,265	33
20		Decapterus maruadsi	Java Sea (Pekalongan)	A	1982/1983	7, <u>9</u> 10	34
21		Decapterus russelli	Java Sea (Seribu Is.)	С	1973	525	35
22		Decapterus russelli	Java Sea (Seribu Is.)	С	1974	1,044	36
23		Decapterus russelli	Java Sea (Seribu Is.)	С	1975	885	37
24		Selar crumenopthalmus	Java Sea (Pekalongan)	A	1982/1983	5,540	38
25		Selaroides leptolepis	Java Sea (Tegal)	Α	1978/1979	884	39
26		Selaroides leptolepis	Java Sea (Bintan)	D	1982/1983	2,456	40
27	Formionidae	Formio niger	Java Sea (Central Java)	А	1979	392	41
28	Leiognathidae	Leiognathus bindus	Java Sea (Tegal)	А	1977/1978	6,824	42
29		Leiognathus brevirostris	Java Sea (Central Java)	А	1979	364	43
30		Leiognathus equulus	Java Sea	А	1977	434	44
31		Leiognathus decorus	Java Sea	А	1977/1978	918	45
32		Leiognathus leuciscus	Java Sea (Central Java)	А	1982/1983	728	46
33		Leiognathus splendens	Riau Waters (Bintan)	D	1982	2,142	47
84		Leiognathus splendens	Java Sea	A	1977/1978	4,227	48
35		Leiognathus splendens	Java Sea (So. Kalimantan and Central Java)	А, В	1979	4,453	49

Continued

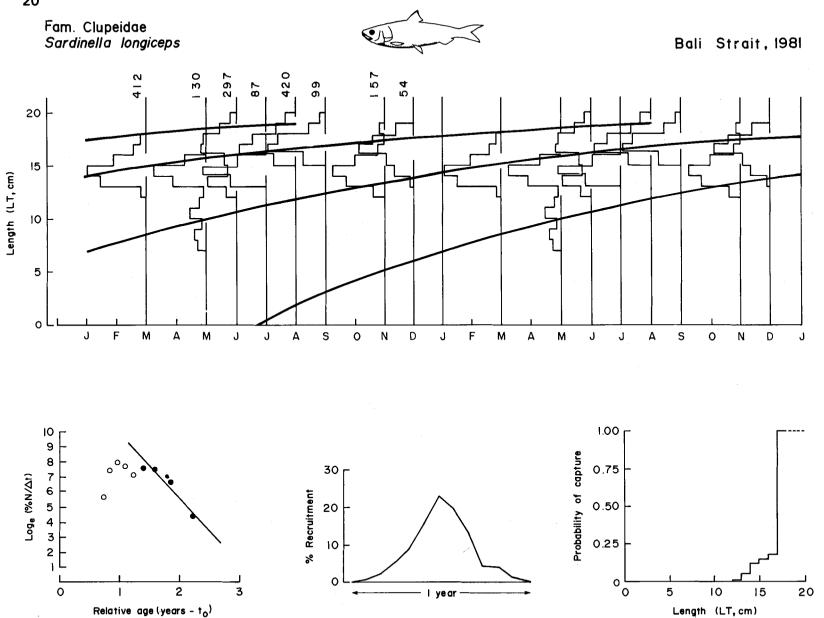

Plate			Fishing	Location			
No.	Family	Species	ground	on Fig. 1	Year(s)	N	Page
36		Secutor ruconius	Java Sea (Tegal)	Α	1977/1978	688	50
37		Secutor ruconius	Java Sea (Central Java)	А	1977/1978	680	51
38	Nemipteridae	Nemipterus hexodon	Java Sea (Central and East Java)	А	1979	1,568	52
39		Nemipterus japonicus	Java Sea (Central Java)	А	1977	296	53
40		Nemipterus mesoprion	Java Sea (Central Java)	А	1978/1979	570	54
41	Gerridae	Pentaprion longimanus	Java Sea (Semarang)	А	1978/1979	5,685	55
42	Pomadasyidae	Pomadasys hasta	Java Sea (Tanjung, Selatan, So. Kalimantan)	В	1977/1978	425	56
43	Mullidae	Upeneus sulphureus	Java Sea	А	1977/1978	5,356	57
44		Upeneus sulphureus	Java Sea	А	1978/1979	1,313	58
45	Drepanidae	Drepane punctata	Java Sea (So, Kalimantan)	В	1977	820	59
46	Scombridae	Auxis thazard	Indian Ocean (Pelabuhan Ratu, West Java)	G	1980	1,016	60
47		Auxis thazard	Indian Ocean (Pelabuhan Ratu, West Java)	G	1981	1,769	61
48		Katsuwonus pelamis	West Pacific (Sorong, Irian)	F	1978	2,013	62
49		Katsuwonus pelamis	W. Pacific (Sorong, Irian)	F	1979	3,543	63
50		Rastrelliger brachysoma	Java Sea (Central Java)	А	1979	403	64
51		Rastrelliger kanagurta	Java Sea (Pekalongan)	A	1982/1983	5,267	65
52	Stromateidae	Pampus argenteus	Java Sea (Central Java)	А	1978/1979	486	66
53	Penaeidae	Penaeus merguiensis	Arafura Sea	Ĥ	1969	9,678	67
54		Penaeus merguiensis	Arafura Sea	н	1974	19,340	68
55		Penaeus merguiensis	Arafura Sea	H	1975	12,110	69
56		Penaeus merguiensis	Arafura Sea	н	1976	51,610	70
57		Penaeus merguiensis	Arafura Sea	H,	1977	12,192	71
58		Penaeus merguiensis	Arafura Sea	н	1978	12,136	72
59		Penaeus merguiensis	A rafura Sea	н	1979	28,483	73
60		Penaeus merguiensis	Arafura Sea	н	1980	12,398	74
61		Penaeus merguiensis	Arafura Sea	н	1981	10,476	75


These length-frequency data originate from Mr. Sudrajat (1982-1983). The following parameter values were estimated: $L_{\infty} = 18.10$ cm, K = 1.30, $L_c = 13.60$ cm, Z = 6.18, M = 2.47, F = 3.72, E = 0.60. Annual recruitment consists of two well-separated pulses. Information on the biological aspect of gizzard shad may be found in Babu Rao, M. 1965. Biological studies on the gizzard shad, *Anadontostoma chacunda* Hamilton (Family Clupeidae) J. Mar. Biol. Assoc. Ind. 7(1): 89-101.

The set of length-frequency data on Sardinella gibbosa presented here was collected by Mr. Sudrajat from the Riau Archipelago waters. The estimated statistics are: $L_{\infty} = 19.50$ cm, K = 1.20, $L_{c} = 12.85$ cm, Z = 6.24, M = 2.29, F = 3.95, E = 0.63. The recruitment pattern, although somewhat jagged, suggests that annual recruitment occurred in two pulses of unequal duration and strength. The food and feeding habit of *S. gibbosa* have been discussed in Sekharan, K.V. 1966. On the food of the sardines, *Sardinella albella* (Valenciennes) and *S. gibbosa* (Bleeker) of the Mandapan area. Indian J. Fish. 13(1&2): 96-141.



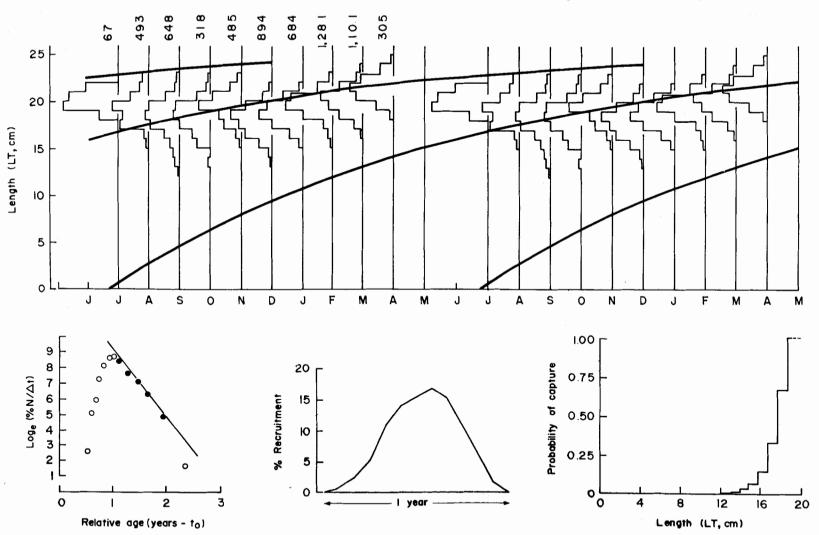
The Indian oil sardine (Sardinella longiceps) is represented here by length-frequency data from the Research Institute for Marine Fisheries, Jakarta which, unfortunately cover a small range of sizes and hence lead to a less credible "best estimate" (thick line) and a more credible growth curve (thin line) with lower ESP/ASP ratio. The thin line leads to the estimation of the following parameter values: $L_{\infty} = 22.30$ cm, K = 0.85, $L_c = 15.98$ cm, Z = 6.28, M = 1.76, F = 4.53, E = 0.72. The recruitment pattern appeared to consist of two pulses of unequal strength. The taxonomic status and other information on S. longiceps are reviewed in Soerjodinoto, R. 1960. Synopsis of the biological data on lemuru Sardinella longiceps. FAO Fish. Synopsis (15): 313-328 and in Dwiponggo, A. 1974. The fishery for and preliminary study on the growth rate of "lemuru" (oil sardine) at Muncar, Bali Strait. Symposium on Coastal and High Seas Pelagic Resources, Wellington, New Zealand, 18-27 October 1972. Proc. Indo-Pac. Fish. Counc. 15(3): 221-240.



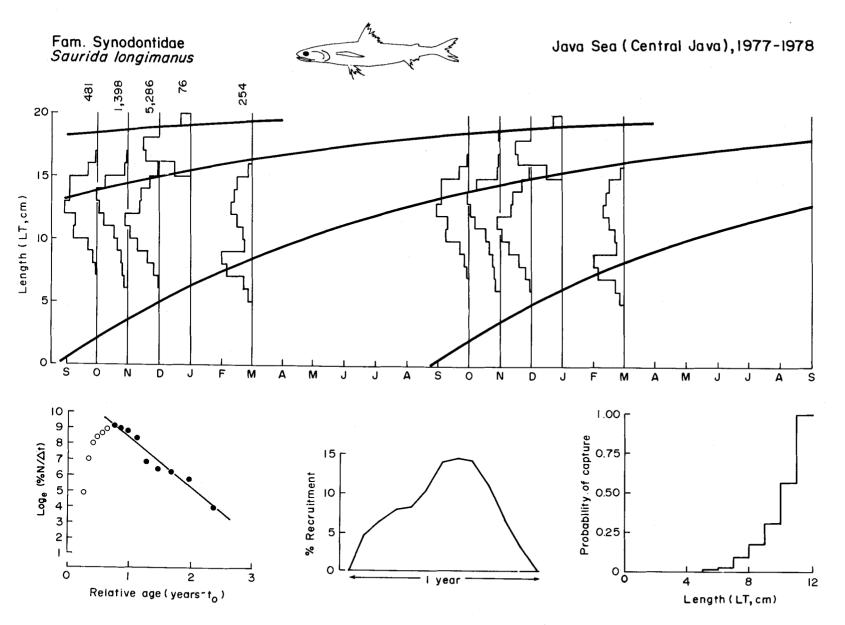
This set of length-frequency data on Sardinella longiceps was collected in 1979 from the Bali Strait and led to the following parameters: $L_{\infty} = 23.20$ cm, K = 1.28, $L_c = 15.00$ cm, Z = 6.57, M = 2.25, F = 4.32, E = 0.66. Annual recruitment probably occurred in two irregular pulses. Further data on S. longiceps may be found in Ritterbush, S. 1975. An assessment of the population biology of the Bali Strait lemuru fishery. Mar. Fish. Res. Inst. Res. Rep. 1/1975: 1-38.

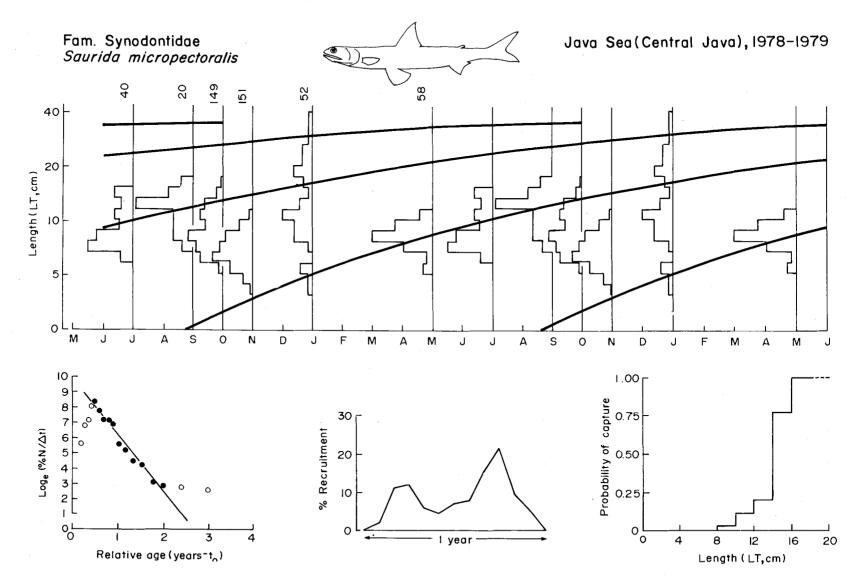
This set of length-frequency data on oil sardine was obtained from the Research Institute for Marine Fisheries, 1980. It led to the following estimates: $L_{\infty} = 22.50$ cm, K = 1.00, $L_c = 16.75$ cm, Z = 4.39, M = 1.95, F = 2.44, E = 0.56. Annual recruitment pattern appeared to consist of two pulses of irregular strength. Stock assessment studies may be found in Sujastani, T. and S. Nurhakim. 1982. The stock assessment of lemuru (oil sardines), *Sardinella longiceps* in Bali Strait. CRIFI Proc. No. 2/SPL/82: 1-11. (In Indonesian with English abstract).

The length-frequency data analyzed here stem from the files of the Research Institute for Marine Fisheries. They allowed the estimation of the following parameter values: $L_{\infty} = 21.10$ cm, K = 0.80, $L_c = 13.47$ cm, Z = 2.24, M = 1.72, F = 0.52, E = 0.23. The recruitment pattern suggests that recruitment occurred as a single protracted event and one much smaller pulse. Miscellaneous biological data and other information on oil sardine in Bali Strait can be found in Anon. 1982. Proceedings of a seminar on lemuru (sardine) fishery, Banyuwangi, 18-21 January 1982. Central Institute for Fisheries Research, Jakarta. 312 p. (In Indonesian)

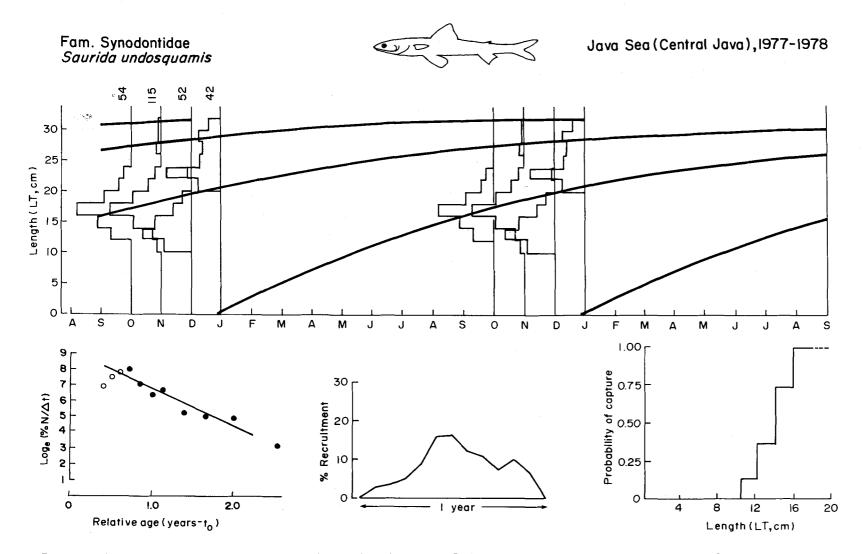

20

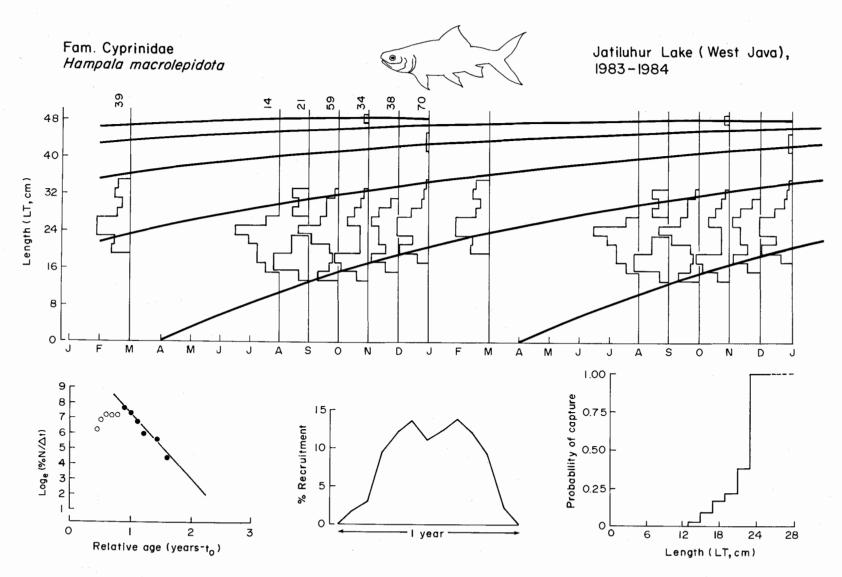
Fam. Clupeidae Sardinella sirm

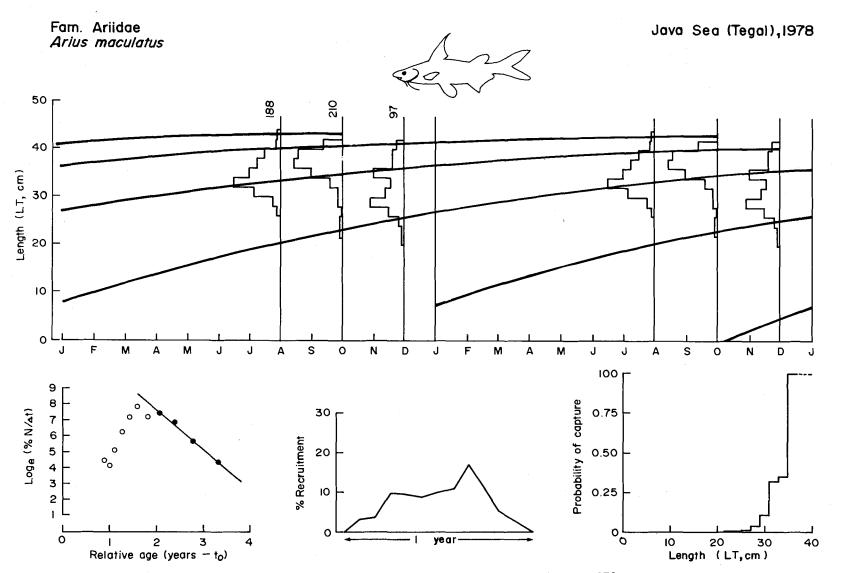




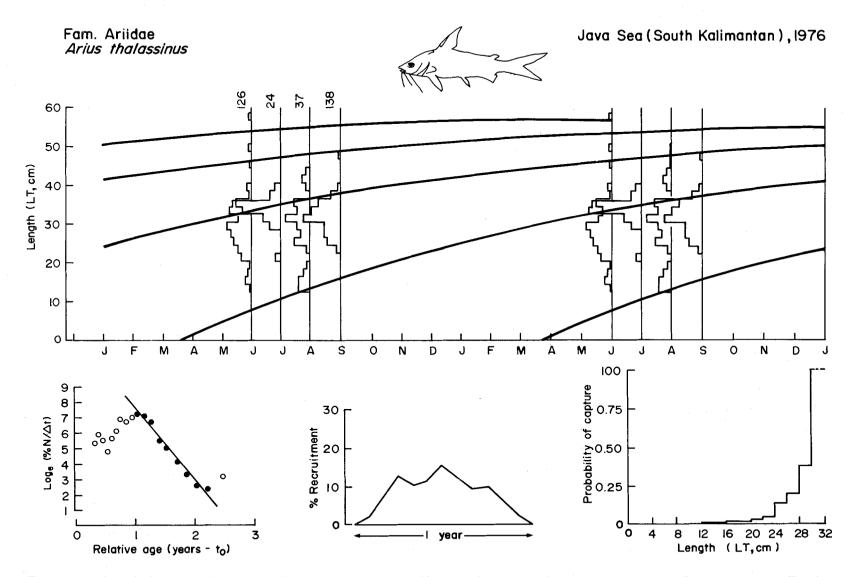
The set of length-frequency data analyzed here was collected by G. Tampubolon from the north coast of Java in 1982-1983. The following parameter values were estimated: $L_{\infty} = 25.80$ cm, K = 1.15, $L_c = 18.75$ cm, Z = 5.80, M = 2.06, F = 3.74, E = 0.65. Annual recruitment probably occurred in the form of one pulse. Data on biological aspect of *Sardinella sirm* may be found in Burhanuddin, M. Hutomo, S. Martosewojo and A. Djamali. 1974. Some biological aspects of lemuru, *Sardinella sirm* (Waldbaum) around Panggang (Island). Oseanologi di Indonesia 2: 17-25. (In Indonesian with English abstract).


21

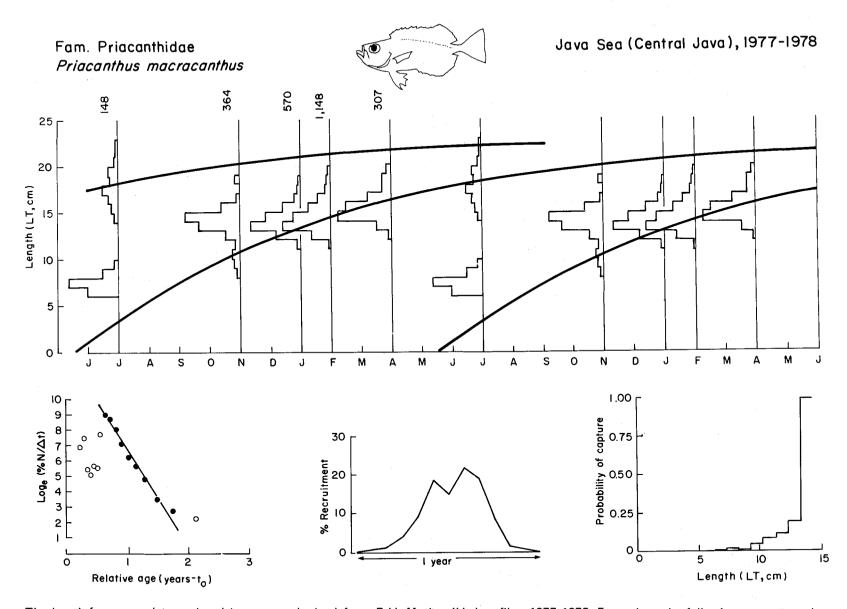

The length-data analyzed here originated from the survey data files of R/V Mutiara-IV (1977-1978). They allowed the estimation of the following parameter values: $L_{\infty} = 21.25$ cm, K = 0.95, $L_c = 10.35$ cm, Z = 3.21, M = 1.92, F = 1.29, E = 0.40. Annual recruitment seems to consist of two pulses of unequal strength. Additional information on *Saurida longimanus* has been presented by Sriyono. 1982. Potential reproduction, growth and stock density of ikan beloso, *Saurida* spp. in the east coast of Sumatra and South China Sea. University of Diponegoro. 70 p. M.Sc. thesis. (Unpublished) (In Indonesian).


The length-frequency data analyzed here, which originated from the data files of R/V Mutiara-IV (1978-1979), led to the following parameter estimates: $L_{\infty} = 42$ cm, K = 0.88, $L_c = 13.84$ cm, Z = 3.73, M = 1.5, F = 2.22, E = 0.60. Annual recruitment consisted of two well-separated pulses. A detailed description of lizard fish is given in Widodo, J. 1977. Stock distribution and preliminary investigation of some biological aspect of lizard fish. Paper presented to the National Seminar of Biology, Malang, 7-9 July 1977. (In Indonesian).

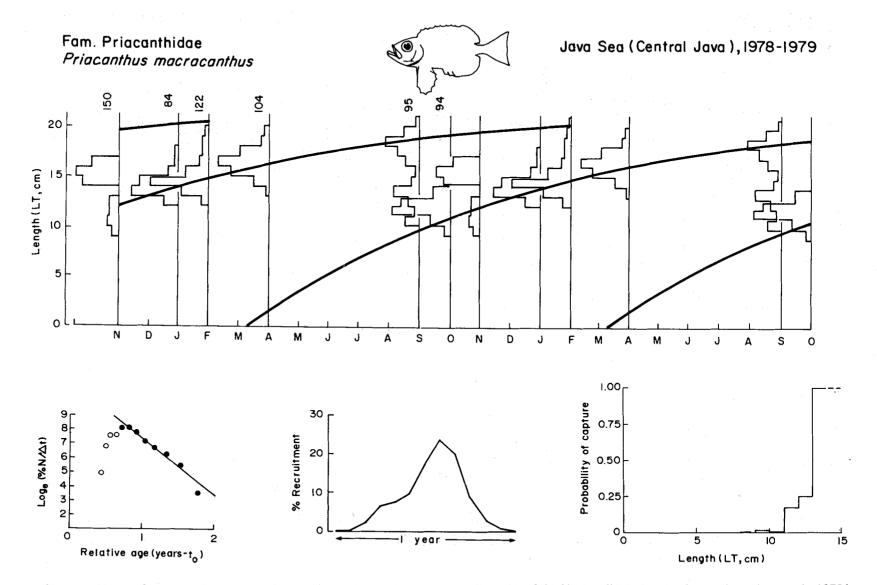
The length-frequency data were collected in the frame of the Indonesian-German Demersal Fisheries Project in 1977-1978. From these data, the following parameter values were estimated: $L_{\infty} = 33.5$ cm, K = 0.95, $L_c = 13.10$ cm, Z = 2.30, M = 1.69, F = 0.61, E = 0.26. Annual recruitment appears to have occurred in two pulses of unequal strength. Information on the growth of lizard fish has been given by Kühlmorgen-Hille, G. 1970. A contribution to the knowledge of the growth of *Saurida undosquamis* Richardson in the Gulf of Thailand, p. 467-470. *In* Marr, J.C. (ed.) The Kuroshio. A symposium of the Japan current. East West Center Press, Honolulu. Also in Martosubroto, P. 1982. Fishery dynamics of the demersal resources of the Java Sea. Dalhousie University, Canada. Ph.D. thesis. (Unpublished).

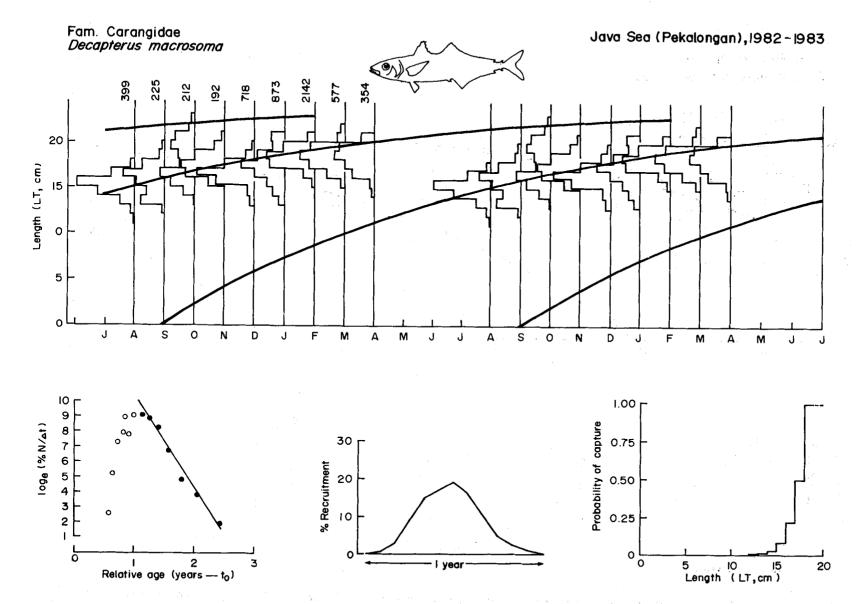


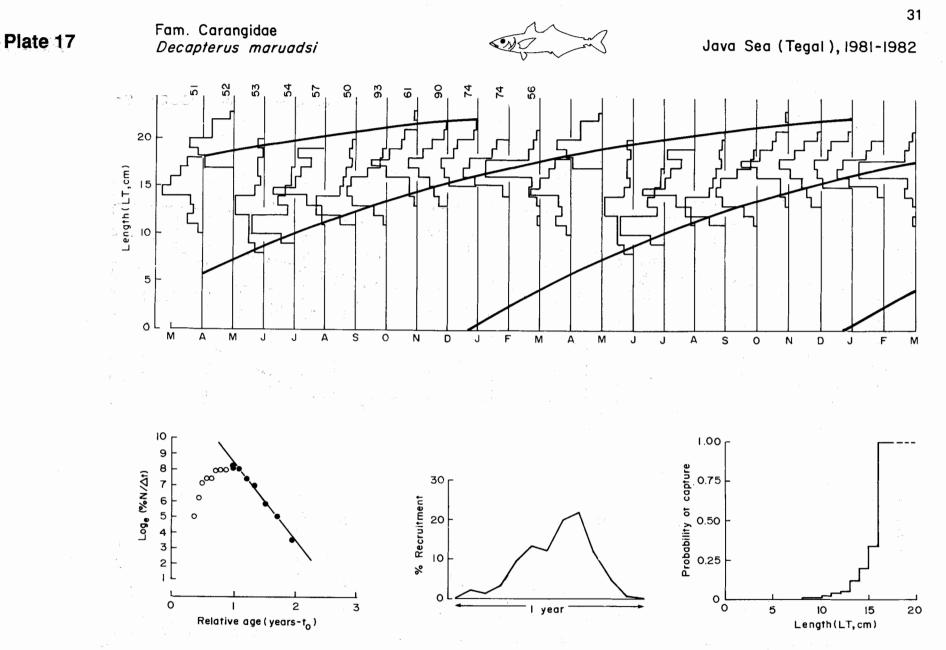
This set of length-frequency data on the freshwater species Hampala macrolepidota analyzed here was collected by Mr. Setiadi, Jatiluhur Freshwater Research Station, West Java, 1983. The following parameters were estimated from the data: $L_{\infty} = 50$ cm, K = 0.68, $L_c = 22.1$ cm, Z = 4.44, M = 1.21, F = 3.23, E = 0.73. A description and some details on food and range may be found in Mohammad Mohsin, A.K. and Mhd. Azmi Ambak. 1983. Freshwater fishes of Peninsular Malaysia. Penerbit Universiti Pertanian Malaysia, Kuala Lumpur, 284 p.

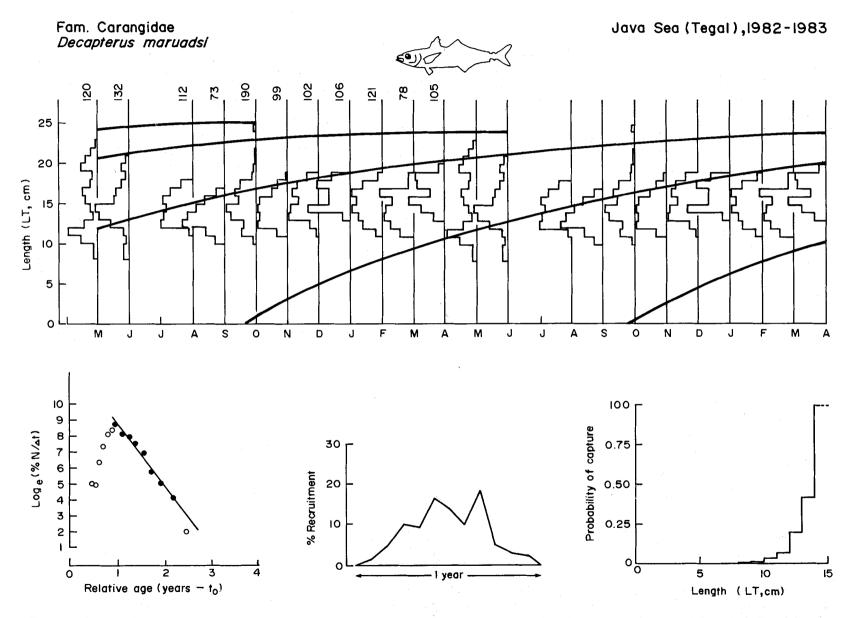


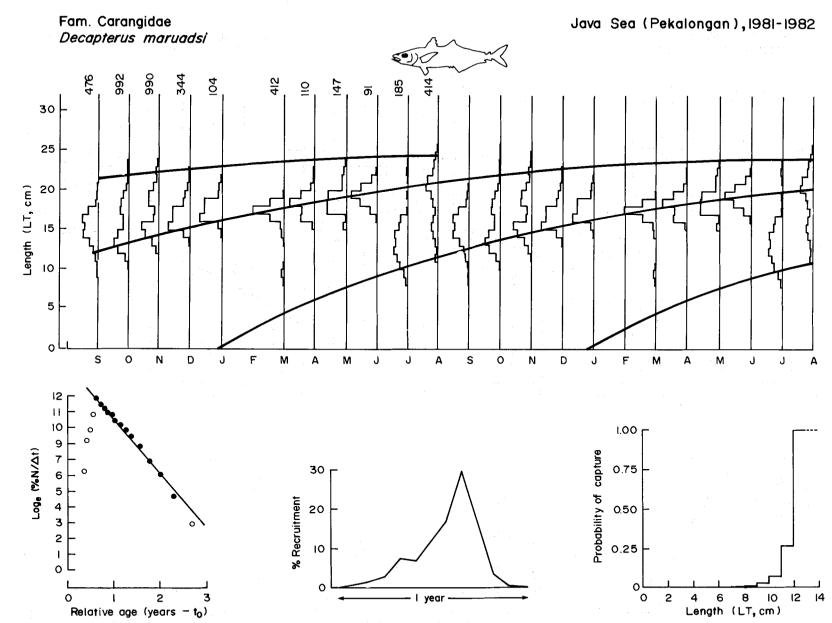
I.

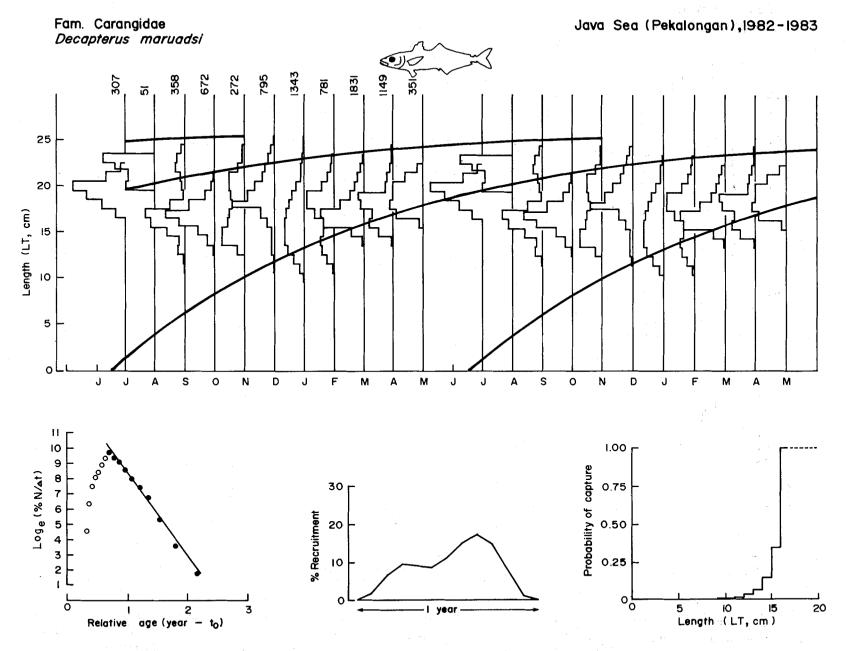

The length-frequencies on Arius maculatus presented were obtained from Dwiponggo, A. and M. Badrudin. 1979. Data of trawl survey by RV Mutiara-IV in 1978. Contribution of the Demersal Fisheries. Project No. 6A, Marine Fisheries Research Institute (LPPL), Jakarta, 128 p. The parameter estimates are: $L_{\infty} = 45.00$ cm, K = 0.73, $L_c = 34.20$ cm. The straight segment of the length-converted catch curve suggests Z = 2.42, M = 1.30, F = 1.11, E = 0.46 and recruitment pattern denotes two pulses of unequal strength. Additional information on the biological aspects of Arius maculatus and its related species can be found in Purwanto. 1980. The stock length-weight relationship and stage of gonad maturity of Ikan Manyung (Arius spp.) in the Tanjung Selatan of south coast of Kalimantan waters, based on trawl catches by RV Mutiara-IV in January 1980. University of Diponegoro, Semarang. 59 p. Thesis.


The source of length-frequency data presented here is Martosubroto, P. and D. Pauly. 1976. Mutiara-IV survey data. Spe. Rep. RIMF 4/77. The parameter estimates are: $L_{\infty} = 60.00$ cm, K = 0.65, $L_c = 29.20$ cm, Z = 4.73, M = 1.11, F = 3.59, E = 0.76. Annual recruitment appears to have been irregular. Other information on the variations in catch rates and species composition of this fish may be found in Dwiponggo, A. and M. Badrudin. 1977, 1978, 1980. Result of the Java Sea inshore monitoring survey. Contribution of the demersal fisheries project nos. 5, 6, 7, RIMF, Mar. Res. Report Jakarta. 14 p. 19 p, 31 p.

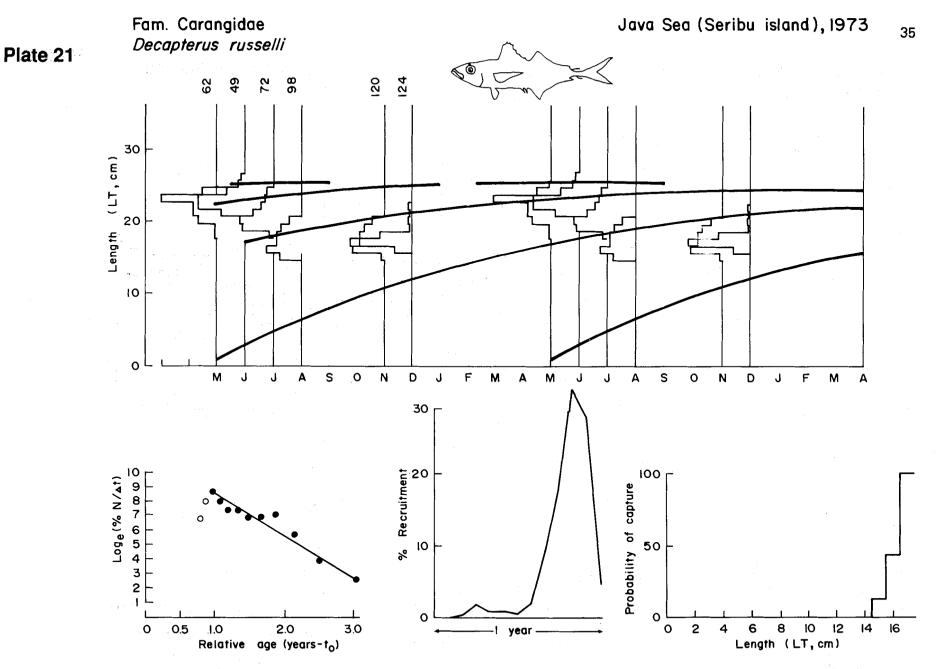

The length-frequency data analyzed here were obtained from R.V. Mutiara-IV data files, 1977-1978. From these the following parameter values were estimated: $L_{\infty} = 23.75$ cm, K = 1.30, $L_c = 13.11$ cm, Z = 6.38, M = 2.28, F = 4.10, E = 0.64. Annual recruitment consisted of two pulses. Additional data on growth and some biological parameters of *Priacanthus macracanthus* may be found in Duto Nugroho and Rusmadji Rustan. 1983. Study on growth and some biological parameters of *Priacanthus macracanthus* in the north coast of Java, Jakarta. Mar. Fish. Res. Rep. No. 27: 9-14. (In Indonesian with English abstract). Also in Martosubroto, P. 1982. Fishery dynamics of the demersal resources of the Java Sea. Dalhousie University, Canada, Ph.D. thesis. (Unpublished).

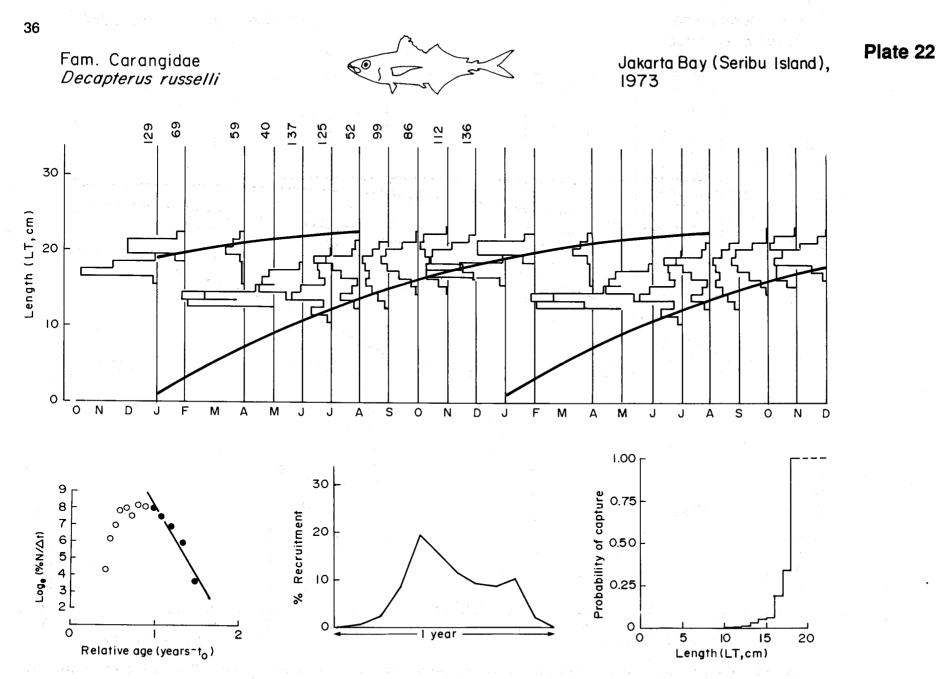

The set of length-frequency data, reported to pertain to big eye bream, were collected by R.V. Mutiara-IV during the demersal trawl survey in 1978/ 1979 in the north coast of Central Java. From the data the following parameters were obtained: $L_{\infty} = 23.00$ cm, K = 1.15, $L_c = 2.50$ cm, Z = 4.20, M = 2.13, F = 2.07, E = 0.49. Annual recruitment appears to have consisted of two unequal pulses. Additional information on variations in catch rates of *Priacanthus* may be found in Dwiponggo, A. and M. Badrudin. 1979. Variations in catch rates and species composition of trawl surveys in the Java Sea subareas. 1978. MFRI Spec. Rep. 6: 1-19.


The length-frequency data presented here on scad mackerel (*Decapterus macrosoma*) were obtained from the files of Tampubolon, G. collected at Pekalongan, Central Java. The following parameter estimates were obtained: $L_{\infty} = 25.40$ cm, K = 0.98, $L_c = 16.60$ cm, Z = 6.19, M = 1.86, F = 4.33, E = 0.70. Annual recruitment seems to have been brought about by a single protracted pulse. Information on the biology of this fish may be found in Tiews, K., I.A. Ronquillo and P. Caces-Borja. 1971. On the biology of round scads (*Decapterus*, Bleeker) in Philipp. J. Fish. 9(1/2): 45-71.


The length-frequency data on round scad, *Decapterus maruadsi* (1981-1982) used here stem from the raw data file of Mr. Subroto (Directorate General of Fisheries) and led to the following parameter estimates: $L_{\infty} = 25.90$ cm, K = 0.98, $L_c = 15.61$ cm, Z = 4.95, M = 1.85, F = 3.10, E = 0.63. Annual recruitment appears to have originated from two pulses of unequal strength. Some biological aspects of round scads are given by Suherman Banon, A., B. Sadhotomo and R. Rustam. 1982. Gonad index and sex ratio of round scad (*Decapterus maruadsi* Temminck and Schlegel) in the Arafura Sea. RIMF. Jakarta Mar. Res. Rep. No. 24: 37-43. (In Indonesian with English abstract).

The set of length-frequency data discussed here was obtained from Mr. Subroto's raw data files (Directorate General of Fisheries). The following parameter estimates were obtained from these data: $L_{\infty} = 26.50$ cm, K = 0.95, $L_c = 13.64$ cm, Z = 5.27, M = 1.80, F = 3.46, E = 0.66. Annual recruitment appears to have been irregular.


This set of length-frequency data, pertaining to scad mackerel (*Decapterus maruadsi*), were collected by one of us (Banon Suherman) in 1981-1982. These data led to the estimates: $L_{\infty} = 27.00$ cm, K = 0.95, $L_c = 11.82$ cm, Z = 3.44, M = 1.79, F = 1.65, E = 0.48. Annual recruitment consisted of two well-separated unequal pulses. Aspects of growth and mortality of this fish are given in Bambang Sadhotomo, A. Suherman Banon and Subhat Nurhakim. 1983. Estimates of growth parameters, instantaneous mortality and yield per recruit of round scads, *Decapterus maruadsi* (Temminck and Schlegel) in the Java Sea. RIMF. Jakarta. Mar. Fish. Res. No. 27: 1-8. (In Indonesian with English abstract).

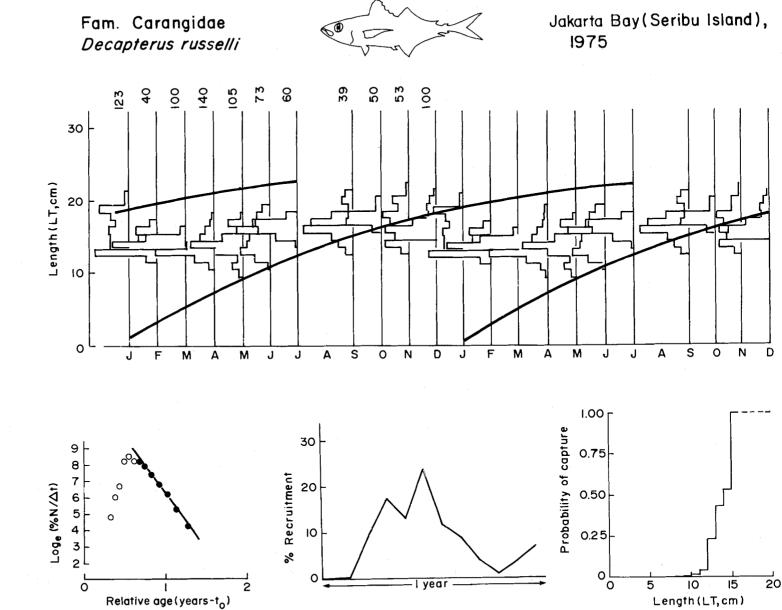
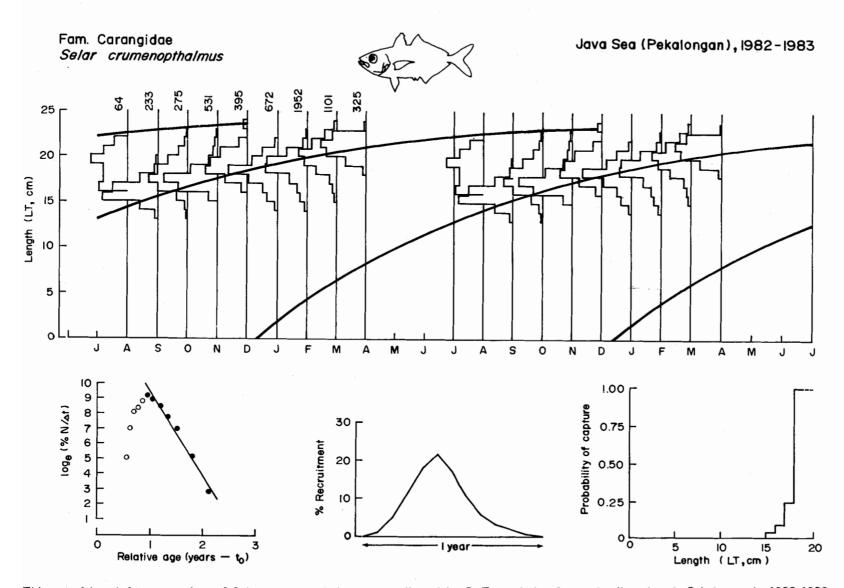

The length-frequency data of scad mackerel (*Decapterus maruadsi*) presented here, which stem from the raw data file of Tampubolon, G. (1982-1983) suggest the following statistics: $L_{\infty} = 26.70$ cm, K = 1.28, $L_{c} = 15.68$ cm, Z = 5.50, M = 2.18, F = 3.32, E = 0.60. Annual recruitment consisted of two unequal pulses.

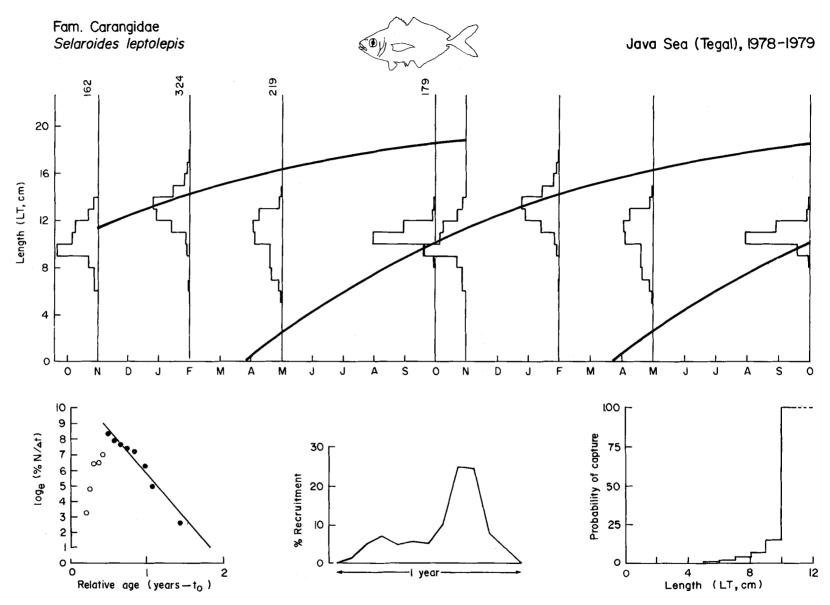
34

Plate 20

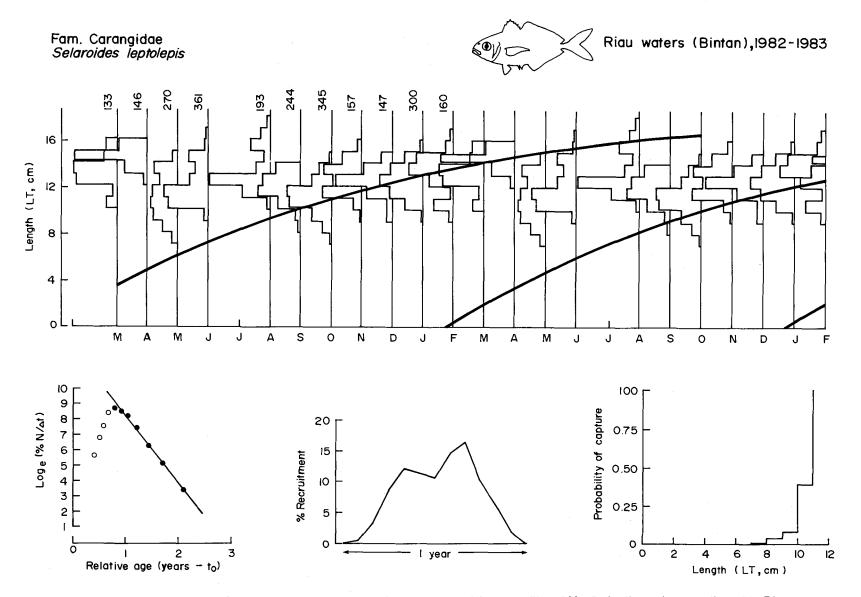
The source of the length-frequency data on *Decapterus russelli* presented here is Mr. Djamali's raw data files, Ocean Research Institute, Jakarta. They led to the following parameter estimates: $L_{\infty} = 26.55$ cm, K = 0.95, $L_c = 20.72$ cm, Z = 3.73, M = 1.80, F = 2.13, E = 0.57. Annual recruitment seems to have occurred in two pulses of very unequal strength. Notes on the biology, migration and behavior of round scad, particularly in relationship to fish lure, have been presented by Soemarto. 1960. Fish behavior with special reference to pelagic shoaling species: lajang (*Decapterus* spp.). Proc. Indo-Pac. Fish. Counc. 8(3): 89-93.

The set of length-frequency data presented here originated from the raw data files of Mr. Djamali, Ocean Research Institute, Jakarta. From these the following parameter values were estimated: $L_{\infty} = 27.00$ cm, K = 1.15, $L_c = 17.32$ cm, Z = 8.21, M = 2.03, F = 6.18, E = 0.75. Annual recruitment probably occurred in the form of two unequal pulses. The hypothetical migration pattern of the lajang *(Decapterus)* has been given by Hardenberg, J.P.E. 1938. Theorie omtrent den trek van layang in de Java Zee. Med. Inst. Zee Visscherij Batavia 4: 124-131. (In Dutch).

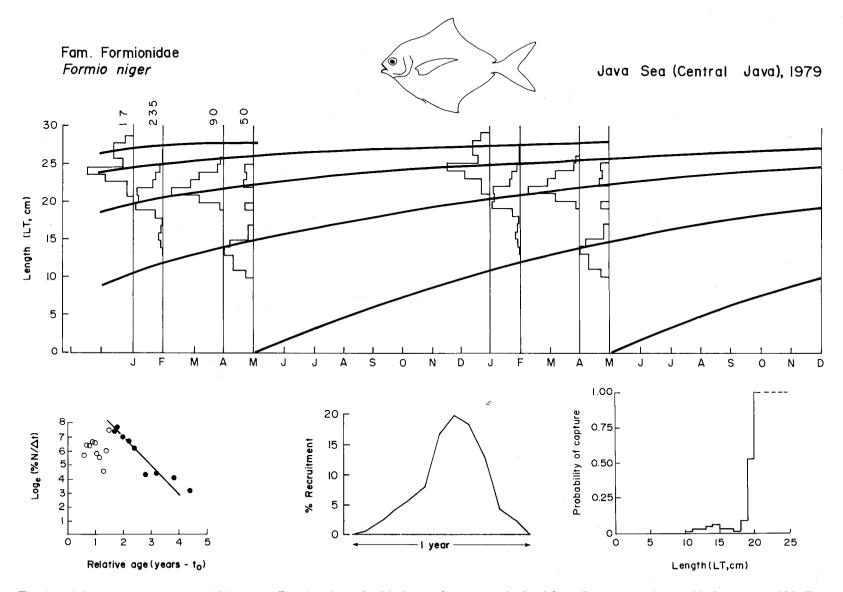



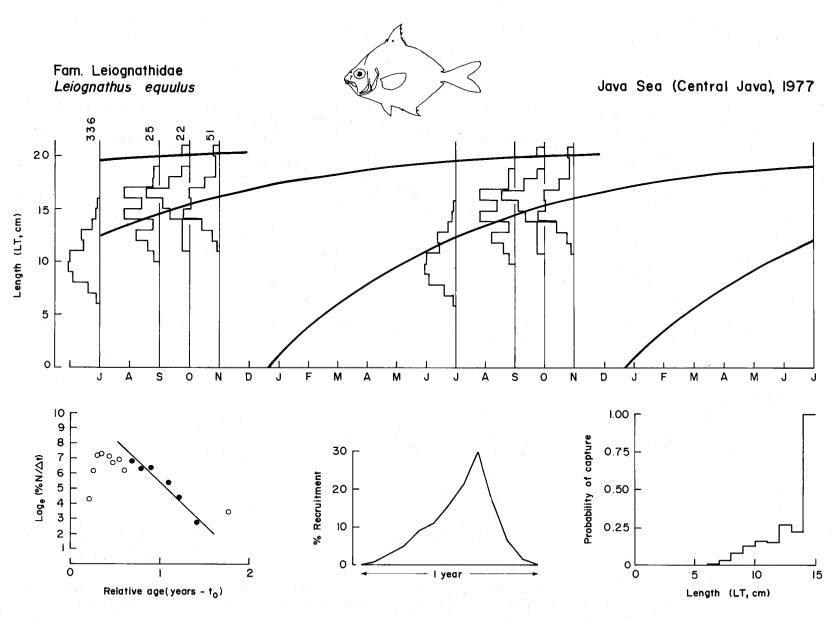

Plate 23

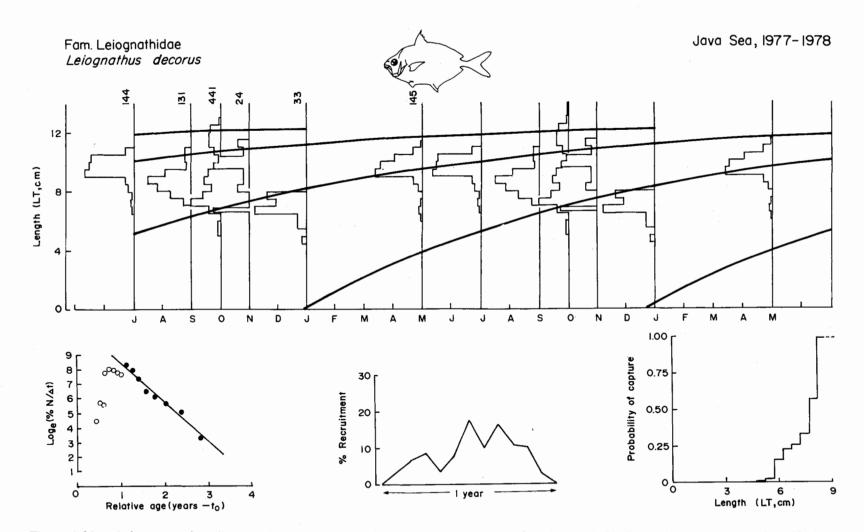
Length-frequency data on *Decapterus russelli* were collected by Mr. Djamali, Ocean Research Institute, Jakarta. The following parameters were estimated from the data: $L_{\infty} = 27.00$ cm, K = 1.18, $L_c = 13.76$ cm, Z = 6.68, M = 2.06, F = 4.62, E = 0.69. Annual recruitment patterns suggest that recruitment occurred in two pulses of unequal strength. A review of catch-and-effort data in the round scad fisheries of Southeast Asia is given in SCSP. 1978. Report of the workshop on the biology and resources of mackerels (*Rastrelliger* spp.) and round scads (*Decapterus* spp.) in the South China Sea. SCS/GEN/78/17. 70 p. South China Sea Fisheries Development and Coordinating Programme, Manila.

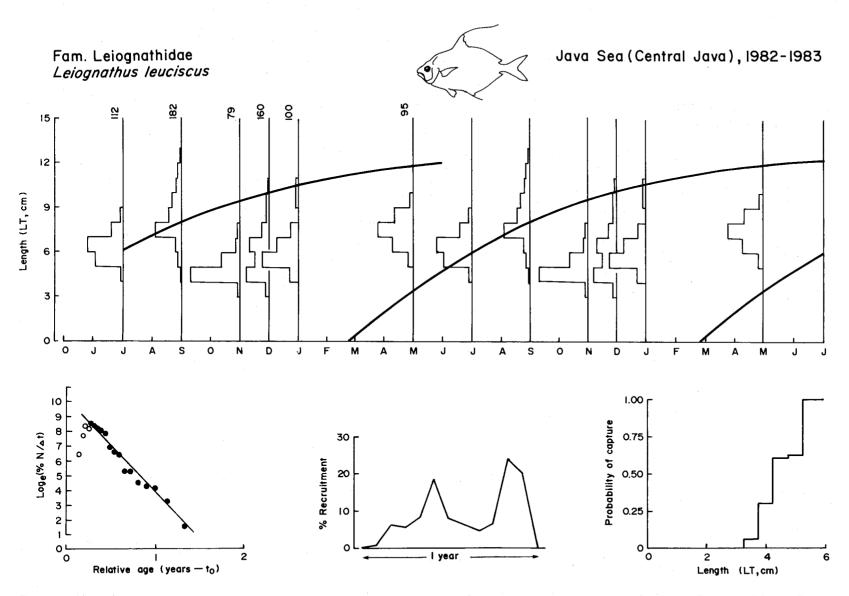


This set of length-frequency data of *Selar crumenopthalmus* was collected by G. Tampubolon from a landing place in Pekalongan in 1982-1983 and led to the estimation of the following parameter values: $L_{\infty} = 25.90$ cm, K = 1.25, $L_c = 17.80$ cm, Z = 5.56, M = 2.17, F = 3.39, E = 0.61. Annual recruitment may have consisted of a single, protracted event. A description of the eggs of *S.* (= *Caranx*) crumenopthalmus and allied species is given in Delsman, H.C. 1962. Fish eggs and larvae from the Java Sea 5: *Caranx kurra, C. macrosoma* and *C. crumenopthalmus*. Treubia 8: 199-211 (reprinted in Delsman, H.C. 1972. Fish eggs and larvae from the Java Sea, Linnaeus Press, Amsterdam).

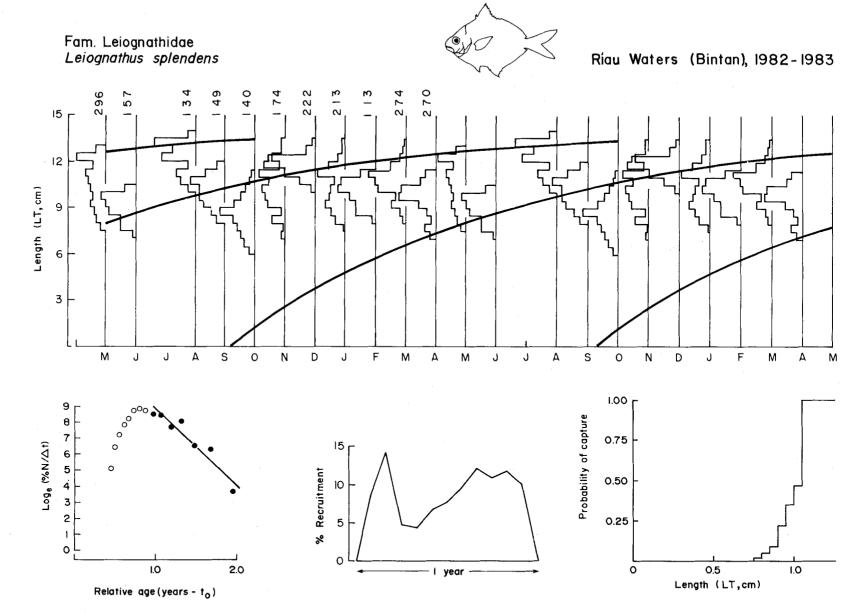



The length-frequency data of *Selaroides leptolepis* presented here were obtained from the raw data files of R.V. Mutiara-IV survey in the Java Sea, 1977. They led to the following estimates: $L_{\infty} = 22.00$ cm, K = 1.20, $L_c = 9.88$ cm, Z = 5.75, M = 2.21, F = 3.54, E = 0.62. Annual recruitment occurred in the form of two well-separated pulses of unequal strength. Information on the biological aspects of slender trevally may be found in Mosuwan, P. 1970. On the biology of slender trevally, *Caranx leptolepis* in the Gulf of Thailand. Marine Fisheries Laboratory, Bangkok, 16 p. (MS). Information on the growth of *Selaroides leptolepis* have been reported by Martosubroto, P. 1982. Fishery dynamics of the demersal resources of the Java Sea, Dalhousie University, Canada. Ph.D. Thesis.

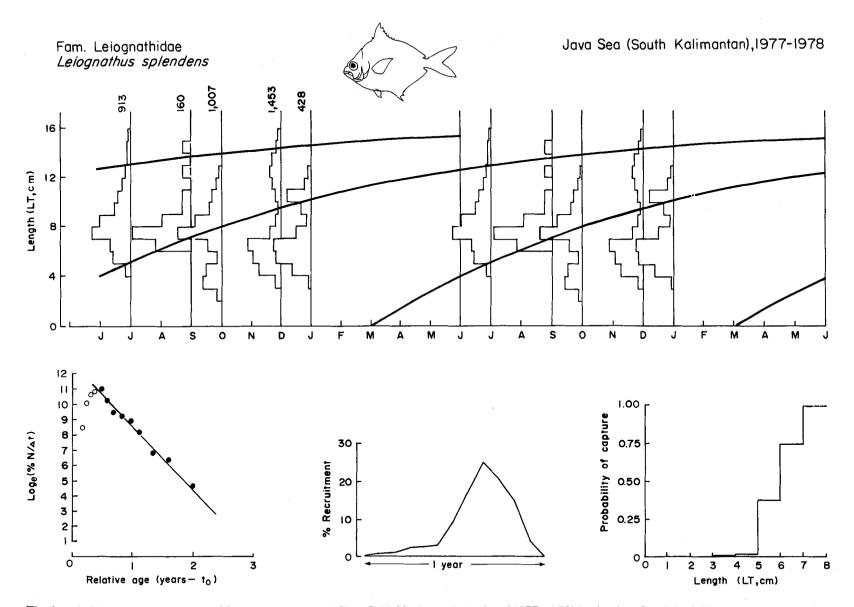

The set of length-frequency data of *Selaroides leptolepis* presented here was culled from the files of Mr. Sudradjat and were collected in Riau waters, 1982-1983. They led to the following estimates: $L_{\infty} = 18.90$ cm, K = 1.10, $L_{c} = 10.80$ cm, Z = 4.26, M = 2.18, F = 2.08, E = 0.49. Annual recruitment appears to have consisted of two pulses of unequal strength. Data on the biology of *S. leptolepis* are given in Sudradjat, A. and D. Nugroho. 1983. Study on the biology of yellowstriped trevally, *Selaroides leptolepis* (Cuvier and Valenciennes) in the Sunda shelf waters, Jakarta. Mar. Res. Rep. (29): 79-88. (In Indonesian with English abstract).


The length-frequency data presented here on *Formio niger*, the black pomfret, were obtained from Dwiponggo, A. and M. Badrudin. 1980. The following parameter estimates were obtained: $L_{\infty} = 29.50$ cm, K = 0.68, $L_c = 19.12$ cm, Z = 2.06, M = 1.40, F = 0.64, E = 0.31. The bulk of the annual recruitment appears to have been produced during one spawning season. Data used stem from the Java Sea inshore monitoring survey by R/V Mutiara-IV in 1979. RIMF. Spec. Rep. (7a): 1-87.

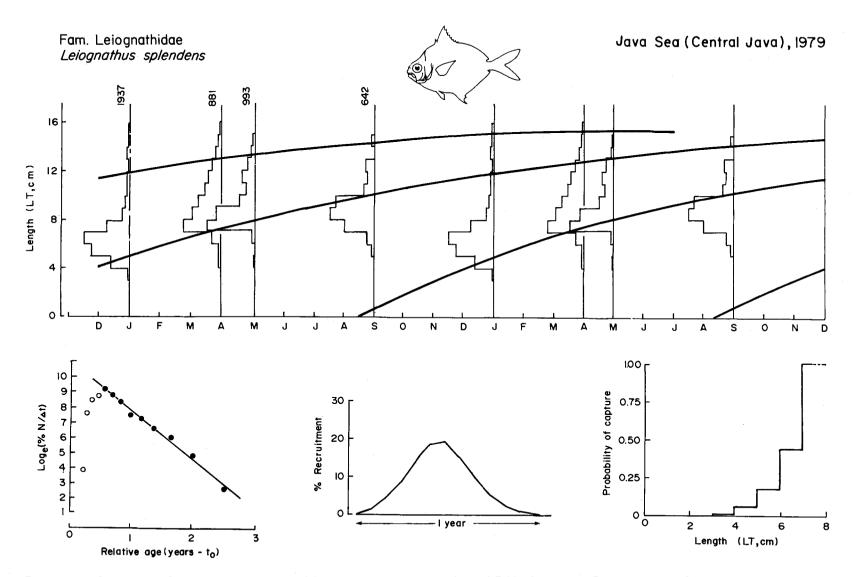
This set of length-frequency data of ponyfish was extracted from Mutiara-IV survey data files (1977). The following parameter values were estimated: $L_{\infty} = 21.50 \text{ cm}$, K = 1.50, $L_c = 13.40 \text{ cm}$, Z = 5.68, M = 2.58, F = 3.10, E = 0.55. The bulk of the annual recruitment seems to have originated from one major recruitment event. Other information may be found in Martosubroto, P. 1982. Fishery dynamics of the demersal resources of the Java Sea. Dalhousie University, Canada, Ph.D. Thesis.

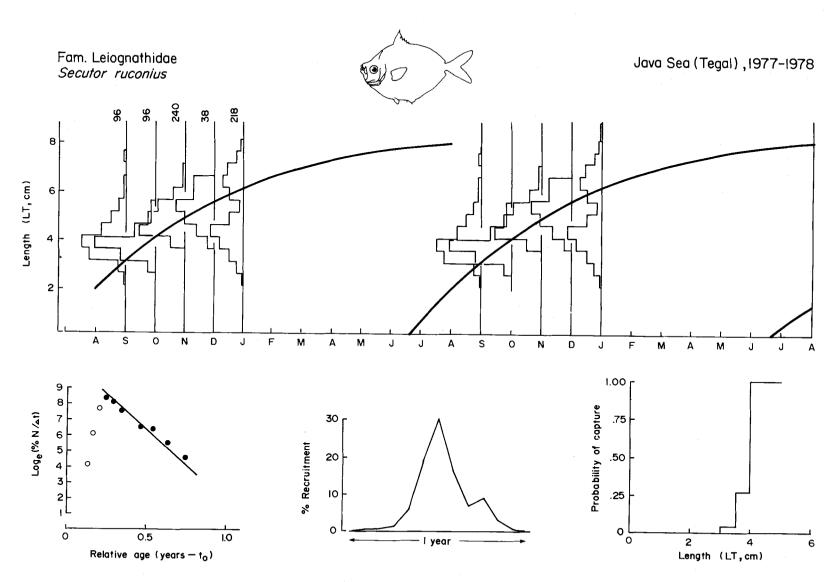


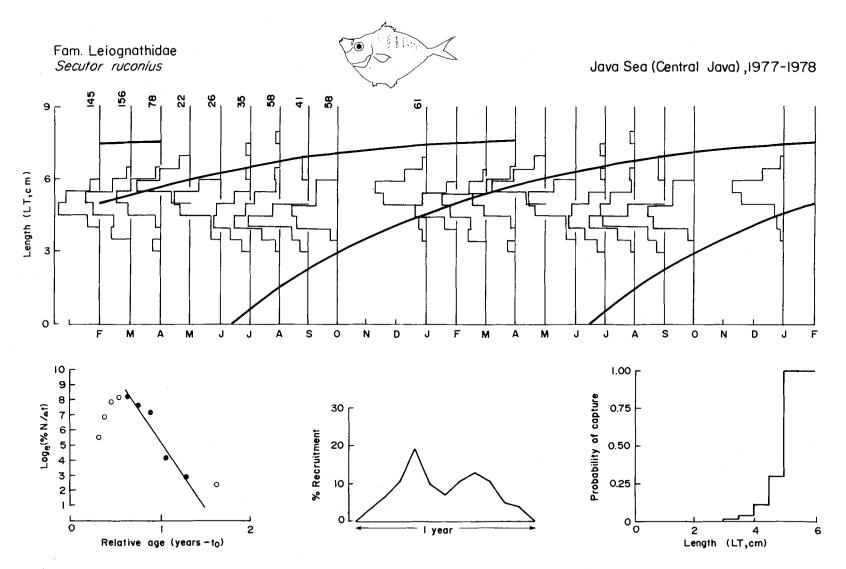
The set of length-frequency data discussed here was obtained from Dwiponggo, A. and M. Badrudin. 1979. Data of trawl survey by R.V. Mutiara-IV in the Java Sea subareas in 1978. Contribution of the Demersal Fisheries Project, No. 6A. From these data, the following parameter values were estimated: $L_{\infty} = 13.00$ cm, K = 1.00, $L_c = 8.26$ cm, Z = 2.69, M = 2.27, F = 0.43, E = 0.16. The available data suggest an irregular pattern of recruitment, probably consisting of two pulses. The species name is based on Jones, G. 1985. Revision of the Australian species of the family Leiognathidae. Aust. J. Mar. Freshwat. Res. 36(4): 559-613.



The length-frequency data presented here were derived from the files of the R.V. Mutiara-IV, Research Institute for Marine Fisheries, Jakarta. From these data, the following statistics were estimated: $L_{\infty} = 13.50$ cm, K = 1.80, $L_c = 4.76$ cm, Z = 6.15, M = 3.31, F = 2.84, E = 0.46. Annual recruitment appears to have consisted of two pulses. A detailed description of this fish, whose biology is little known, is given in James, P.S.B.R. 1967. *Leiognathus leuciscus* (Günther) and *L. smithursti* (Ramsey and Ogilby) (Family Leiognathidae: Pisces)—the new records from the Indian Seas. J. Mar. Biol. Assoc. India 9(2): 330-302.



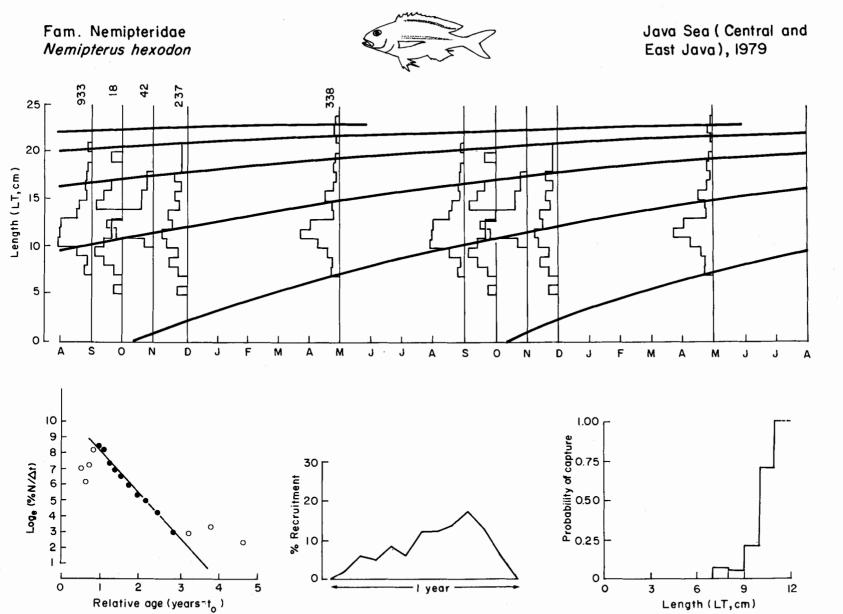
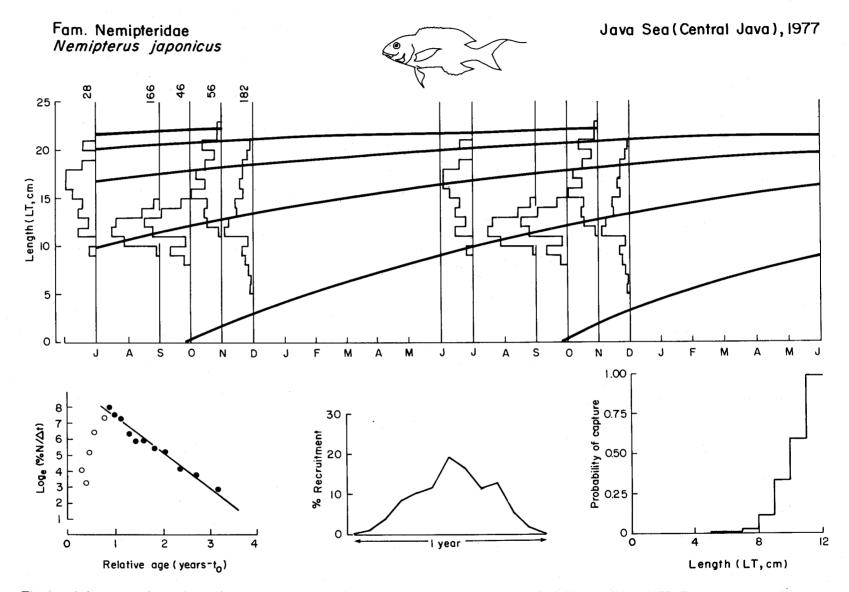

The length-frequency data analyzed here were collected by Sudradjat in Riau Archipelago waters in 1982. The following parameter estimates were derived: $L_{\infty} = 14.50$ cm, K = 1.25, $L_c = 9.65$ cm, Z = 4.64, M = 2.55, F = 2.09, E = 0.45. The recruitment pattern, although jagged, suggests that annual recruitment occurred in two pulses of unequal duration and strength. Some data on the catch rate and distribution of this fish in the Java Sea area may be found in Losse, G.F. and A. Dwiponggo. 1977. Report on the Java Sea southeast monsoon trawl survey, June-December 1976. RIMF. Spec. Rep. Contribution of the Demersal Fisheries Project 3: 1-119 and in A. Sudrajat, U. Rempe and S. Ehrich. 1982. Biometric comparison of the splendid ponyfish, *Leiognathus splendens* (Cuvier) from the Sunda Shelf. CRIFI, Jakarta Bull. Pen. Perikanan 1(2): 17-36.

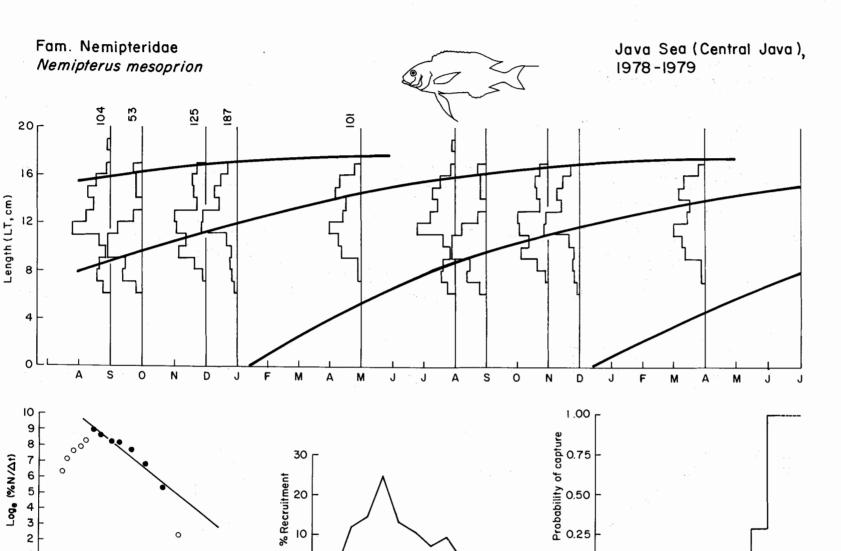

The length-frequency data analyzed here were extracted from R.V. Mutiara survey data (1977-1978) in the Java Sea. The following parameter values were estimated from these data: $L_{\infty} = 16.90$ cm, K = 1.10, $L_c = 6.23$ cm, Z = 4.00, M = 2.25, F = 1.75, E = 0.43. Annual recruitment consisted of two seasonal pulses, one much stronger than the other. Information on the estimation of mortality rates of this fish can be found in Pauly, D. 1980. The use of pseudo catch curves for the estimation of mortality rates in *Leiognathus splendens* (Pisces: Leiognathidae) in Western Indonesian waters. Meeresforsch./Rep. Mar. Res. 28(1): 56-60.

The source of the length-frequency data presented here is the trawl survey data of R.V. Mutiara-IV. From these, the following parameter values were estimated: $L_{\infty} = 16.70$ cm, K = 0.90, $L_{c} = 6.23$ cm, Z = 3.27, M = 1.98, F = 1.25, E = 0.38. The shape of the recruitment pattern suggests one seasonal pulse. Some biological aspects of this fish and its fishery were discussed in Pauly, D. 1977. The Leiognathidae (Teleostei): their species, stocks and fishery in Indonesia, with notes on the biology of *Leiognathus splendens* (Cuvier). Mar. Res. Indonesia 19: 73-93.

The length-frequency data were collected in the frame of the Indonesian-German Demersal Fishery Project in 1977-1978. The following parameter estimates were obtained: $L_{\infty} = 9.00$ cm, K = 2.20, $L_c = 3.60$ cm, Z = 8.91, M = 4.22, F = 4.69, E = 0.53. Annual recruitment appears to have occurred in the form of two pulses of unequal strength. The depth distribution in relation to light emission of this fish and other leiognathids was discussed in Pauly, D. 1977. The Leiognathidae (Teleostei): a hypothesis relating to their mean depth occurrence and the intensity of their countershading bioluminescence. Mar. Res. Indonesia 19: 137-146.

The length-frequency data analyzed here were extracted from R.V. Mutiara IV survey in the Java Sea. They led to the parameter estimates: $L_{\infty} = 8.30$ cm, K = 1.45, $L_c = 4.90$ cm, Z = 8.86, M = 3.29, F = 5.57, E = 0.63. Annual recruitment probably occurred in the form of two unequal pulses. Data on postlarval stages attributed to this fish have been presented by Nair, R.V. 1952. Studies on some post-larval fishes of Madras plankton. Proc. Indian Acad. Sci. 35B(5): 225-244.

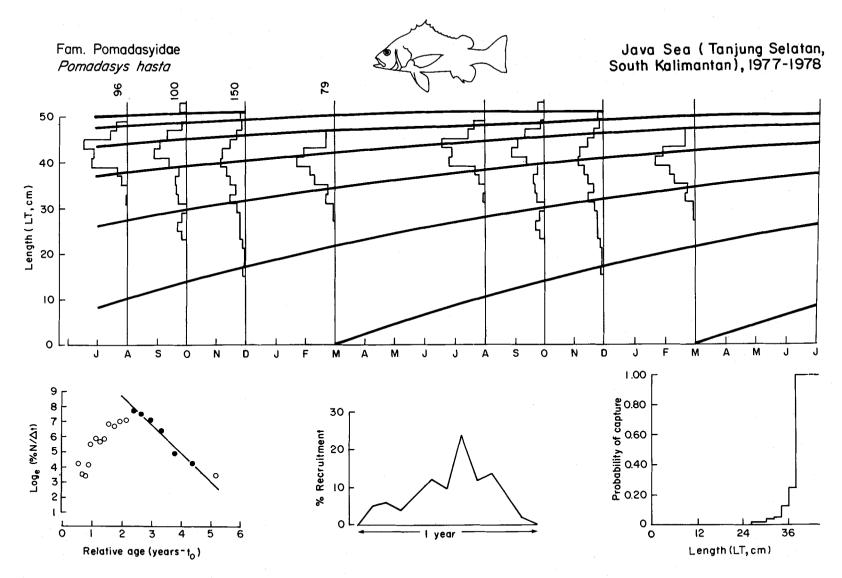




Plate 38

The length-frequency data were collected during the Indonesian-German demersal fisheries projects survey by R.V. Mutiara-IV. The following parameter estimates were obtained: L_{∞} = 24.50 cm, K = 0.60, L_c = 10.40 cm, M = 1.36, F = 1.17, E = 0.46. The available data suggest a very irregular pattern of recruitment, possibly consisting of two events per year. Additional information on this fish can be found in Weber, W. and A.A. Jothy. Undated. Observations on the fish *Nemipterus* spp. (Family: Nemipteridae) in the coastal waters of East Malaysia, 1972. Manuscript with raw data pertaining to paper with same authors and title and published in Arch. FischWiss: 28(2/3): 109-122.

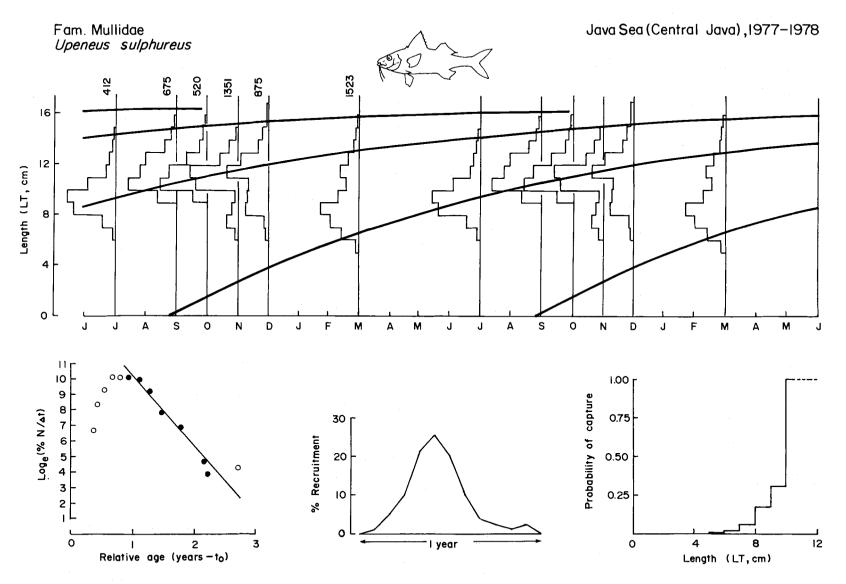
The length-frequency data presented here were extracted from the demersal trawl survey by R.V. Mutiara-IV in 1977. They yielded the following parameter estimates: $L_{\infty} = 23.50$ cm, K = 0.70, $L_c = 10.43$ cm, Z = 2.17, M = 1.53, F = 0.64, E = 0.30. Annual recruitment appears to have consisted of two pulses. The stock of threadfin fish (Fam. Nemipteridae) and some biological aspects of *Nemipterus marginatus* in South China Sea were discussed in the paper of Martusobroto, P. 1977. Paper presented to the National Seminar of Biology, Melang, 7-9 July 1977. Further information on this species may be found in Krishnamoorthi, B. 1971. Biology of the threadfin bream, *Nemipterus japonicus*. Indian J. Fish. 18(1-2): 1-21.

This set of length-frequency data, pertaining to threadfin bream, was obtained from the R.V. Mutiara-IV survey data files (1978). It led to these parameter estimates: $L_{\infty} = 21.5$ cm, K = 0.8, $L_c = 10.8$ cm, Z = 3.25, M = 1.73, F = 1.54, E = 0.47. Recruitment appeared to be irregular. Information on the population dynamics of *Nemipterus marginatus*, a closely related species, can be found in Pauly, D. and P. Martosubroto. 1980. The population dynamics of *Nemipterus marginatus* off Western Kalimantan, South China Sea. J. Fish. Biol. 17: 263-273. Also in Martosubroto, P. 1982. Fishery dynamics of the demersal resources of the Java Sea. Dalhousie University, Canada. Ph.D. thesis (unpublished).

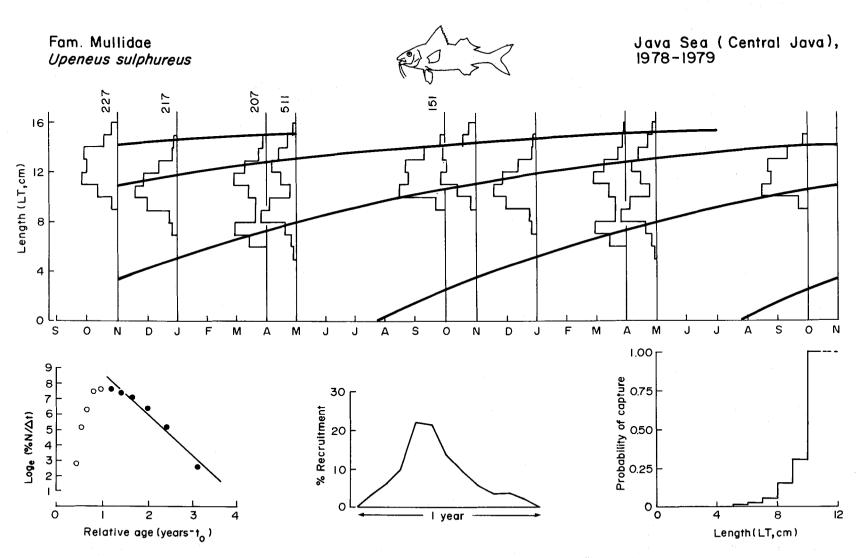

l year

Length (LT, cm)

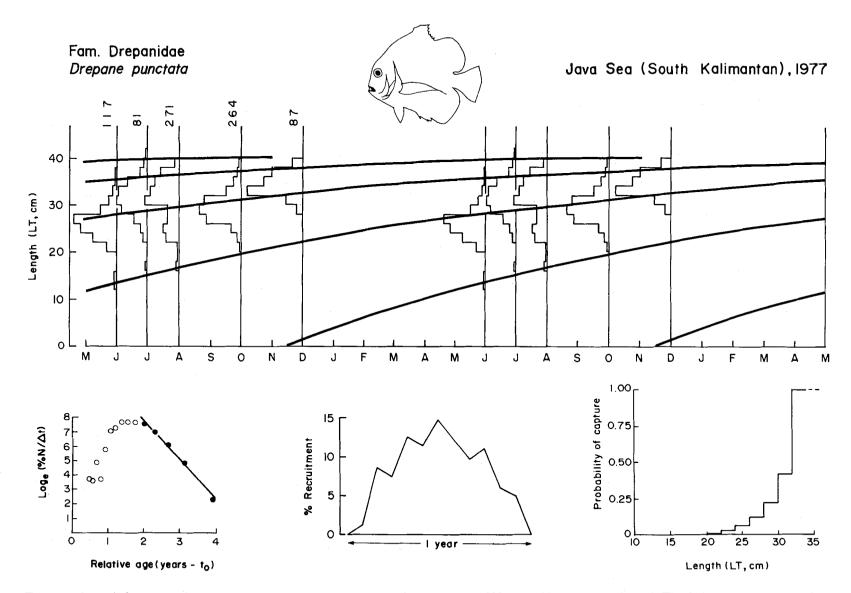
Relative age (years-to)

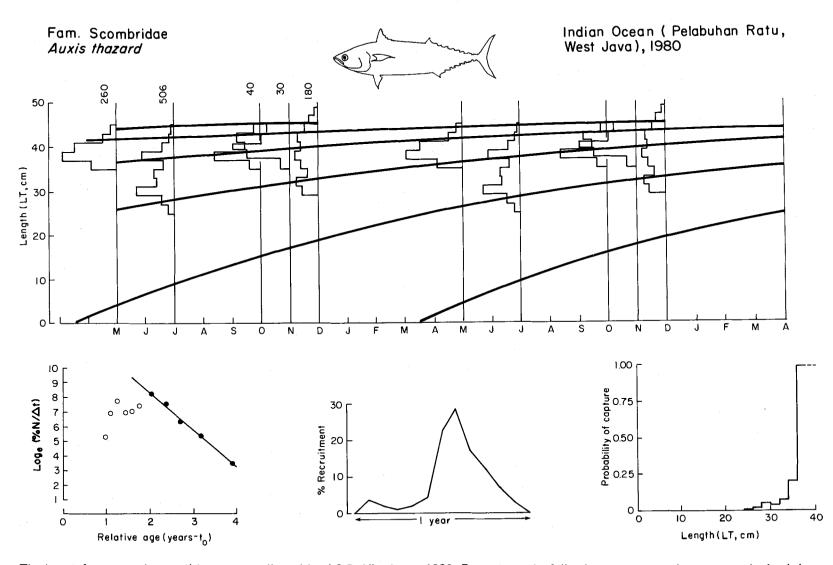


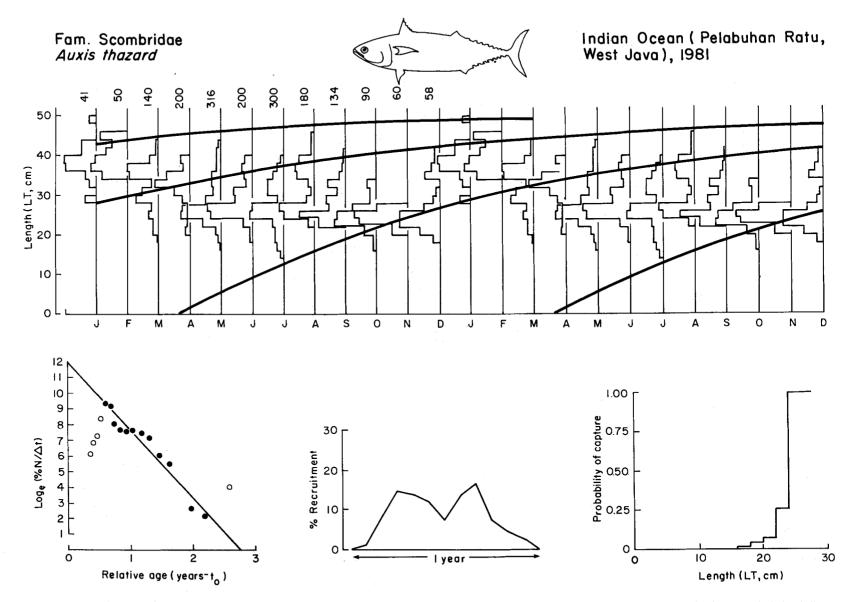
The length-frequency data presented here on silver biddy were obtained from Beck, U. and A. Sudrajat. 1980. Variation in size and composition of demersal trawl catches from the north coast of Java with estimated growth parameters for three important food-fish species. Mar. Fish. Res. Rep. (Spec. Rep.)/Contrib. Demersal Fish. Proj., Jakarta 4: 1-80. They led to parameter estimates: $L_{\infty} = 13.50$ cm, K = 1.10, $L_c = 6.81$ cm, Z = 3.76, M = 2.39, F = 1.36, E = 0.36. Annual recruitment seems to have occurred in a single protracted pulse. Miscellaneous biological data may be found in Badrudin, M. and A. Sudrajat. 1978. On the age, growth and some biological aspects of silver biddy, *Pentaprion longimanus* (Cantor) in the Java Sea. Mar. Fish. Res. Rep. (1): 63-78 and in Bambang Sadhotomo and B. Sumiono. 1983. The dynamics of trevally, *Pentaprion longimanus* at Java Sea, Jakarta. Mar. Res. Rep. (28): 81-88. (In Indonesian with English abstract).

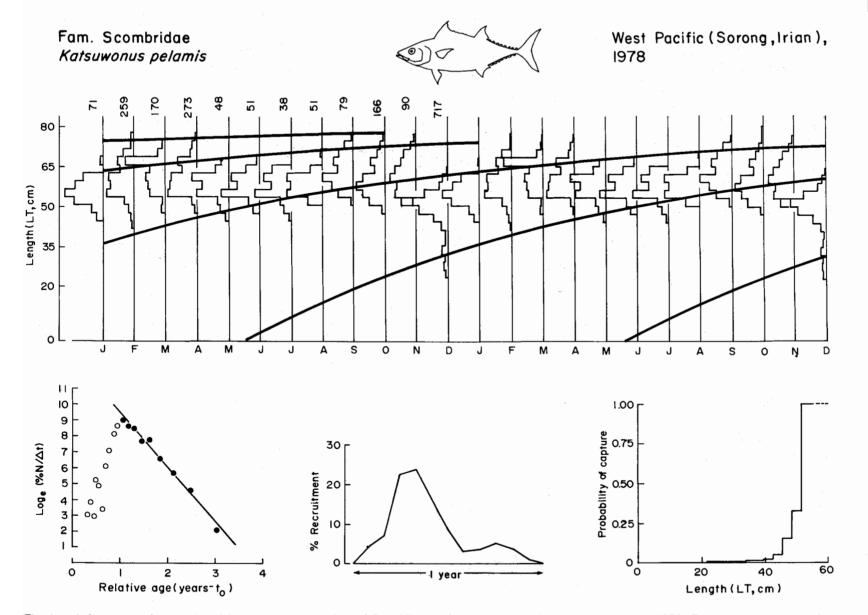


The length-frequency data on silver grunt presented here were extracted from the R.V. Mutiara survey data files, 1977-1978; from these data, the following parameter estimates were obtained: $L_{\infty} = 54.00$ cm, K = 0.50, $L_c = 37.40$ cm, Z = 1.94, M = 0.97, F = 0.97, E = 0.50. Annual recruitment probably consisted of two pulses of unequal strength. Information on the catch rate and species composition of big specimens of *Pomadasys hasta* in the south coast of Kalimantan waters may be found in Dwiponggo, A. and M. Badrudin. 1978. Demersal resources survey in coastal areas of the Java Sea, 1977. R IMF. Spec. Rep. (5): 1-14.

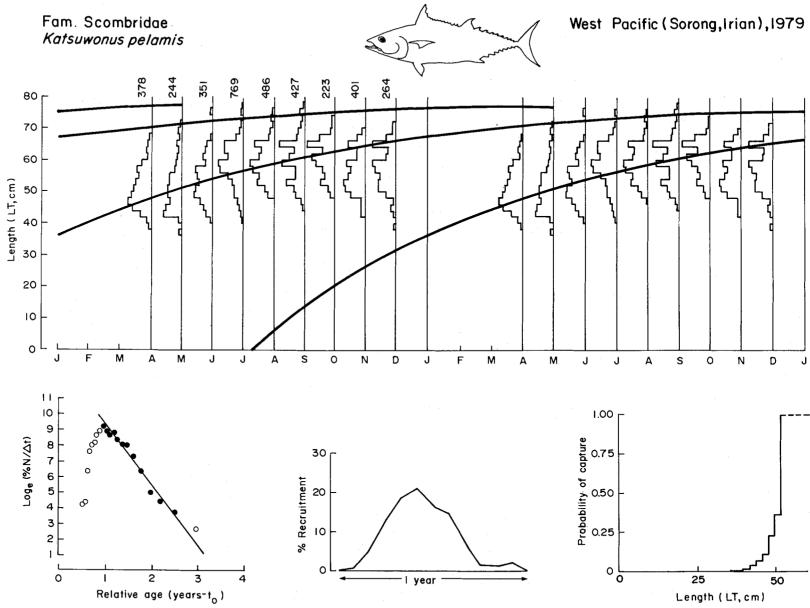

÷


The set of length-frequency data presented here was collected during the R.V. Mutiara-IV survey in the Java Sea in 1977-1978, and led to the following estimates: $L_{\infty} = 17.50$ cm, K = 0.90, $L_c = 9.72$ cm, Z = 4.52, M = 1.95, F = 2.57, E = 0.57. The available data suggest a pattern of recruitment consisting of two unequal events per year. Stock abundance and some biological aspects of goat fish in the offshore waters of Java are given in Badrudin, M. 1978; paper presented to the "Simposium Modernisasi Perikanan Rakyat," held in Jakarta, 27-30 June 1978. Report No. 43. (In Indonesian).

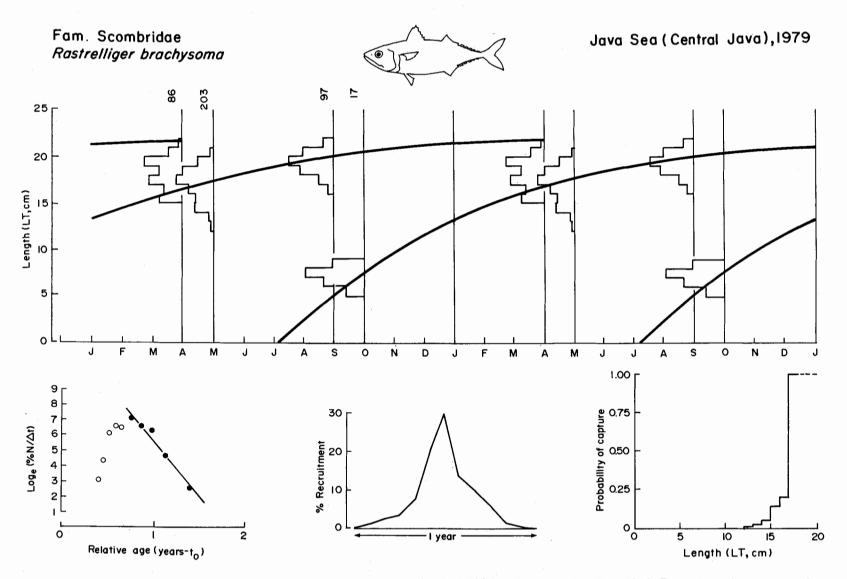

The set of length-frequency data on goat fish used here was obtained from the trawl survey by R.V. Mutiara-IV in the north coast of Central Java. It suggests the statistics: $L_{\infty} = 16.50$ cm, K = 0.78, $L_c = 9.74$ cm, Z = 2.71, M = 1.80, F = 0.91, E = 0.34. Annual recruitment consisted of two seasonal pulses, one stronger than the other. Details may be found in Martosubroto, P. 1972. Fishery dynamics of the demersal resources of the Java Sea. Dalhousie University, Canada. Ph.D. Thesis (unpublished).


This set of length-frequency data on *Drepane punctata* was extracted from the files of Mutiara-IV survey data (1977). The following parameter values were estimated from these data: $L_{\infty} = 43.00$ cm, K = 0.68, $L_c = 30.28$, Z = 2.68, M = 1.26, F = 1.42, E = 0.53. The shape of recruitment pattern does not allow for definite conclusions to be drawn on the seasonality of recruitment. Additional information on the distribution and seasonal changes of catch rates of spotted sickle fish is given by Dwiponggo, A. and M. Badrudin. 1980. Result of the Java Sea inshore monitoring survey, 1979. RIMF. Spec. Rep. (7): 1-31.

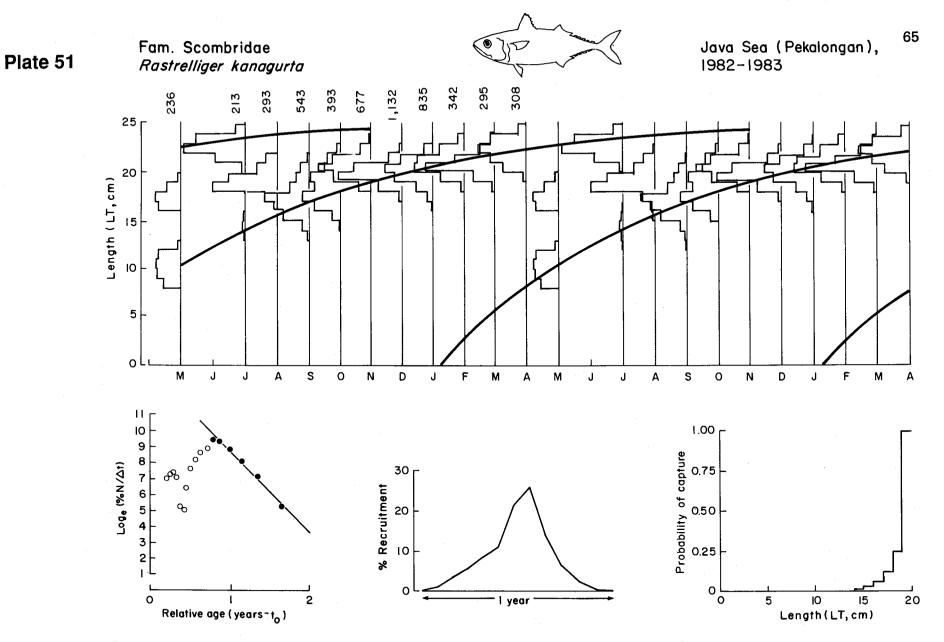
The length-frequency data used here were collected by J.C.B. Uktolseya, 1980. From these, the following parameter estimates were obtained: $L_{\infty} = 47.50$ cm, K = 0.70, $L_c = 35.59$ cm, Z = 2.59, M = 1.25, F = 1.34, E = 0.52. Annual recruitment appears to have consisted of two unequal pulses. Additional information on this fish may be found in Sivasubramaniam, K. 1973. Co-occurrence and relative abundance of narrow and broad corselleted frigate mackerel: *Auxis thazard* (Lacépède) and *Auxis rochei* (Risso) around Ceylon, p. 537-547. *In* Proceedings of the Symposium on Living Resources of Seas around India. Spec. Publ. Cen. Mar. Fish. Res. Inst. Cochin. 784 p.

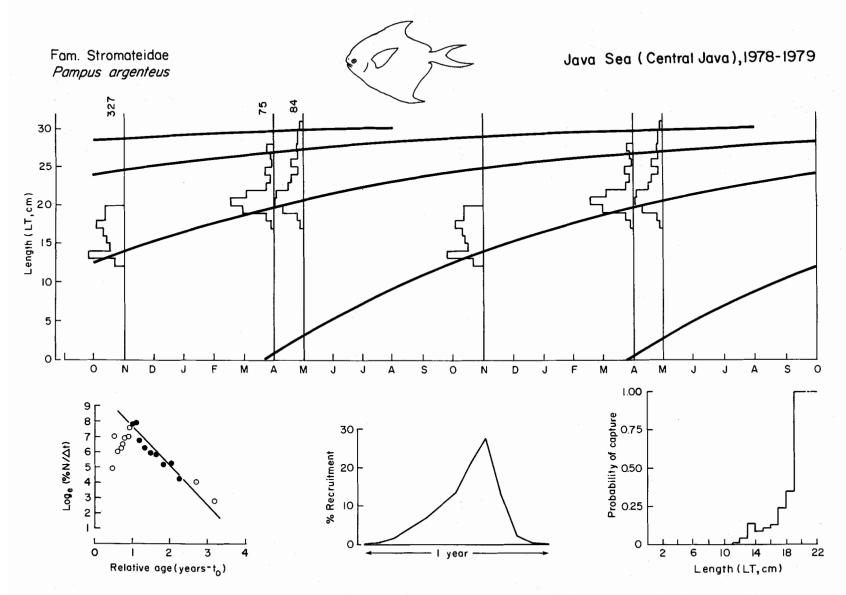


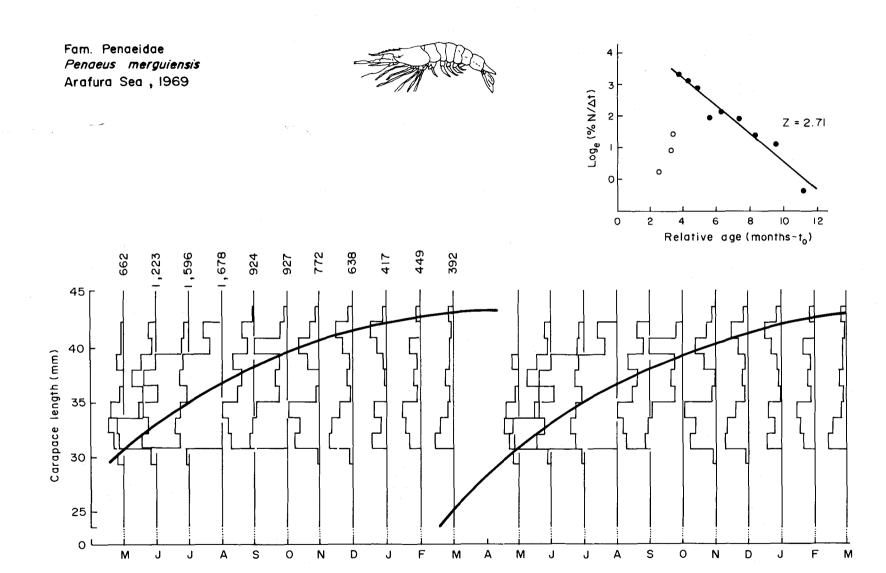
The length-frequency data presented here were compiled by J.C.B. Uktolseya in 1981 in the eastern Indonesian waters. The data yielded the following parameter estimates: $L_{\infty} = 51.50$ cm, K = 1.00, $L_c = 23.60$ cm, Z = 4.03, M = 1.55, F = 2.86, E = 0.71. Annual recruitment occurred in two wellseparated pulses. Additional information on the biology of this fish can be found in Haryanto, S. 1980. Length-weight relationship, gonad maturity and fecundity of *Auxis thazard*, caught by gillnets and landed at Bondo, Jepara, in May-July 1980. University of Diponegoro, Semarang. 47 p. M.Sc. thesis. (Unpublished) (In Indonesian).

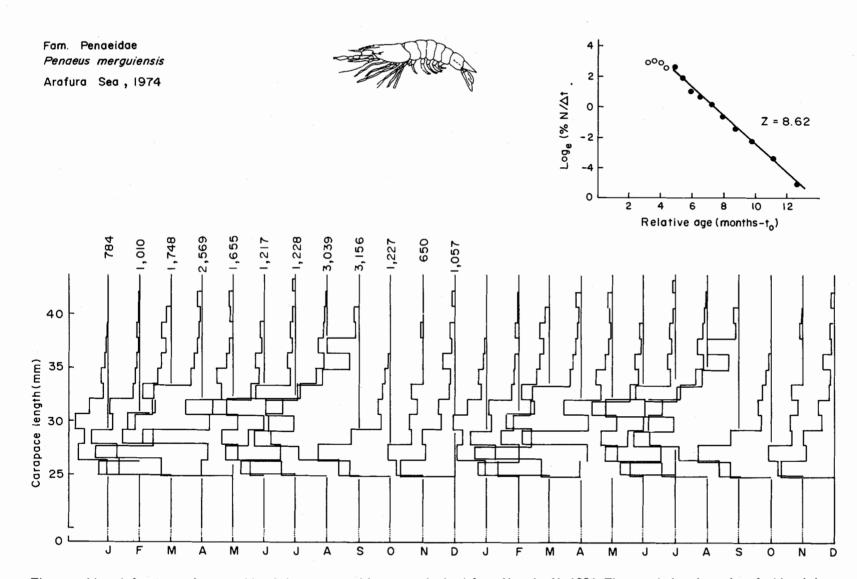


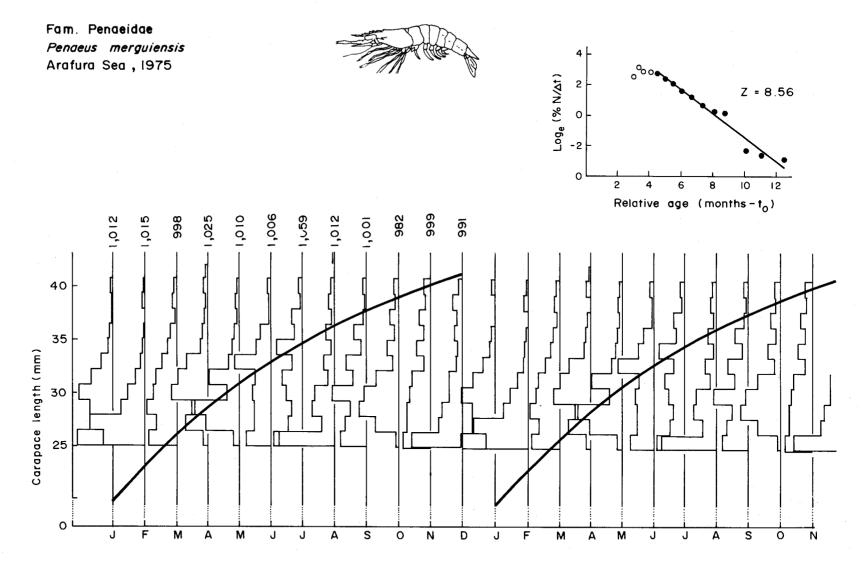
The length-frequency data analyzed here were collected by J.C.B. Uktolseya in the eastern Indonesian waters in 1979. From these the following parameter values were estimated: $L_{\infty} = 80.00$ cm, K = 0.95, $L_c = 50.68$ cm, Z = 3.49, M = 1.32, F = 2.16, E = 0.62. Annual recruitment clearly consisted of two distinct events of unequal magnitude. The present status of tuna fisheries including skipjack fisheries has been presented by Uktolseya, J.C.B. and I.S. Merta. 1984. Recent developments of Indonesian tuna fisheries. Paper presented to the Ad-hoc Workshop on the Stock Assessment of Tuna in the Indo-Pacific Region, Jakarta, 20-22 August 1984, 17 p. (Mimeo).

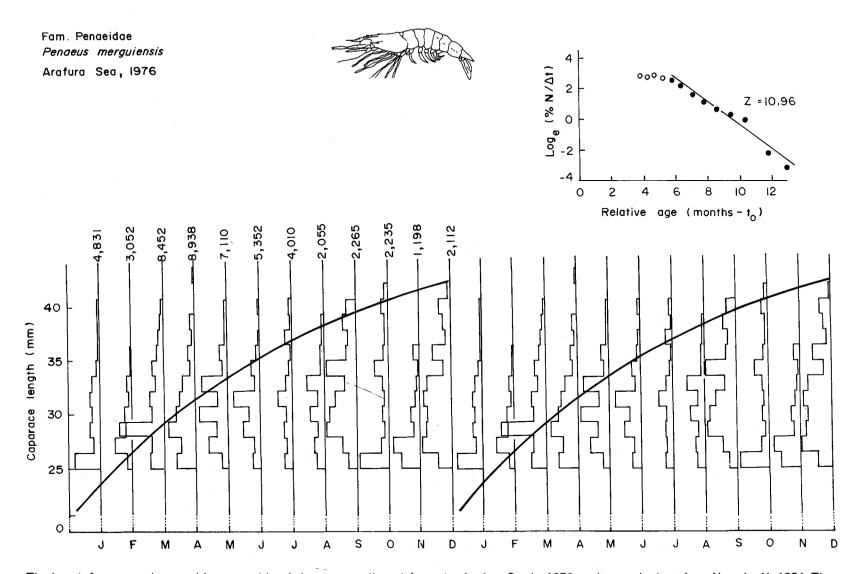

Plate 49

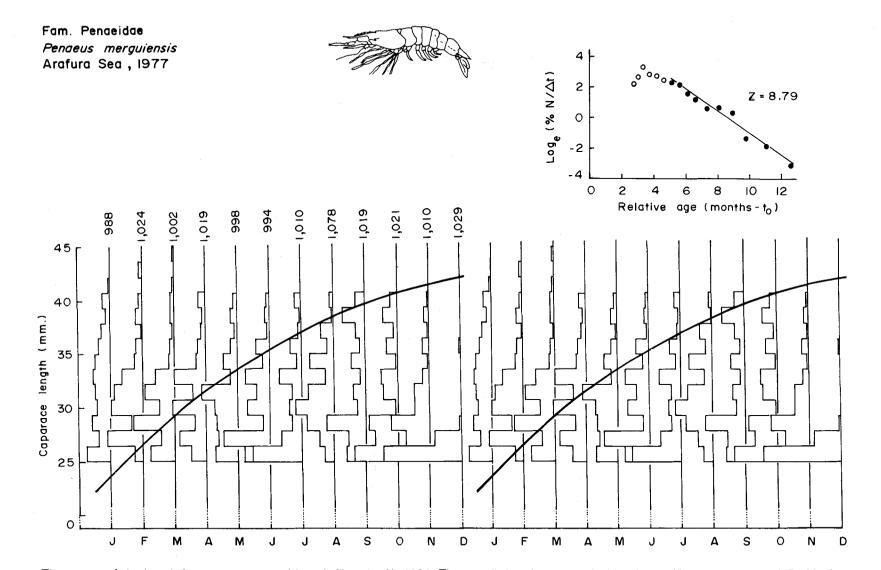

This set of data on skipjack was obtained from Mr. J.C.B. Uktolseya, 1978, raw data files. The following parameter values were estimated: $L_{\infty} = 79.00$ cm, K = 1.10, $L_c = 51.20$ cm, Z = 3.95, M = 1.46, F = 2.52, E = 0.64. Annual recruitment seems to have occurred in the form of two pulses, one much stronger than the other. Some aspects of the biology of *Katsuwonus pelamis* can be found in Merta, I.S. 1983. Preliminary study on food habits and gonad maturity of skipjack, *Katsuwonus pelamis* (Linnaeus 1758), caught off south of Bali and West Sumatra waters. RIMF Jakarta Mar. Res. Rep. 27: 69-74.

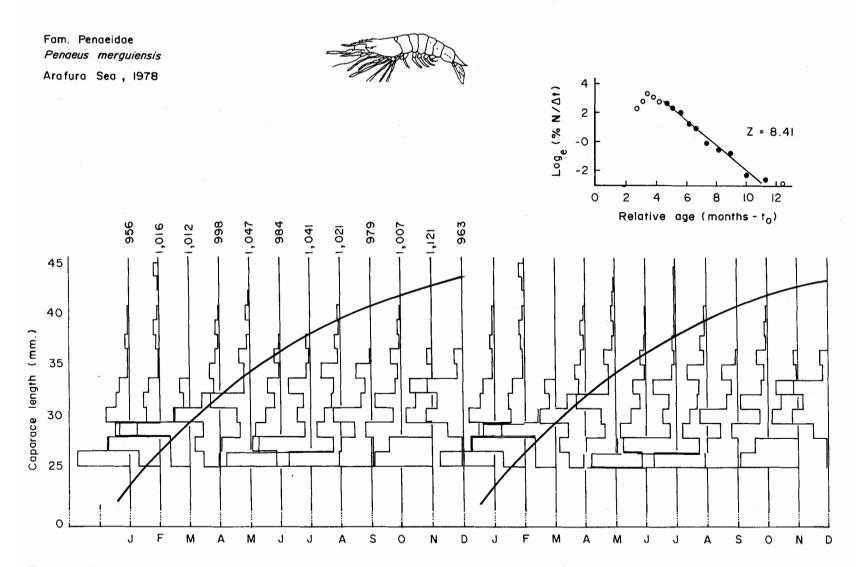

The length-frequency data of chub mackerel used here were obtained from R.V. Mutiara-IV survey data files, 1979. The estimated parameter values obtained were: $L_{\infty} = 22.90$ cm, K = 1.80, $L_c = 16.80$ cm, Z = 7.40, M = 2.83, F = 4.57, E = 0.62. Annual recruitment appears to have consisted of one major pulse. The population dynamics of *R. brachysoma* (= *R. neglectus*) (in the Gulf of Thailand) has been given by Hongskul, V. 1972. Population dynamics of pla-tu (*Rastrelliger neglectus*) in the Gulf of Thailand. Proc. Indo-Pac. Fish. Counc. 15(3): 297-350.

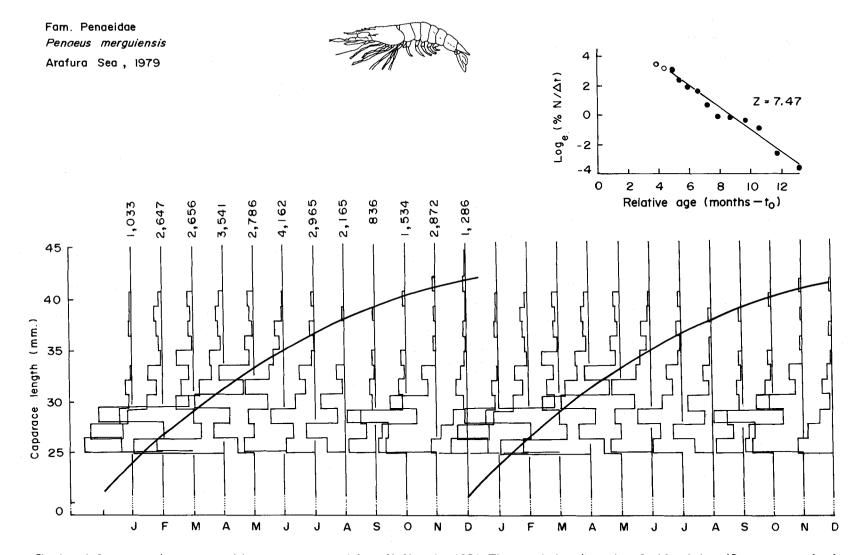

The set of length-frequency data on chub mackerel presented here was collected by G. Tampubolon and B. Suherman in the north coast of Central Java and led to the following parameter estimates: $L_{\infty} = 25.80$ cm, K = 1.63, $L_c = 18.77$ cm, Z = 5.08, M = 2.58, F = 2.50, E = 0.49. Annual recruitment appears to have consisted of a single event. Various aspects of the biology and population dynamics of chub mackerel (*Rastrelliger kanagurta* and *R. brachysoma*) are presented in Sujastani, T. 1974. Population dynamics of chub mackerel in Java Sea. RIMF. Mar. Res. Rep. (7): 30-64. Gafa, B. 1982. Some biological aspects of the "Kembung lelaki" (*Rastrelliger kanagurta*) of the Makasar Strait, RIMF. Mar. Res. Rep. 23: 91-95. (In Indonesian); and Susanto, V. 1961. Some problems of fisheries research with special reference to the *Rastrelliger* fishery. Proc. Indo-Pac. Fish. Counc. 9(3): 71-18.

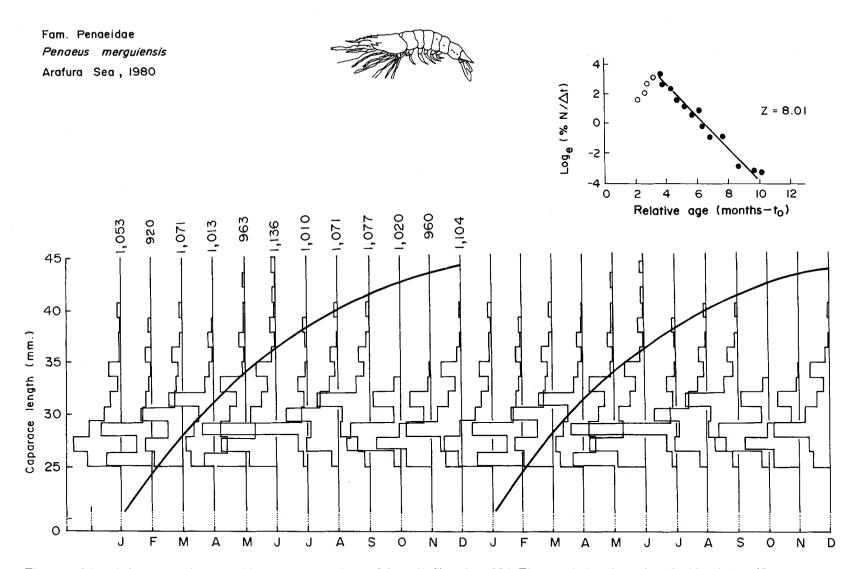

The source of the length-frequency data on silver pomfret (*Pampus argenteus*) presented here is Dwiponggo, A. and M. Badrudin. 1980. Length-frequency measurements of demersal fish. Contribution of the Demersal Fisheries Project, RIMF Spec. Rep. (7b): 1-94. The parameter estimates are: $L_{\infty} = 31.50$ cm, K = 0.95, $L_c = 19.00$ cm, Z = 2.60, M = 1.72, F = 0.88, E = 0.34. Annual recruitment appears to have occurred in the form of a single protracted pulse. Further data on the growth and mortality of this fish may be found in Morgan, G.R. 1985. Stock assessment of the pomfret (*Pampus argenteus*) in Kuwaiti waters, J. Cons. CIEM 4(2): 3-10.


The set of length-frequency data on white shrimp presented here was obtained from Naamin, N. 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures, Bogor Institute for Agriculture. Ph.D. thesis. The estimated statistics are: $L_{\infty} = 49.00$ mm, K = 1.625, Z = 2.71, M = 2.16, F = 0.55, E = 0.20. Various recent contributions and an entry into the literature on the biology and population dynamics of white shrimp (= banana prawn) may be found in Rothlisberg, D.C., B.J. Hills and D.J. Staples (eds.), 1985 Second Australian National Prawn Seminar, Cleveland, Australia. 368 p.

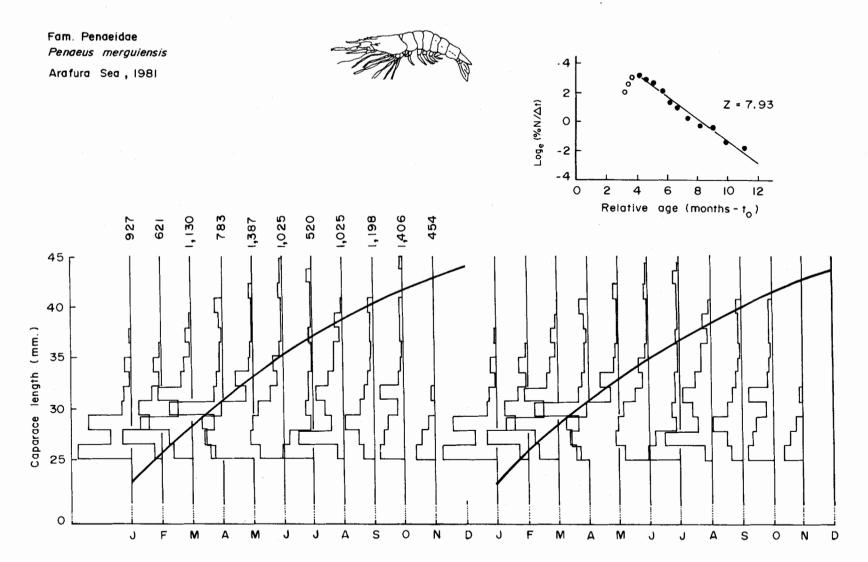

The set of length-frequency data on white shrimp presented here was obtained from Naamin, N. 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures, Bogor Institute for Agriculture. Ph.D. thesis. The estimated statistics are: $L_{\infty} = 52.00$ mm, K = 1.75, Z = 8.62, M = 1.81, F = 6.81, E = 0.79. Exploratory shrimp trawling in the Arafura Sea has been reported upon by Martosubroto, P. 1972. Exploratory trawling with R.I. Jalanidhi. Proc. IPFC 13th Session, Brisbane, Australia. 1968: 649-652.


The set of length-frequency data on white shrimp presented here was obtained from Naamin, N. 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures. Bogor Institute for Agriculture. Ph.D. thesis. The estimated parameters are: $L_{\infty} = 50.20$ mm, K = 1.65, Z = 8.56, M = 2.16, F = 6.40. Additional information on the growth of white shrimp may be found in Martosubroto, P. 1977. Spawning season and growth of *Penaeus merguiensis* and *Metapenaeus ensis* in Tanjung Kerawang. Second National Seminar on Shrimp, Jakarta, 15-18 March 1977, 17 p. (In Indonesian).


The length-frequency data used here on white shrimp were collected from the Arafura Sea in 1976, and were obtained from Naamin, N. 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures. Bogor Institute for Agriculture. Ph.D. thesis. The following parameters were estimated: $L_{\infty} = 49.90$ mm, K = 1.425, Z = 10.96, M = 1.97, F = 8.99, E = 0.82. The conservation of shrimp resources in the West Irian waters have been discussed by Naamin, N. and T. Yamamoto. 1977. Some thoughts on the conservation of shrimp resources in West Irian waters. Second National Seminar on Shrimp, Jakarta, 15-18 March 1977. 44 p. and in Gulland, J.A. 1973. Some notes on the assessment and management of Indonesian fisheries. ISFC/DEV/73/21. Bangkok. Indian Ocean Fish. Comm. FAO. 21 p.


The source of the length-frequency presented here is Naamin, N. 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures. Bogor Institute for Agriculture: Ph.D. thesis. They led to the following parameter estimates: $L_{\infty} = 50.20$ mm, K = 1.650, Z = 8.79, M = 2.17, F = 6.62, E = 0.75. A review on the shrimp fishery may be found in Naamin, N. and A. Farid. 1980. A review of the shrimp fishery in Indonesia. Report of the Workshop on the Biology and Resources of Penaeid Shrimps in the South China Sea area Part 1. SCS/GEN/80/26. South China Sea Fisheries Development and Coordinating Programme, Manila, p. 13-32.

The length-frequency data presented here were obtained from N. Naamin, 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures. Bogor Institute for Agriculture. Ph.D. thesis. The following parameter values were estimated: $L_{\infty} = 50.1$ mm, K = 1.650, Z = 8.41, M = 2.17, F = 6.24, E = 0.74. Additional information on the fishing grounds of shrimp in the Arafura Sea may be found in Nasution, C. 1977. The new fishing grounds outside the commercial fishing ground–Arafura Sea. Second National Seminar on Shrimp, Jakarta, 15-18 March 1977. 12 p. (In Indonesian).



The length-frequency data presented here were extracted from N. Naamin, 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures. Bogor Institute for Agriculture. Ph.D. thesis. The estimated parameter values are: $L_{\infty} = 50.0 \text{ mm}$, K = 1.40, Z = 7.47, M = 1.95, F = 5.52, E = 0.74. Additional information on the biological aspects of this shrimp is given by Sumiono, B. 1983. The length at first maturity stage and sex ratio of *Penaeus merguiensis* De Man, in the Bintuni Bay, Irian.Jaya. RIMF, Jakarta. Mar. Res. Rep. (19): 41-46. (In Indonesian).

The set of length-frequency data on white shrimp was obtained from N. Naamin, 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures, Bogor Institute for Agriculture. Ph.D. thesis. The following parameter estimates were extracted: $L_{\infty} = 50.4$ mm, K = 1.875, Z = 8.01, M = 2.35, F = 5.66, E = 0.71. Information on the size maturity of banana prawn in other are given by Siswanto, A. 1983. A review on size maturity and spawning season of banana prawn (*Penaeus merguiensis* De Man) at Cilacap and adjacent waters. RIMF, Jakarta. Mar. Res. Rep. (29): 97-102. (In Indonesian).

Plate 61

The source of the length-frequency data presented here was from N. Naamin, 1984. The population dynamics of white shrimp (*Penaeus merguiensis* De Man) in the Arafura Sea and its alternative management measures. Bogor Institute for Agriculture. Ph.D. thesis. The data led to the following parameter estimates: $L_{\infty} = 50.0$ mm, K = 1.475, Z = 7.93, M = 2.01, F = 5.92, E = 0.75. In his thesis, Naamin concluded that the shrimp fishery in the Arafura Sea has already put a heavy pressure on the *Penaeus merguiensis* stock and that management measures should be implemented such as close season, size limitations and limitation of fishing effort.

Table A4

Family: Clupeidae

Location: Riau Waters (Bintan) Family: Clupeidae Family: Clupeidae Year: 1982-1983 Sp Species: Anadontostoma chacunda _ M A м J A S O Ν D Σ Mi Midlength J F J -10.0 4 _ 10.5 8 _ 20 26 15 11.0 37 11.5 6 51 78 27 36 12.0 5 2 4 12.5 2 5 23 27 28 6 30 7 1 12 11 8 9 23 40 42 81 52 98 36 37 51 13.0 19 47 29 42 21 47 5 1 13.5 30 51 34 8 6 49 35 34 46 77 26 62 60 29 41 19 14.0 46 36 49 63 24 19 14.5 15.0 35 8 32 40 17 5 4 12 41 7 5 9 20 11 22 13 15.5 16.0 18 4 9 3 5 3 8 5 2 5 з 16.5 1 2 8 4 3 1 17.0 3 Σ _ 120 244 350 329 163 210 191 263 153 168 2,371 180

25

9

10

2

2,708

257 27B 238 175

Species: Sa	dinella	longicep	2									Ye	ar: 1977
Midlength	J	F	M	A	м		L	'A	s	0	N	D	Σ
		1.1											
7.5	-	-			2								
8.5	_				44								
9.5	_				49								
10.5	-				4								
11.5	-				0								
12.5	-				0								
13.5	9				0								
14.5	62	4	-		19						2		
15.5	36	33	2	-	110		8	21	6	6	17	10	
16.5	11	65	53	4	49	33	156	254	167	134	138	104	
17.5		15	126	180	31	123	52	47	57	84	78	106	
18.5			46	130	15	56	15	2		11	5	13	
19.5			6	16		12	4			2			
20.5						1							
Σ	118	117	233	330	323	225	235	324	230	237	240	233	2,845

•

Location: Bali Strait.

· .

Location: Bali Strait

Table A2

16.0

16.5

17.0

17.5

Σ

_

_

_

235

1

2

253 274 402 388 208

0

1

_

_

Family : Clu Species : Sar		ibbosa								Locati	on:Rieu		(Bintan ar: 1982
Midlength	J	F	M	A	м	J	J	A	s	0	N	D	Σ
7.5	1	_			1								
8.0	5				2								
8.5	21	2			3								
9.0	15	4			3								
9.5	8	6		3	8								
10.0	4	19		1	17	2							
10.5	3	4	3	1	7	4							
11.0	1	1	8	9	24	35		6	1	1			
11.5	0	0	18	61	22	48		3	1	3			
12.0	1	5	1	86	57	65		13	3	11	1		
12.5	4	15	. 1	63	53	26		47	18	40	2		
13.0	24	33	38	61	65	18		118	75	94	5		
13.5	48	48	85	35	27	9		49	97	41	12		
14.0	74	79	7B	49	46	1		18	64	39	30		
14.5	21	22	26	19	29			3	8	5	25		
15.0	5	11	9	8	22				2	4	25		
15.5	-	4	6	4	1				2		29		

Speciês: San	rdinella	longiceps	;								Yea	ar: 1977
Midlength	J	F	м	A	м	 J	A	s	0	N	D	Σ
10.5	_									20		
11.5	-									98		
12.5	-									96	1	
13.5	-									24	31	
14.5	-										96	
15.5	-	1	2								12	
16.5	51	80	21	3								
17.5	54	26	19	113								
18.5	20	18	36	70								
19.5	8	10	14	14								
20.5	1	1	1									
21.5	2											
Σ	136	136	93	200						238	140	943

Table A1

76

Midlength	J	F	м	A	м	J -		Α	s	0	N	D	Σ
12.5	7	37	18	12	_	-	-						
13.5	105	119	132	63	2	_	20						
14.5	74	60	123	88	53	-	91						
15.5	32	13	32	43	33	10	124						
16.5	2	1	21	10	4	20	46						
17.5			5		38	47	36						
18.5					59	15	16						
19.5						8							
20,5													
Σ	220	230	331	216	189	100	333						1,61

Species: Se	rdinella	a sirm										Year: 19	82 - 198;
Midlength	J	F	м	А	м	J	J	Α	s	0	N	D	Σ
12.5	_		_	_			_	_	1	<u></u>	_	_	
13.5	-		-	-			-	-	7	2	-	3	
14.5	-		-	-			-	-	14	0	-	19	
15.5	11	8		-			-	4	34	24	1	69	
16.5	56	19	3	-			_	49	76	39	13	160	
17.5	136	66	72	-			_	110	144	67	38	219	
18.5	219	255	165	8			3	98	168	84	117	246	
19.5	176	466	261	28			29	159	132	76	206	140	
20.5	77	412	350	77			23	61	55	21	84	33	
21.5	9	54	186	100			12	8	13	4	23	5	
22.5		1	63	70				4	4	1	3		
23,5			1	21									
24.5				1									
Σ	684	1,281	1,101	305			67	493	648	318	485	894	6,27

Table A6

Family : Clupeidae Species : <i>Sardinella</i>		,								Loce	tion:Ba Yea	li Strait r: 1981	Family: Syn Species: <i>Sau</i>										Locatio		Sea (Cent Year: 19	
Midlength J	F	м	A	м	J	J	A	s	0	N	D	Σ	Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ
7.5				7									5,5			4										
8.5				á									6.5			14								45	14	
9.5				2									7.5			44							2	51	193	
10.5				12									8.5			51							9	62	404	
11.5				4									9.5			11							30	99	741	
12.5		4		1	16					12			10.5			12							74	112	987	
13.5		118		27	70	31				47	1		11.5			24							69	229	1,198	
14.5		211		55	13	54				59	0		12.5			35							99	271	706	
15.5		67		13	17	2 ·	70	11		32	6		13.5			30							84	286	694	
16.5		8			80		194	54		4	8		14.5			24							84	211	323	
17.5		4			75		93	27		0	24		15,5	5		5							28	24	26	
18.5					18		52	6		3	10		16.5	24									1	4		
19.5					8		11	1			5		17.5	25										0		
													18.5	18										4		
Σ		412		130	2 9 7	87	420	99		157	54	1,656	19.5	4												
													Σ	76		254							481.	1,398	5,286	7,495

Table A8

Table A7

Family: Clupeidae

77

Location: Java Sea (Pekalongan, Central Java)

Family : Syr Species : <i>Sau</i>			ralis						ι	ocatio.			tral Java) 978-1979	Family: Cy Species: Ha			idota						Loc	ation: Ji			/est Java))83-1984
Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ	Midlength	J	F	м	A	M	J	J	A	S	0	N	D	Σ
8.0	2										4			14.0			1					_	4	9	5	1	
10.0-	4				2						16			16.0			1					2	8	.3	4	6	
12.0	0				1					7	30			18.0	3		1					3	1	0	10	4	
14.0	1				11		13			29	37			20.0	14		4					2	2	12	3	4	
16.0	6				27		10		2	28	46			22.0	7		9					5	1	13	1	6	
18.0	6				14		3		1	29	14			24.0	15		12					2	0	11	4	7	
20.0	10				3		6		1	15	3			26.0	15		6						1	4	1	6	
22.0	4				•		1		7	24	1			28.0	8		1						2	3	2	2	
24.0	1 .						7		6	15	•			30.0	3		1						0	3	3	2	
26.0	2								3	1				32.0	2		3						2	1	_	_	
28.0	6								•	1				34.0	1												
30.0	3									•				36.0	0												
32.0	3													38.0	0												
34.0	1													40.0	0												
36.0	1													42.0	1												
38.0	1													44.0	1												
40.0	1													46.0													
														48.0													
Σ	52				58		40		20	149	151		470														
														Σ	70		39					14	21	59	34	38	275

Table A10

Table A12

Family: Syn Species: Sau			is							Locatio			ral Java) 77-1978	Family: Arii Species: Aria		ilatus							Locatio	on: Java	Sea (Teg	gal, Centr Yea	ral Java) ar: 1978
Midlength	J	F	м	А	м	J	J	A	S	0	N	D	Σ	Midlength	J	F	м	A	м	3	J	A	S	0	N	D	Σ
11.5										_	1	13		21								_		_		1	
13.5										6	5	19		23 25								-		2		1	
15.5 17.5										14	25	12		25								-		1		10	
19.5										22	48	5		29								0		2		10 22	
21.5	7									.9	22	2		31								32		3		12	
23.5	17									2		0		33								57		12		9	
25.5	6										3			35								35		39		20	
27.5	5										2			37								26		72		7	
29.5	6										1			39								16		64		7	
31.5	1										1			41								6		14		5	
											•			43								4					
Σ	42									54	115	52	263	-													
														Σ								188		210		97	495

13.0 15.0 17.0 19.0 21.0

23.0 25.0 27.0 29.0 31.0

33.0 35.0 37.0 39.0 41.0 43.0 45.0 47.0 49.0 51.0

53.0

55.0

57.0

Σ

Family: Ariidae

Species: Arius thalassinus

Midlength J F M

	Ta	ble	A1	5
--	----	-----	----	---

						Locati	on: Jav	a Sea (S		alimantar 'ear: 197		mily: Pri ecies: Pri		dae <i>us macrac</i>	anthus						I	Locatio	n:Java So א		ral Java) 78-1979
A	N	И	J	J	A	S	0		D	Σ	Mi	dlength	J	F	м	A	м	J	J	Α	s	0	N	D	Σ
			1		3							9.5										1	3		
			6		Э							10.5									8	10	6		
			4		2							11.5									2	46	5		
			2		1							12.5	8	6							7	32	5		
			9	1	0							13.5	45	23		1					16	5	27		
			11	0	1	4						14.5	22	59		9					4		43		
			16	0	4	12						15.5	5	17		27					2		51		
			17	0	2	14						16.5	2	6		37					8		10		
			21	2	3	14						17.5	2	4		21					14				
			12	3	6	34						18.5		4		5					22				
			8	9	3	27						19.5		2		4					10				
			13	7	5	20						20.5		1							2				
			1	1	0	9																			
			2	1	1	3						Σ	84	122		104					95	94	150		649
			0		2	0					_														
			0		1	0																			
			1			0																			
			0			1																			
			2																						
			0																						
			-																						

Table A14

.

Family: Priacanthidae Species: Priacanthus macraca

0

0

1

126

24

37 138

Location: Java Sea (Central Java) Year: 1977-1978

325

Family : Carangidae Species : *Decapterus macrosoma* Location: Java Sea (Pekalongan, Central Java) Year: 1982-1983

Species: Pri	acanthu	us macra	canthus								ſ	rear: 19	77-1978	Species: De	capteru	s macros	oma									rear; 19	982-1983
Midlength	J	F	M	A	м	J	J	А	S	0	N	D	Σ	Midlength	J	F	м	A	м	J	J	A	S	0	N	D	Σ
6.5							2							11.5	_									_			
7.5							78							12.5	_							,	5	_			
8.5							19							13.5	38							39	36	3		11	
9.5							2				3			14.5	71			3				98	28	16		35	
10.5							ō				18			15.5	104	21	5	12				183	43	35	21	190	
11.5							ō				9			16.5	172	168	72	52				66	69	49	50	293	
12.5	32	26					ō				10			17.5	251	669	136	72				5	34	21	72	143	
13.5	226	334		4			0				70			18.5	160	722	193	97					10	24	38	41	
14.5	212	420		61			0				150			19.5	68	457	135	86						34	9	5	
15,5	56	182		149			2				87			20.5	8	105	28	31						16	1		1
16.5	31	99		55			8				14			21.5	1	-	8	1						9	. 0		
17.5	9	59		20			10				0			22.5	-									5	1		
18.5	2	21		11			11				3			23.5	-												
19.5	2	5		7			6							-													
20.5		2					4							- Σ	873	2,142	577	354				399	225	212	192	718	5,692
21.5							2																				· · · · ·
22.5							1																				
23.5							1																				
24.5							0																				
25.5							2																				
Σ	570	1,148		307			148				364		2,537														

80

Table A17

Table A18

Table A19

Vidlength	J .	F	M	A	м	J	J	A	S	0	N	D	Σ
8.5	_	_	_	-	_	3	_		_	_	_	_	
9.5	-	-	-	-	-	6	5	-	-	-	_	-	
10.5	-	-	-	2	-	- 5	18	-	-	-		-	
11.5	-	-	1	5	-	5	18	1	5	2	_		
12.5	-	-	0	3		12	2	1	13	7	-	-	
13,5	-	-	1	4	-	12	6	7	16	20	1	6	
14.6	-	3	4	15	-	3	3	20	5	24	3	8	
15.5	14	16	3	10	-	1	1	13	4	23	3	11	
16.5	17	22	20	7	-	2	1	9	3	11	13	17	
17.6	18	19	20	5	10	2	-	5	1	4	18	23	
18.5	12	8	4	-	12	1	-	1	2	2	11	14	
19.5	10	6	2	-	15	2		-	1	-	6	9	
20.5	2	-	1		7	-	-	-	-	-	5	2	
21.5	1	-	-	-	7	-	-	-	-	-	0	1	
22,5	-	-	-	-	1	-	-	-	-	-	1	-	
Σ	74	74	56	51	52	63	64	57	50	93	61	90	76

Midlangth	J	F	м	A	.M	J	J	A	S	0	N	D	Σ
8.5			7				2	6	1	-	-		
9.5			16				8	17	6	-	_		
10.5			3				20	12	6	7	-		
11.5			0				25	14	20	47	4		
12.5			0				31	26	30	135	47		
13.6			4				27	34	60	187	90	3	
14.6	2		17	1	1	2	29	28	95	143	179	27	
15.6	9		21	4	7	-9	21	16	82	73	133	52	
16.5	29		74	20	3	21	16	26	93	74	69	69	
17.5	23		178	19	36	31	1	41	62	109	56	65	
18.5	8		74	37	36	20	0	65	16	94	142	73	
19.5	6		10	20	35	6	1	59	3	61	137	47	
20.5	2		4	6	8	2	0	31	2	22	65	6	
21,5	1		1	2	8		1	23		13	25	2	
22.5	1		3	1			2	12		12	29	1	
23.5	-				5		1	4		11	13		
24.5	-				2		-			3	1		
25.5	-				-		-			1			
Σ	104		412	110	147	91	185	414	476	992	990	344	4,26

.

Family : Car Species : Dec			si						Locatio	on: Java		jel, Cent /ear: 196	rel Java) 32-1983	Family: Ca Specias: Da			dsi					Locet	ion: Jav	va Sea (i		gan, Cent Yaar: 19	
Midlength	J	F	м	A	М	J	J	A	s	0	N	D	Σ	Midlength	J	F	м	A	М	J	J	A	S	0	N	D	Σ
8.5	_	-	-	<u> </u>	2	3		_	_	_	_	-		9.5	-							-				7	
9.5	-		-	-	2	3		-	-	-	-	-		10.5	6							1			2	41	
10.5	-	-	-	_	14	2		-	3	1		-		11.5	36							3			11	98	
11.5	-	5	7	-	23	3		2	7	18	6	1		12.5	61							17	4	14	14	146	
12.5		14	12	-	9	13		25	21	16	20	4		13.5	71	10	6					13	35	40	17	173	
13.5	5	18	15	8	3	36		22	20	32	18	23		14.5	57	151	120					45	73	42	20	175	
14.5	32	24	14	16	6	43		18	11	36	19	19		15.5	54	472	181	11		1		81	165	31	37	173	
15.5	14	19	11	27	10	10		22	9	22	18	13		16.5	105	530	162	63		21		96	220	28	72	156	
16.5	14	24	18	9	11	9		16	2	27	11	18		17.5	138	295	255	76		49		35	114	23	221	137	
17.5	28	14	0	19	6	4		7	-	20	6	16		18.5	134	166	272	71		81		2	42	24	143	105	
18.5	13	3	1	26	- 5	1		-	-	6	1	9		19.5	60	104	63	72		106	10	7	14	26	102	48	
19,5	-	-	-	-	13	4		-	-	5	-	-		20.5	29	67	41	44		39	9	11	5	26	67	26	
20.5	-	-	-	-	10	1		-	-	3	-	-		21.5	20	32	24	14		10	4	21	-	11	44	23	
21.5	-	-	-	-	5	-		-	~	2	·	-		22.5	10	4	16	-		-	18	19	-	3	29	17	
22.5	-	-	-	-	1	-		-	_	1	-	-		23.5	-	-	8	-		-		6	-	4	13	13	
23.5		-	-	-	-	-		-	-	0	-	-		24.5	_	-	1	-		-		1	-	-	3	4	
24.5	-	-	-	-	-	-		-	-	Ó	 .	-		25.5	-	-	-	-		-		-	-	-		2	
25.5	-	-	-	-	-	-		-	-	1	-	-		Σ	781	1,831	1,149	351		307	51	358	672	272	795	1,343	7,910
Σ	106	121	78	105	120	132		112	73	190	99	102	1,238	·			.,										

Family: Carangida Species: <i>Decapter</i>								Ľ	ocation	: Jakarta		ribu Isl.) ar: 1973	Family: Car Species: De									Ĺ	ocation:	Jakarta		ribu Isl.) ar: 1975
Midlength J	F	M	A	м	J	J	A	s	0	N	D	Σ	Midlength	L	F	м	A	M	J	J	A	s	0	N	D	Σ
14,5				_			16			3	_		9.5	_	-	_	1	3	-	-		_		_	_	
15.5				-			25			27	16		10.5	-			6	3.	_	-				-	-	
16.5				-			18			71	67		11,5		3	-	20	4	1			-		-	_	
17.5				1		2	18			19	29		12,5	4	18	10	59	20	8	-		2		3	-	
18.5				1		23	15				2		13.5	16	8	54	27	38	16	1		4		9	_	
19.5				8		24	9				3		14.5	18	3	33	14	15	12	9		6		6	30	
20,5				10	8	10					2		15.5	19	6	- 3	9	5	11	27		14	3	5	37	
21.5				10	16	6					3		16.5	13	2	-	4	22	6	18		2	25	7	17	
22.5				25	16	4					2		17.5	17			2	1	8	5		1	18	10	5	
23.5				6	6	3							18,5	27			1		7	_		1	2	4	6	
24.5				1	2								19.5	4			-	_	4	-		3	2	6	4	
25.5					1								20.5	4			-		_	-		4	_	1	1	
													21.5	1			-	_	-	-		2	-	1	-	
Σ				62	49	72	98	、		120	124	525	22.5	-			-	-	-	-		-	-		-	
													Σ	123	40	100	142	105	73	60	_	39	50	53	100	885

Table A22

Table A21

Teble A24

Family: Car Spacias: De									La	cation:	Jakarta		ibu Isl.) ar: 1973	Family : Ca Species : <i>Se</i>			almus							Locatio			elongan) 182-1983
Midlength	j	F	м	A	м	J	J	А	S	0	N	D	Σ	Midlength	J	F	м	A	м	L	J	A	s	0	N	D	Σ
10.5	_			_	_	_	3	-	_					13.5									5	3	_		
11.5	_			_	_	1	18	_	_					14.5	13	35						_	28	7	_		
12.5	_			23	-	0	6	2	2					15.5	45	96	20					-	95	19	_		
13.5	_			16	10	16	36	7	7		1			16.5	65	144	37					12	70	56	30	9	
14.5	-			0	25	41	27	3	11	1	1	1		17.5	130	238	54					10	27	71	139	61	
15.5	5			1	5	38	6	1	15	4	. 7	1		18.5	225	550	152	7				10	5	56	192	121	
16.5	79	6		.1	-	32	11	7	13	11	16	3		19.5	111	521	245	47				16	3	36	98	115	
17.5	42	29		1		5	12	10	16	18	16	13		20.5	70	269	287	89				10	•	17	33	70	
18.5	3	29		2			5	17	18	22	14	43		21.5	13	67	190	102				6		7	18	14	
19.5	- -	5		8			1	3	11	19	17	42		22.5		24	87	76				-		3	12	2	
20.5	-	_		-5				2	6	9	21	24		23.5		6	27	4							7	3	
21.5	-	_		2				-	•	1	18	8		24.5		2	2								2	•	
22.5	_	_		-						1	1	1													_		
0											•	•		Σ	672	1,952	1,101	325				64	233	275	531	395	5,540
Σ	129	69		59	40.	137	125	52	99	86	112	1,36	1,044								· · ·						

0	2
ο	2

Table A27

Family : Care Species : Sela	ngidae roides leptole							Location: Java Sea (Te Year: 1978-1					Family: For Species: For										Locatio	n: Java S		aral Java ar: 197
Midlength	J F	 м	A	м	J	J	A	s	0	N	0	Σ	Midlength	1	F	м	A	м	J	J	A	s	0	N	D	Σ
5.5	_			1									10.5	_	_			3								
6.5	· _			5									11,5	_	_			7								
7.5	1			19						5			12.5	_	-			. 7								
8.5	0			21					2	5			13.5	-	1			10								
9.5	õ			21					19	12			14.5	_	4			8								
10.5	2			45					97	56			15.5	_	8			1								
11.5	9			52					47	37			16.5	_	6			1								
12.5	51			41					4	30			17.5		3			0								
13.5	91			8					7	11			18.5	_	15			0								
14.5	103			5					3	6			19.5	_	56		3	4								
15.5	43			1									20.5	_	49		15	0								
16.5	15												21.5	1	53		37	0								
17.5	8												22.5	1	20		18	4								
18.5	1												23.5	3	14		14	2								
													24.5	6	4		2	3								
Σ	324			219					179	162		884	25.5	1	1		1	-								
		 											26.5	2	1			-								
													27.5	2	-		-	-								
													28.5	1	-		-	-								
													Σ	17	235		90	50								392

Table A26

Teble A28

amily : Car pecies : Sela			s						20				ntan Isl.) 62-1983	Species: Le	iognathu	s bindu.	•								n: Java S	Year: 19	
lidlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ	Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ
7.5					11				_	2				2.75										200	5		
8.5					28				1	21				3.25									116	300	18	19	
9.5	t	5			45	11			7	45	1	1		3.75	13								434	155	123	104	
10.5	39	21	11		53	105		2	37	98	9	1		4.25	43								376	173	220	126	
11.5	69	3	5		51	114		37	79	104	48	34		4.75	143								172	187	173	81	
12.5	87	25	46	2	30	44		89	77	44	32	110		5.25	108								145	106	20	26	
13.5	67	54	50	24	43	31		17	43	28	43	1		5.75	74						117		143	164	33	341	
14.5	35	41	12	90	9	45		8		3	20			6.25	70						183		182	273	93	10	
15.5	2	7	9	30		8		24			4			6.75	85						86		122	182	294	1	
16.5		4				3		12						7.25	40						17		78	54	184	3	
17.5								4						7.75	25						9		75	27	56	1	
_														8.25	7								73		11		
Σ	300	160	133	146	270	361	1	93	244	345	157	147	2,456	8.75	2								43				
														9.25									43				
														9.75									14				
														10.25									14				
														10.75									14				
														11.25 11.75									9 6				

Σ 610

.

412

2,059 1,821 1,210 712 6,824

.

Family: Lei Species: <i>Lei</i>			ostris							Locatio	n: Java S		tral Java) ear: 1979	Family: Lei Species: Lei			us						I	ocation	∖: Java S Y	ea (Cent ear: 197	
Midlength	J	F	м	A	м	J	J	А	s	0	N	D	Σ	Midlength	J	F	м	A	м	J	Ľ	A	S	0	N	D	Σ
5.0	2													4.5	1												
5.5	3													5.0	0									3			
6.0	6													5.5	2									4			
6.5	9			-9										6.0	2				1					2			
7.0	16			32										6.5	12				3		1			33	6		
7.5	29			34	1									7.0	7				1		3		6	87	0		
8.0	26			25	3									7.5	9				0		1		18	52	0		
8.5	14			12	14									8.0					5		5		30	25	2		
9.0	14	2		7	30									8.5					9		9		40	48	1		
9.5	4	2		3	28									9.0					47		47		23	37	1		
10.0	3	6		2	7									9.5					43		43		4	16	6		
10.5	4	5		1	5									10.0					27		27		5	6	5		
11.0		2		1	1									10.5					8		8		5	19	1		
11.5		1												11.0					1					36	2		
12.0		1												11.5										37			
														12.0										30			
Σ	130	19		126	89								364	12.5										6			
														Σ	33				145		144		131	441	24		918

Table	A30

ipecies: Leic	ognathus	equulu.	:									Yea	ar: 1979	Species: Lei	ognathu	i leucisc	<i>us</i>								١	'ear: 19	32 - 198
Aidlength	J	F	м	A	м	3	د.	A	s	0	N.	D	Σ	Midlength	Ļ	F	м	A	M	J	J	A	s	0	N	D	Σ
6.5							3		_					3.5					_		_		_		1	12	
7,5							22		-					4.5	9				6		2		5		57	46	
8.5							60		-					5.5	50				23		48		9		16	31	
9.5							75		-					6.5	26				41		52		14		4	42	
10.5							73		1					7.5	9				23		8		66		1	18	
11.5							-38		2	1	1			8.5	0				2		2		36			5	
12,5							42		- 4	1	2			9.5	3								24			5	
13.5							14		1	1	6			10.5	3								13			1	
14,5							8		6	3	14			11.5									11				
15,5							1		3	4	9			12.5									4				
16.5									6	7	11			~													
17.5									1	3	4			Σ.	100				95		112		182		79	160	728
18.5									1	1	1			·····						· · · · · · · · · · · · · · · · · · ·							
19.5										0	1																
20.5										.1	2																
Σ							336		25	22	51		434														

Table A31

Table A32

83

Family: Lei Species: <i>Lei</i>			lens							Locati			(Bintan) 82-1983	Family: Li Species: L			lens						I	ocation	n: Java S		tral Jeva) ar: 1979
Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ	Midlength	J	F	м	A	M	J	J	A	S	0	N	D	Σ
6.5	_		_	_	_	_				4	-			3.5	5			_	_				_				
7.0	_		_	5	-	1				7	5			4.5	216			2	1				_				
7.5	1		-	8	3	15				13	2			5.5	592			2	0				7				
8.0	15	2	5	4	9	15			4	16	16			6.5	733			37	14				27				
8.5	20	14	7	12	13	32			9	20	4			7.5	261			264	373				129				
9.0	31	14	29	19	28	41			20	35	21			8.5	61			171	232				206				
9.5	24	16	14	110	25	46			21	19	22			9.5	36			128	101				195				
10.0	21	33	52	79	28	7		5	21	12	29	2		10.5	9			103	64				48				
10.5	15	29	57	20	29			11	60	7	17	13		11.5	10			80	81				25				
11.0	40	5	72	13	36			15	10	5	32	40		12.5	3			57	62				4				
11.5	25		23		18			5	4	2	5	81		13.5	7			29	46				0				
12.0	11		9		92			36			17	72		14.5	3			6	18				1				
12.5	5		5		15			19			1	13		15.5	1			2	1								
13.0	5		1		-			39			3	1		-									_				
13.5	-				-			4			-	-		Σ	1,937			881	993				642				4,453
Σ	213	113	274	270	296	157		134	149	140	174	222	2,142											<u>-</u>			

Tab	le	A34
1 80	ıe	A34

Table A36

Family : Le Species : La			ans						Locat	ion : Jeve			imantan) 77-1978	Family: Le Species: <i>Se</i>										L			e (Tegel) 77-1978
Midlength	J	F	м	A	м	J	J	A	S	0	N	D	Σ	Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ
2.5	-						-		-	19		_		2.5	1								1	-			
3.5 4.5	6 54						24		_	125 107		38 210		3.0 3.5	8 18								5 27	2 26			
5.5	98						96		_	11		284		4.0	38								32	61	17	2	
6.5	107						112		54	73		361		4.5	52								14	5	86	5	
7.5	41						242		82	360		102		5.0	15								9	1	67	7	
8.5	2						193		20	168		63		5.5	4								5	1	48	14	
9.5	26						87		1	69		35		6.0	16								1		20	5	
10.5	74						66		1	54		59		6.5	34								1		1	5	
11.5	17						46		0	18		84		7.0	22								0		1		
12.5	3						23		1	3		98		7.5	9								1				
13.5	-						11		0	-		89		8.0	1												
14.5	-						11		1			26															
15.5	-						2					4		Σ	218								96	96	240	38	688
Σ	428						913		160	1,007		1,453	4,227			<u></u>											

84

Table A39

Location: Java Sea (Central Java) Family: Nemipteridae Family: Leiognathidae Year: 1977-1978 Species: Secutor ruconius Species: Nemipterus japonicus Σ M J Α \$ O Ν D Midlength J Midlength J F м А J F 3.25 5.5 _ _ _ 3.75 6.5 _ 4.25 7.5 4.75 8.5 9.5 5.25 5.75 10.5 6.25 11.5 з 6.75 12.5 7,25 13.5 14.5 7.75 15.5 Σ 61 145 41 58 16.5 17.5

м А м J J А S O Ν D Σ 18.5 19.5 20.5 21.5 22.5 Σ 166 46 56 182 296

Table A38

.

Family: Nemiptaridae Location: Java Sea Family: Nemipteridae Location : Java Sea (Central Java) Species: Nemipterus hexodon Species: Nemipterus mesoprion Year: 1978-1979 Year: 1979-Midlength J F м А м J J Α s o N D Σ Midlength J F м А м J J А s o N D Σ 5.5 6.5 _ _ 6.5 7.5 _ 7.5 .1 8.5 8.5 9.5 9.5 10.5 10.5 11.5 11.5 12.5 12.5 13.5 13.5 14.5 14.5 15.5 15.5 16.5 16.5 17.5 17.5 -1 18.5 18.5 Б Σ 19.5 104 53 125 570 20.5 Б 21.5 22.5 23.5 Σ 933 18 42 237 1,568

Table A40

Year: 1977

Location: Java Sea (Central Java)

86

Table A41

Table A43

Family : Ge Species : Pe		longima	nus							Locat			emarang) 78-1979	Family: Mul Species: Upe		iphureus	;						1	Locatio	n : Java S	iea (Cent Year: 19	
Vidlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ	Midlength	J	F	M	Å	м	J	J	A	s	0	N	D	Σ
3.75	_				4									5.5					32								
4.25	-				15									6.5					169		2				20	2	
4.75	-			1	48									7.5					283		37				88	9	
5.25	-			1	39						2			8.5					378		131				49	128	
5.75	2			5	87						0			9.5					204		148		78	51	27	130	
6.25	10			13	252						2			10.5					139		59		226	258	500	119	
6.75	18			48	695						1			11.5					191		17		161	138	501	256	
7.25	26			103	974						5			12.5					92		11		139	52	124	159	
7.75	40			74	701						20			13.5					26		4		49	16	39	36	
8,25	57			21	281						52			14.5					6		2		20	4	3	29	
8.75	45			6	117						9 5			15.5					3		1		2	1		3	
9.25	46			5	31						105			16.5												4	
9.75	76			20	46						185			_													
10.25	199			41	54						178			Σ					1,523		412		675	520	1,351	875	5,35
10.75	212			81	42						139														·		
11.25	96			52	29						84																
11.75	22			10	21						29																
12.25	7			1	9						3																
12.75	-				1						1																
Σ	856			482	3,446						901		5,685														

Table A42														Table A44													
Family : Pon Species : <i>Pon</i>									Locati	ion:Java			imantan) 977-1978	Family : Mu Species : Up		ulphure	us							Locatio	n : Java So Y		tral Java) 78-1979
Midlength	J	F	м	А	м	J	J	A	s	ο	N	۵	Σ	Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ
15											3			5.5					1								
17											0			6.5				23	13								
19											0			7.5	3			50	39								
21											3			8.5	6			7	130								
23										3	6			9.5	52			7	89					8	6		
25										6	6			10.5	71			24	18					53	25		
27			1							3	6			11.5	58			49	53					33	60		
29			1							0	7.			12.5	23			34	84					34	52		
31			5					1		5	15			13.5	3			10	55					19	57		
33			З					0		6	11			14.5	1			2	26					4	17		
35			10					3		7	18			15.5				1	3						10		
37			13					6		4	25			Σ													
39			20					22		11	23			Σ	217			207	511					151	227		1,313
41			16					21		20	15								-				· · · · ·				
43			4					27		17	7																
45			4					10		12	2																
47			2					6		2	3																
49 51			2					-		1	-																
51								-		3	-																
Σ			79					96		100	150		425														

Family : Dre Species : Dre									Location	: Java S	ea (Sout		nantan) r: 1977	Family: Sco Species: Au							L	ocation:	Indian C	cean (P	elabuan		lest Java ear: 198
Midlength	J	F	M	A	м	J	J	.Α	S	ò	N	D	Σ	Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ
13						1	_	_		-				15							6						
15						1	_	_		-				17					2		12			2			
17						0	1	4		_				19			1		7	2	14			2		2	
19						0	0	2		-				21			G	6	14	2	15			0		7	
21						7	0	3		2				23			6	5	37	12	22	8	42	5	3	15	
23						16	2	22		7				25			10	5	90	67	69	40	58	32	26	15	
25						28	4	24		16				27			7	4	86	88	60	49	6	30	31	6	
27						35	7	20		52				29	4		20	6	14	8	9	6	7	9		2	
29						11	14	20		93		2		31	0		16	23	9	11	30	2	4	2		1	
31						9	19	59		59		6		33	2		7	45	15	1	30	5	0	ō		Ó	
33						5	17	51		19		38		35	3	7	26	61	16	2	18	22	7	2		5	
35						2	10	43		8		21		37	12	12	29	30	8	5	14	23	3	4		3	
37						1	4	18		5		17		39	13	11	8	5	8	2	1	18	3	2		1	
39						1	2	5		3		3		41	2	6	2	9	9			2	. 2			1	
41						_	1	_		0		v		43	2	5	2	1	1			2	2				
														45	ō	9	-		•			1					
Σ						117	81	271	20	64		87	820	47	õ	U						1					
														49	3							1					
														Σ	41	50	140	200	316	200	300	180	134	90	60	58	1,769

Table A46

Table A45

Family : Scor Species : Aux							Lo	cation:	Indian (Ocean (P	elabuan		est Java) ar: 198 0	Family: Sco Species: Kat			s						Locat	tion:We	est Pacif	ic (Soron Yea	g, Irian) ar: 1978
Midlength	J	F	м	A	м	J	J	4	S	0	N	D	Σ	Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ
25							14							23												1	
27							48					12		26												2	
29							130					24		29												1	
31							61 67					15 21		32												11	
33 35					45		33			3	3	27		35 38													
35					132		110			21	11	23		38 41		2										26	
39					65		34			8	12	25		44	2	2			+		1					25 56	
41					13		8			5	4	17		47	6	7	5	6		3	2			4		155	
43					5		1			3		12		50	16	17	4	9	4	4	3	5	2	21	2	261	
45												4		53	20	57	20	57	12	17	11	14	9	28	16	123	
														56	15	48	21	56	9	9	6	13	13	38	15	55	
Σ					260		506			40	30	180	1,016	59	10	51	24	54	13	12	9	14	20	27	20	14	
														62	0	21	15	25	4	5	6	4	10	13	14	4	
														65	1	15	70	35	2	1		0	12	18	11		
														68		18	7	14				1	7	9	8		
														71		4	2	11					5	6	3		
														74		4	1	5					1	1	1		
														77										1			

 Σ 71 259 170 273 48 51 38 51 79 166

Table A49

90 717 2,013

Family : Scomb Species : <i>Katsu</i>		pelamis	,						Loca	tion: Wi	est Pacifi		g, Irian) ar: 1979	Family : Sc Species : Ri			rta							Locatio		Sea (Pek Year: 19	
Midlength	J	F	M	A	м	J	i.	А	S	0	N	D	Σ	Midlength	J	F	м	A	м	J	J	Α	S	0	N	D	Σ
37				1	1	_						_		8.5					27		_		_	_			
39				0	1	-						1		9.5					36		-		-	-			
41				10	7	1	1					0		10.5					37		-		-	-			
43				25	23	14	3					3		11.5					34		-		-	-			
45				46	23	21	12				4	5		12.5					4		1		1	-			
47				57	23	29	15	4	3		6	1		13.5					0		3		3	-			
49				53	25	33	38	23	4	3	36	15		14.5					0		5		24	1			
51				40	24	40	40	39	22	10	51	29		15.5					0		2	2	89	18		1	
53				37	23	39	48	57	32	15	48	28		16.5	11				32		1	5	123	62	_	0	
55				32	24	33	68	46	49	21	46	26		17.5	32		_		38		0	23	160	96	3	25	
57				26	13	35	106	64	22	8	35	34		18.5	89	6	5	-	22		0	117	68	61	57	168	
59				20	16	39	117	82	44	24	55	38		19.5	210	52	41	.7	6		0	88	41	74	162	462	
61				19	14	13	84	42	59	35	20	16		20.5	260	111	133	47			4	38	27	38	231	352	
63				5	8	21	96	40	48	20	23	12		21.5 22.5	179	102 56	78	72			39	18 2	6	33	169	103	
65				4	4	15	93	68 5	27 71	38 27	53	44		22.5	50 4	56 15	30 8	94 72			81	2	1	10	48	20	
67				3	8 0	13 3	35 8	12	21	18	18 6	10		23.5	4	15	8	16			65 12					1	
69 71				-	0	0	2	12	15	4				24.5				10			12				'		
71					4	0	2	2	10	4				Σ	835	342	295	308	236		213	29 3	543	39 3	677	1,132	5,267
73					3	0	2	2	5	_					030	342	290	300	230		213	203	043	393	6//	1,132	5,26/
.77						2	1	,	2																		
Σ				378	24 4	351	769	486	427	223	401	264	3,543														

Table A50 Family : Sco Species : <i>Ras</i>			osoma						I	Location	n: Java S	iea (Cent Yej	ral Java) ar: 1979	Tabla A52 Family: Stro Species: <i>Pan</i>								
Midlength	J	F	м	A	м	J	J	A	s	0	N	D	Σ	Midlength	J	F	м	_ A	м	J	J	A
5.5 6.5										2 4				12.5 13.5								
7.5										8				14.5								
8.5										3				15.5								
9.5														16.5								
10.5														17.5				1	4			
11.5														18.5				5	9			
12.5					1									19.5				18	47			
13.5					4									20.5				26	64			
14.5					25									21.5				15	61			
15.5				14 10	24				4					22.5				5	31			
16.5					32 52									23.5				3	25 27			
17.5 18.5				19 13	5∠ 43				9 24					24.5 25.5				2	11			
19.5				22	21				32					26.5				3	12			
20.5				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					23					27.5				3	9			
20.5					'				23					28.5					11			
21.5				'					.5					29.5					3			
Σ				86	203				97	17			403	30.5					3			
														Σ				75	84			

Location: Java Sea (Central Java) Year: 1978-1979

s ο n d Σ

327

486

88

amily : Per Species: <i>Per</i>		erguiensi	\$								Locat		ifura Sea ar: 1 969	Family : Pe Species : Pe			is								Locat	tion: Ara Ye	afura Se ar: 1975
Midlength	J	F	м	Α	м	J	J	A	S	0	N	D	Σ	Midlength	J	F	м	А	м	J	J	Α	S	0	N	D	Σ
29.75	_		_		60	40	16		_	-	16	17		25.25	222	263	174	30	32	156,	196	361	166	15	173	316	
31.25	88	66	117		120	291	290	255	137	200	159	154		26.75	143	356	128	152	213	106	103	86	136	143	145	1,49	
32.75	44	100	83		181	302	250	287	154	185	127	136		28.25	142	150	185	85	312	105	81	149	104	244	147	129	
34.25	73	116	33		151	100	305	256	205	171	191	85		29.75	212	110	143	240	79	117	110	130	215	210	131	87	
35.75	-	25	17		30	100	193	208	103	43	16	17		31.25	137	61	134	203	199	.99	138	43	83	136	112	85	
37.25	15	42	50		15	190	274	256	86	57	8	34		32.75	76	28	90	139	69	225	68	69	129	34	41	38	
38.75	22	17	25		75	120	210	240	137	43	64	17		34.75	29	13	53	48	39	93	172	20	33	71	85	34	
40.25	58	66	25		15	30	32	64	34	178	127	59		35.75	21	10	40	38	29	65	55	58	81	26	35	51	
41.75	95	-	17		15	50	24	112	68	36	48	102		37.25	6	3	. 7	21	9	11	74	16	18	54	67	27	
43.25	22	17	25							14	16	17		38.75	8	13	27	11	20	. 8	14	· 36	10	20	27	57	
_														40.25	16	8	17	31	9	21	24	26	26	29	36	18	
Σ	417	449	392		662	1,223	1,596	1,678	924	927	772	638	9,678	41.75	_	-	-	9	-	-	7	4		-	-	-	
				··		· · ·								43.25	-	-	-	6	-	-	5	12	-	-	-	_	
														44.75	-	. –	-	12	-	-	12	2	-	-	-	-	
														$\sim \Sigma$	1,012	1,015	998	1,025	1,010	1,006	1,059	1,012	1,001	982	999	991	12,110

4

Family: Pe Species: <i>Pe</i>		erguiens	ris								Locat		afura Sea ar: 1974	Family : Po Species : Po			sis								Loca		afura Sea ear: 1976
Midlength	J	F	M	A	м	J	J	A	s	0	N	D	Σ	Midlength		F	м	A	м	J	J	A	s	0	N	D	Σ
25.25	8	126	465	262	2 11	86	349	292	130	260	157	345		25.25	1,632	311	882	1,237	364	507	529	244	102	642	295	159	
26.75	190	140	202	688	158	167	87	712	394	462	218	181		26.75	433	1,131	776	894	1,165	431	431	296	178	183	422	326	
28.25	148	307	310	317	591	273	163	500	681	265	76	198		28.25	596	395	2,811	1,685	684	952	471	202	382	78	75	270	
29.75	206	164	225	475	151	157	166	405	406	58	83	80		29.75	473	415	847	1,352	1,776	568	393	406	338	270	159	265	
31.25	123	179	123	297	306	332	82	647	626	72	33	97		31.25	625	206	871	1,205	568	1,635	878	181	254	254	76	316	
32.75	25	36	175	323	72	88	259	178	388	48	65	33		32.75	498	302	533	876	.1,630	257	379	444	134	146	41	263	
34.25	37	27	78	71	96	33	29	67	233	27	7	21		34.25	195	102	673	325	262	534	195	94	389	307	22	97	
35.75	15	19	62	50	35	46	35	14	57	8	5	68		35.75	95	78	380	382	370	181	134	74	116	90	80	202	
37.25	22	2	25	32	17	8	19	58	206	3	1	10		37.25	139	31	317	241	97	102	309	28	94	87	7	47	
38.75	6	6	55	22	3	10	24	22	10	1	1	14		38.75	75	62	217	261	127	62	99	68	154	65	4	57	
40.25	4	3	24	10	5	4	8	14	20	3	4	1		40.25	56	10	117	282	67	102	179	18	124	108	17	97	
41.75	-	1	3	22	10	9	1	1	1	2	-	9		41.75	4	9	7	42	-	21	13		·	5	-	13	
43.25	_	-	1	-	-	4	6		4	1	-	_		43.25	10	-	21	33	-	-	-	-	· –	-	-	-	
44.75	-	-	-	-		-	-	-	-	3	-	· –		44.75	-	-	-	123	-	-	-	. –	-	-	-	-	
Σ	784	1,010	1,748	2,569	1,655	1,217	1,228	3,039	3,156	1.227	650	1,057	19,340	Σ	4,831	3,052	8,452	8,938	7,110	5,352	4,010	2,055	2,265	7 235	1,198	2,112	51,610

Table A53

4

Table A59

Family: Penasidae

Family: Per Species: <i>Per</i>		Location: Arafura Se Yaar: 197											
Midlength	J	F	м	Α	м	L	J	A	s	0	N	D	Σ
25;25	154	46	150	85	135	113	360	63	120	274	285	831	
26.75	75	215	84	170	119	299	132	86	115	144	152	165	
28.25	119	-69	250	72	134	39	69	171	249	175	237	12	
29.75	88	196	88	209	143	136	92	242	54	11	89	2	
31.25	104	181	188	81	225	76	55	163	80	94	90	2	
32.75	109	131	116	197	44	152	135	54	26	99	44	4	
34.25	104	54	34	64	88	40	26	154	87	12	12	2	
35.75	84	42	28	45	39	83	74	44	29	70	43	11	
37,25	58	14	11	27	14	14	22	76	61	17	11	-	
38.75	29	40	19	18	35	23	11	9	140	87	29		
40.25	47	21	15	42	22	19	43	16	58	38	9	-	
41.75	9	4	6	2	-	-	-	~	_	-	-	_	
43.25	3	8	3	4	_	-	_	-	-	-		-	
44.75	5	3	9	3	-	-	-	-	-	÷	-	-	
Σ	988	1,024	1,002	1,019	.998	994	1,010	1,078	1,019	1,021	1,010	1,029	12,19

	eccies: Penaeus merguiensis													
Midlength	J	F	м	A	м	J	L	A	s	0	N	D	Σ	
25.25	616	536	477	1,282	214	819	588	360	306	272	835	491		
26.75	116	965	380	313	548	598	434	804	128	252	791	350		
28.25	140	457	1,246	432	333	727	879	139	196	801	268	181		
29.75	14	203	48	625	818	341	426	489	35	37	626	29		
31.25	75	85	162	322	142	841	162	53	72	89	109	128		
32.75	11	192	48	156	458	313	286	165	17	15	176	48		
34.25	1	14	107	178	65	160	58	36	42	45	6	11		
35.75	7	25	22	42	108	79	18	20	7	7	16	8		
37.25	29	44	58	57	25	176	78	13	4	2	7	23		
38.75	8	93	38	88	32	55	10	63	15	1	11	1		
40.25	16	33	70	46	43	36	26	8	2	10	6	2		
41.75	-	-		-		7	-	2	1	a	21	9		
43.25				-		2	-	10	4	2	-	1		
44.75	-	-		-		9	-	4	7	1	-	4		
Σ	1,033	2,847	2,656	3,541	2,786	4,162	2,965	2,165	836	1,534	2,872	1,286	28,46	

Location : Arafura See Year: 1979

Table A58

Family : Per Species : Per			sis								Locat		ifura Sea ar: 1978	Family: Pe Species: <i>Pe</i>		erguiens	is								Loca		afura Sea ar: 1980
Midlength	L	F	м	A	м	L	J	A	s	0	N	D	Σ	Midlength	J	F	м	Α	м	J	J	A	s	0	N	D	Σ
25,25	349	137	130	109	212	360	229	356	211	188	434	10		25.25	215	298	201	149	274	85	25	51	35	48	_	105	
26.75	147	343	129	166	197	155	388	49	200	188	282	10		26.75	313	104	242	183	122	351	57	208	83	348	173	128	
28.25	69	153	496	108	67	172	41	157	107	242	2	95		28.25	210	330	101	134	162	138	702	177	197	339	373	376	
29.75	161	91	109	301	81	97	85	107	249	48	168	240		29.75	110	55	274	98	103	166	72	342	194	.51	207	174	
31.25	92	104	41	124	261	36	50	74	69	180	105	168		31.25	73	39	.71	296	57	99	40	117	345	189	49	97	
32.75	74	77	74	35	36	90	150	56	38	43	31	340		32.75	22	23	47	61	157	55	20	64	91	45	143	41	
34.25	8	11	9	72	38	12	25	134	95	15	12	40		34.25	77	10	27	30	19	132	63	18	30		9	127	
35.75	9	13	6	29	71	35	9	17	10	72	78	60		35.75	12	37	70	13	9	25	10	53	70		6	35	
37.25	23	19	12	11	17	12	21	35	_	10	_			37.25	7	8	18	29	28	10	3	13	21			7	
38.75	11	26	4	29	10	8	9	13	-	14	-	-		38.75	2	13	5	11	. 8	31	5	5	4			2	
40.25	13	15	2	14	28	7	10	23	-	7	-	_		40.25	12	3	15	9	8	9	13	23	7			12	
41.75	_	4	-	_	9	-	13	_	_	-	-	-		41.75		-			1	15		<u> </u>					
43.25	<u></u>	8	-	_	14	-	6	-	-	_	_	-		43.25	-		-	· _	11	5	-	-					
44.75	-	15	-	-	6	-	5	-	-	-	-	-		44.75	- 1	-	-	-	4	15	-	-					
Σ	956	1,016	1,012	998	1,047	984	1,041	1,021	979	1,007	1,112	963	12,136	Σ	1,053	920	1,071	1,013	963	1,136	1,010	1,071	1,077	1,020	960	1,104	12,398

	nily : Penaeidae cíes: <i>Peneeus merguiensis</i>														
Midlength	J	F	м	A	м	1	L	A	S	0	N	D	Σ		
25.25	353	54	119	79	253	160	209	38	138	306	237				
26.75	138	255	151	122	321	216	162	303	199	270	147				
28,25	283	83	369	56	341	212	11	63	397	231	55				
29.75	61	151	94	354	212	166	40	115	183	78	4				
31.25	46	60	223	70	45	90	20	182	108	314	11				
32.75	28	8	72	36	122	36	19	98	56	66	-				
34,25	2	5	49	22	31	63	7	63	27	35	-				
35,75	7	5	9	15	25	23	6	61	13	- 28	-				
37,25	1	-	32	6	10	11	18	18	16	14	-				
38.75	2	-	9	19	8	9	6	48	46	10	-				
40.25	_ ·	_	3	14	5	8	5	8	6	34	-				
41,75	_	_	_	_	14	17	7	2	2	3	-				
43.25	-	-	-	-	_	5	24	З	1	4					
49.75	-	-	-	-	-	9	8	3	ė	13	-				
Σ	927	621	1,130	783	1,387	1,025	520	1,025	1,198	1,406	454		10,476		

Available Titles in This Series

The economics of catfish farming in central Thalland, T. Panayotov, S. Wattanutchariya, S. Isvilanonda and R. Tokrisna. 1982, Reprinted 1985, ICLARM Technical Reports 4, 60 p. 28 x 21.5 cm. ISSN 0115-5547, US\$6.50 surface, \$10 armal.

The ICLARM-CLSU Integrated animal-fish farming project: final report, K.D. Hopkins and E.M. Gruz, 1982. ICLARM Technical Reports 5, 96 p. 28 x 21.5 cm. Perfect binding, ISSN 0115-5547. US\$7.75 surface; \$14.85 airmail.

Production and marketing of mikfish in Talwan: an economic analysis. C.-S. Lee 1983, ICLARM Technical Reports 6, 41 p. 28 x 21.5 cm, Saddle stitched, ISSN 0115-5547 US\$6.30; \$9.50 airmail.

Small-scale lisheries of San Miguel Bay, Philippines: biology and stock assessment. D. Pauly and A.N. Mines, Editors 1982. ICLARM Technical Reports 7, 124 p. 26 x 21.5 cm. Perfect binding, ISSN 0115-5547. US\$9 surface; \$16 airmail.

Small-scale lisheries of San Miguel Bay, Philippines: economics of production and marketing. I.R. Smith and A.N. Mines, Editors 1982, ICLARM Technical Reports 8, 143 p. 28 x 21.5 cm. Perfect binding, ISSN 0115-5547, US\$12 surface; \$25 airmail.

Small-scale fisheries of San Miguel Bay, Philippines: social aspects of production and markoting. C. Bailey, Editor, 1982, ICLARM Technical Reports 9, 57 p. 28 x 21.5 cm, Saddle stitched, ISSN 0115-5547, US\$8 surface, \$14 armail.

Small-scale fisheries of San Miguel Bay, Philippines: occupational and geographic mobility. C. Bailey, 1982, IGLARM Technical Reports 10, 57 p. 28 x 21.5 cm. Saddle stitched, ISSN 0115-5547, US\$7 surface; \$11,50 airmail.

Small-acate fishertee of San Miguel Bay, Philippines: options for management and research. I.R. Smith, D. Pauly and A.N. Mines. ICLARM Technical Reports 11, 80 p. 28 x 21.5 cm, Perfect binding. ISSN 0115-5547 ISBN 971-1022-08-7. US\$6:30 surface; \$9.50 airmail.

A Japanese fishing joint venture: worker experience and national development in the Solomon latanda. S.K. Metzolf and E.S. LiPuma. 1983. ICLARM Technical Reports 12, 63 p. 28 x 21.5 cm. Saddle stitched, ISSN 0115-5547. US\$6.55 surface; \$10.90 airmail. An atlas of the growth, mortality and recruitment of Philippine Ishes, J. Ingles and D. Pauly, 1985. ICLARM Technical Reports 13, 127 p. 21.5 x 28 cm. Perfect binding. ISSN 0115-5547, ISBN 971-1022-12-5. US\$6.55 surface; \$10.90 airmail.

Experimental rearing of Nile tilapia try (Oreochrom/s niloticus) for activater culture, W.O. Watenabe, C.-M. Kup and M.-C. Huang, 1984. ICLARM Technical Reports 14, 28 p. 28 x 21.5 cm. Saddle stäched. ISSN 0115-5547, ISEN 971-1022-11-7, US\$3 surface; \$6 armait.

Mikhah production dualism in the Philippines: a multidisciplinary perspective on continuous low yields and constraints to aquaculture development. K.C. Chong, M.S. Lizarondo, Z.S. dela Cruz, C.V. Guerrero and I.R. Smith. 1984. ICLARM Technical Reports 15, 70 p. 28 x 21.5 cm. Saddle stitched. ISSN 0115-6547, ISBN 971-1022-10-9. US\$7 surface; \$10.50 airmail.

Salinity tolerance of the tiliaplas *Oreochromis niloticus* (L.) and an O. mossambicus x O. niloticus hybrid, W.O. Watanabe, C.-M. Kuo and M.-C. Huang. 1985. ICLARM Technical Reports 16, 22 p. 28 x 21 5 nm. Saddle stitched, ISSN 0115-5547, ISBN 971-1022-14-1. US\$3 surface; §7 airmail

Growth, mortality and recruitment of commercially Important flahes and penaelid attrimpt in Indonesian waters. A. Dwiponggo, T. Hanati, S. Banon, M.L. Palomares and D. Pauly, 1986. ICLARM Technical Reports 17, 91 p. 21.5 x 28 cm. Saddle stitched. ISSN 0115-5547, ISBN 971-1022-28-5. IJS\$4.50 surface: \$8.50 airmail.

How to Order

Enquirets from the USA should order ICLAEM publications directly from our exclusive distributor there. International Specialized Book Services, P.O. Box 1832, Beaverton, Oregon 97075, to whom payment should be directed using the airmall price. Persons in Canada and Central and South America may also find ISES a convenient source.

Enquirers from Germany should order from TRIOPS (Tropical Scientific Books), Reiffenstrasse 24, D-6070 Langen, Federal Republic of Germany.

Enquirers elsewhere should address orders and payment (payable to ICLARM) in USS by international money order, bankdraft or UNESCO coupons to The Editor, ICLARM, MC P.O. Box 1501, Mekati, Metro Manila, Philippines. We can accept USS checks only if from a US-based bank due to high clearance fees of other banks.

1

¥.

.

Airmail is strongly recommended due to delays of up to six months and occasional losses experienced with surface mail.