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Foreword 

Fifteen years ago, in Jamaica, I purchased my first electronic calculator, a typewriter-sized 
affair which had four functions and no memory, and it revolutionized my life. The cheapest of the 
modem hand-held calculators do more, for less than one hundredth of the price that I paid in 1979. 
Around the same period, I was using a mainframe computer manned by an army of staff to perform 
yield-per-recruit computations. The reader will find that their hand-held programmable calculators 
will execute such computations in a few seconds, by the touch of a button. 

It is a feature of our times that new hardware becomes outmoded with remarkable speed. 
The reader who purchases this book will find that models of the calculators for which the programs 
were originally written are already difficult to acquire, as they have been replaced by faster and 
more sophisticated models (which will still run the programs presented here). Likewise, program- 
mable calculators are already being replaced by microcomputers and many readers will wish to trans- 
late the programs contained in this book into computer languages. 

The scientist working in a sophisticated fisheries laboratory will be aware that many of the 
routines incorporated in this book are already available in the memories of the mini- or mainframe 
computers to which they have access and for such individuals, the programs given here will be useful 
for on-the-spot calculations without moving to a terminal. Convenient yes, but not a remarkable 
benefit. However, fisheries scientists, particularly in the developing countries, who are working 
in small, modestlyequipped laboratories, remote from the advanced electronic gadgetry of this 
decade, will find that their lives and working abilities are radically changed by this book because it 
will now be possible to do complex analyses of data in the remotest field station or even at sea, and 
in places without regular power supplies, programmers and systems analysts. 

Doubtless, many disastrously erroneous analyses will emerge when inappropriate or poor 
sample data are used to generate estimates, and the dictum of "garbage in + garbage out" will more 
frequently be seen in operation-but this will be a small price to pay for the real advances, improved 
scientific output and scientifically-based fisheries management decisions which will emerge as a 
result of the publication of this book. 

Additionally, ecologists in fields other than fisheries will find that many of the routines given 
here are easily adapted to non-fisheries applications-which will hopefully help to overcome the 
needless dichotomy which has tended to separate fisheries science from the rest of ecology. 

This book is doubly welcome because, while there are numerous texts which give clear instruc- 
tions on how to collect data, there are remarkably few which give any instructions on how to analyze 
what has been collected. W.E. Ricker's Handbook of Computations and Interpretation o f  Biological 
Statistics o f  Fish Populations and John Gulland's Manual of Fish Stock Assessment have been the 
mair-stays of fish population dynamics for many years and both are sufficiently intimidating-in 
terms of their mathematiceto have cured many biologists of any inclination to pursue a career in 
the quantitative aspects of fisheries science. In contrast, readers will not fail to be impresssed by the 
lucidity and incisiveness which characterizes this manual and which will rightfully earn Dr. Pauly a 
permanent niche in the annals of fisheries science. 

J.L. Munro 
Manila 

March 1984 
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Abstract 

This manual is a selection, from the entire field of fish population dynamics, of methods which 
are applicable to tropical fish and fisheries and can be implemented with the help of programmable 
calculators. 

The methods selected cover the following areas: length-weight relationships, mesh selection, 
growth, mortality, population size estimation by various methods (e.g., tagging, virtual population 
analysis), yield-per-recruit assessments, stock-recruitment relationships, surplus-yield models, the rate 
of increase of populations and aspects of multispecies stocks and fisheries. 

The program listing and user instructions of thirty programs for use with HP 67/97 programmable 
calculators are included; the translation of these programs for use with other types of calculators espe- 
cially HP 41  and TI 59 is discussed. Sixty computational examples including complete keystroke se- 
quences are provided to illustrate the methods presented in the text. These examples are drawn exclu- 
sively from subtropical and tropical stocks and fisheries. 

xvii 



1. How to Use this Manual 

Students of fishery biology in tropical developing countries generally find their textbooks 
replete with cod and haddock, salmon and trout. There is not even one little example pertaining 
say, to the chub mackerels, the scads or the various demersal percoids, although these fish often 
support significant and well-documented fisheries throughout the tropics (Man 1978). 

A manual, such as the one presented here, cannot alone compensate for this sad state of affairs. 
What this manual will do, however, is demonstrate that: 

i. there are at present enough original publications on tropical fish and fisheries to exemplify 
most aspects of fish population dynamics and stock assessment, 

ii. there is no further need, when investigating tropical stocks, to compare one's results with 
those obtained in temperate areas of the world-"lateral" comparisons, involving several 
similar tropical stocks being generally far more illuminating. 

At this point, the question might arise as to what fish population dynamics are all about. A 
now classic axiom, formulated by Russel (1931) may be used to answer this question. This axiom 
states that 

where B1 and B2 are the total weights of the exploited phase of a fish stock (or population) at the 
beginning and end, respectively, of a given time period, while R denotes the recruitment (in weight) 
to the exploited phase, G* the growth of individuals in the exploited phase, M* the biomass of fish 
that died due to natural causes in the exploited phase, and Y the yield or catch (in weight) during the 
aforementioned time period. In other words, the axiom states that in a "closed" population (no 
emigration, no immigration), the primary factors responsible for weight increments to the stock are 
recruitment and growth, while the factors responsible for weight loss are natural mortality and cap- 
ture by the fishery (see also Fig. 1.1). 

Population dynamics now can be simply defined as the quantitative study of the four primary 
factors listed in Russel's axiom. Tropical fish population dynamics, then, can be more specifically 
defined as the set of methods which can be used quantitatively to interpret data on: 1)  stock sizes, 
2) recruitment, 3) growth and 4) natural mortality of tropical fish, such that potential catches can 
be predicted or such that existing fisheries can be knowledgeably managed. 

As will be seen, the dynamics of tropical fish are not very different from those of their tem- 
perate counterparts, the major differences being: 1) the ranges of sizes are generally smaller, 2) the 
time periods are shorter, 3) the intensity of seasonal phenomena is reduced. 

Accounting for the differences between tropical and temperate systems is therefore basically a 
question of adjusting one's scales, the "trick" with tropical fish being to turn what appears to be a 
liability (i.e., that they operate on scales different from those of temperate fish) into an asset. 

For example, the fact that many demersal stocks in tropical waters consist of short-lived 
fish sometimes prevents aging by means of annuli, but allows one to follow the growth and decay 
of a cohort within a period of 12  months. When there are well-defined spawning seasons (as is often 
the case), one can then: 

- determine growth from length-frequency data without encountering many of the problems 
of applying this method to  long-lived temperate fishes, 

- estimate the age, in days, of individual fish, 
- estimate absolute recruit numbers from the relationship of yield per recruit with the catch, 

and 
- neglect time-lag effects when fitting surplus-production models to catch-and-effort data. 
Also, the extremely large number of species often encountered in the tropics (especially in 

demersal fisheries), which many authors have generally considered a major problem, may be viewed 
as a beautiful set of replicates from which not only one, but several sets of parameter estimates can 
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Fig. 1.1. Factors responsible for size increase and decrease in exploited and unexploited 
stocks (modified after Ricker 1975). 

be obtained, for example, to assess the impact of fishing on a multispecies stock (see Chapter 12). 
The next 10  chapters of this manual deal with single-species stocks, and only the last chapter 

deals explicitly with multispecies problems. This 10 to 1 ratio should not conceal the fact that most 
tropical stocks are part of a multispecies community, and that the other species inevitably affect the 
dynamics of the stocks under investigation. Chapter 12 is, therefore, very important. 

The thirty programs presented here are all original, although a few of them are built around, or 
incorporate routines written by other authors; the latter are acknowledged in the program descrip- 
tions (Appendix 11). 

The astute reader will note that many, if not all of the programs presented here could be 
written more elegantly, shortened or otherwise improved. It  is only after writing these programs 
that the author came across such excellent books on calculator programming as Smith (1977), 
Ball (1978) and Green and Lewis (1979). 

Statistical problems per se are given little emphasis in this book, for two reasons. First, fish 
population dynamics, despite recent improvements, are still mainly based on deterministic models 
(i.e., on models which assume the input data are known perfectly, and which thus ignore the sto- 
chastic nature of the inputs). Second, statistics are best learnt from texts explicitly devoted to that 
subject. Such texts as Draper and Smith (1966), Snedecor and Cochran (1967), Gomez and Gomez 
(1976), Weber (1980) or Sokal and Rohlf (1981), include both the theoretical background to some 
of the approaches used for the programs presented here and methods by which these sometimes 
crude approaches could be refined. 



Some possible improvements and refinements are as follows: 
- the use of model I1 instead of model I regressions (or "GM" instead of "AM" regressions) in 

a number of cases where the former might be more appropriate (Ricker 1973; Laws and 
Archie 1981), 

- the correction of bias in cases where certain parameters are estimated via linear regression by 
taking the inverse of the variables, 

- the correction of bias where a parameter is derived by taking the antilog of a regression 
intercept (Spmgel1983), 

- the computation of the standard error of parameter estimates where such routines are 
missing. 

Chatterjee and Price (1977) should be consulted for simple methods to deal with these biases, 
as well as for a detailed account of residual analysis, a method that is extremely useful whenever 
regression analysis is applied. 

Several programs included in this manual provide approximate estimates of standard error 
(s.e.) for a number of statistics. These were obtained from the square root of the variance in those 
cases where an equation was readily available which gave the variance of a given statistic, on the 
assumption that the statistic in question has a normal distribution. 

When equations for the estimation of the variance of a given statistic are missing, approximate 
values of the standard errors can be obtained using the "jackknife" method of Tukey (1977), which 
is presented in Appendix I. 

Confidence intervals are computed by multiplying the "t-statistic" by the standard error. When 
a large number of degrees of freedom are available, the confidence intervals of a given statistic, A, are 
thus computed from: 

A * 1.96 ~ . e . ( ~ )  = 95% confidence interval of A . . . 1.2) 

A + 2.58 ~ . e . ( ~ )  = 99% confidence interval of A . . . 1.3) 

For low numbers of degrees of freedom (d.f. < 50), table values of the t-statistic must be used. 
It is recalled here, finally, that the term "standard error" is used for the square root of the 

variance of a given statistic, while the term "standard deviation" is used for the square root of the 
variance of a set of values of a given variable (see Sokal and Rohlf 1981). 

Two types of readers will make use of this manual: those who "believe" in fish population 
dynamics, and in whatever comes out of a computer (or calculator), and those who don't. 

For the latter, little instruction is needed since they already will know how to deal with the 
contents of this book. The "believer" readers are likely to  be students or unfortunate colleagues 
who might think that given the equations in this book, and the programs to solve them, all they have 
to do is press the appropriate buttons of their calculator. Clearly, this would be a-recipe for disaster. 
Fish population dynamics are at present in a state of flux and virtually all of the assumptions, 
approaches and methods presented here have been challenged at least once by highly competent 
scientists. Furthermore, the application of many of these methods to tropical stocks is rather new, 
and their overall applicability to  all stocks in many cases still needs to be confirmed, especially the 
new methods presented in this manual. 

To give a "feel" of this, several equally legitimate methods and/or equations are usually pre- 
sented to solve a given problem; these methods generally give somewhat different results, for reasons 
that are not obvious in the majority of cases. This will help the "believers" appreciate that nbthing 
can replace one's own thorough knowledge of the various aspects of a given problem. Also, it is 



imperative when using any of the methods and approaches presented herein to read the original 
literature; references are given throughout the text and in a special "recommended reading" section 
in each of the following chapters. 

The methods presented in this book are illustrated by at least one example, based in all cases 
on data obtained in the tropics or subtropics (Fig. 1.2). Altogether, 60 examples are provided. All 
include a full keystroke sequence for HP 67/97 calculators and results, to which a brief comment 
has generally been added. These examples can also be used for testing the programs numbered FB 1 
to FB 30 after they have been entered from the listings in Appendix 11, into a calculator. The 
examples can be easily located in the colored pages at the end of Chapters 2-12. Holders for 30 HP 
67/97 (and HP 41C) program cards are provided at the end of this book. 

Fig. 1.2. Geographic distribution of examples used in this book, showing that most examples are drawn from the 
intertropical belt. 

The user should follow the procedures below when using this manual and the programs it 
contains: 

1)  always read the original literature on the models and approaches presented here, 
2) use (whenever possible) several methods to  estimate the value of a given parameter and try 

to identify the sources of the differences in the estimates when such differences occur, 
3) estimate standard errors, using the jackknife where appropriate, and perform sensitivity 

analyses (see Appendix I), 
4) always check whether the results obtained make biological sense, 
5) try to identify possible sources of biases in the model used here and attempt to improve 

Programs FB 1 to  FB 30, 
6) consider that more rigorous methods for estimating certain parameters are possible, and 
7) do not blame the author for the nonsensical results that may result from thoughtless ap- 

plications of the methods and programs given here. 



2. Length-Weight Relationships 

INTRODUCTION 

The relationship between the length (L) and the weight (W) of fish can generally be expressed 
by the equation: 

where a is a factor discussed below and the exponent b lies between 2.5 and 3.5, usually close to  3. 
Carlander (1969,1977) has demonstrated from an extraordinarily large number of length-weight 
data, stemming from a wide variety of fishes, that values of b < 2.5 or b > 3.5 are generally based 
on a very small range of sizes and/or that such values of b are most likely to be erroneous. When b = 3, 
weight growth is called isometric, meaning that it proceeds in the "same" dimension as the cube of 
length. When b # 3, weight growth is allometric, meaning that it proceeds in a "different" dimen- 
sion (differing from L~ ). Allometric growth can be either positive (b > 3) or negative (b < 3). Another 
way of relating length and weight is to define a condition factor (c.f.) such that 

When weight growth is isometric (b = 3), we also have 

where a is the multiplicative factor in equation (2.1). The reason for the multiplication by 100 in 
equation (2.2), it may be mentioned, is to bring the value of the condition factor of fishes with a 
"normal" shape close to unity when grams are used to express the weight, and centimeters to 
express the length. It  must be emphasized, however, that the c.f. in a given fish species or stock can 
be compared to that of another species or stock only if the same units and definitions have been 
used (e.g., total length in cm and live or ungutted weight in g). The units and definitions must 
always be stated. 

In addition many factors, such as sex, time of year, stage of maturity, stomach contents and 
others influence the numerical magnitude of the condition factor. Comparisons should only be 
made when these factors are roughly equivalent among samples to be compared. 

The values of a in equation (2.1), on the other hand, cannot be used for interspecies or inter- 
stock comparisons, even when the same units and definitions are used, unless the values of b are 
exactly the same. The values of b, finally, are not affected by the units or definitions used. 

PARAMETER ESTIMATION 

The values of a and b in equation (2.1) are estimated in Program FB 1 by means of a "linear- 
ized" form of that equation, namely 

that is by taking (base 10) logarithms on both sides and by estimating the values of log a and of b 
by means of a linear regression. 

This procedure of using ordinary least-square regression to estimate a and b only approximate 
these parameters, and results in estimates of the standard errors that are not very reliable; alterna- 
tive procedures, e.g., the use of non-linear least-squares estimations should be considered where 
possible. 



Program FB 1 also calculates single values of c.f. when L/W data are entered, computes an indi- 
vidual or mean c.f. value after one or several pairs of L/W values have been entered and estimates L 
from W and/or W from L when values of a and b, or an estimate of the condition factor are available. 

When expression (2.4) is fitted to data, the coefficient of determination (r2) is also estimated 
by program FBI. This coefficient has the value of the correlation coefficient squared, and is used in 
all those programs that are presented here in which an estimator of the goodness of fit is given. It  
has the advantage over the correlation coefficient that it expresses directly the proportion of the 
variance that is "explained" by the regression (e.g., of log W on log L). For example, r2 = 0.92 
means that 92% of the variance in a set of values is accounted for, or explained, by a regression, 
while 100 - 92 = 8% remains "unexplained", that is, must be attributed to other cause(s), e.g., to 
random variability. 

As will be seen in the following chapters, a number of models (= equations) used in fish popula- 
tion dynamics assume that the exponent of the length-weight relationship is equal to 3. Also some 
models can be considerably simplified when this exponent is actually equal to 3. For these reasms, 
Program FB 1 incorporates a routine which calculates the value of 2 that can be used to test whether 
a value of b calculated by this program is significantly different from 3. The equation used to com- 
pute the t-statistic is 

where s.d.(,) is the standard deviation of the log L values, and s.d. the standard deviation of the 
log W values, n being the number of fish used in the computation. (? he value of b is different from 3 
if t is greater than the tabled value of t for n - 2 d.f. (see Example 2.1). 

Table 2.1 presents data which can be used for establishing a length-weight relationship (see also 
Example 2.1). 

Table 2.1. Data for establishing a length-weight relationship for the threadfin bream (Nemiptems 
marginatus) from the southern tip of the South China Sea (live weight in g). 

# TL (cm) w (P) # TL (em) w (g) 

When large numbers of fish have been measured, entering the L/W data pairs can become quite 
tedious. In such cases, a common practice is to arrange the data by length groups, and to calculate 
the mean weight for each length class. The data should then look as in Table 2.2. 

Using Program FB 1, the length-weight relationship and/or the mean condition factor may be 
calculated with the L/W data pairs having been "weighted" by the sample size. Example 2.2 shows 
how the data of Table 2.2 may be used in this context. Example 2.3, finally, shows howa single 
data pair (one value each of L and W) can be used to obtain a preliminary estimate of c.f. 



Fig. 2.1. Length-weight relationship for the 
threadfin bream (Nemipterus marginatus) from 
the South China Sea (based on data in Table 
2.1 and Example 2.1). 

Total bngth (cm) 

Table 2.2. Data for establishing the length-weight relationship of Leiognathus splendens from the 
Eastern Java Sea (total length in cm, live weight in g). 

Class limits 
# low high 

Class 
midlength 

Mean 
weight 

Recommended reading: The following papers and books contain useful reviews of aspects of 
the length-weight relationships of fish: Kesteven (1947), Le Cren (1951), Carlander (1969,1977), 
Weatherley (1972), Ricker (1973,1975), Balon (1974). 

Suggested research topics: Estimating a and b in various commercially exploited fish stocks, 
plotting c.f. values of adults of similar sizes against month of the year to detect changes due to 
spawning, and comparing the c.f. values of fishes of similar sizes, both parasitized and unparasitized. 



Several of the models discussed in the following chapters of this manual require estimates of 
the mean size at first capture, that is the length at which 50% of the fish entering a trawl net are 
retained by the gear (LC). 

The parameter LC is particularly interesting in that it is the length at which the numbers of 
smaller fish caught retained by the cod end compensate for the number of larger fish not yet re- 
tained by the cod end (see shaded areas in Fig. 3.1). 

While LC can be estimated graphically, a more precise method is to order the catch data as in 
Table 3.1 and to estimate LC from 

where L, is the lower limit of the highest length class considered (when this equation is used the fish 
must be grouped in classes of width equal to unity, e.g., 1 cm), while Bpi is the sum of the fractions 
retained, as shown in Table 3.1 (see also Example 3.1). 

Another method to estimate LC is to fit the retention data with a logistic curve of the form 

where P is the probability of capture, L the midpoint of a length class and r, is a constant whose 
value increases with the steepness of the selection curve; both equations (3.1) and (3.2) assume the 
selection curve to be symmetrical or nearly so. 

A program is provided here (FB 29) which can be used to fit a logistic curve to data obtained 
by a trawl selection experiment (Example 3.2). However, this approach gives best results when the 
selection curve is symmetrical about the LC value, and it is thus necessary to first plot the data to 
check if the requirement for symmetry is at least reasonably met (see Example 3.2 and Fig. 3.1). 

In general, LC can be considered proportional to the mesh size of the cod-end meshes; the pro- 
portionality constant is called the selection factor (S.F.). When known, it can be used to estimate 
LC from the relationship 

LC = S.F. x mesh size . . . 3.3) 

It has been demonstrated by several authors that the selection factor of fishes is generally related to 
their overall shape, i.e., slender fishes have high selection factors while bulky fishes have low selection 
factors. This property has been used by the author to derive a nomogram (Fig. 3.2), based on a 
large number of published results of selection experiments, and which can be used to estimate 
approximate values of selection factors of fishes, given their "girth factor" (maximum girth/total 
length) or their "depth ratio" (standard length/maximum body depth). (See Table 3.2 and Example 
3.3). 

GILLNET SELECTION 

Whereas trawl selection is essentially a one-sided affair (with only smaller fish having a reduced 
probability of capture), gillnets tend to select negatively both small and large fish. The former simply 
go through the mesh without getting cau@t, while the latter are too big to insert themselves into a 
mesh. Thus, when the fish are actually "gilled" (that is caught with their head in the mesh, with the 
net's twine retaining the fish by their operculum), the resulting selection curve has the shape of a 
normal distribution, and the length at optimum efficiency (optimum length) will be proportional to 
mesh size. The selection curve of gillnets can be estimated, when the fish are "gilled" as described 
above, by using two gillnets of different mesh sizes, if the following applies: 

- both selection curves are normally distributed, 



Fish Population Dynamics in Tropical Waters: A Manual 
for Use with Programmable Calculators 



To Sandra, nya and Angela 

Ian R. Smith Memorial Library 
& Documentation Center 

DATE DUE 



Table 3.2. Morphometric data for Leiognathus equulus for rapid estimation of mean length at first 
capture 

Total length Standard length Maximum girth Maximum body depth 
(em) (cm) (cm) ( 4  

a~ased  on samples from MombasaHarbour, obtained during the FAOIDANIDA Training Course 
on the Methodology of Fisheries Sciences (Biology), held in Mombasa, Kenya, 19 May-14 June 
1980. 

- the two selection curves have the same standard deviation, 
- optimum length is proportional to mesh size, 
- the two nets have overlapping selection ranges. 

In such cases, given catches obtained by the smaller mesh of size A and the larger mesh of size B, the 
optimum length corresponding to A (LA) and the optimum length corresponding to B (LB) can be 
estimated from the catch by length class of each mesh (CA, CB) through a linear regression of the 
form y = a + bx, where 

x = L (class midpoint) . . . 3.5) 

The ratio CA /CB is called the catch ratio. 
The intercept and slope of this regression can then be used to estimate the optimum lengths from 

and 

while the standard deviation of both selection curves is estimated from 



Once LA, LB and s.d. have been estimated, the probability of capture (P) at a given length (L) is 
given for mesh A by 

(L - 
PA = exp (- 

2 s.d.2 
1 

and for mesh B by 

PB = exp (- 
2 ~ . d . ~  

1 

The derivation of these equations may be found in Gulland (1969, p. 90-92); this method was 
proposed by Holt (1963) on the basis of pioneering work by Baranov (1914). 

Although the method gives reasonable results in the case of the example provided here (Exam- 
ple 3.4, Table 3.3, Figs. 3.3 and 3.4), various authors have shown that gillnet selection curves fre- 
quently have shapes other than normal (= bell-shaped). This applies especially to  large, spiny fishes, 
which, in addition to being gilled often entangle themselves, which results in asymmetrical selection 
curves. In such cases, it may be necessary to use more elaborate methods to estimate the selectivity 
of the net(s) under investigation, e.g., those of Gulland and Harding (1961), or Hamley (1975). 

When the selection curves for a given fish species are only slightly asymmetrical and drawn to 
the right, it is still possible to apply the Baranov/Holt method outlined above using the logarithm 

Table 3.3. Catch by length of two gillnets to estimate their selection for Tilapia esculenta in Lake 
Victoria. Simplified from Table 1 in Garrod (1961). 

Midpoint of 
length group Mesh sizes (cm) 

(in cm) 8.1 9.1a 

18.5 7 - I not used, no catch with 9.1-cm meshes 
19.5 90 1 
20.5 199 9 
21.5 182 53 used, n = 5 
22.5 119 290 
23.5 29 357 

225 82 ) not used, see Fig. 3.3 

10 not used, no catch with 8.1-cm meshes 

a ~ o t e  that, when comparing two nets, only those lengths can be used for which there are non- 
zero catch data on both sides. 

of the lengths (and of the mesh sizes) instead of the lengths (and mesh sizes) in all computations. 
This approach is illustrated in Example 3.5, which is based on the data pertaining to Tilapia gali- 
laea caught in Volta Lake, Ghana (Table 3.4). As might be seen in Fig. 3.5A, the plot of the natural 
logarithm of catch ratio against length is not linear (thus suggesting that the simple Baranov/Holt 
model is inappropriate). The plot of the natural logarithm of catch ratio against that of length 
(Fig. 3.5B) is linear however, and provides parameters from which asymmetrical selection curves can 
be drawn (Fig. 3.6)- 



Class midpoint (cm) 

Fig. 3.3. Logarithm of catch ratios plotted for length in Tilapia esculenta 
caught with gillnets of two different mesh sizes (based on data in Table 3.3 
and Example 3.4). (Note that one could ahso argue that the logarithmic 
model in Fig. 3.5 would fit the data better than the simpler model used 
here. ) 

Net A Net B 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Tota l length of Tilapia esculenta (cm) 

Fig. 3.4. Selection curves for Tilapia esculenta caught with gillnets of two different 
mesh sizes (based on Example 3.4). 



Length (cm) In length (cm) 

Fig. 3.5. Plot of natural logarithms of catch ratios against length (A) and In length (B) to show effect of logarithmic 
transformation of length. Based on data of Table 3.4. Note non-linearity of relationship A (dotted line drawn by eye); 
see also Example 3.5 and text. 

Length (cm) 

Fig. 3.6. Selection curve of Tilapia galilaea caught with gillnets of two mesh sizes (A = 7.6 cm, B = 10.2 cm). B m d  
on data in Table 3.4 and Example 3.5. 



Table 3.4. Catch by length of two gillnets for estimation of their selection for Tilapia galilaea in 
Volta Lake, Ghana.' 

Midpoint Mesh sizes (cm) Probability of capture 
of length 7.6 10.2 at mesh sizes 

class (cmlb No. of fish caught 7.6 cm 10.2 cm 

a ~ a t a  read off Fig. 1 in Lelek and Wuddah (1969), including only those lengths for which both 
me h sizes had non-zero catches. 

'Data regrouped in 2-em classes to reduce number of classes with zero catches. 

USING A SELECTION CURVE 
TO ADJUST CATCH SAMPLES 

Conducting and interpreting selection experiments, e.g., with the models proposed above, re- 
present only half of the work that must be done to obtain catch samples that are representative 
of a given fish population. The other half of the work, obviously, is to use the selection curves 
obtained to adjust the available samples. Such adjustment is done by simply dividing the number of 
fish caught, for each length class, by the probability of capture of that length class, i.e., using the 
relationship 

true relative abundance - relative abundance in sample - 
in the population probability of capture 

. . 3.11) 

Fig. 3.7 shows, as an example, the catch sample of Tilapia galilaea in Table 3.4 (7.6-cm meshes) and 
the computed true (relative) abundances in the population. 

Length (cm) 

Fig. 3.7. Difference between a gillnet sample and the same sample, adjusted for mesh selection 
(based on data of Table 3.4, 7.6cm meshes and Example 3.5). The difference between the two 
samples is relatively small in this example, but can be quite dramatic when large ranges of sizes are 
represented in the catch. 



Recommended reading: Mesh selection for both trawl and gillnets is discussed in Gulland 
(1969, p. 84-95) who derives the various equations presented in this chapter. For trawl selection, 
further details may be found in Beverton and Holt (1957, p. 221-233) and Pope et al. (1975), while 
McCombie and Fry (1960), Gulland and Harding (1961) and Hamley (1975) describe methods for 
assessing the selectivity of gillnets when the assumptions of the models presented above are not met, 
e.g., when the selection curves are strongly asymmetrical. 

It is extremely important for fishery biologists to have a good knowledge of the gears used in a 
given fishery, and of the properties of such gears. Brandt (1972) and Baranov (1976) may be con- 
sulted for gear descriptions and the study of gear properties, respectively. 

Passive gears, such as traps, longlines, gillnets, etc. tend to interfere with each other and to 
become saturated. These and related problems are reviewed in Munro (1974) and Eggers et al. 
(1982). 

Suggested research topics: Estimate selection ogives, LC, and selection factors of important 
commercial species. In multispecies fisheries, use the knowledge gained in the fashion of Sinoda et 
al. (1979). 

INTERNITIONAL CENTB FOR LIVING 
AQUAllC RESOURCES M A ~ E J t l  

L I B R A R Y  





Data from Table 3.1 (but note that midpoints are used instead of the lower class limits) 

1) Read side 1 of Program FB 29 

1 f a . 0 5 4  t 9 . 5 A . 1  t10 .5A.248f11 .5A.356  T12.5A.43 1 '13.5A.432t  
14.5 A .75 ? 15.5 A 
(note that midlengths above 15.5 were skipped; see below) 

3) Estimate goodness of fit and LC. 
Keystroke Results 

4) To draw curve as in Fig. 3.2 enter class midpoint, and obtain fraction retained, as follows 

Keystrokes Results 

0.021 (frac. retained) 
0.037 (frac. retained) 

... etc. 
and 14.002 C 0.500 (as expected) 

5) Divide LC by the mesh size used (here 7.88 cm) to estimate the selection factor. 

Keystrokes Results 

14.002 f - 

The value of LC obtained here (14 cm) is very close to  the value obtained earlier (13.9 cm). 
However, this was achieved by omitting all values associated with lengths higher than 15.5 
cm. This step was necessary because the program used here does not allow for the entry of 
1.00 as a fraction retained. The selective removal of all such values, on the other hand, would 
cause a bias in the curve estimation. Thus, the best solution here was to omit all lengths from 
the first which couldn't be entered. As Fig. 3.1 shows, the resulting curve gives a good fit 







4. Fish Growth 

INTRODUCTION 

Growth may be defined as the change over time of the body mass (s body weight) of a fish, 
being the net result of two processes with opposite tendencies, one building-up body substances 
(anabolism) and the other breaking these substances down (catabolism) or 

where dwldt is the change in body weight per unit time, H is the coefficient of anabolism and k is 
the coefficient of catabolism. The process of anabolism is here viewed as being proportional to a 
certain power (d) of the fish weight (W), while catabolism is proportional to weight itself (von 
Bertalanffy 1938; Pauly 1981). 

Equation (4.1) is a differential equation which may be integrated in two ways: 
a) by setting the value of d at 213. This leads to what is widely known as the Von Bertalanffy 

Growth Formula (VBGF), which is here called special VBGF. 
b) by allowing d to take a certain range of values, including 213. This leads to  what will be 

called the generalized VBGF (Pauly 1981). 
Most growth-related programs in this manual allow the use of both forms of the VBGF, and 

there is no need to fear that the use of a "new" growth equation will complicate things. The reason 
why the generalized VBGF is introduced here is that this form of the growth equation allows smaller 
deviations when fitting growth data and a biological interpretation of the equation parameters, as 
intended by von Bertalanffy (1951) (see Pauly 1981). 

Details on the integration of expression (4.1) to a growth curve have been presented in Taylor 
(1962) and Pauly (1979a). It  suffices to mention here that, in the course of this integration, the 
weights in expression (4.1) are replaced by length such that 

and 

Also a "surface factor D" is defined such that 

The integration for length growth yields the equation 

where 

L, is the asymptotic length, that is the mean length the fish of a given stock would reach if 
they were to grow indefinitely. 

K is a growth constant which may be conceived as a "stress factor", with K = k/3 



(relative) age". Table 4.3 gives an example of such data. From such data, L,, (or W,) and K may 
be estimated, but not to, which is due to the fact that what is really known are age differences, not 
actual ages. To obtain estimates of to, a knowledge of the absolute age of fish of given size is neces- 
sary, as might be obtained, e.g., from aging by means of daily otolith rings (Pannella 1971) or 
from a detailed knowledge of the life-history of a fish, inclusive of the exact spawning season. 

Table 4.3. A set of length-at-(relative) age data, pertaining to male Nile carps (Labeo niloticus) 
from a freshwater body near Alexandria (Egy~t).~ 

Throughout most of this manual, I have used the term size-at-age both for data on size at 
absolute and at relative age, and distinguished between the two only when the distinction was essen- 
tial to the point being made. 

Size-at-age data (in the wider sense) are required in this manual for Programs FB 3 (von Berta- 
lanffy Plot), FB 4 (Ford-Walford Plot) and FB 7 (seasonal length growth). 

Data on size increase in time may be typically represented by the tagging-recapture data of 
Table 4.4. With this type of data, we do not know the age of any fish, nor do we even have a series 
of sizes at relative ages. Still, it is possible to derive from data of this type an estimate of asymptotic 
size and K, given values of D, by means of Program FB 5 (Gulland and Holt Plot) or Program FB 6 
(Munro Plot). 

This manual, it must be stressed here, shows how to interpret growth data, not how to obtain 
them. Introductions into the literature on fish aging, including validation techniques applicable to 
tropical fish, are given by Mohr (1927,1930 and 1934), Graham (1929), Suvorov (1959), Menon 
(1950), Bagenal(1974), Pauly (1978), by Brothers (19 SO), who also reviews techniques for aging 
tropical fish by means of daily otolith rings, and most recently by Beamish and McFarlane (1983). 

METHODS FOR PARAMETER ESTIMATION 

A method for obtaining first estimates of asymptotic size 

Various authors, notably Beverton (1963) and Taylor (1958), have noted that there is generally 
a good agreement in various fish stocks, between L,,, the largest length recorded from a given stock 
and L,, the asymptotic length estimated for that stock. 

Taylor (1958) in fact suggested the rule of thumb 

Lm,/0.95 L(,) 

which for weight becomes 
Wm,/0.86 * W(,) 

and where L(, ) and W(,! are used (instead of L, and W,) to distinguish such preliminary estimates 
from values of asymptotic size obtained from growth data, e.g., by means of a Ford-Walford plot 
(see below). 



Two problems are associated with this method to obtain preliminary estimates of asymptotic 
size. The first problem is that of properly defining L,, (or W,,); S. Garcia, FA0 (pers. comm.) 
suggests L,, and W,, should be derived by averaging the sizes of several large specimens from a 
well-sampled stock, whenever possible, rather than using only one single value. In either case, it is 
important to distinguish L,, (and W,,) from L,,. ,, (and W,,. ,), i.e., to distinguish the 
maximum size on record from a given stock from the maximum size recorded from a given species 
of fish (see e.g., Intern. Game Fish Assn. 1978). Obviously, values of L,,. ,,,, or W,,. ever will 
not do for use with equation (4.16) or (4,17), because the "record" fish will most probably have 
grown under environmental conditions different from those applying to  the stock under investigation. 

The second problem associated with the use of expression (4.16) or (4.17) to obtain prelimi- 
nary estimates of asymptotic size lies in the fact that in fish capable of reaching very large sizes, the 
use of the special VBGF implies that L, %- L,, (and W, $- W,,), as shown in Pauly (1981) (see 
also Example 4.9 and Fig. 4.5). The reason for this is that the assumption embedded in the special 
VBGF that D = 1, which is more or less erroneous in most fish, is most erroneous in those fish 
that are capable of reaching large sizes (see Fig. 4.1). Using D = 1, instead of the appropriate value 
of D has in these fish the effect of generating values of asymptotic sizes much larger than the 
maximum known from the stocks in question (Pauly 1981). Thus, in fish capable of reaching large 
sizes (> 50 cm) it is imperative, when using expression (4.16) or (4.17) to compute and use the 
appropriate value of D. 

The von Bertalanffy plot 

Historically, the first method for estimating the parameters of the VBGF was that proposed by 
von Bertalanffy (1934). The method requires the use of a set value for the asymptotic size (L(,), or 
W(00)). 

The generalized VBGF 

can also be written 

and 

-In [ 1  - (L~/L( , ) )~ ]  = -KDto + KDt 

Expression (4.21) has the form of a linear regression, y = a + bx, 

where 

Y = --In [ I -  ( L ~ / L ( , ) ) ~ I  

and 



which, given a set of length-at-age data, a value of D and an estimate of L(,), provides values of 
intercept (a) and slope (b) which can be used to obtain K and to through 

K = b/D . . . 4.24) 

and 

Also, a value of r2 is generated which estimates the goodness of fit and which can be used to test 
whether the use of a different value of L(,) improves the linearity of the regression. The latter 

Trial values of L (cm) 

Fig. 4.3. Relationship between the goodnem of fit of a von 
Bertalanffy plot (expressed by the coefficient of determination) 
and the selected value of 4,) (baaed on data in Table 4.3 
and Example 4.2). 

feature, therefore, can be used to obtain by trial and error the value of 4,) which brings r2 to 
its maximum. See Example 4.2 and Fig. 4.3. 

The use of a von Bertalanffy plot has the following advantages: 
a) the values o f t  (ages) do not need to be equidistant (see Example 4.1) 
b) the mean length values used in the regression can be weighed by sample size (as in Example 

4.2) 
c) the value of to is estimated directly when absolute ages are provided (as in Example 4.1) 
d) the use of a forcing value of LI,) helps in obtaining (rough) estimates of K even when the 

growth data are not asymptotic. 



The Ford-Walford plot 

Of all methods used for estimating the parameters of the VBGF, the Ford-Walford plot (Ford 
1933; Walford 1946) is the most commonly used. The method is based on a rewritten version of the 
VBGF: 

from which is derived 

and 

Here, L~~ and Lt + pertain to length separated by a constant time interval (1 = year, month or 
week, etc.). Table 4.4 shows how size-at-age data need to be rearranged for use in a Ford-Walford 
plot. 

A point must be mentioned which pertains to the regression model used in conjunction with 
the Ford-Walford plot. The linear regression models normally used in this manual (as well as in the 
HB 67/97 Standard PAC) are arithmetic mean (AM) regressions, also called type I, or predictive 
regressions. In this regression type, it is implied that the ordinate (y) values are measured with 
error, or have natural variability, while the abscissa value (x) are measured without error or not to 
have natural variability. This assumption applies in the case of the von Bertalanffy plot. In the case 
of the Ford-Walford plot, however, the use of an AM re ession introduces a bias, due to  the fact % that both the y values (= Lt + and the x values (= Lt ) are measured with the same error (they 
are indeed the same data, used twice!). In such a case, a geometric mean (GM) regression (also called 
type 11, or functional regression) has to be used (Ricker 1973; Laws and Archie 1981). 

In practice this consists in calculating the a, b and r2 values of an AM regression, then cal- 
culating the GM slope (b') from 

and the GM intercept (a') from 

- 
a' = y - (b' x) 

where x is the mean of the LP values and jJ the mean of the Lt + values. The values of a' and b' 
are then inserted into equation (4.27) and equation (4.28) instead of the values of a and b. 

Table 4.4. Length-at-age data for the Atlantic yellowfin (Thunnus alba~ares)~ off Senegal for use 
with a Ford-Walford plot. 

-- 

Rearrangement for Ford-Walford plot 

- pp -- -- 

aFrom Postel (1955), who also gives L,, = 146.5, corresponding to a value of W,, 60 kg. 



The computations outlined here are all performed by Program FB 4 and data are provided in 
Table 4.4 for calculating Example 4.3 (see also Figs. 4.4 and 4.5). The Ford-Walford plot has a few 
advantages over the von Bertalanffy p l o h n  estimate of L, is obtained immediately, and it is rela- 
tively easy to compute. 

Fig. 4.4. Two Ford-Walford plots for Atlantic yenowfin (Thunnus albacares), based on the special and generalid 
VBGF (baaed e n  Table 4.4 and Example 4.3). 

-W (special VBGF) 

--------------) La (generdized VBGF 

I 
/ 

/ 
I I I I I I I I I 1 

0 I 2 3 4 5 6 7 8 9 10 

Relative age ( years ) 
Fig. 4.5. Differencer between the special and generalized VBGF as applied to growth 
data for Atlantic yellowtin (Thunnus albacares) (based on Example 4.3). 

- special VBGF : 
- 0.15(t+ 0.35)) 

Lt = 186.6 (I-e 



These advantages, as it seems, are outweighed by the disadvantages of this method, namely: 
The plot requires that the data are equidistant in time (the time between size values being 
years, months, weeks, etc.). 
The points are unevenly spaced along the plot (see Fig. 4.4) which introduces a slight bias 
when calculating the regression parameters. 
The points, being combined from two values of size-at-age cannot be readily weighed by 
sample size. 
One value of size-at-age is always lost (because it has no corresponding value of Lt + 1). 
The value of to must be estimated separately, 

Variants of the basic Ford-Walford plot have been published (e.g., Gulland 1969; Hohendorf 
1966), but the negative features of this plot can hardly be compensated for; it would appear that 
the Ford-Walford plot is in fact inferior to the original von Bertalanffy plot. 

The Gulland and Holt plot 

Another method for estimating L, and K from growth data is provided by the feature that a 
plot of size increments per unit time against mean size (for the increment in question) gives a straight 
line, whose slope-with sign changed-closely corresponds to the value of K, or including the para- 
meter I): 

where E~ = (LID + L ~ ~ ) / z ,  and where L1 and L2 are successive lengths, pertaining to times tl and 
tB, respectively (Gulland and Holt 1959). 

Table 4.5 gives an example of data of this kind, which are typically obtained from tagging stud- 
ies or from length-frequency data. The method uses normal size-at-age data, at equal or unequal 

Table 4.5. Length at tagging (L1), length at recapture (L2) and time at large for tagged ocean 
surgeon fish (Acanthurus bahianus) from the Virgin Islands.' 

Mean temp.c 
No. L, (em) L2 Days out Annual K~ (in ' C) 

- 
K =  

C.V. a 

'Adapted from Table 3 of Randall (1962). Data included pertain to fishes which grew at least 
2 mm while at large, which accounts for small measurement errors and cases of no-growth due to 
tag ng wounds. '& calculated £romaMunmplot (see Example 4.6) with L ( ,  = 19.25 cm and D = 1 (Fig. 4.9). 
'As computed from the mean monthly temperatures and the dates at tagging and r ecap re  

in Randall (1962), who also gives 29.4 '~ as highest mean monthly temperature (T,), 27.2 C as 
lowest mean monthly temperature (T,) and 28.5'~ as annual mean (T). 



intervals, granted that the values of (t2 - t l )  stay small in relation to the longevity of the fish (Gul- 
land and Holt 1959). 

Equation (4.31), it will be noted, has the form of a linear regression y = a + bx with 

and 

the intercept (a) and slope (b) of which provide values of K and L, through the relationships 

and 

Sometimes, the method does not provide reasonable parameter estimates, when the zD data are too 
close to each other (Table 4.6, Fig. 4.6). In such a case, a set value of L(,) may be used in connec- 

Table 4.6. Length at tagging (L1), length at recapture (L2) and days at large of tagged Queen 
parrot fish (Scarus vetula) from the Virgin Islands.' 

'Adapted from Table 17 in Randall (1962). Randall (1968) gives for this stock a value of 
&, - "20 inches", hence L(,) - 20e2.54/0.95 = 53.5 cm. 

Fig. 4.6. Estimation of growth parameters for the ocean 
surgeon fish (Acanthurus bahianus) off the Virgin Islands 
by means of a Gulland and Holt plot (based on data in 
Table 4.5 and Example 4.4). 



L ~ D  - L ~ D  
tion with the means of all zD values (il) and of all values m) to obtain an estimate of 
K through t2 - t l  

This method, called a "forced" Gulland and Holt plot, allows the estimation of K even when only 
one pair of x and y values is available. 

Program FB 5 provides estimation of L, and K, or W, and K given appropriate data (as 
exemplified in Tables 4.5 and 4.6 and Fig. 4.8). When values of L(,), or of W(,) are supplied, only 
K is estimated (Examples 4.4 and 4.5). 

Care should be taken, when using tagging data in conjunction with a Gulland and Holt plot, to 
identify and reject those data pertaining to fish whose growth was severely reduced or halted, e.g., 
as a result of tagging wounds. It is generally necessary to draw a scattergram prior to all calculations 
to identify such values of x and y (see Fig. 4.7 for an example). For this purpose, Program FB 5 has 
been given a routine which provides for the output of the x and y values. 

The Munro plot 

Munro (1982) suggested that 

loge (L, - La) - loge (L, - Lb) = K (b - a) . . . 4.37) 

which becomes, in the notation used here, and in terms of the generalized VBGF 

Given a value of D and trial values of L(,), this equation can be used to calculate single values of K 
(one for each triplet of L1, La and time values). The calculated values of K are close to each other 
when an optimal value of L( has been selected, and differ widely from each other when the 
selected value of L(,) is too 

0 used in computations 

0.0 
- 
0000 0 00 

I I 

0 5 10 15 20 - 
L (fork length,cm) 

Fig. 4.7. Scattergram of growth increment for ocean surgeon fish 
(Acanthurus bahianus), as obtained &om tagging data (the selection 
of points used was done using a rigorous criterion, see Table 4.5). 



0 10 20 30 40 50 60 - 
L (fork length, cm) 

Fig. 4.8. Gulland and Holt plot (dotted line) and "forced" Gulland and Holt plot (solid 
line) for the Queen parrot fish (Scarus vetula) off the Virgin Islands (based on data in 
Table 4.6 and Example 4.5). 

Thus, by calculatin for a given value of L(,), the coefficient of variation of the K-values 
(C.V. of K = deria'on ), one may select by trial and error the value of 4,) mean value of K 
which produces the lowest coefficient of variation for a given set of data. Program FB 6 (Munro 
plot) can be used for this purpose (see Table 4.5, Example 4.6, Fig. 4.9). 

This method resembles the (forced) Gulland and Holt plot in that data for unequal time 
intervals can be used, e.g., tagging data. It has, however, the distinct advantage over the Gulland 
and Holt plot of providing accurate solutions (K values) irrespective of the length of the tipe inter- 
val(~) (t2 - tl values). 

Ttial value of L(o, ) (cm) 

Fig. 4.9. Graph showing how the coefficient of variation (C.V.) of 
the K-values obtained from a Munro plot depends on the selected 
value of 4,) (based on data in Table 4.5 and Example 4.6). 



Alternatively, when a value of L, is reliably known (e.g., as obtained by the procedure out- 
lined above), single values of K can be output (see Table 4.5) which can be compared and/or plotted 
against any variable likely to affect the growth of individual fish (e.g., mean water temperature 
during time at large). 

Fitting seasonally oscillating length-growth data 

In sub-tropical waters, and even more so in temperate waters, the growth of fish is fastest in 
summer time when temperatures are highest, and slowest in winter time when temperatures are 
lowest, the growth oscillation roughly following a sine wave curve of period one year (Fig. 4.10). 

The inclusion of a sinusoid element of period one year into the VBGF has, therefore, the effect 
of considerably impro+ing the fit of a growth curve and the accuracy of estimated values of the 
growth parameters in cases of growth seasonality (Pauly and Gaschutz 1979; Gaschutz et al. 1980). 

The "seasonalized" version of the generalized VBGF has the form 

Where L,, D, K and to are parameters of the "unseasonalized" VBGF while C expresses the ampli- 
tude of the growth oscillations and ts the start of the sinusoid growth oscillations with respect to 
t = 0 .  

The value of C is defined such that, if C = 1, the growth rate (dl/dt) is zero exactly once a 
year? Values of 0 < C < 1 indicate a slowing down of the growth rate in winter time without 
dl/dt ever reaching zero, while C = 0, finally corresponds to the unseasonalized VBGF. The para- 

a ~ a l u e s  of C > 1 do not imply that the length of fish is reduced in winter, but rather that the period of no- 
growth lasts over several weeks or months. This case should not occur in the tropics, however. 

2 4 6 8 10 12 14 16 18 20 22 24 

Relative age (months) 
Fig. 4.10. Seasonally oscillating growth of the halfbeak (Hemirhamphus brasiliensis) off Florida (based on 
data in Table 4.7 and Example 4.7). 



meter t, is defined such that t, + 0.5 = "winter point", i.e., the time of the year when growth is 
slowest. 

Given values of L(_), D and a set of seasonally oscillating lengthat-age data, the parameters 
K, C, to and t, of equation (4.39) can be easily estimated from a multiple linear regression of the 
form 

where y = l n ( l - ~ ~ ~ / ~ , ~ )  . . .4.41) 

x l  = t (age must be always expressed in years) . . .4.42) 

x2 = sin 2nt . . . 4.43) 

and x g  = cos 2nt . . . 4.443 

and where the parameters K, to, C and t, are estimated from the relationships 

C 
b2 = -KD %cos2ntS 

C b3 = KD - sin 2nt, 
277 

and t, = { arc tan (-b3 /b2) )/2n . . . 4.49) 

The only parameters which cannot be estimated directly from the seasonally oscillating growth data 
are L(=) and D. The input value of L(, , however, can be improved by means of the same trial and 
error techniques suggested for the von d ertalanffy and the Munro plots, because Program FB 7 has 
a routine for computing R~ (multiple coefficient of determination, analogous to r2) the value of 
which may be maximized by means of a few plots with different estimates of L(,) (see Table 4.7, 
Example 4.7 and Fig. 4.11). Hoenig and Choudary (1983) give a method to derive standard errors 
of the parameters of equation (4.39). 

L 
Trial values of L(, ) (cm) 

Fig. 4.11. Graph showing how an optimal value of 
4,) can be selected when fitting seasonally oscillating 
length-growth data (based on data in Table 4.7 and 
Example 4.7). 



Table 4.7. Seasonal growth of halfbeak (Hemirhamphus brasiliensis) off Western Florida, U.S.A? 

Relative age 
in months 

-- 

Relative age 
in months FL (cm) 

'As read off Fig. 5 in Berkeley and Houde (1978), who also give 31 cm for FL,,. 

Program FB 7, as opposed t o  the other programs for estimating the parameters of the VBGF, 
cannot be used to fit weight growth data, even after conversion of W to w1Ib, because weight oscil- 
lations have in fish a structure different from that of length oscillations (see Shul'man 1974). 

Extended Gulland and Holt plot 

The seasonally oscillating growth model presented above (equation 4.39) is very sensitive, even 
to small seasonal oscillations. Using this model, growth oscillations have been demonstrated using 
data previously thought to depict growth patterns unaffected by the relatively small oscillations of 
environmental factors that occur in the tropics (Pauly and Ingles 1981). For this reason, it becomes 
necessary to consider growth oscillations not only with regard to size-at-age data, but also with 
regard to size increment data (i.e., tagging data), which have been frequently used to estimate the 
growth parameters of tropical fish. 

The method proposed here is a modification of the Gulland and Holt plot, discussed earlier in 
this chapter. The new method may be called "extended Gulland and Holt plot"; it consists of ex- 
tending the earlier method 

where b = -KD and x = (LID + ~ 2 ~ 1 1 2  into a multiple regression of the form 

D where y = (LzD - L1 )/(t2 - t,), and x1 = (LID + LzD)/2, as in the Gulland and Holt plot, and 
where x2 is the value, during the time tl - t2, of the environmental factor most likely to affect the 
growth of the fish while at large. (Obviously, the expression may be extended to any number of 
additional terms, up to b, X,, but this will not be investigated here.) 

As shown in Fig. 4.12, the amplitude of seasonal growth oscillations in different fishes is 
extremely well correlated with the difference between annual minimum and maximum temperature 
of the water masses they inhabit, for which reason the most meaningful factor to insert for X2 in 
expression (4.51) is the average temperature encountered by the fishes while at large (between 
times tl and t2). 

Thus, the model becomes 



Fi. 4.12. Relationship between the amplitude of seasonal growth oscillations 
(C)  of fiah and shrimps and the difference between highest and lowest mean 
monthly temperature of their habitats (AT). Adapted from Pauly et al. (in 
press). 

where T is the mean environmental temperature in "C during an interval tl to t2. From this, the 
value of L, corresponding to the mean annual temperature (hence, to a value of L, unaf- 
fected by temperature fluctuations) can be estimated as: 

while K and C can be estimated from 

and 

respectively, Ts ("summer") being the highest and Tw ("winter") the lowest mean monthly tem- 
pmture of the water body in question. 

The method, as might be seen from Example 4.8, is extremely sensitive and can detect and 
quantify temperature effects that are extremely slight. 

In analogy to the "forced Gulland and Holt plot", the method can also be used to estimate K 
(while accounting for seasonal growth oscillations) with a forcing value of 4-1, using 

K m  [a* (b2 T ~ ) I / L ( - ) ~  . . .4.56) 
/' 

(See Example 4.8.). 



GROWTH: A CONCLUDING PROGRAM 

More methods suitable to estimate growth parameters by means of HP 67/97 calculators are 
available, especially from the HP "Users Library". The six methods proposed here are quite suffi- 
cient, however, for most problems and this chapter concludes with a straightforward, but hope- 
fully helpful program. 

Program FB 9 simply gives solutions for the generalized versions of the VBGF and their deri- 
vatives and also estimates the parameters d and D from equations (4.8) and (4.9). Table 4.8 gives an 
overview of the various output values that are calculated, given an appropriate set of values for the 
parameters needed for the calculation (see Examples 4.9 and 4.10). 

Table 4.8. Constants to be stored for each of the solutions of the generalized von Bertalanffy 
Growth Formula (see Program FB 9). 

Constants required in stores 
Label Values estimated L, W, K D to b Input Output 

length at a given age 
weight at a given age 
age at a given length 
age at a given weight 
to for given length and agea 
to for given weight and agea 
length at inflexion point of curveb 
weight at inflexion point of curve 
growth rate at a given length 
growth rate at a given weight 
values of d and D 

Stores: 

''The values of to may be summed up (Z+), then averaged (Z). 
b~pplicable only when D < 1. 
'W, must be expressed in grams. 

This program, although consisting of very simple steps, can help save a considerable amount of 
time to whomever has to draw various growth and related curves. 

Recommended reading: The literature on fish growth is immense, and a list of recommended 
reading on this subject is necessarily highly subjective. Nevertheless, here are some useful references: 
von Bertalanffy (1938), Beverton and Holt (1959), Cushing (1981), Taylor (1962), Pannella (1971), 
Fryer and Iles (1972), Weatherley (1972), Bagenal(1974), Shul'man (1974), Ricker (1975, Chapter 
9), Lowe-McConnell(1975, Chapter 9), Jones (1976a), Ricker (1979), Brothers (1980) and even 
Pauly (1981). 

Suggested research topics: Estimate growth parameters of commercially exploited fishes, 
and of little-investigated groups (e.g., coral reef fish). Compare growth curves obtained with the 
special VBGF with growth curves obtained using the generalized VBGF, especially in tuna. Estimate 
the age of fish by means of daily rings in their otoliths (see Brothers 1980). Assess the intensity of 
seasonal growth oscillations in tropical fish, and establish the cause for these oscillations. 

Reanalyze previously published length-frequency data (or data on file somewhere) by new 
methods (see, e.g., Pauly and David 1981) and use the resulting growth prameters to derive growth- 
related parameters (e.g., mortality rates; see next chapter). 







Computations 

1) Read sides 1 and 2 of Program FB 5. 

2) Estimation of L(,,, in cm 

Keystrokes Results 

3) Estimation of K 

Keystrokes: Results 

0.001 









5. Total, Natural and Fishing Mortalities 

INTRODUCTION 

In fishery biology, the most useful manner of expressing the decay (= decrease) through time 
of a group of fish born at the same time (a cohort) is by means of "instantaneous" rates. These 
rates, of which there are three (Z, M, F), are defined by the following two expressions: 

where No is the (initial) number of fish at time zero, and Nt is the number of remaining fish at 
the end of time t; Z is the instantaneous rate of total mortality. An advantage of such decay rates is 
that they can be added or subtracted. Thus we have 

where M is the instantaneous rate of natural mortality and F the instantaneous rate of fishing mor- 
tality. Obviously, when F = 0, Z = M, which means that natural and total mortality have the same 
value when there is no fishing, i.e., in an unexploited stock (Fig. 5.1). 

Time (years) 
Fig. 5.1. Decrease of a cohort of 100 fish (initially), subjected to different 
levels of mortality; LC = mean length at first capture. 

Instantaneous rates (i.e., "exponential" rates) of mortality can be converted to the fraction 
surviving through equations such as 

where S is the fraction surviving after time t, while 



is the fraction of the stock dead after time t. Although used by a number of authors, percentage 
mortalities are not further discussed in this book, because they are too cumbersome to handle in 
comparison with instantaneous rates (see Beverton and Holt 1956, p. 68 for reasons). 

Mortalities, whether expressed as instantaneous rates or as fractions, always refer to a certain 
period of time. Throughout this book, the year is used as the conventional unit, unless mentioned 
otherwise. 

Fishery biologists have two main jobs as far as mortalities are concerned: 
a) to eatimate total mortality; 
b) to split their estimates of total mortality where appropriate into separate estimates of 

natural and fishing mortalities. 
A number of methods are proposed here by which these aims can be achieved, given suitable inputs. 

Ecologists, on the other hand, will be pleased to know that Z, as defined here, is eguivalent to 
the inverse of the mean age of the animals in a population (computed from the age when Z is 
more or less constant) and, hence, as shown by Allen (1971) equal to their "turnover rate", i.e., to 
the production/biomass ratio (P/B ratio) that is so difficult to estimate reliably using the various 
methods described in the ecological literature (e.g., Chapman 1968; Winberg 1971). 

ESTIMATING TOTAL MORTALITY 

Total mortality from the oldest animal in the catch 

Following a number of earlier authors who had demonstrated the existence of a strong relation- 
ship between the longevity of fish (in the wild) and their mortality, Hoenig (1984) assembled data 
on a large number of aquatic animals (molluscs, fish and cetaceans) from which he derived the 
relationship 

where t,, is the maximum age (in years) observed in a given stock, and Z is defined as above. 
Although the "fit" of equation (5.5) is rather good (r2 = 0.82 for 130 data pairs), it should 

be realized, when using this equation, that the estimates of Z thus obtained are very approximate, 
possibly biased downward (J.M. Hoenig, pers, comm.) and should therefore be revised as additional 
information becomes available. Table 5.1 gives examples of the application of equation (5.5) which, 
given its simplicity, needs not be illustrated by a computational example. 

When, in addition to t,, and t, the size of the sample (n) from which t,, was determined 
is also known, it becomes possible to estimate Z and its standard error (~ . e . (~ ) )  from the relationships 
derived by Hoenig and Lawing (1982), 

and 

where c l  and c2 are coefficients whose values depend on n (see Table 5.2). 
Hoenig and Lawing (1982), whose paper should be consulted for the derivation of equations 

(5.6), (5.7) and of Table 5.2, stress that "fast growing, short-lived species with minimal variability in 
length about age are best suited for this method". This is so because in such cases, n, the sample size, 
is not the number of fish actually aged, but the number of fish from which a subsample, consisting 
of the largest fish was taken. Thus, if say, 200 fish have been inspected, from which the 20 largest 
were selected for aging, then the value of n will be 200, not 20 (this assumes, obviously that the 
oldest fish of the sample of 200 will be among the 20 largest). This feature appears particularly 
valuable in all those cases where fish must be aged by the tedious procedure of counting daily rings 
(Hoenig and Lawing 1982). 



Table 5.1. Maximum observed size (L,,, W,,): maximum observed age (t,,) and estimated 
mortality (Z) for 12  coral reef fish of New Caledonla.8 

L,, (standard W,, (live ' m a  
Family Species length, in cm) weight, in g) (in years) zb 

Holocentridae 
Adioryx spinifer 

Serranidae 
Epinephelus summana 

Carangidae 
Caranx ignobilis 

Lu tjanidae 
Lutjanus argentimaculatus 
Lutjanus gibbus 
Lutjanus sebae 

Pomadasyidae 
Plectorhynchus chaetodonoides 43.1 2,715 21 0.21 
Plectorhynchus pictus 39.2 1,970 11 0.40 
Pomadasys hasta 31.8 87.3 12  0.37 

Lethrinidae 
Lethrinus harak 
Lethrinus obsoletus 
Monotaris grandoculis 

'Size and age data adapted from Loubens (1980, Table VI); the values of t,, are based on 
limited samples (sample sizes not given) which, however contained large-sized adults. 

b~stimated from Equation (5.5). 

Table 5.2. Table of coefficients for estimating Z and its standard error using equations (5.6) and 
(5.7) (from Hoenig and Lawing 1982). 

'Interpolate for intermediate values of n. 



Table 5.3 gives values of Z and its standard error as obtained by application of equations (5.6) 
and (5.7); the method is also illustrated in Example 5.1. 

Table 6.3. Maximum reported age and estimated total mortality of selected Brazilian freshwater (F) and marine 
fish (M).a 

t Location. Estimated 
Familv Species e?? n sampling date(s) Author(s) Z s.e.f zj 

Auchenipteridae 
Trachychorystes galeatus 9 3.6 83 ~anabui; Reservoir Nomura 1.36 0.32 
Trachychorystes galeatus d 3.5 99 1 Caera State. 1971 (F) et al. (1976) 1.40 0.32 

Characidae 
Prochilodus scrofa 9 13 451 Mossi Guassu River. Godoy 0.50 0.09 
Prochilodus scrofa d 9 486 1 S ~ O  Paulo State, 1947 (1969) 0.73 0.13 

Sciaenidae 
Plagioscion squamosissimus ? 6 103 Amanari Reservoir, Nomura and 0.82 0.19 
Plagioscion squamos' simus 6 7 134 ? Caera State. 1960-2 (F) Oliviera (1976) 0.74 0.16 
Micropogon furnieri 3 6 229 Off Iguape, Caera Rodrigues 0.96 0.19 
Micropogon furnieri d 7 115 1 StateL1966-7 (M) (1968) 0.72 0.16 
Macrodon ancylodon ? & d 11 9.947 Off Sao Paulo, Lara(1951) 0.66 0.11 

1976-6 (M) 

a ~ o t a l  mortality and its standard error estimated from equations (6.6) and (6.7). with tc set at zero because 
very small fish were included in the catch samples. 

Total mortality from the mean size in the catch 

The following expression (Beverton and Holt 1957; Gulland 1969) can be used to estimate Z 
from the mean weight (W) of fish in the catch from a given population: 

- 32 exp (a) + 32 exp (-2a) a) Z exp (-3a) w=w, ( 1 -  Z + K  Z+2K Z+3K 1 . . . 5.8) 

where a = K . (t, - to), with K and W, pertaining to the special VBGF (i.e., when,D = 1) and where 
t, is the mean age at first capture (corresponding to LC as defined in Chapter 2) obtained by a given 
gear. Equation (5.8) it will be noted, can be solved for Z only iteratively (Program FB 10, Example 
5.2). Also, the equation requires an estimate of to, which may sometimes be difficult to obtain. 

Another equation, proposed by Beverton and Holt (1956), is more generally used to estimate 
Z from the mean size in the catch. When used in conjunction with the generalized VBGF, it has the 
form 

where is the mean length of all fish 2 L', the latter being (a length not smaller than) the smallest 
length of fish fully represented in the length-frequency data at hand. L' is always > LC, as defined 
in Chapter 2, except in true cases of "knife-edge selection", where L' = LC. [A method is given 
further below in connection with a discussion of length-converted catch curves to obtain reasonable 
estimates of L' from a set of length-frequency data.] 

A sensitivity analysis of this widely-used equation is given in Appendix I; on the average, 
equation (5.9) gives results (values of Z) which are equal to those obtained with length-converted 
catch curves (see below). 



Occasionally, data are available in the literature where the mean length has been computed 
from the whole range of length in the catch rather than from L' upward. In such cases, minimum 
estimates of Z can still be obtained, using 

where is the overall mean length and LC is the 50% retention length. See Chapter 2 for various 
methods to compute LC. 

Another type of widely available data is mean weights of fish, as obtained by simply weighing 
iqg a haul, countiig the fish caught and dividing the weight by the numbersaught. Such values of 
m, however, do not represent the weight corresponding to a given value of z; rather, they are biased 
upward. This effect should partly offset the negative bias in equation (5.10) such that 

where W, and W, are the weights corresponding to L, and LC, respectively. It will be realized that 
this equation gives quite approximate results, and that, as in the case of equation (5.5), every effort 
should be made to revise the estimates of Z based on it as soon as additional information become 
available. 

Example 5.3 presents applications of equations (5.9), (5.10) and (5.11). 
Although computationally convenient, simple equations such as (5.9 to 5.11) have two disad- 

vantages, one of them major. Equations (5.9 to 5.11) require estimates of LC or L'; the first of these 
parameters involves either conducting selection experiments, or using shape measurements and the 
nomogram presented in Chapter 2. The second of these parameters, on the other hand, can be 
estimated from length-frequency data; this, however, involves plotting the data in a form akin to a 
lengthconverted catch curve, at which point it will be more appropriate to estimate Z from the 
catch curve itself (see below). 

The major objection to the use of mean size data for estimating Z is, however, that one quite 
literally doesn't see what one is doing. While computation of one single value of Z from the mean of 
a wide range of sizes implies that mortality is constant, the assumption itself cannot be verified. 
The semi-graphical methods presented further below, particularly the length-converted catch curves, 
do allow verification of this assumption. Also, they allow the selection of data points to use in the 
estimation of Z, and hence the estimation of values of Z applying only to certain ranges of size 
something which cannot be done using summary statistics, such as mean lengths or mean weights. 
[Mean sizes can be used directly to draw inferences on the status of a stock or fishery without being 
expressed in terms of Z. Henderson (1972) provides a theoretical background for this approach 
which was applied to tropical fish by Ita (1980), but won't be discussed here.] 

Estimation of Z from cumulative plots 

When length-frequency data or catch-at-length data are available which were obtained over a 
period during which conditions can be considered constant, several methods can be used to estimate 
Z which are less crude than the ones presented above. The first of these was proposed by Jones 
(1981) to estimate Z/K; it is presented here, however, among methods for the estimation of Z 
because it led to another method, developed by Sparre (MS) which is closely related to Jones' 
method, but allows direct estimation of Z. 

The basic equation in Jones' method, expressed in terms of the generalized VBGF, has the form 
of a linear regression, 



where C (Li, -) is the cumulative catch (computed from the highest length class with non-zero 
catch) corresponding to a given length class, and Li is the lower limit of that length class, the - 
symbol expressing that the catch considers a range from Li to all larger sizes. 

However, as shown in Fig. 5.2, the plot of the In C (Li, W) values on the In (LE - L?) values 
is linear only over the central part of its range and deviates markedly from linearity when very large 
and very small fish are considered. 

used 

not used 

Fig. 5.2. Jones' cumulative plot for the estimation of ZIK 
(or Z), ee applied to the data of Table 5.4. The points to be 
included in the regression are dected after transformation and 
plotting of the data (see Example 5.4). 

Thus, when applying this method, it is necessary to draw a scattergram of the computed values 
and to select visually the points belonging to the straight segment of the plot (see Example 5.4). 
Sparre's modification of equation (5.12) resembles a catch curve (see below for definition) in that 
the ages (or relative ages) are used for the x-axis and that Z (or Z/K) is estimated from the slope of 
a descending series of points. The equation used has the form 

In C (Li, 00) = a + bt' . . .5.13) 

where In C (Li, m) is defined as above and t' is the (relative) age corresponding to Li, while b, with 
sign changed, provides an estimate of Z (the relative ages are estimated through conversion from 
length to age) based on the straight part of the plot. A routine has been incorporated in Program 
FB 11 which produces values of C (Li, W) and t' such that a scattergram can be drawn, from which 
the values usable in the estimation of Z can be selected (see Fig. 5.3 and Example 5.5). 

When K is not known, Sparre's method can still be used; in this case, a value of one (unity) has 
to be used instead of K, which results in the relative ages being defined as 

The slope (b in equation 5.13) will then be equal to Z/K. 
Both Jones' and Sparre's methods are extremely ingenious methods which lead to exact values 

of Z or Z/K, given suitable data and appropriate selection of data points to be included in the regres- 
sion. However, both methods give results which, because of the cumulation of the catches, are 
extremely sensitive to the values of the catches in the largest size groups, even when they are not 
included in the linear tegression. Thus, these methods should not be used when the catch composi- 
tion data used were obtained from gears that markedly select for or against very large fish. 



used 
0 not used 

0 I 2 3 4 

Relative oge(years) 

Fi. 5.3. Sparre's cumulative plot for the estimation of Z (or Z/K), 
as applied to the data of Table 5.4 (see Example 5.5). 

Catch curves and length-converted catch curves 

One of the methods most commonly applied in temperate waters to estimate the total mortal- 
ity of fish is the "catch curve" method, which has been reviewed in Beverton and Holt (1956), Chap- 
man and Robson (1960), Robson and Chapman (1961) and Ricker (1975, Chapter 2). 

Essentially, the method consists of a plot of the natural logarithm of the number of fish in 
various age groups (Nt) against their corresponding age (t), or 

Z being estimated from the slope b, with sign changed, or the descending, right arm of the plot 
(Fig. 5.4). 

The following assumptions are involved here: 
1) Z is the same in all age groups used in the plot, 
2) all age groups used in the plot were recruited with the same abundance (or the recruitment 

fluctuations have been small and of random character), 
3) all age groups used in the plot are equally vulnerable to the gear used for sampling, 
4) the sample used is large enough and covers enough age groups to effectively represent the 

average population structure over the period of time considered. 
The authors of this method should be consulted for more detailed treatment of the assumptions 

involved in catch curves. 
Often, in order to broaden the data base from which inferences are drawn (i.e., in order to meet 

assumption 4 above), the samplee used for catchcurve analysis are constructed in three steps, as 
follows: 

i) record the lengths of very large samples of fish, 
ii) age a subsample of fish, and construct an "age-length key", and 
iii) separate the large length-frequency sample into an age-frequency tiample by means of the 

age-length key obtained in (ii). 



used 
0 not used 

Age group (= relative age ,in years) 
Fig. 5.4. Catch curve for red porgy {Pagrus pagrus) caught off North and South 
Carolina, U.S.A. The curve is based on 13,120 measured specimens, of which 
222 were actually aged. Note slight non-linearity of curve which, on the average, 
suggests a value of Z = 0.65 (adapted, with modifications, from Manooch and 
Huntsman 1977, Fig. 3). 

This indirect procedure was introduced by Fridrikson (1934) and is discussed in detail in Gul- 
land (1966) and Allen (1966), and was applied by Manooch and Huntsman (1977) in their study 
of red porgy mortality (see Fig. 5.4). However, it has hardly ever been used in tropical waters, where 
the very few authors who have used catch curves have tended to construct them directly, based on 
relatively small samples of aged fish. As shown by Kimura (1977), there are several cases where 
this procedure is indeed more appropriate. 

A major disadvantage of the age-structured catch curves represented by equation (5.15) is that 
they cannot be used in conjunction with animals that presently cannot be aged individually, such 
as shrimps, lobsters and some molluscs. 

"Length-converted catch curves", as will be shown below, allow the use of catch curves with 
animals that cannot be aged; moreover, the method, being based soleJy on length-frequency samples, 
allows the use of large samples without construction of age-length keys. 

The estimation of Z from a length-converted catch curve involves the following steps: 
i) pooling of length-frequency samples to obtain a single, large length-frequency sample 

representative of the population for the period under consideration; 
ii) construction of the catch curve proper, using the large sample in (i) and a set of growth 

parameters (see below); 
iii) estimation of Z from the descending right arm of the catch curve. 
Pooling of length-frequency samples (e.g., of monthly samples) over a longer period of time (at 

least one year) is particularly needed in short-lived fish and shrimps, because their whole population 
structure is affected by seasonal "pulses" of recruitment, generally one or two per year (Pauly and 
Navaluna 1983). Also, to prevent a single, larger (monthly) sample from unduly affecting the total 
(annual) sample, the various samples may be given the same weight, by conversion to percentages 
prior to adding to obtain a single overall sample. 

There are many alternatives to a scheme where each sample is given the same weight. For 
example, it might be more appropriate to  weigh the samples by the square root of their size when 
the fishery catch is not known, or by the catch when it is known. However, empirical studies concern- 
ing appropriate sample sizes and weighing factors for lengthconverted catch curves are still lacking. 
Table 5.5 is given here to suggest sample sizes which at  present seem appropriate. 



Table 5.4. Data for the estimation of Z/K and Z for the banded grouper (Epinephelus sexfasciatus) 
of the Visayan Sea, Philippines (from Pauly and Ingles 1981).a 

Lower class 
limit (cm) 

Midpoint 
of class (cm) 

"To be used in conjunction with L, = 30.9, K = 0.51 and D = 1. 
b ~ s  obtained by pooling a number of samples representing a whole year. 

Table 5.5. Criteria for assessing the suitability of length-frequency samples for estimating Z (modi- 
fied from Munro and Thompson 1973). 

- - 

Total sample 
size (no. fish) Time (in months) over which data for total sample were accumulateda 

0 = not usable 2 = fair 4 = very good 
1 - poor 3 = good 5 = excellent 

"It is here assumed (1) that the samples cover a wide range of lengths, (2) that gear selection 
is accounted for and (3) that the sizes of the monthly samples are more or less equal if the total 
sample is accumulated over more than one month. 

There are also several methods by which a length-converted catch curve may be constructed. 
However, they all must account for the fact that fish growth in length is not linear, but slows down 
as length and age increase. This slowing down has the effect that older size groups contain more age 
groups than do younger size groups. In other words, it takes larger fishes longer to "leave" a certain 
size group, they "pile-up" (Baranov 1918), or "stack-up" (van Sickle 1977) in the size classes per- 
taining to old, large, slow-growing fish. Correcting fdr this effect is rather straightforward, and three 
methods by which this can be achieved here will be discussed here. 

The first approach, analogous to but improved upon those discussed in Ricker (1975, p. 33 and 
p. 60-64) and van Sickle (1977), consists of multiplying the number in each length class by the 
growth rate of the fish in that class. This results in a catch curve equation of the form 



where dli/dt is the growth rate and ti1 the relative age corresponding to length class (i), respectively. 
In practice (dli/dt) can be estimated from theVBGFas the growth rate pertaining to the median length, 
or "midlength" of length class (i), while t' can be estimated as the relative age corresponding to the 
median of class (i) as estimated, using the appropriate growth parameters, through conversion using 
the VBGF. "Relative" ages are used here because using to (which leads to absolute ages) is not neces- 
sary in conjunction with catch curves, where Z is estimated from a slope. 

Fig. 5.5 gives an example of such catch curve, constructed from the data in Table 5.4 and using 
Program FB 9 with which values of dli/dt and t' can be computed (see Example 5.6). 

Equation (5.16) allows ready estimation of the bias caused by not accounting for the "pile-up" 
effect mentioned above. This is done by first rewriting equation (5.16) as 

In N - In (dl/dt) = a + bt' . . . 5.17) 

In N = a + bt' - In (dlldt) . . . 5.18) 

Now, in terms of the generalized VBGF, the growth rate can be expressed as 

dlldt = In (K*D-LE ) + KD (t' - to) . . . 5.19) 

where K, D, L, and to are parameters of the generalized VBGF, and relative t' is the age correspond- 
ing to a given midlength. Inserting (5.19) in (5.13) gives 

In N = a + bt' - In (DL:) - KDt' + KDto . . . 5.21) 

used 
o not used 

Relative age (years) 
Fig. 5.5. A length-converted catch curve, based on the data of Table 
5.4. The first point to be included in the estimation of Z (PI) is clearly 
defined (see text). Note that each point is independent of all others 
and thus could be deleted singly from the computation of 2. 



Equation (5.21), it will be noted, has 3 constant terms with regard to the variable N and t', 
namely a, In (KDL~ ) and KDt,. Since Z in equation (5.16) is estimated as a slope, these 3 constant 
terms can be grouped into one single new term (a') which becomes the intercept of a new equation 
of the form 

In N = a' + bt' - JSDtl . . . 5.22) 

which gives, rearranged 

1nN =a1 + (b-KD) t1 

as a new equation for a length-converted catch curve. Therefore, 

It follows from this that the bias resulting from the non-consideration of the "pile-up" effect (i.e., 
resulting from using In N instead of In (N dl/dt) as ordinate of a length-converted catch curve) is 
equal to KD, or to K when the special VBGF is used (i.e., when D = 1). (See Example 5.7.) 

Two practical applications of this finding come to mind: 
(i) It becomes possible to correct biased values of Z obtained by various authors who didn't 

account for the "pile-up" effect (by simply adding K times D to their (biased) estimate of 
Z) (see e.g., Berry 1970; Nzioka 1983). 

(ii) The estimation of Z from a length-converted catch curve becomes simpler, since one can 
first ignore the "pile-up" effect then compensate for it by addking K D to the absolute 
value of the curve's slope (see Example 5.7). 

When K is not known, equations such as (5.16) and (5.24) can still be used; in such cases, a value of 
unity (one) should be used instead of K when computing the relative ages, which are then defined 
by equation (5.14). The slope of the catch curve, with sign changed, will then be equal to (Z/K)--1. 

Another type of length-converted catch curve is defined by the equation 

In Ni/Ati = a + btf . . . 5.25) 

where Ni and tti are defined as in equation (5.16), and where A t i  is the time needed, on the average 
by the fish to grow through length class i. This equation accounts for the "piling-up" effect through 
division of the Npalues by Ati, the inverse of the growth rates by which the Ni values are multiplied 
in equation (5.16). Hence, equation (5.25) is a slightly modified version of (5.16), and its properties, 
e.g., with regard to not accounting for the "piling-up" effect are the same. 

Since equations (5.16) and (5.25) are equivalent, only one Program (FB 12) is given here for 
the computation of lengthconverted catch curves. This program implements equation (5.25) 
rather than (5.16) because the former has already been presented and discussed elsewhere (Pauly 
1980a, 1982a, 1983; Pauly and Ingles 1981; Gulland 1983). 

Example 5.8 shows the application of equation (5.25) and Program FB 12 to the data of 
Table 5.4. It will be noted that as in the earlier models, the points of a length-converted catch curve 
must be drawn for selection of the values to include in the regression equation. This selection must 
account for two features of a length-converted catch curve: 

- as in age-structured catch curves, the points belonging to the ascending, left arm of the 
curve must not be included because they represent incompletely selected and/or incom- 
pletely recruited animals, and 

- the conversion of length to (relative) ages by means of the VBGF, when involving fish 
whose length is very close to L,, generates unrealistically high "ages" which cannot be 
included either. 



Suggested criteria for the selection of points to be included in the computation of Z are: 
1) the first point to be included (PI on Figs. 5.5, 5.6 and 5.7) should be the point immediately 

to the right of the highest point. The latter may still be affected by incomplete selection 
and/or recruitment and is considered to be part of the ascending, left part of the curve; 

2) points should be deleted that were obtained through conversion from lengths within 5% 
of L, (see Fig. 5.6 for an example of such points); 

3) the points selected should fit along, or close to, a straight line, and one single outlier may 
be excluded, particularly when it is based on few fish only. 

Concerning the first of these criteria, it might be added that point PI corresponds to the length 
class whose lower class limit represents an estimate of L' as required for equation (5.9). The third of 
these criteria must not be misunderstood to provide an excuse for the wholesale deletion of points 
until one's preconceived notion of linearity is achieved; rather it allows deletion of one point. When 

used 
o not used 

Relative age (years) 
Fig. 5.6. Lengthconverted catch curve for yellow striped goatfish 
(Upeneus vittatus) from Manila Bay, Philippines, showing a point 
pertaining t o  a length close t o  L, which should not be used in the 
computation of Z (from Pauly 1982a). 

Relative age (years) 

7 

6 

5 -  
A 

'Ta 4 
\ 
2 
Y = 2 -  

I 

Fig. 5.7. Lengthconverted catch curve, based on equation 
(5.25) and the data of Table 5.4. The broken line, which 
parallels the catch curve, was obtained using equation (5.28). 
As shown in Example 5.9, the two lines provide virtually 
identical estimates of Z. 
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the curve as a whole seems to deviate from linearity, the appropriate approach should be to test 
whether this deviation is significant or not, using any of the statistical tests available for this purpose 
(e.g., Guilford and Fruchter 1978, p. 277-280). 

Non-linearity of lengthconverted catch curves (see e.g., Fig. 5.4), that is their response to 
s~stematic changes in fishing effort or recruitment are akin to those of age-structured catch curves. 
The exhaustive discussions of the general properties of catch curves in Beverton and Holt (1956) and 
Ricker (1975) also apply to lengthconverted catch curves. 

When reviewing the draft of this book, P. Sparre (pers. comm.) derived a form of a length-con- 
verted catch curve which involves none of the approximations in (5.16) and (5.25), by defining 

- N (tl, t2)  = number of fish caught between ages tl and t2, with At = t2 - tl  
- tLt = the age corresponding to L' (see above for definition of L') 
- E = F/Z (see below for a more detailed definition) 

from which 

which leads, with some rearrangement, to a new equation for a lengthconverted catch curve of the 
form 

where Ni is the number of fish in a given length class i; Ati the time needed to growth through class i 
and tti the relative age corresponding to the lower limit of class i. 

Equation (5.28), although it can be solved only iteratively, has the definite advantage that no 
approximation is involved, as opposed to equation (5.25) where both the division of Ni by Ati and 
the use of relative ages corresponding to the midlengths of the length classes involve approximations. 

Thus, equation (5.28) can be used to test the accuracy of the results obtained through equa- 
tion (5.16) or (5.25). Example 5.8, which is typical of the many cases investigated so far, shows that 
equation (5.25) (and consequently 5.16 also) provide values of Z which differ only by a small 
fraction (less than 1%) from those obtained iteratively from equation (5.28). Therefore, the simpler 
mode1 (5.25) generates results which are estimates of Z, and not only "proportional to Z", as sug- 
gested in Gulland (1983). 

Further inferences from length-converted catch curves 

Lengthconverted catch curves, in addition to allowing for the direct estimation of Z from 
length-frequency data, have the added advantage over "age-structured" catch curves of allowing a 
number of inferences to be drawn through detailed examination of the left, ascending arm of the 
curve, which is generally ignored in catchcurve analysis. 

When the selection curve of the gear used to sample the data at hand is known, M can be 
estimated from the left side of a catch curve (Munro 1984). Conversely, when natural mortality 
is known, the selection curve of the gear can be inferred from the shape of the ascending arm of a 
lengthconverted catch curve. Only the latter of these two methods will be discussed here, as Munro's 
method, although quite elegant, has data requirements which limit its applicability. 



Table 5.6 illustrates the derivation of selection data (probabilities of capture, by length) based 
on the left side of a selection curve and an estimate of M. The computational steps involved here 
are as follows: 

(i) Set up a table which draws together all information needed for further analysis (these 
values are in square brackets in Table 5.6). 

(ii) Compute times to grow from one class midpoint to the next and write A t  values as in 
Table 5.6. 

(iii) Interpolate mortalities (Mortality I in Table 5.6) between Z and M (whose values should 
pertain to the highest length class with zero catch; see Table 5.6). The step size for the 
interpolations is estimated from (Z - M)/(n + 1) where n is the number of classes for which 
mortality must be interpolated (here, n = 4). 

(iv) The mortalities estimated in (iii) are estimates of the mortality within a given length class. 
The mortality between adjacent length classes (Mortality 11) are estimated by taking means 
between adjacent length classes (see Table 5.6). 

(v) Compute numbers available from equation given in Table 5.6, starting with number of fish 
in the first class where the probability of capture is equal to unity (i.e., corresponding to 
point PI). 

(vi) Obtain probabilities of capture by dividing, for each length class, the number caught (Ci) 
by the number available (Ni). 

The method as outlined here is extremely useful in that it derives quantities which are normally 
obtained from costly selection experiments from readily obtained length-frequency samples and 
a reasonable estimate of M, which is easy to obtain when growth parameters are available (see below). 

In stocks that are unexploited, the estimate of Z obtained from the catch curve can serve as 
the estimate of M; otherwise, the computations remain the same except, obviously that the inter- 
polations between Z and M are superfluous because the same value of Z = M is used throughout. 
The special case, Z = M, formed the basis of the approach of Pauly et al. (in press) to estimate 
approximate selection curves from the backward projection of the straight segment of a lengthcon- 

Table 5.6. Derivation of a selection curve from the left side of a length-converted catch curve (all 
values in square brackets must be available before attempting to complete table). 

Numbers At (class Mortality Mortality Numbers 
Class limitsa caught midpoint to I I1 available 

Lower Upper Midpoint (C,) midpointlb (M +Z)' (means) ( N ~ ) ~  P = C,/Ni 

- 

'Actual upper class limits are 3.999, 5.999, etc., but are rounded for convenience. 

D L," - Lz 
b~omputed from & 1n { )where L1, L2 are the lower and upper class limits, 

respectively. L," - .I D 

'Values between Z and M inte olated linearly. 
d~omputed from N, = N, + ,?A', where N, + is the number available in a given length class 

and Ni the number available in the next lower length class. 
elhis number may be taken as the actual number caught in the first length class that is fully 

selected (i.e., corresponding to PI). However, a better approach is to compute this number &om 
the equation of the catch curve, for the midpdnt in question. In this example, the two values 
of N are similar. 



verted catch curve. This approach is now superseded by the more versatile and accurate method 
illustrated by Table 5.6. 

The accuracy of the method outlined here depends critically on the following assumption 
being met: - 

(i) The gear in question is a trawl or has a selection curve similar to that of a trawl (where 
it is only the smaller fish that are selected against). 

(ii) The smallest fish caught (Lmin) are fully recruited. 
(iii) The value of M used for the fish just below Lmh and the mortalities generated by inter- 

polation between M and the Z value for the fully selected animals are accurate. 
The first of these assumptions can be easily verified. The second, which will often be violated, 

implies that the resulting probabilities will not strictly refer to a selection curve, but to a resultant 
curve, i.e., to the product of a selection with a recruitment curve (Gulland 1969). Whether this 
assumption is met or not will thus affect the interpretation of the results, but not their computation. 

The third of these assumptions can be assessed quite straightforwardly. The effects of changes 
in the value of M used on the probabilities of capture are easy to compute (see Appendix I for a 
brief introduction to sensitivity analysis). Anon. (1982) compared estimates of length at first 
capture obtained from selection experiment. with length at first capture estimated through the 
approach proposed here (but using the special case where M is set equal to Z, see above) and obtained 
a good match for the cases investigated, Mediterranean sardines and hakes. 

Chapter 2 should be consulted for the interpretation and use of selection curves, notably for 
the computation of mean lengths at first capture. 

Estimating Z from a pseudo-catch curve 

When the average size of the animals of a population under investigation displays a significant 
relationship to the water depth, or distance from the coast (or any other environmental gradient), it 
will generally be difficult to obtain size-frequency samples representative of the population as a 
whole. Various schemes of stratified sampling may be applied to deal with such a situation. However, 
as far as the estimation of Z is concerned, the best approach may be to actually use, in conjunction 
with a "pseudocatch curve" as defined in Pauly (1980c), the gradient along which the population 
is distributed. 

Here the method is applied to the case where the mean size of fish increases and their numbers 
decrease with water depth--the environmental gradient one is most likely to encounter. 

To apply the pseudocatch curve method, the following items are required: 
1) data allowing quantification of the size-depth relationship (this might be a relationship in- 

volving mean length and depth, or mean weight and depth; in the case of the former a 
length-weight relationship is also needed). An example of such relationship is given as 
Fig. 5.8; 

Depth (m) 
Fig.  5.8. Relationship between mean length and water depth in slip 
mouths (Leiognathus splendens) caught off Southeast Kaliiantan, 
Indonesia (from Pauly 1980~). 



2) catch-per-effort data stratified by depth and representative of the whole depth range in- 
habited by the investigated population. An example of such data is given as Fig. 5.9; 

3) the growth parameters L,, K (or W,, K) and D of the VBGF. 
The method consists of (1) using the size-depth relationship and the growth parameters to com- 

pute the mean (relative) age corresponding to the size at each depth for which a catch-per-effort 
value is available; (2) dividing the mean weight at depth into the corresponding c/f value to obtain 
the average "number at depth"; (3) plotting the natural logarithm of the numbers at depth against 
the corresponding relative age (see Fig. 5.10 for an example), and estimating (-)Z from the slope. 

The computations involved are outlined in Example 5.9. 
This method, as emphasized in Pauly (1980c), was developed mainly to estimate Z from data 

which have been gathered and/or published for miscellaneous purposes and which could not be 
used directly for the construction of a real length-converted catch curve. 

Catch rate ( kg / hr) 
0 10 20 30 

Relative age(years) 
Fig. 5.10. Pseudocatch curve for Leiognathus splendens in west- 
ern Indonesian waters (see Example 5.9 for derivation and inter 
pretation). 

Fig. 5.9. Relationship between average catch 
per effort of Leiognathus splendens and water 
depth in western Indonesian waters (from Pauly 
1977). 
SIMULTANEOUS ESTIMATION OF Z AND K 

Saila and Lough (1981), based on a model developed by Ebert (1973), presented a method for 
the estimation of total mortality which has the advantage of also estimating the value of K of the 
VBGF given a set value for the asymptotic le an assumed value for the length at recruit- 
ment (L,) and two successive mean lengths (r : obtained twice within a year (tl, t2)  at times 
that are as far apart as possible. 

Given these inputs (and a value of D when the generalized VBGF is used), K can be estimated 
from 



while Z is estimated iteratively as the value which fulfills 

and 

where 

and 

- .  - .  

z e - Z ~  +, . z - (KD ( t 2  + x)  + Zx) 

x =  0 x =  0 - - =- 

N = integer part of { [-(ln 0.0001)/2] + 1 ) . . . 5.32) 

A table (5.7) is provided here from which tl, t2 values can be read off, given the months of sampling 
and ofrecruitment (i.e., the months during which the length-frequency data were sampled from 
which El, L2 and Lr were estimated). Assumptions of this method are that (a) the VBGF and equa- 
tion (5.1) describe the growth and mortality, respectively, of the investigated stock; (b) recruitment 
occurs during a brief period of time, and only once a year; (c) interannual variations of recruitm-ent 
are negligible, i.e., the stock has a stable population with a stationary age distribution; and (d) El, - 
L2, Lr and L(-) are good estimates of the actual values. 

Of these assumptions, (c) may be the most crucial one, and the one whose validity may be the 
most difficult to assess. It must be understood, however, that this assumption is made not only here, 

Table 5.7. Values of t i  and t2 for use with L1 and L2 values. given the month of recruitment? 

Sampling 
months 
(for L1 Month of recruitment 
andL2) J F M A M J J A S 0 N D 

J 0 1 0.909 0.818 0.727 0.636 0.646 0.456 0.364 0.273 0.182 0.091 
F 0.091 0 1 0.909 0.818 0.727 0.636 0.646 0.466 0.364 0.273 0.182 
M 0.182 0.091 0 1 0.909 0.818 0.727 0.636 0.546 0.466 0.364 0.273 
A 0.273 0.182 0.091 0 1 0.909 0.818 0.727 0.636 0.646 0.466 0.364 
M 0.364 0.273 0.182 0.091 0 1 0.909 0.818 0.727 0.636 0.646 0.466 
J 0.466 0.364 0.273 0.182 0.091 0 1 0.909 0.818 0.727 0.636 0.646 
J 0.646 0.456 0.364 0.273 0.182 0.091 0 1 0.909 0.818 0.727 0.636 
A 0.636 0.546 0.465 0.364 0.273 0.182 0.091 0 1 0.909 0.818 0.727 
S 0.727 0.636 0.546 0.466 0.364 0.273 0.182 0.091 0 1 0.909 0.818 
0 0.818 0.727 0.636 0.546 0.456 0.364 0.273 0.182 0.091 0 1 0.909 
N 0.909 0.818 0.727 0.636 0.546 0.456 0.364 0.273 0.182 0.091 0 1 
D 1 0.909 0.818 0.727 0.636 0.646 0.466 0.364 0.273 0.182 0.091 0 

'TO use this table, select appropriate column (= month of recruitment. and read from that column values of 
t l  and t2, given the month at which sampling for L1 and L2 took place (ti can be, but is not necessarily. the 
month of recruitment). Values may be interpolated linearly for dates of the month; in this case, recruitment 
and table values should be viewed as pertaining to the 15th of the corresponding month. Interpolation must not 
be done between 1 and 0. 



but also in the various equations used to estimate Z from mean size data, as well as in all "catch 
curve" related methods (see above). The validity of assumption (b), on the other hand, can be assessed 
quite straightforwardly, e.g., by plotting the available length-frequency data and inspecting them 
visually for the pattern of recruitment (see Fig. 5.11). Assumption (a) is made throughout this 
manual and requires no further comment. 

The method presented here for estimating Z and K simultaneously, as incorporated in Program 
FB 13, generates results that are v g  sensitive to small errors affecting the input parameters, particu- 
larly the values off;? - L: and f;? - L:. On the other hand, the values of tl and t2 have a com- 
paratively smaller effect on the results. Still, they will be improved by using exact values of tl, t2 
for which reason a table (5.7) was included here which can be used to obtain directly the appropriate 
values of tl, t2,  given the months of recruitment and sampling. The table also allows for interpola- 
tions when the exact dates in the months are known. 

As this methodand a number of other methods discussed in this manualinvolve the use of 
mean lengths, a routine has been included in Program FB 1 3  which can be used to compute rapidly 
the weighted mean lengths (or mean weights, or any weighted mean for that matter) from size- 
frequency data. The routine also computes the standard deviation of the variates and the standard 
error of the mean. This use of the routine is illustrated in Example 5.3 (see also Table 5.8). 

Table 5.8. Length-frequency data for the goby (Glossogobius giurus) from Cardona. Laguna de Bay. ~hilippines.~ 

Lower class 1958 1959 
h i t  (cm) A S 0 N D J F M A M J J 

Meanlength 8.58 8.93 11.07 10.15 10.83 12.52 12.80 10.99 14.69 16.89 17.50 15.99 
- - - - v 

Inputs L1 = 9.5 (Sept) L2 = 16.8 (June) 

'~dapted from data in Marquez (1960). 

Month (1958-59) 

Fig. 5.11. Growth curve of the white goby (Glossogobius giurus) in Laguna de Bay, Philippines as estimated using 
Ebert's method (baaed on data in Table 5.8 and Example 5.10). 



ESTIMATION OF Z/K 

While the estimation of Z requires either a knowledge of the growth parameters of a stock, or 
that the age of at least a few fish is known, a number of methods exist which allow for the estimation 
of a parameter-Z/K-which is closely related to Z, yet require no information on age or growth for 
its estimation. 

A few of these methods have been presented above (cumulative plots, length-converted catch 
curves); in these, use of 1 (one) instead of the value of K leads to the estimation of Z/K instead of Z. 

Powell (1979) derived a general model for the estimation of Z/K from which he derived four 
special cases, as follows: 

1st case: the Beverton and Holt formula of 1956 

Probably the simplest method for estimating Z/K is to rewrite equation (5.9) such that 

where all parameters are defined as in (5.9). This model is illustrated in Example 5.11. However, the 
reservations mentioned earlier with regards to (5.9) apply to this model also. 

2nd case: using the variance of the mean length 

Powell (1979) derived for the estimation of Z/K the equation 

where in terms of the special VBGF 

where L and L' are defined as previously, and where ~ . d . ( ~ )  is the standard deviation of the L values 
used in computing c. 

Several applications of equation (5.36) suggest that this model produces values of Z/K which 
are generally biased downward (see Example 5.11). On the other hand, the model does not require 
any estimate of asymptotic size, which might be viewed as an advantage over equation (5.34). 

3rd case: using a nomogram and the mean weight of fish in the catch 

Fig. 5.12 reproduces a nomogram presented by Powell (1979) to roughly estimate Z/K from 
the mean weight of fish in the catch and a few ancillary values. 

4th case: estimating Z/K from the shape of the length-frequency distribution 

Fig. 5.13 gives a redrawn version of Fig. 110 in Powell (1979), which may be used to obtain 
a crude, preliminary estimate of Z/K given a set of length-frequency data representative of a given 
population in which individual growth is described by the special VBGF. 

The main reasons why Powell's graphs (Figs. 5.12 and 5.13) are given here is not their feature 
of allowing crude estimates of Z/K. Rather these graphs, particularly Fig. 5.13, have been included 
because they show how Z/K is related to major properties of fish stocks. 
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Fig. 5.13. Overall shapes of length-frequency plots, given different values 
of Z/K (special VBGF). Adapted from Powell (1979, Fig. 110) and John- 
son (1981, Figs. 1 and 2). See text for definitions of r- and K-configura- 
tions. 

Fig. 5.12. Powell's nomogram for the 
estimation of ZIK (special VBGF) from 
the releionship between the mean 
weight (W) in the catch, the asymptotic 
length and the lowest size at full reten- 
tion (L' and w'). 

For example, Fig. 5.13 shows that fish with very low mortalities and even slower growth, e.g., 
the whitefish of unexploited northern Canadian lakes (Johnson 1981), display such a considerable 
"pile-up effect" (see above for definition) that large fish are more numerous than fish of inter- 
mediate size, a phenomenon which Johnson calls "K-configuration", as opposed to the "r-configura- 
tion" occurring when fish numbers decrease exponentially with size (see Figs. 5.13 and 5.14). 

Whether fishes with a clear "K-configuration" occur in the tropics is unclear; this would be 
surprising, however, given that the ratio M/K (and hence Z/K also) is generally higher in tropical 
fishes than in temperate fishes (see below). The ecology texts listed in Chapter 11 may be consulted, 
incidentally, for definitions of "r- and K-strategies", from which Johnson (1981) derived the concept 
of r- and K-configurations. 

curve decreasing 
exponentially: Z/K >2 

"r-conf iguration' -- -- 
-99- 

METHODS FOR SPLITTING Z INTO M AND F 

f 
smallest length Length 

? 
asymptotic 

at full retention(ll) length(L, ) 

Two methods will be presented here which allow division of estimates of Z into their consti- 
tuent parts, M and F, while a third (the method of Csirke and Caddy) is discussed in Chapter 10. 

These methods are (1) plotting different values of Z on their corresponding effort and (2) analy- 
sis of tag return data. 



Total length (cm) 

Fig. 5.14. Length-frequency data from Table 5.4, fitted with an exponential curve 
to demonstrate that Z/K for Epinephelus sex fasciatus is 2 or greater (see text, Fig. 5.1 3 
and Example 5.1 1 ). 

Plot of Z on effort 

When two or more values of Z are available which pertain to different periods (years or groups 
of years) with different levels of fishing effort (f) (as for example in Table 5.9), a linear plot of Z 
on f will provide an estimate of M through the relationship 

Table 5.9. Data for estimating M and q for Selaroides leptolepis from the Gulf of Thailand.a 

- 
Year ~ f f o r t ~  L zC 

'Based on data in Boonyubol and Hongskul(1978). 
b ~ n  millions of trawling hours. 
'As estimated from Z - K (L, - E)/(E - L'), with L, = 20 cm, K - 1.16 and L' - 10 cm. 



where q is the "catchability coefficient", which relates effort to fishing mortality such that 

Equation (5.38), it must be realized, applies only when f measures effective effort (as opposed to 
nominal effort, as expressed, e.g., by simple "number of boats") and provides a measure of effort 
which is indeed proportional to F (see Rothschild 1977, and contributions in Gulland 1964). 

A program for estimating the values of M and q is superfluous here as equation (5.38) provides 
yet another linear regression with intercept equal to M and slope equal to q (see Example 5.13 and 
Fig. 5.15). 

When only one value of Z is available, or when the available values of Z and f cover too small 
a range for reasonable values of M and q to be obtained, the catchability coefficient (4) may be 
estimated through 

where z is the mean of the available values of Z (or a single value of Z) and i is the mean of the 
values of f (or a single value of f), M being an independent estimate of natural mortality. (See 
Ricker 1975, p. 172-174, and Example 5.15.) 

Effort (millions of trawling hours ) 

Fig. 5.15. Plot of totalmortality (Z)  on effort for the yellow striped trevally (Seloroides leptolepir) 
in the Gulf of Thailand trawl fishery, to obtain values of M and q (based on data in Table 5.9 and 
Example 5.13). 

Analysis of tagging data 

There is a very voluminous literature on methods to estimate mortalities by means of tagging 
studies. Reviews may be found in Jones (1977), Ricker (1975) and White et al. (1982). Only one 



case will be discussed here, namely that of tagging experiments in which all tagging is performed at 
one time (say over a period of a few days) and in which both fishing and natural mortality can be 
assumed constant during the period of the experiment. 

In such cases, the analysis consists of simply plotting the natural logarithm of the number of 
recoveries, grouped by time intervals, on the number of the time intervals, or 

l n ~ , = a +  br' . . . 5.40) 

where In N, is the natural logarithm of the number of recoveries (N,) per time interval and where r' 
is the time interval number (starting with 0, see Table 5.10). The slope of such a plot provides, with 
sign changed, an estimate of Z, while the intercept a can be used to estimate F through the relation- 
ship 

where No is the total number of fish tagged and released (and provided there is no significant tag 
shedding, tag-induced mortality or non-recovery of tagged fish). 

Table 5.10. Number of tagged and recovered chub mackerels (Rastrelliger neglectus), grouped 
according to time spent at large after r e l e ~ i n g . ~  

No. of month (dlb No. of recoveries 

aArea 11, Gulf of Thailand, 1961 experiment. Total number released was No = 5,230. From 
Table XXI in Hongskul(1974). 

b ~ h e  first time period at large is coded 0, the following periods 1, 2, 3, etc. 

Natural mortality is obtained by subtracting F from Z; then Z, F and M are converted to annual 
rates by multiplication by the number of times one of the time intervals is contained in a year (see 
Example 5 .El). 

Equations (5.40) and (5.41) are adapted from Gulland (1969, p. 76) whose chapter on tagging 
should be consulted for details on the method, particularly with regard to potential sources of errors. 

It should be mentioned moreover, that tagging studies in other than well-monitored, single- 
species pelagic stocks (e.g., tuna and mackerels) are, in the tropics at least, generally very difficult 
to conduct successfully, particularly with regard to sufficient numbers of returns. Also, such studies 
are often too expensive to be cost-effective (Stephenson 1981; Pauly 1982a). 

METHOD FOR OBTAINING INDEPENDENT ESTIMATES OF M 

It has been demonstrated by various authors that the values of the parameter K of the VBGF 
are closely linked with longevity in fish (see e.g., Beverton and Holt 1959). This can be demonstrated 
on the basis of the observation that in nature the oldest fish of a stock generally grow to about 95% 
of their asymptotic length (Taylor 1958; Beverton 1963). This rule, which was derived from growth 
data used in conjunction with the special VBGF, does not strictly apply to large fish, such as tuna 
(see Pauly 1981). Still, in small fish at least, when 



Coded time at large (months) 

Fig. 5.16. Analysis of tag return data for chub mackerel (Rastrelliger neglectus) from the Gulf of Thai- 
land (based on data in Table 5.10 and Example 5.13). 

then 

or, inserting 95% of L, for L,, 

or, ignoring to 

where t,, is the longevity of the fish in question. 
That natural mortality should, in fishes, be inversely correlated with longevity and hence be 

correlated with K, seems obvious (see also equation 5.5). Natural mortality should also inversely 
correlate with size, since large fish should have, as a rule, fewer predators than small fish. 

Natural mortality can also be demonstrated to be correlated to mean environmental temper- 
ature in fishes, although the interpretation of this phenomenon is still open (Pauly 1980b). 

These various interrelationships can be expressed for length growth data by the multiple reg- 
ression 

log M = -0.0066 - 0.279 log L, + 0.6543 log K + 0.463 log . . . 5.46) 



and for weight growth data by 

log M = -0.2107 - 0.0824 log W, + 0.6757 log K + 0.4687 logT . . .5.47) 

where M is the natural mortality in a given stock, L, (total length, in cm) and W, (live weight, in g) 
being the asymptotic size of that stock; K (as well as L, and W,) refers to the special VBGF and is 
expressed on an annual basis; the value of T is the annual mean temperature ("C) of the water in 
which the stock in question lives. These equations are incorporated in Program FB 15. [Negative 
temperature values for polar fishes, down to -2°C may be used for input in Program FB 15, because 
an "effective physiological temperature" (Pauly 1980b), which happens to be always positive, is 
computed internally for all values of T < 3.5" and T > -2.0°C.] 

In general, the estimates of M provided by equations (5.46) and (5.47) are quite reasonable, 
especially because a very large number (175) of independent estimates of M have been used for 
their derivation. Also the fish considered covered an extremely wide range of sizes, taxa and habitats. 

However, estimates of M obtained from these expressions may be biased upward in the case 
of strongly schooling fishes, such as the sardine-like fishes and downward in the case of polar fishes. 
Correction factors and a further discussion of equations (5.46) and (5.47) are given in Pauly (1980b), 
along with all data used in the derivation. 

Equations (5.46) and (5.47) are incorporated into Program FB 15, which estimates M given 
the appropriate growth parameters of the special VBGF and an estimate of T, such as may be 
obtained from an oceanographic atlas (see Example 5.14). 

EXPLOITATION RATES AND 
POTENTIAL YIELDS 

Certain stock assessment methods, such as Beverton and Holt's relative yield-per-recruit assess- 
ment (Beverton and Holt 1966) and Jones' (1974) length cohort analysis (see following chapters) 
make exhaustive use of exploitation rates, which define the fraction (in numbers) of an age class 
which will be caught during the fished life span (or: E = number caughtlnumber dying of all causes). 

In terms of mortality rates, the exploitation rate is defined by 

Another definition of E is given by 

which implies that the exploitation rate of a stock can be assessed without their age or growth para- 
meters being known (see Example 5.15). 

When, on the other hand, only M and E are known, F can be estimated from 

Gulland (1971) suggested that in a stock that is optimally exploited, fishing mortality should 
be about equal to natural mortality, or 

F q t  = n4 . . . 5.51) 

whkh corresponds to 

Eopt = 0.5 . . . 5.52) 



and which also leads to the well-known equation 

which states that the potential yield of a stock is about equal to half the virgin biomass (B,) times 
the natural mortality prevailing in that stock (see Gulland 1971 p. x, xi for the two approaches that 
lead to this model). 

Although widely used, equation (5.53) has been criticized by a number of authors, notably 
Francis (1974) and Caddy and Csirke (1983) who showed that the assumption M = I?, does not 
apply in a large number of stocks, notably in stocks of fish and shrimps low in the foo l  chain. 

Beddington and Cooke (1983) investigated equation (5.53) in great detail and concluded, on 
the basis of numerous simulations, that equation (5.53) generally overestimates potential yields by 
a factor which is itself a function of M. Thus, they showed that, for values of M ranging between 
0.2 and 1, equation (5.53) overestimates potential yields by a factor of 2-3. For higher values of 
M-as often occurs in small tropical fish-equation (5.53) possibly overestimates potential yields 
by a factor of 3-4. 

Thus, rather than EODt = 0.5, it could well be that the optimum exploitation rate is-particu- 
lady in small fish with high recruitment variability--as low as 0.2 or, tentatively 

Clearly, these results are very important and warrant further research on this topic. Also, they make 
it imperative to use approximations such as discussed here only in the last resort, and then very con- 
servatively, e.g., by relying on (5.54) rather than (5.53). 

Recommended reading: Although less abundant than the literature on growth, the literature 
on mortality is quite large. Some useful reviews are: Beverton and Holt (1956,1959), Robson and 
Chapman (1961), Gulland (1969,1971) and Ricker (1975). 

Suggested research topics: Compare estimates of Z obtained from catch curves of commercially 
important fish with estimates obtained from mean sizes in the catch (using different equations to 
compute the latter). Attempt to estimate M from Z and effort data, and compare the estimate(s) 
of M with independent estimates obtained from expressions (5.46 and 5.47). Attempt to partition 
F into different fishing gears, and M into different predators. Investigate changes in F and in M. 















Data from Table 5.8 

1 )  By inspection of the data in Table 5.8, the month of recruitment is set as August (1958); 
and the length at  recruitment set at  8 cm (as the mean length in the two most abundant 
length classes in August). 

2) Two sampling months, September (1958) and June (1959) are selected which, together 
with August as month of recruitment, provide, using Table 5.7, values of tl and t, 
equal to  0.091 and 0.909, respectively. 

on the estimates of L, and Lz). 

4) L(,) is estimated from the largest fish in Table 5.8 as 26.5 cm. 

5) Read sides 1 and 2 of Program FB 1 3  and enter parameters estimated above. 

Keystrokes: 8 ? 9.5 ? 16.8 ? 1 f a  .091 f .909 ? 26.5 R/S 

6) Enter initial guess of Z and iterate 

Keystroke Results 

value reached after 8 iterations 3.143 (Z final) 

*When the second value of Z has a negative sign, this means that the initial guess of Z 
was much too high. In this case, press R/S, set ST0  0 to 8 to  zero, and start again with 



Keystrokes Results 

Let's assume the mean length of Epinephelus striatus in a certain exploited area is 65  cm, 
with L(,) = 90 cm and L' = 60. What is the value of Z/K? 

Keystrokes Results 

Program FB 1 3  (see Example 5.3 for computation of mean length (16.054) and s.d.(,) 
(3.186) and equation (5.35): 

Keystrokes Results 

Then use value of c2 to compute Z/K, using equation (5.31) 

Keystrokes Results 

.618 - t 3.236 (Z/K) 

5.3 to  5.9)(see text). 



Table 6.1. Variants of equations (6.1) and (6.2) suggested by various authors. See also Program 
FB 16 and Example 6.1. Adapted from Jones (1977). 

W P ~  
of Estimates of 

Reference sampliie population size (N) standard error of N 

T e n  
(A) Bailey Direct N - - 

(1951) m 

T(n + 1) 
(B) Bailey Direct N - 

(1952) m + l  

'12 
(T + l)(n + 1) 

(C) Chapman Direct N = m + l  - (N2[%+2($+6(-]3) (1951) 
Schaefer 
(1951) 

n(T + 1) (T-m + 1)(N + 
(D) Bailey Inverse N = m - 1 s.e.(.) =( (1951) m(T + 2) 
- -  - 

a"~irect" sampling means that sampling is continued untii a predetermined sample size (n) is 
obtained; "inverse" sampling means that sampling is carried out untii a predetermined number of 
tagged animals (m) is obtained. 

STANDING STOCK ESTIMATION WITH 
THE SWEPT-AREA METHOD 

In areas where the bottom is smooth enough for trawling, the standing stock sizes of demersal 
fishes (B) can be obtained from the relationship 

whereF/f is the mean catch/effort obtained during a survey (or in a given stratum), A the total 
survey (or stratum) area and a the area swept by the trawl in one unit of effort (e.g., one hour), 
X1 being the proportion of the fish in the path of the net which are actually retained by it (l/X1 
may be termed "escapement factor"). 

For trawlers such as those used in Southeast Asia, a value of X1 = 0.5 is commonly used in 
survey work (Isarankura 1971; Saeger et al. 1976; SCSP 1978), and for the Gulf of Thailand at 
least, there is some evidence that this value is appropriate (Pauly 1980d). 

For the western Indian Ocean south of the equator, it has been suggested, on the other hand, 
that all fish in the path of the trawl might be caught, which corresponds to X1 = 1 (Gulland 1979, 
p. 3), a figure also suggested by Dickson (1974). The difference between these two values of X1 
(0.5 & 1) is difficult to resolve and attempts should be made, wherever possible, to substantiate the 
values of X1 used in an assessment by as much corroborative evidence as possible, because the value 
of XI used in equation (6.3) has avery strong effect on standing stock estimates. Using X1 = 0.5, for 
example instead of X1 = 1 doubles the estimated value of B. 



The surface swept by the gear in one unit of effort is computed from the expression 

where V is the speed of the trawler, over ground, when trawling, h is the length of the trawl's head 
rope (see Fig. 6.1), t is the time spent trawling and X2 is a fraction equal to the effective width of 
the net divided by the length of the head rope. 

In the Caribbean, a value of X2 = 0.6 was used by Klima (1976), while in Southeast Asian 
waters values of X2 ranging from 0.66 (Shindo 1973) to 0.4 (SCSP 1978) have been proposed, with 
0.5 possibly being (for Southeast Asian waters at least) the best compromise (Pauly 1980d). 

Gulland (1969) showed that 

i.e., that the fishing mortality exerted on a given stock is equal to the product of the area swept in a 
year by the combined activity of a fleet of trawlers (a f )  times XI, divided by the total area inhab- 
ited by the stock in question. The swept area method, thus, can be used both to estimate standing 
stocks and fishing mortality (Example 6.2). The method has been adapted, under certain assump- 
tionspertaining to the behavior of fish, to line fishing over coral reefs (Wheeler and Ommaney 1953; 
Gulland 1979). 

POPULATION SIZE FROM CATCH 
AND FISHING MORTALITY 

Sekharan (1974), based on Beverton and Holt (1957) showed that: 

from which one obtains 

where - Y is the annual catch, in weight. F the instantaneous fishing mortality rate (on an annual basis), 
N the mean number of fish in the stock, their mean weight, and B the mean biomass in the course 
of a year. 

This relationship, simple as it is, can also be used with great advantage, e.g., to estimate the 
standing stock of exploited coral reef fish, as suggested by Marshall (1980) on the basis of diffi- 
culties with the standard methods for estimating the biomass of coral reef fish (reviewed in Russel 
et al. 1978). 

Equation (6.7) obviously can be rewritten 

which can be used to estimate fishing mortality from the catch and an independent estimate of g, 
as obtained from the swept area method (see above) or by an acoustic survey. (See Example 6.3). 



POPULATION SIZE AS ESTIMATED 
BY LESLIE'S METHOD 

When the fish population of a body of water is fished down so rapidly that the effects of 
recruitment, immigration and natural mortality can be neglected, we have 

which expresses that catch per effort (c/f) in a given time period (t) plotted against the cumulative 
catch up that period (Z t) gives a straight line, the slope of which is an estimate of the catch- 
ability coefficient (q) and whose intercept qN,, divided by q provides an estimate of No, the popula- 
tion size prior to its reduction by fishing (Example 6.1, Case I, Table 6.2). When the special case 
applies that effort is constant for the period under consideration, the c/f values can be replaced by 
catch values, in which case F is estimated instead of qa (Example 6.4, Case 11, Table 6.3). 

Table 6.2. Successive sample sizes of reef eels (Kaupichthys hyoproroides) from an isolated Baha- 
mian patch reef.a 

Samples No. of fish collected Effortb 

'~ased on data in Smith (1973, Table 5, Station I). 
%he unit of effort is "22 fluid ounces of emulsified rotenone applied from a plastic squeeze 

bottle". 

Table 6.3. Successive sample sizes of bluehead wrasses (Thalassoma bifasciatum) from an isolated 
Bahamian patch reef.a 

Samples No. of fish collected Effortb 

A 8 1 
B 5 1 
C 4 1 

'~ased on data in Smith (1973, Table 6, Station X). 
%he unit of effort is "22 fluid ounces of emulsified rotenone applied from a plastic squeeze 

bottle". 

-his feature of the model was pointed out by E. Ursin (pers. cornm.). 



bluehead wrasses 

reef eels 

Cumulative catch 

Fig. 6.1. Leslie plots for reef eels (Kaupich th ys h yoproro ides) and bluehead wrasses (Thalassoma bifasciatum) from an 
isolated Bahamian reef patch, with estimates of virgin population sizes (based on data in Tables 6.2,6.3 and Example 
6.4). 

Recommended reading: For reviews of some of the voluminous literature on tagging see Ricker 
(1975) and Jones (1977). Kato and Yamada (1975) give application of a rather sophisticated method 
(JollySeber) to a stock of seabreams in southern Japan, while Yap and Furtado (1980) give an 
application of various methods to a stock from a Malaysian river. The swept-area method is discussed 
in more detail in Gulland (1969). Ricker (1975) gives a discussion of Leslie's and related methods 
with several examples. 

Suggested research topics: Use several methods to estimate population sizes on reefs, in enclosed 
or semi-enclosed water bodies, determine which methods give comparable results and why. Compare 
the population size of adjacent area  in relation to different fishing intensities. 





Use of the swept-area method to estimate demersal standing stock size and fish- 
ing mortality in San Miguel Bay, Philippines. 

A) Standing Stock 

Vakily (1982) gives the following data for typical trawlers operating in San Miguel Bay, 
Philippines: 

Trawling speed 2 knots (conversion knots to kmlh : kn 1.83 - kmlh) 
Length of headrope 17 m (headrope length/actual spread of net = 0.5 = X2) 
Fraction of fish in the part of the net that are retained by the gear (XI) = 0.50 (assumed) 
Mean catch per hour (in 1979-80): 33.5 kg 
Total area of San Miguel Bay = 840 km2 

The estimation of the surface swept during one hour (a) is thus (according to equation 6.4): 

Keystrokes Results 

2 ? (knots) 
1.83 X (convers. to kmlh) 
0.017 X (headrope, in km) 

-5 x (x,) 0.031 (a, in krn2) 

The standing stock (B) is then obtained via equation (6.3) and 

0.0335 ? F/f,  in tonnes) 
840 X (area of SM Bay) 
X * Y (put a in display) 
.5 X t (use % and finish) 1,809.065 (B, in tonnes) 

B) Fishing mortality 

Vakily (1982) gives 5,966 km2 for the surface area swept annually by all trawlers in San 
Miguel Bay. The fishing mortality induced by trawlers according to equation (6.5) is thus 

Keystrokes Results 

5,966 ? (area swept annually) 
0.5 X (XI) 

840 + (area of bay) 3.551 (F) 





Case I: effort changing 
Data from Table 6.2 

Computation 

1) Read side 1 of Program FB 17 

2) Initialize and enter catch and effort data 

Keystrokes: f a 5 ? 1 ~ 4 ? 1 ~ 3 ? 1 ~ 1  ? 2 A  

3) Calculate r2, q and No 
Keystrokes 

E 

Case 11: effort constant 
Data from Table 6.3 

Computation 

1) Read side 1 of Program FB 17 

2) Initialize and enter catch data 

Keystrokes: f a  8 B 5 B 4 B 

3) Calculate r2, F and No 
Keystrokes 

E 

Results 

0.88 
5.39 

-0 .35 
15.46 

Results 

0.98 
7.86 

-0 .31  
25.05 



7. Estimation of Past Population Sizes 
Using Virtual Population Analysis and Cohort Analysis 

INTRODUCTION 

The following four methods form an extremely powerful set of tools for the analysis of catch 
data from which reliable estimates of past population sizes (in numbers) and fishing mortality can 
be derived. 

These four methods are: 
- Virtual population analysis (VPA) 
- Cohort analysis 
- Length cohort analysis 
- Length-structured VPA 
Beverton and Holt (1957, p. 179) showed that the catch (Ci) from a population during a unit 

time period (i) is equal to the product of the population size at the beginning of the time period 
(Ni) times the fraction of the deaths caused by fishing, times the fraction of total deaths, or 

where Fi is the fiching mortality in the ith period 
M is the natural morlaiity, generally assumed constant for all periods 

and Zi = Fi + M  

The version of Beverton and Holt's catch equation which has become most widely used for 
stock assessment purposes, however, is 

also written 

which is the equation in Gulland's (1965) virtual population analysis and which can be derived 
from (7.1) by substituting for Ni the relationship 

Equation (7.2) is used with catch-at-age data from the whole of a fishery, and covering most of the 
life span of a given cohort* (thus VPA is used to estimate retroactively the size of past cohorts), an 
estimate of M and a (guessed) value of the fishing mortality that affected the oldest age group of a 
given cohort (terminal F, or Ft). The terminal fishing mortality (Ft) and the terminal catch (Ct) 
are used to estimate the size of the terminal population (Nt), either from 

or from 

*A cohort is a group of fish born at the same time, and exposed throughout their lives to the same mortalities. 

loo 



Generally, equation (7.4) is used when the cohort is not extinct past Nt (and Ct), while equation 
(7.5) is used when Ct includes the last remnants of a cohort (Mesnil1980). Then, using Nt as initial 
value of Ni + 1, Fi and Ni values are estimated sequentially from older to younger age groups ("back- 
ward") by repeatedly solving equations (7.2) and (7.3), respectively. 

Several authors have investigated the properties of equation (7.2) and its variants and their 
findings are summarized in Table 7.1. 

Table 7.1. Review of work on the sensitivity of virtual population analysis and cohort analysis. 

Equation Author of Sensitivity Property 
No. equation analysis by investigated Main resultcs) 

Beverton and Holt 
(1957) based on 
Baranov (1918) 

Convergence of F-values "Backward" computation en- 
toward true solution sures convergence; forward 

computation leads to diver- 
gence 

Jones (1961) 

Beverton and Holt 
(1957) based on 
Baranov (1918) 

Murphy 
(1965). Tom- 
linson (1970) 

Convergence of F-values Confirmed Jones' result 
toward true solution 

Errors due to erroneous Ft Rapid convergence toward 
true F granted Fi's are high 

Sampling error of catches Graph given to assess effects 
of sampling errors on Fi's 

Pope (1972) 

Gulland (1965) Sampling error of catches "Relative error of F is about 
half the relative error of 
that found in the catches" 

Agger et al. 
(1971) 

Gulland (1965) 

Gulland (1965) 

Agger et al. 
(1973) 

Erroneous M value If M is overestimated, F is 
generally underestimated. 
and conversely 

M varying between years, Stock sizes will be under or 
and other properties overestimated, but relative 

changes will be approxi- 
mately correct; see original 
paper for other properties 

Gulland (1965) 

Pope (1972) 

Sims (1982) 

Pope (1972) 

Effects of seasonal fishing Effects not severe unless M 
and/or F' are not very high 

Choice of M Value of M > 0.3 for one 
time increment (generally 
1 year) should not be used 

Jones (1974) Jones (1979) Choice of L,and M/K Graphs given showing in- 
fluence of L, and M/K 
on results and "critical" 
value of M/K determined 

Jones (1974) Choice of M 
exponential body 
growth* 
emigration* 
difference with YPA 
version 

Choice of M 
difference with VPA 
version 
(effect of length c ass 
increment) 

The same results were ob- 
tained independently: 

No limitation as to value 
of M; differs herein from 
cohort analysis; results 
highly sensitive to length 
increments: with large in- 
crements. F is overesti- 
mated and stock size is 
underestimated 

Jones (1974) Pauly (this 
chapter) 

*See Sparre (1979) for this part of his results. 

DERIVATION OF A LENGTH- 
STRUCTURED VPA MODEL 

Generalizing equation (7.2) for any time interval (At) gives 



with all other parameters defined as in (7.2); these equations allow for structuring catch data in 
terms of length, rather than time intervals. 

Converting length to age requires the use of a mathematical expression of fish growth. Used 
here is the generalized VBGF (see Chapter 4). Thus, any age tl pertaining to a length L1 can be 
obtained from 

and similarly for age t2, pertaining to La. From the length-age relationships for L1 and La, A t  is 
obtained as the difference between t2 and tl, or after some rearrangement 

which can be substituted for A t  in equation (7.6). 
Thus, given catch-at-length data from a stock with stable age distribution, equation (7.6) can 

be used in a fashion similar to equation (7.2) to estimate, starting from a (guessed) terminal fishing 
mortality (affecting the largest length group) the number of fish in the smaller size classes and the 
fishing mortalities affecting them. 

When equation (7.6) is used in conjunction with values of A t  that are not constant (i.e., when 
the A t  values are computed from length-converted ages), the results obtained will not apply to a 
specific cohort of fish, but rather pertain (for a given value of M) to the population sizes (per length 
class) that must have existed, on the average, for the observed catch to have been produced by the 
estimated values of F. The method is thus analogous to Jones' length cohort analysis (Jones 1974, 
1979,1981) which, in terms of the generalized VBGF is expressed by 

where 

where C1, is the number of fish caught in a given time period with stable age distribution with 
length between L1 and L2 and where N1 and N2 represent the population size (in number) with 
length L1 and L2, respectively. 

Jones' length cohort analysis is particularly helpful in that it requires, in addition to the value 
of D (see Chapter 4), a knowledge of only 2 parameters, Lm and the ratio M/K; the latter, as shown 
by Beverton and Holt (1959) tends to vary less between different groups of fish than either K or M 
alone (see also Chapter 5). However, a problem with Jones' method is that it is derived from the 
approximate "cohort analysis" of Pope (1972) i.e., 



through generalizing for any time interval i.e., 

Since equation (7.6), which gives precise results and the approximation in (7.9) can both be 
used to obtain estimates of population size and fishing mortality from the same set of catch-at-length 
data, equation (7.6) can be used to assess the closeness of the approximation involved in (7.9). This 
is done in the example in Table 7.2. As might be seen in this table, the combination of parameter 
values used generates a mean difference between the results obtained with Jones' method and those 
obtained using equation (7.6) of only 0.7% for the population estimates and 2.2% for the fishing 
mortality estimates. 

However, regrouping the catch data in Table 7.2 into larger and larger length class intervals pro- 
duces increasing differences between the fishing mortality estimates (and population estimates) ob- 
tained by the two methods (Table 7.3, Fig. 7.1), suggesting that Jones' length cohort analysis may 
indeed be quite sensitive to  coarse groupings of the catch data. 

Varying the value of natural mortality used for the analysis produces, on the other hand, 
virtually no additional differences between the results of the two methods, i.e., the difference 
remained close to 2% for M = 0.1 to M = 1 .O. 

DISCUSSION OF THE LENGTH- 
STRUCTURED VPA MODEL 

The main drawback,of the length-structured VPA proposed here (equations 7.6 and 7.6a) and 
of length cohort analysis (equation 7.9) is the necessary assumption of a stable age distribution, which 

Table 7.2. Comparison of results obtained using Jones' length cohort analysis and VPA using 
catch-at-length data on Merluccius merluccius off Senegal. 

Fishing mortality 
Length Catcha Population ('000) (annual basis) 
(cm) ('000) A B C A B C 

(% diff.) (% cliff.) 

0.040 0.040 0.0 
0.386 0.392 1.3 
1.066 1.111 4.2 
0.647 0.661 2.2 
0.491 0.500 1.8 
0.592 0.605 2.4 
0.647 0.666 3.1 
0.385 0.392 1.8 
0.288 0.293 1.7 
0.307 0.313 1.6 
0.401 0.412 2.7 
0.389 0.399 2.6 
0.110 0.111 0.9 
0.280 (F,) 0.280 (F,) - 

-- 

aFrom Table 6 in Anon. (1978b) who also provided (for D - 1): L, = 130 cm, K = 0.1 and 
M = 0.28. 

A - Jones' length cohort analysis. 
B -. New method (VPA with length-&age data). 
C = (B/A - 1) 100 = C (5% diff.). 



Table 7.3. Comparison of results using Jones' length cohort analysis (A) and length-structured 
VPA (B) (24-cm classes) (see also Table 7.2). 

Length Catch Population size Fishing mortality 
(cm) ('000) A B % diff. A B % cliff. 

Length class interval (cm) 

Fig. 7.1. Relationship between the length class internal in which catch data 
are grouped and the percentage difference between the results obtained using 
Jones' length cohort analysis and lengthdructured VPA. The calculation of 
the percentage difference is illustrated in Tables 7.2 and 7.3, which also docu- 
ment two of the four points plotted in this figure. 

is not required in age-structured VPA. However, a number of methods have become widely accepted 
and used for stock assessment which rest on the same assumption of a stable age distribution, such as 
the estimation of total mortality from catch curves or from the mean length of fish in catch samples 
(see Chapter 5). As in the case of the procedure recommended for use with the above methods, a 
stable age distribution can be simulated in the case of length-structured VPA or length cohort 



analysis by averaging catch data for a length of time during which recruitment and fishing mortality 
can be assumed to have been constant. 

Jones' length cohort analysis has the following advantages over the new method proposed here: 
- it does not require separate estimates of K and M, but only of the ratio M/K, and 
- it provides direct solutions, i.e., the solution does not need to be obtained iteratively, as in 

the case of solutions to (7.6) 
On the other hand, Jones' method appears quite sensitive to coarse grouping of the catch data, 

a feature which may limit the applicability of the method where it may be most needed, e.g., when 
working with catch statistics of commercially graded penaeid shrimps (see Jones and Van Zalinge 
1981). 

APPLICATIONS OF AGE-STRUCTURED 
VPA AND COHORT ANALYSIS 

Following are applications of the four methods in Table 7.4. Example 7.1, based on the data in 
Table 7.5, presents an application of VPA to Moroccan sardines (see also Fig. 7.2). Example 7.2, 
based on the data in Table 7.6, presents an application of cohort analysis to the Peruvian anchoveta. 
As might be seen from Table 7.6, the estimates of fishing mortality in young fish obtained by 
cohort analysis (and hence, by VPA) are virtually independent of the first guess of terminal mortal- 
ity. This property is most useful, and is one of the main reasons why these methods have become 
so popular, at least around the North Atlantic. 

APPLICATION OF LENGTH COHORT ANALYSIS 
AND LENGTH-STRUCTURED VPA 

Table 7.4. Some properties of four methods for the analysis of sequential catch data. 

Among the various methods presented in this manual, length cohort analysis and length- 
structured VPA may potentially be the most useful for tropical fisheries. However, to obtain popula- 
tion sizes and fishing mortalities based on these methods, it is necessary to have good catch-at-length 
data. 

Converting catch in weight to catch-at-length data is rather straightforward, given length-fre- 
quency data representative of the catch, and the parameters of the length-weight relationship in the 
stock in question. A step-by-step approach to this conversion is given in Example 7.3. Ohce catch- 
at-length data are obtained, either length cohort analysis or length-structured VPA can be applied, 
as illustrated in Examples 7.4 and 7.5 and Table 7.7. 

direct, but 
approximate 

Pope's cohort analysis 
(1972) 

Jones' length cohort analysis 
(1974) 

iterative, but precise 

catch-at-age data 
(single cohort) 

catch-at-length data 
(stable age distribution) 

VPA 
Murphy (1965) 
Gulland (1 96 5) 

length-structured 
VPA 



Table 7.5. Estimation by means of Gulland's virtual population analysis of the population (in 
numbers) and the fishing mortality (F) of a cohort of sardines (Sardina pilchardus) caught off ' 

Morocco.' 

Year of 
capture Trimester Catch Population F (per trimester) Annual F 

l5,6 24 
139,836 
66,207 
33,191 

514,256 
319,612 
106,583 
383,842 
235,246 
434,354 

37,926 
39,819 

118,049 
34,226 

5,225 
7,859 

17,538 (C,) 

14,382,198 
11,761,034 
9,502,830 
7,720,459 
6,290,998 
4,686,819 
3,548,903 
2,809,370 
1,954,320 
1,388,058 

746,801 
577,202 
436,651 
251,483 
175,063 
138,612 
106,394 (N,) 

0.03 
0.06 
0.20 (F,) 

'From Anon. (1978a, Table 1, p. 33) who also suggests values of M = 0.8 (per year, hence 0.2 
per trimester) and of F, = 0.8 (per year, hence 0.2 per trimester). 

Fig. 1.2. Population sizes of a cohort of Moroccan sardines (Sardina pilchardus) as estimated by 
(age-structured) virtual population analysis (based on data in Table 1.5 and Example 7.1). 



Table 7.6. Estimation of the population size in numbers (N) and fishing mortality (F) of a cohort 
of Peruvian anchovy (Engraulis ringens) by means of Pope's cohort analysis. 

Time of Catcha 
capture (in millions of N~ FC F~ Fe 

Year Months individuals) (in millions) (per 2 months) (per 2 months) (per 2 months) 

1968 Nov-Dec 
1969 Jan-Feb 

Mar- Apr 
May-June 
Jul- Aug 
Sep-Oct 
Nov-Dec 

1970 Jan-Feb 
Mar- Apr 
May-June 
Jul- Aug 
Sep-Oct 
Nov-Dec 

1971 Jan-Feb 
Mar- Apr 
May-June 
Jul-Aug 
Sep-Oct 
Nov-Dec 

1972 Jan-Feb 
Mar- Apr 

aData adapted from Table 8.6 of Ricker (1975). Note that both F and M refer to a 2-month 
period and should be multiplied by 6 to obtain annual rates (e.g., M = 0.2 = 1.216). 

b ~ o u n d e d  figures. Actual computation (based on F, = 0.20) used 1 0  significant digits. 
'Assuming Ft = 0.20 and M = 0.20, which provide, with equation (7.2) the estimate of Nt = 667. 
d~ssurning Ft = 0.10 and M = 0.20, population estimates omitted. Note convergence toward 

the F-values obtained by using F, = 0.20. 
"Assuming Ft = 0.40 and M = 0.20. population estimates omitted. Note convergence toward 

the F-values obtained by using F, = 0.20 or F, = 0.10. 

Unfortunately, the catch and landing data-collection systems of most tropical countries are 
not geared toward collecting catch and landing data and length-frequency data representative of 
that catch, with the result that the methods outlined here generally cannot be applied to those 
fisheries. Yet these methods are extremely well-suited for use in tropical fisheries, where fishing is 
often conducted with a multitude of gears, the number and sampling properties of which are diffi- 
cult to  assess. Using such methods, it is thus possible to  assess the impact on the fish themselves 
of all those gears in the form of values of F which can be used to  state whether too many or not 
enough fish of certain sizes are being captured by the fishery as a whole or segments of it. 

Finally, another important property of VPA and related methods is that the resulting popula- 
tion estimates of young (small) fish are estimates of absolute recruitment. Recruitment, as dis- 
cussed in more detail in Chapter 9, is generally extremely difficult to estimate although it is an 
extremely important parameter. 

I t  seems thus appropriate to stress here the need for fishery biologists working in tropical coun- 
tries to help their fisheries department set up a catch reporting system which-at least for major 
fisheries-will allow for catch-at-length, and later catch-at-age data to emerge. 



Table 7.7. Estimation of population size and exploitation rate for a West African stock of hake 
(Merluccius merluccius) based on Jones' length cohort analy~is.~ 

Length Catch Population Exploitation Annual Annual 
(in cm) (in thousands) (in thousands) rate (F/Z) Z F 

0.13 0.32 
0.58 0.67 
0.79 1.35 
0.70 0.93 
0.64 0.77 
0.68 0.87 
0.70 0.93 
0.58 0.67 
0.51 0.57 
0.52 0.59 
0.59 0.68 
0.58 0.67 
0.28 0.39 
0.50 (E,) (0.56) 

aThe catch-at-length data are from Anon. (197813, Table 6, p. 78) from which (p. 17) the 
parameter values L, = 130, K = 0.10, M = 0.28, M/KD = 2.8 and D = 1 also stem. The results 
(population estimates and E-values) presented here differ from those in Anon. (1978b) both because 
of the different E, used, and because of various inconsistencies in the original analysis. 

Recommended reading: The literature on VPA and cohort analysis is growing rapidly as far as 
applications are concerned. However, both Gulland (1965)" and Jones (1974) are technically un- 
published papers which are rather hard to get, while Ricker's (1975) discussion of VPA and cohort 
analysis is rather opaque. Best is to get Pope (1972)* for both VPA and cohort analysis, and the 
recent manual of Jones (1981) or Jones and van Zalinge (1981) for length cohort analysis. For those 
who understand French, the best introduction to (age-structured) VPA and cohort analysis will be 
that of Mesnii (1980). 

Suggested research topics: Convert catch data in weight to catch-at-length data using the method 
outlined in Example 7.3, and apply these data to either length cohort analysis or length-structured 
VPA. Then using the method of Jones (1979), assess the impact of a change in fishing mortality, 
mesh size or both. Use the results to assess the relative impact of several fisheries exploiting the same 
stock (e.g., a small-scale inshore fishery and a large-scale offshore fishery). 

*Gulland (1965) and Pope (1972) have been reprinted and included in the reader recently edited by Cushing 
(1983). 



Population sizes and fishingmortality of Moroccan sardines (Sardina pilchardus) 
as determined by Gulland's virtual population analysis. 

Data: catch-at-age data of Table 7.5 

Computation 

1) Read sides 1 and 2 of Program FB 18. 

2) Initialize, enter M, terminal fishing mortality and terminal catch. 

Keystrokes: .0001 S T 0  0 .2 '? .2 ? 17538 f a .  This results in N, = 106394.09 

3) Enter the catch from the period immediately preceding that during which the terminal 
catch was made. 

Keystrokes Results 

7859 A 0.06 (I?,) 
138611.82 (N,) 

now enter the next earlier catch 5225 A 0.03 (F,) 
175062.55 (N,) 

and so on ..... . . . . . . . 
until you arrive at 15624 A 0.00 (F,) 

14382197.51 (Ni) 

The results of virtual population analysis (VPA) should be recorded in a manner similar 
t o  that used for Table 7.5. 







luccius) as determined by Jones' length cohort analysis. 

Data: Catch-at-length data of Table 7.7 

1) Read side 1 of Program FB 19. 

2) Enter parameters needed, initialize and calculate Nt. 

Keystrokes: 130 STOA 2.8 ? 1 f b 84 ? 6 f c .5 ? 46 f d Result: 92 (N,) 

3) Enter the catch for the length interval immediately preceding that to  which Ct refers. 

Keystrokes Results 

now enter the catch pertaining to the next 
smaller length class 

.... ...... 
until you arrive at 

Unless you have a value of M (rather than just a value of M/KD), the length cohort 
analysis is now completed. 

4) If a value of M is available, values of Z and F (both on an annual basis) can be estimated 

Keystrokes Results 

estimate Z 

corresponding to 
the values of E 

etc. (see Table 7.3) 

It must be realized that as opposed to VPA and cohort analysis performed on catch-at-age 
data, length "cohort" analysis does not estimate population numbers pertaining to  a specific 
cohort. Rather, the "population" estimates are the number needed to account for the catch 





8. Y ield-Per-Recruit Assessment 

INTRODUCTION 

This chapter contains some of the most horrible-looking equations used in fish population 
dynamics, and an attempt to explain how these equations are derived would certainly deter all but 
the most enthusiastic readers. Thus, rather Shan derive any of the equations included in this chapter, 
I will simply present them, and hope that they will gradually become familiar, especially after fre- 
quent use and consulting the original literature. 

A new concept needs to  be introduced at this stage, that of the "recruit". Although the defini- 
tion may vary between authors, we may here visualize recruits as 1 )  fully metamorphosed young 
fish, 2) fish whose growth is described adequately by some form of the VBGF, 3) fish whose 
instantaneous rate of natural mortality is similar to that of the adults, and 4) fish which occur at 
(or swim into) the fishing ground(s). Such recruits have an average age t,, an average length L, 
and an average weight W,. Upon reaching the age t,, the recruits may be caught immediately, in 
which case the mean age at first capture (t,) is equal to the age at recruitment (t, = t,). Alternatively, 
the recmits may be caught at a more advanced age (and a correspondingly larger size, LC and W,). 
In such case, the number of recmits actuaUy entering the fishery (R,) will be less than the initial 
number of recruits (R,), or 

Now, there is, for each combination of t, and F values, a yield per recruit (Y/R = catch in weight, 
per recruit) the value of which can be estimated from various equations whose exact form depends 
on the model used to  describe the growth of the fish. In the following paragraphs, equations for 
the estimation of Y/R will be given for various forms of the VBGF, i.e., 

3 

Case I: wt =w_ (l-e-K(t-tO)) . . . 8.2) 

or special VBGF, as based on conversion from length using the isometric length-weight relation- 
ship 

Case 11: 

which is a form of the special VBGF where the exponent (b) of the length-weight relationship is 
allowed to  take values other than 3, i.e., 

Case 111: w t -W - 00 (1  -e-KD(3/b)(t-to))b/D . . . 8.6) 

the generalized VBGF for growth in weight. 

114 



ESTIMATION OF YIELD PER RECRUIT 

Case I 

Case I is that of Beverton and Holt (1957) for computing yield per recruit. The equation they 
proposed for this purpose is: 

where Z = F + M 
rl = tc -to 
r2 = tc - t, 
r3 = L a x  - tc 

with W,, K and to being growth parameters, tc the mean age at first capture, t, the mean age at 
recruitment and t,, "the maximum age of significant contribution to the fishery" or more simply, 
the longevity of the fish in question (see Ricker 1975). 

The effect of the exact value of t,, is generally very small, and equation (8.7) can be consider- 
ably simplified by setting t,, = ,, in which case equation (8.7) becomes 

in which all other parameters are defined as in equation (8.7). 
Both equations (8.7) and (8.8) can be used to assess the effect of different values of tc 

(corresporiding, e.g., to a given mesh size) and values of F (corresponding to a certain amount of fish- 
ing effort) on the yield per recruit (Examples 8.1 and 8.2). The results of such computations are 
generally presented in the form of "yield curves", as in Fig. 8.1, from which the effect of increasing 
mesh size (e.g., from a size generating tc = 0.2 yr to a size generating tc = 0.3 yr) can be assessed. 

Fishing mortality (F) 
Fig. 8.1. Yield per recruit as a function of fishing mortality for the dipmouth (Leiognathus 
splendens) for two values of mean age at first capture (based on Example 8.1). 



Another, more elaborate form of presenting the results of a yield-per-recruit analysis is the 
"yield-isopleth diagram", which shows the response of yield per recuit to both t, and F over a wide 
range of both parameters, to allow the best selection of mesh size for given F, or a best F for a given 
mesh size (see Fig. 8.2). Program FB 21 can be used for this purpose. 

Equation (8.7) requires the estimation of six constants (in addition to t, and F which are used 
as variables) while equation (8.8) requires five constants. 

In 1964, Beverton and Holt presented a modified version of their yield equation which requires 
only three input parameters, M/K, c (= L,/L,) and E (= F/Z) and which has the form 

Here, however, it is not a yield per recruit in units of weight that is estimated, but something 
(Y'/R,) proportional to it; this doesn't really matter because the absolute number of recruits (R,) is 
not known anyway. Management advice is most often based on relative yield (see Example 8.3 and 
Fig. 8.3). Values of Y1/Rr have been tabulated by Beverton and Holt (1964) for a wide range of 
M/K, c and E values. Given appropriate inputs, program FB 21 provides the same values as those in 
Beverton and Holt (1964), whose paper, however, should still be consulted for more details. 

[The relationship between ordinary Y/R, (as given in Equation (8.8)) and Y1/Rr is given by 
Y/R, = (Y1/Rr) . (W, . exp - M (t, -- t,))]. 

Fishing mortality ( F )  

Fig. 8.2. Yield isopleth diagram for the snapper (Lutjanus sanguineus) of the South China Sea 
(from Pauly 1979b; see Example 8.2). 
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Exploitation rate ( E = F/Z) 

Fig. 8.3. Stock assessment of the swordfish (Xiphias gladius) off Florida, based on the 
relative yield-perrecruit concept (based on Example 8.3). 

Case I1 

All three equations given above assume that growth in weight is isometric. This is often not the 
case and the value of b in the length-weight relationship generally ranges between 2.5 and 3.5 (see 
Chapter 2). The weight-at-age data of Table 8.1 were constructed to  represent such a case, with 
b = 3.3. 

Two methods are available to use the yield equations given above, even when growth is allo- 
metric. 

The first of these methods simply consists of proceeding as if the length-weight relationship 
were isometric, i.e., of calculating a mean condition factor (which assumes b = 3) from the length- 
weight data at hand, then to use this mean condition factor to convert L, to W,. This method stems 
from Beverton and Holt (1957). 

[For the data of Table 8.1, a mean condition factor of 1.887 is obtained which can be used to 
convert the value of L, = 186.5 cm obtained from a Ford-Walford Plot to a value of W, = 122.6 kg 

Table 8.1. Growth data of a hypothetical tuna reaching 146.5 cm (L,,) and 60 kg (Wm,).a 

Age (years) FL (cm) Weight (g) 

aAdapted from the data in Table 4.4, using the length-weight relationship W = 0 . 0 0 5 2 ~ ~ ~ ~ .  
Note that W,, = 60,000 g corresponds to a value of D = 0.47. The mean c.f. obtained from the 
length-weight data is 1.887. M is set at 0.3 and t,, = m. 



(Table 8.2). The value of K is that provided by the same Ford-Walford plot, while the value of to is 
the mean of six estimates of to obtained by solving the growth equation for that parameter (by 
means of Program FB 9). Then the growth parameters are used to estimate tc from We, tc is set 
equal to t,, and equation (8.8) is used to estimate Y/R, (see Table 8.2 and Fig. 8.4).] 

The second of these methods consists of calculating growth parameters directly from the weight 
data, and setting b = 3 (this can be done easily with the programs presented in Chapter 4). This 
results in values of K and to different from those that would have been obtained by computing the 
growth parameters from length data (see Table 8.2). However, once these parameter values have 
been derived from b = 3, any of the three equations given above can be used to estimate yield per 
recruit (see Table 8.2 and Fig. 8.4). This method was suggested by Paulik and Gales (1964). 

Table 8.2. Parameter values of different growth equations based on the data of Table 8.1 for use 
in yield-per-recruit analysis. (W, and K values stem from Ford-Walford plots.) 

Method D w, (kg) K ti, ' b ,b 

Beverton and Holt (1957) 1 122.60 0.150 -0.535 3 2.28 
Paulik and Gales (1964) 1 194.36 0.129 -0.265 3 2.4 5 
Jones (1957) 1 162.25 0.150 -0.795 3.3 2.35 
Generalized VBGF 0.4 7 85.95 0.582 -2.035 3.3 2.39 

----- - - -  

'Obtained by solving the VBGF with the empirical size and age values in Table 8.1 and the cor- 
responding set of asymptotic size, K, b and D values and Program FB 9, then by taking the mean 
of the resulting 6 estimates of to. 

b~ased  on a mean weight at first capture W, - 5 kg. 

- I  

2 
c3 
L 4  

I  ones' (1957) method 

2 Paulik and ~ a l e s '  (1964) method 

3 Generalized VBGF 

4 Beverton and ~ o l t ' s  (1957) method 

Fishing mortality ( F) 
Fi. 8.4. Cornparton of yield cumea baaed on different methods to compensate for allometry when perf0rming.a 
yield-perrecruit analysis (m Table 8.2, Example 8.4 and text). 



Another method for dealing with allometry in yield-per-recruit computations is the use of the 
incomplete P-function, as proposed by Jones (1957). 

Here, the yield per recruit, when &, = m, is given by 

where X = 
P = 
Q = 

and P = 
with rl = 
and r2 = 

Z/K 
b + 1 (b being the length/weight exponent), 
being the symbol of the incomplete beta function 
tc - to 
tc - t, 

Tables of the incomplete P-function have been presented by Wilimovsky and Wicklund (1963); 
these tables are not needed here because Program FB 22 estimates the appropriate values of the 
incomplete P-function (see Example 8.4, Fig. 8.4 and text below). 

Case I11 

The incomplete P-function, besides allowing for the integration of the special VBGF with b # 
3, also allows for the integration of the generalized VBGF and its use in yield-per-recruit analysis. 
When the generalized VBGF is used, and t,, = =, we have 

F o b  Zrl-Mr2 
Y/R, = - e 3 KD w, (0 [X, P, Q1) . . 

where X = e -3KDrl /b 

P = Zb/3KD 
and Q = (b/D) + 1 

with rl and r2 being defined as above. 
Thus, using the data of Table 8.1, first to estimate D (from W,, and Program FB 9) then to 

estimate W, and K, with D = 0.47 and b = 3.3, it is possible to obtain growth parameters suitable 
for incorporation into equation (8.11) (see Table 8.2). Program FB 22 can then be used to estimate 
Y/R, values for these, or any other combination of growth parameters (see Example 8.5). 

COMPARISON OF VARIOUS EQUATIONS 
FOR YIELD-PER-RECRUIT ESTIMATION 

Of the various equations available for the estimation of yield per recruit, the first [equation 
(8.7)] is the one which contains the most parameters. In fact, of the parameters used, one (&,) is 
quite superfluous and may be set for most practical purposes equal to =, especially when Z is high 
(see Ricker 1975, p. 257). 

Equation (8.8), on the other hand, is still widely used (when b = 3) and several examples are 
available of its application to tropical stocks (see recommended reading). 

Equation (8.9) is particularly useful in situations where a detailed knowledge of the growth and 
mortality of the stock in question is not available. The results obtained from this equation are 
proportional to those obtained by means of equation (8.8) and allow a quick assessment of a fishery 
(Fig. 8.3). 

Of the seveW methods available for compensating for allometry in yield-per-recruit analysis, 
that of Jones (1957) gave the results which differed most from those obtained using the generalized 



VBGF, which serves as a benchmark (Fig. 8.4). The marked differences between the results obtained 
by Jones' method and the other methods are to a large extent due to growth beyond the ages con- 
sidered in Table 8.1. This suggests that Jones' method is least robust with regard to violations of 
the assumption that &, = - in equation (8.10). 

Paulik and Gales (1964) and Ricker (1975, p. 225) suggested that the "Chapman-Richards" 
curve (Richards 1959), which is essentially a form of the generalized VBGF, could be easily inte- 
grated by means of the incomplete P-function. Published examples have been wanting. This account 
(i.e., Case 111) closes the gap. 

THE USE OF THE YIELD-PER-RECRUIT 
MODEL: A WARNING 

The yield-per-recruit model, although very elegant and still suited to the management of certain 
stocks (such as the North Sea plaice (Pleuronectesplatessa)) should be used with caution. 

Fishermen are not interested in an imaginary "yield per recruit"; they are interested in a physi- 
cal yield of fish, and this yield is the product of the yield per recruit times the absolute number of 
recruits produced in the stock. Yield is directly proportional to yield per recruit over a wide range of 
fishing mortalities only if it can be assumed that there is no relationship--over a wide range of F 
values-between the size of the parental stock of fish and its progeny (see chapter on stock-recruit- 
ment relationships). 

Where this assumption does not apply-and it does not seem to  apply to more than a few 
stocks-the values of F and t, needed to produce a maximum yield per recruit could well also gene- 
rate an abysmally low yield, because the "best" value of F (the one maximizing yield per recruit) 
could also reduce the parental stock to a level at which virtually no recruits are produced. 

Moreover, it must be realized that the findivg of yield-per-recruit analyses apply to long-term 
or equilibrium situations only. In the short term, an increase of fishing mortality or a decrease in 
size at first capture always results in higher yields, even when the yield-per-recruit analysis predicts 
lower yields. Similarly, a decrease of fishing mortality or an increase in size at first capture always 
results in lower yields in the short term, although in the long run higher yields may be reached. 

The duration of the transition period can be of several years in fish which have a high lon- 
gevity and are subjected to exploitation over a number of years, as in a number of temperate stocks 
such as cod or halibut. In short-lived animals, the transition period will be much shorter; in the case 
of very short-lived animals, such as most penaeid shrimps, the distinction between "immediate" and 
"long-term" effect does not even apply, because the stocks are never in equilibrium. This and related 
problems are reviewed in Garcia and Le Reste (1981) who present a number of methods for the 
quantification of short- and long-term effects of changes in fishing mortality and mesh size (see also 
Jones 1981). 

Another important feature of the yield-per-recruit model is that yield per recruit is maximized 
at low values of F only in the case of large, long-lived, low mortality fish, such as the swordfish 
(Xiphias gladius) (see Fig. 8.3). In small tropical fish, the values of F which maximize yield per 
recruit are generally extremely high (see Fig. 8.1). Thus, managing a tropical fishery based on a 
species of small fish (let alone a multispecies fishery based on such fish) using only yield-per-recruit 
analyses can be very misleading (see Pauly 1979b; Pauly and Martosubroto 1980). 

It  may be mentioned, finally, that in temperate waters, an (arbitrary) agreement has emerged 
to  generally limit F (for assessment of stocks whose stock-recruitment relationships are unknown) 
to the value which corresponds to  1/10 of the rate of increase of yield per recruit that can be obtained 
by increasing F, at low levels of F (Gulland and Boerema 1973). This concept, called Feel is illus- 
trated in Fig. 8.5, Table 8.3 and Example 8.6. The Foal concept may be viewed as a surrogate for 
MEY (Maximum Economic Yield, see Fig. 12.7), applicable in situations where economic data on 
the performance of a fishery are lacking. A concept analogous to Foal, but for use in conjunction 
with effort (feel) is proposed in Chapter 12. 



Table 8.3. Data for the computation of FoSl for Nemipterus marginatus from the South China Sea 
(see Example 8.6). 

'The difference between two succeeding Y /Rr values, divided by ten is here used as approxima- 
tion of the slope of the yield-per-recruit curve between the two values in question. 

Fishing mortality (F) 

Fig. 8.5. Yield-per-recruit curve of the threadfin bream (Nemipterus marginatus) from 
the South China Sea, showing the position of Fa (based on data in Table 8.3 and 
Example 8.6). 

AN ALTERNATIVE USE OF BEVERTON 
AND HOLT'S YIELD EQUATION 

An interesting property of the yield equation of Beverton and Holt (1957) is that it can be used 
in a given stock to estimate the proportion of fish above or below a certain size. Thus, when the 
special VBGF is used, the total standing stock (biomass) of fish above the size at first capture (t,) 
is given, assuming &, = =, by 

-2Kr1 
-Krl 3e 

-3Krl 
1 3e , - e 

B c = R C o F * W , ( ~ -  Z + K + Z+2K Z+3K ) . . . 8.12) 



where R, is the number of recruits of age t,, and rl = t, - to. 
A factor (k) can be defined which relates the biomass of fish of and above a certain age (tk) to 

the biomass of all fish of and above age t, such that 

The value of k will depend on the value of Z, but not on W,, or R, which are the same in both 
parts of the stock (B, and Bk). Thus, the value of k, when t,, = - can be estimated by the equation 

1 3exp(-Kr2)+3exp(-2Kr2) exp\(-3~2) 
exp (-Zr3) { 5- - 

Z + K  Z+2K Z+3K 1 
k =  . . . 8.14) 

1 3 exp (--Krl ) + 3 exp (-2Krl ) exp (-3Krl ) -- - 
Z Z + K  Z+2K Z+3K 

with rl = t, - to; r2 = tk  - to; and r3 = tk - t,. 
This equation can be used to estimate, e.g., the proportion of the total stock which consists of 

fish at or above the age at first maturity (t,), by setting t, = tk,  that is: 

r1 = t, -to; r2 = t, -to; and r3 = t, - t,. 

This technique has been recently used to estimate the standing stock size of potentially mature 
fish in the Gulf of Thailand (Pauly 1980d) and can also be used to convert catch data obtained 
by a given mesh size to those that would have been obtained had another mesh size been used. 
This expression is based on an analogous equation presented by Hempel and Sarhage (1959) to 
estimate the expected proportion of undersized and discarded fish in a trawl fishery. Program FB 
23 can be used to estimate values of k for any value of F given a value of M, and values of to, t, and 
tk (see Example 8.7). 

Recommended reading: The book in which Beverton and Holt (1957) originally presented 
their model has been reprinted and still is a mine of good ideas-although it is often quite hard 
to follow. Ricker (1975) gives a review of the whole yield-per-recruit approach, including the 
earlier work of Baranov (1918) who was the pioneer in this field. Tropical applications of the 
yield-per-recruit approach are to be found, e.g., in Bayliff (1967), Le Guen (1971), Jones (1976b) 
and Sinoda et al. (1979). 

Suggested research topics: Whenever growth data are available, reasonable estimates of M can 
be obtained (see Chapter 5); yield-per-recruit computations can then be performed. Attempts should 
be made to perform such assessments routinely and to suggest appropriate mesh sizes. In fisheries 
that have stabilized at a given level of effort and/or those consisting of short-lived fish, yield may 
be divided by Y/R, to obtain estimates of recruitment, which may be compared with absolute 
recruitment estimates obtained from length cohort analysis. 











Estimating Feel for Nemipterus marginatus from the South China Sea. 
4 

Data:W, = 210 g, K = 0.42, to = -0.41 (D = 1, b = 3), M = 1.73, t, = 0.26, t, = -0.41 
(from Pauly and Martosubroto 1980). 

Computation 

1) Read sides 1 and 2 of Program FB 21 

2) Enter parameters needed 

Keystrokes: 210 ST0 B .42 ST0 1 1.73 ST02.41 CHS STOO.26STO D .41CHS ST0 I 

3) Compute Y/R, at a very low value of F, e.g., F = 0.01 

Keystrokes Results 

Near the origin, Y/Rr increases from 0 to 0.03 when F increases from 0 to 0.01, thus the 
slope of the yield curve at the origin is close to 0.030/0.01 i.e.: 

Keystrokes Results 

increase per unit 
of F near origin: 

.01 $ 2.999 (slope near origin) 

DSP 2 3.00 (slope near origin) 

4) Then compute Y/R, for values of F ranging from 0.1 to 2, in steps of 0.1, record data and 
draw resulting graph (see Fig. 8.5 and Table 8.3). 

5) Calculate increase in yield associated with each 0.1 increment of F, and divide this differ- 
ence by 10 to obtain approximate slope (i.e., change in Y/R, per unit change in F). 

6) Locate slope value closest to 1/10 of value of slope near the origin (corresponding to 
Feel). This value is 0.32, corresponding to Feel = 1.1 (see Table 8.3). The next closest 
value is 0.25, corresponding to F = 1.1-1.2. Thus, the best value, corresponding to 0.30 
will be close to F = 1.1, which we may take as our estimate of FOe1 (see Fig. 8.5). 





9. Stock-Recruitment Relationships 

INTRODUCTION 

Clearly, there can be no production of young fish (recruits) if no adult fish are left (by a fish- 
ery) to mature, spawn, and produce eggs which hatch and grow to become recruits (see Fig. 9.1A). 

The females of most fish species are extremely fecund, producing during their adult lives several 
thousand eggs, sometimes millions. This fecundity has led many fishery biologists to believe that even 
a very limited parental biomass should be sufficient to allow a complete "restocking" after each 
spawning season. It was assumed that features of the abiotic environment (e.g., oceanographic con- 
ditions) mainly determine how many of the spawned eggs survive to become recruits, the size of the 
spawning stock, except for stock sizes very close to zero, being virtually irrelevant in determining 
recruit numbers. The situation in which the number of recruits in a given stock is determined mainly 
by factors other than parental biomass is called "lack of a stock-recruitment relationship". Early 
proponents of this view include Beverton and Holt (1957) (see also Beverton 1963). 

However, work conducted in the 1960s and 1970s suggests that many fish stocks do display 
stock-recruitment relationships, as demonstrated in Parrish (1978) and Saville (1980). Also, it 
was shown for most of the stocks which collapsed in the last three decades that "recruitment over- 
fishing" was the cause (Murphy 1966,1977,1980; Saville 1980). 

However, stock-recruitment relationships generally cannot be established directly by plotting 
an index of recruitment on parental biomass. Rather, it is necessary to account simultaneously for 
a stock-recruitment relationship and the biotic and/or abiotic factor(s) which may affect that 
relationship. In tropical stocks, this approach has allowed e.g., Csirke (1980) to demonstrate a strong 
effect of oceanographic conditions on the recruitment of the Peruvian anchovy. Ricker (1975, 
p. 275-280), Bakun and Parrish (1980) and Bakun et al. (1982) have discussed methods to identify 
various factors affecting recruitment using multiple regression analysis (for which Program FB 7, 
with slight modifications, can be used). 

To date four types of stock-recruitment relationships are commonly recognized: 
1) Recruitment increasing rather steeply toward an asymptote (this model, paradoxically is 

the model generally used for illustrating a lack of stock-recruitment relationships, see Figs. 
9.1B and 9.2). 

2) Recruitment increasing in proportion to a power of parental biomass or of the number of 
eggs shed (Fig. 9.1C). 

3) Recruitment increasing more or less steeply toward a maximum at an intermediate size of 
parental stock (P), then decreasing with increasing values of P (Fig. 9.1D and 9.3). 

4) None of the above, but stock-recruitment sensu strict0 conforming to 1 , 2  or 3 after the 
simultaneous effects of environmental factors (biotic or abiotic) are removed, as in Csirke 
(1980). 

Examples of relationships of types 1 and 3, the most commonly used, are illustrated here 
(Examples 9.1 and 9.2). These two examples must be taken with a grain of salt, however, because 
the first displays considerable scatter (as is typical of most such plots), while the second is based on 
points derived by a method which gives only approximate results. 

At present, research in fish recruitment is in a state of flux, with a lot of new ideas and insuffi- 
cient data to test them. Reviews covering what little is known of stock-recruitment relationships in 
tropical fish are given in Sharp (1980) for pelagics, by Sale (1980) for coral reef fish, Murphy (1982) 
for miscellaneous fish and Garcia (1983) for penaeid shrimps. 



B. Recruitment related to  parent stock by 
an asymptotic relationship (e.g., equation 
9.1); when the left side of this curve 
ascends steeply to  the maximum recruit- 
ment, fishery biologists generally consider 
this to reflect the absence of a stock- 
recruitment relationship, because R is 
independent of P for a wide range of P 
(Beverton and Holt 1957 ). 

A. Little is known about the 
shape of the curve except that it 
has to go through the origin. 

Beverton and ~ o l t ' s  model 

Parent stock (P) 

C. Recruitment viewed as pro- 
portional to a power (< 1) of 
parent stock (Cushing 1971). 
(Note that Cushing's model is 
meant to apply to the left side 
of an otherwise undefined SIR 
curve, and in strongly exploited 
stocks only .) 

Parent stock (P) I 
h 

D. Recruitment related to  parent stock, 
[r 
V 

cn with decreased recruitment at high levels 
+ 

of parent stock, as due to  cannibalism or -5 
competition between prerecruits and L 
parents or parents exhibiting parental 0 
care (Ricker 1954,1975). a, 

QL 

Parent stock ( P) 

Fig. 9.1. Types of stock-recruitment relationships used in fishery research. 
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Eggs spawned ( X  lo6 
Fig. 9.2. Beverton and Holt type stock-recruitment relationship for the sea 
bream (Taius tumifrons) (East China Sea). 

Virgin stock 

500 1,000 1,000 2,000 2,500 3.01 

Spawning stock (x lo3 t ) 
Fig. 9.3. Stock-recruitment data of false trevally (Lactarius lactarius) in 
the Gulf of Thailand, fitted with Ricker curves (GM and AM) (based on 
data in Table 9.2 and Example 9.3). 



THE STOCK-RECRUITMENT RELATIONSHIP 
OF BEVERTON AND HOLT* 

In this model, the relationship between the number of recruits (R) and the spawning stock size 
(P) is given by 

1 
R =  d + g  . . . 9.1) 

Expression (9.1) can be expressed as a linear relationship of the form 

As this plot involves the use of inverses (e.g., I/%), the estimated aalues of a' and P' provide, 
for each value of P, estimated values of recruitment (R) whose sum (ZR) is actually lower than the 
sum of the empirical values of R (ZR). This is due to the fact that the use of inverse values implies 
the use of a harmonic mean (HM) in fitting equation (9.1) and to the fact that the harmonic mean 
of a series of values is always less than the arithmetic mean (AM) of ihese values. 

A 

An approximate conversion of the estimated recruitment values RHM to the corresponding RAM 
values can be obtained, however, by performing 

C = 
Z R (empirical values) 

Z R (harmonic mean values) 

and by multiplying the recruitment values of the HM line by the constant C (Ricker 1975). 
An application of this model is given in Example 9.1, based on the data in Table 9.1. 

Table 9.1. 
tumifrons) 
1960). 

Data for the derivation of a Beverton and Holt type relationship for sea bream (Taius 
from the East China Sea. Figures derived from Murphy (1972, Fig. 3, based on Shindo 

Eggs spawned Recruits 
No. Year No. x lo6 NO. lo3 P/R 

1 1949 122 
2 1950 84 
3 1951 60 
4 1952 40 
5 1953 72 
6 1954 4 2 
7 1955 4 5 

not useda 1956 (38) 

'Use of the 1956 value generates a negative intercept in equation (9.2), and hence a negative 
value of $ in equation (9.1). See Users' Instruction for FB 24. 

*Beverton and Holt (1957) actually presented two stock-recruitment models. Their second model, however, is 
in its form-if not in its derivation--similar to Ricker's model discussed further below. 



RICKER'S STOCK-RECRUITMENT RELATIONSHIPS 

First form of Ricker's curve 

The stock-recruitment relationship proposed by Ricker (1954,1975) can be written 

R = orPe-PP . . .9.4) 
where R is the number of recruits 

P is the size of parental stock (in weight, in numbers, or as egg production) 
a is an index of stock-independent mortality 

and 0 is an index of stock-dependent mortality 

Equation (9.4) can be rewritten 

which has the form of a linear regression y = a + bx, where y = 1nR - lnP, x = P, a = lna and b = P. 
Once a and are estimated, maximum recruitment (R,) is obtained by 

where e (= 2.1783) is the base of the natural logarithms. Also, the parental stock at maximum recruit- 
ment (P,) can be estimated by the equation 

pm = 1/P  . . .9.7) 

The relationships between the parameters a and /3 in the first form of Ricker's curve to a' and P' 
in Beverton and Holt's curve are discussed in Chapter 11 (p. 156). 
When P and R are expressed in the same units, a "level of replacement abundance" can be found 
where P = R. This replacement level (P,) can be estimated through 

For most purposes, it is reasonable to assume that (the average size of) the virgin parental stock 
(P,) should be equal to P,, which allows, when an estimate of P, is available, for the original units 
of recruitment to be converted to  units of P through multiplication with P,/P, (see Table 9.2). 

Program FB 25 can be used to estimate the parameters of the first type of Ricker curve (see 
Example 9.2). 

Table 9.2. Data for the derivation of Ricker type stock-recruitment relationships for the false 
trevally (Lactarius lactarius) from the Gulf of Thailand.a 

Year P (in thousand tonnes) R (in millions) R (in units of P ) ~  

virgin stock 
1963 
1966 
1967 
1968 
1969 
1970 
1971 
1972 

aFrom Pauly (1980d); the values presented here should be considered tentative due to several 
ap roximations made for the estimation of the number of recruits. 

'See Example 9.3. 



Second form of Ricker's curve 

When recruitment and parental stock are expressed in the same units, equation (9.4) can be re- 
written in the form 

where Pr is the replacement abundance, and where a new parameter (a) is introduced, which is 
defined as 

a = Pro = lna . . . 9.10) 

Thus, equation (9.9) can be rewritten 

a 
1nR-lnP=a--P . . .9.11) 

P r 

which has the form of a linear regression where y = 1nR - 1nP and x = P, with the intercept of this 
regression providing an estimate of a and its slope an estimate of alp,. 

Equation (9.9), as well as equation (9.4), incidentally, provide estimates of the geometric mean 
(GM) value of R at a given P; generally, GM values estimate the most probable values of recruitment 
for the observed P values, while the arithmetic mean (AM) curve estimates the long-term arithmetic 
average value of recruitment obtained at a given P (Ricker 1975, p. 283). 

Thus, conversion of the GM curve to an AM curve is indicated especially when the R values are 
widely scattered about the stock-recruitment curve. Program FB 25 can be used for this conversion, 
which is performed according to the method given in Ricker (1975, p. 275 and 283-288) (see Exam- 
ple 9.2). 

In temperate, single-species fisheries, the establishment of a stock-recruitment relationship of 
the type discussed here is sufficient for most purposes of fishery management, since the best strategy 
generally is to optimize the level of surplus recruitment (= the number of recruits produced in excess 
of replacement level, see Fig. 9.3). 

This strategy also may be indicated in the case of tropical single-species fisheries, such as sar- 
dines, anchovies, chub mackerels or scads. In the case of multispecies fisheries, the establishment of 
a stock-recruitment relationship in one species is not sufficient-obviously-for deriving an optimum 
fishing strategy for the whole multispecies stock (see Chapter 12). 

Recommended reading: The classic paper of Ricker (1954) is an excellent introduction to the 
field, which is also reviewed in Ricker (1975). Parrish (1978) edited a volume of papers on the sub- 
ject of stock-recruitment relationships which contains many important contributions. Sharp (1980) 
presents an even more up-to-date review of the subject. Several contributions included in Pauly and 
Murphy (1982) are also of relevance to the topic, particularly as far as the tropics are concerned. 
Garcia (1983) discussed in detail the stock-recruitment relationships of tropical and subtropical 
shrimp and the numerous pitfalls (potential and realized) in the interpretation of such relationships. 
Shepherd (1982) recently proposed a versatile stock-recruitment model which has the Cushing, 
Beverton and Holt and Ricker models as special cases. 

Suggested research topics: Every attempt should be made to estimate recruitment from stocks 
that are suitably welldocumented, especially by using VPA and related methods. Attempts should 
be made to identify the factors which most strongly affect recruitment in a fishery and to derive 
from the properties of these factors the best strategy for the exploitation of the resource. 









10. Surplus-Yield Models 

INTRODUCTION 

Based on earlier work by Baranov (1927), Graham (1935) and others, Schaefer (1954,1957) 
presented a model which, in its recent formulation (e.g., Ricker 1975 or Schnute 1977) can be used 
for stock assessment when a minimum of data is available (only catchand-effort data are required) 
and which has been applied, with varying success, to a number of fisheries throughout the world. 

The assumptions made for the derivation of this model are as follows: 
1) Any fish population newly colonizing a given, finite ecosystem grows in weight until it 

approaches the maximum carrying capacity (most often in terms of available food) of this 
ecosystem, after which its increase in total weight gradually ceases as the stock size comes 
closer (asymptotically) to the carrying capacity of the environment (B,), 

2) B, more or less corresponds to the virgin stock (= unfished biomass, Bv),  
3) the growth, in time, of the fish biomass toward B, may be described by a logistic curve, the 

first derivative of which, dB/dt, has a maximum at B,/2 and zero values at B, and B = 0 
(Fig. lO.l), 

Boo 

time 

I I I I 1 1  1 I I I 

= O Underfishing Fopt- 
+ 

Overf irhing 

Fig. 10.1. The simple Schaefer model. A) the logistic curve and its first derivative. 
B) the yield-biomass and the yield-effort relationships. 



4) the fishing effort which reduces B, to  half its original value will produce the highest net 
growth of the stock, that is the maximum surplus yield available to a fishery (Fig. 10.1), 

5) the maximum surplus yield in (4) can be sustained indefinitely (hence, the term maximum 
sustainable yield), as long as the biomass of the exploited stock is maintained at BJ2. 

There is biological evidence to make these assumptions appear reasonable (Odum 1971; Silliman 
and Gutsell 1958). Some reasons for the low surplus production at stock size > B,/2 are given here 
(from Ricker 1975): 

Near maximum stock density, efficiency of reproduction, and often the actual number of 
recruits, is less than at smaller densities. In the latter event, reducing the stock will increase 
recruitment. 
When food supply is limited, food is less efficiently converted to fish flesh by a large stock 
than by a smaller one. Each fish of the larger stock gets less food individually; hence, a 
larger fraction is used merely to maintain life, and a smaller fraction for growth. 
An unfished stock tends to  contain older individuals, relatively, than a fished stock. This 
makes for decreased production, in at least two ways. a) Larger fish tend to eat larger 
foods, so an extra step may be inserted in the food pyramid, with consequent loss of effi- 
ciency of utilization of the basic food production. b) Older fish convert a smaller fraction 
of the food they eat into new flesh-partly, at least because mature fish annually divert 
much substance to maturing eggs and milt." 

The main reason larger fish convert a smaller fraction of their food into new flesh, however, is 
due to the fact that oxygen is needed for synthesis of body substance, and the relative gill size (= gill 
surface/body weight) decreases sharply as fish get larger, down to a point where the body is so badly 
supplied with O2 that most of it is used for mabtenance, with very little left for synthesis of new 
body substance or surplus production (Pauly 1981). 

From the assumptions listed above, two very important features of the Schaefer and related 
models follow, namely that the growth of a stock is a function of its size and of its size only--and 
that, therefore, a stock should respond by changes in its growth rate (dB/dt) instantaneously to any 
change of its size (e.g., by fishing). Thus, we have 

where B is the stock size, B, is the carrying capacity of the environment, rm is the intrinsic rate of 
growth of the stock in question. 

Quite clearly, the assumption that a stock reacts instantaneously to  change of its size is not 
realistic. Therefore, the concept of "equilibrium" is used here, and this refers to the situation which 
exists when a given fishing mortality (FE) has been exerted long enough for a stock to have adjusted 
its size and rate of net growth such that the relationship expressed in equation (10.1) is fulfilled. The 
following series of equations, adapted from Ricker (1975) assumes equilibrium conditions, as 
expressed by the subscript "E". We start from 

where YE, the equilibrium yield (per unit of time) is equal to the net growth rate of the stock main- 
tained by a fishing mortality FE at the equilibrium level BE. 

Combining equations (10.2) and (10.1) and rearranging gives 

Expression (10.3) has the form of a parabola (Fig. 10.1B). The first derivative of (10.3) with respect 
to BE can be equated to  zero and solved for BE, which gives the value of BE (= Bopt) for which 
yield is maximum or 



The maximum value of YE is commonly named maximum sustainable yield (MSY). Thus, substitut- 
ing (10.4) into (10.3) gives 

Also, substituting Fopt Bo for MSY in (10.5) and dividing both sides by expression (10.4) gives 
the fishing mortality at M S ~  (Fopt): 

-Im 
Fop, - 2 . . . 10.6) 

and, since fishing mortality is proportional to effort, we also have 

. . . 10.7) 

where fopt is the fishing effort which brings about MSY and q is the catchability coefficient. 
Since we have 

equation (10.3) can be rewritten 

and, substituting qfE for FE gives 

where a = qB, . . . 10.11) 

and 

Thus, when the stock is in equilibrium, surplus yield is a parabolic function of stock size (B), or of 
fishing mortality (F) or of effort (f). Therefore, catch and effort data can be fitted easily by the 
linear regression 

The definition of fopt in expression (10.7) and of a and b in (10.10) gives the following identities 

a [(fopt = - ), it will be noted, could also have been obtained by differentiating (10.10), equating to 
zero and%olving for fE .I 

Thus, as Ricker (1975, p. 316) emphasizes "--maximum sustainable yield optimum rate of fish- 
ing [fopt] can be estimated from the relation of equilibrium yield to equilibrium effort, withoutknow- 
ing the catchability (q) of the fish." This very important feature considerably simplifies the model 
originally proposed by Schaefer (1954,1957), making it particularly well-suited to the investigation 
of tropical stocks. 



THE "EQUILIBRIUM" PROBLEM 

This leaves only one problem which remains associated with the model, namely the determina- 
tion of what an "equilibrium situation" actually is. 

Many authors, implicitly assuming that the stock reacts instantaneously to changes of its size 
simply plot the yield per effort of a given year against the effort of the corresponding year. This 
procedure is illustrated in Example 10.1 which is based on Table 10.1. 

Effort ( boat - tonne days x lo3) 

Fig. 10.2. Yield curve of Peruvian anchoveta (Engraulis ringens) off Peru, just 
prior to the collapse of the fishery (based on data in Table 10.1 and Example 
10.1 ). 

Table 10.1. Catch-and-effort data for anchoveta (Engraulis ringens) off Peru, prior to stock col- 
lapse (from Murphy 1972). 

No. Season 
Total catcha 

(t x lo6)  Total effortb 

'This "catch" accounts for the fish taken by the fishery, by guano birds and by fish predation. 
bThis "effort" accounts for both the fishery and the predatory animals (fish and birds) but is 

expressed in thousand of boat-tonnes per day. 



Gulland (1969), on the other hand, suggested plotting the yield per effort of a given year 
against the mean effort (f) of the present and preceding year(s), with the number of annual effort 
values to be included depending on the longevity and mortality of the fish under exploitation, i.e., 
on the number of year classes significantly contributing to the fishery. This technique, which is 
illustrated in Table 10.2 and Fig. 10.3, has been criticized by a number of authors (e.g., Roff and 
Fairbairn 1980; Walter 1975). The latter author also proposed an alternative, graphical method to 
simulate equilibrium condition. 

Schnute (1977) presented a rigorous method for dealing with the problem caused by data 
drawn from a nonequilibrium situation. Only a simplified version of his model is presented here 
which has the form 

where Ui is the mean c/f prevailing in a given year i. This model has the form of a multiple regres- 
r, sion whose intercept (a = r,) and slopes (bl = -q; b2 = - ) lead to estimates of rm and q 

SBP. and B,, respectively. This makes the model superior to the orlglnal formulation of Schaefer (1954) 
which, rather than providing estimates of q, required a knowledge of this parameter. Mohn (1980), 
however, suggests that the model is quite unstable when "noisy" catch-andeffort data are used (see 
also Example 10.2) and it would seem best to compare the results obtained by it with estimates e.g., 
of MSY obtained using another model (see Fig. 10.3). 

Effort (man days at sea x lo3) 

Fig. 10.3. Yield curves for the red snapper (Lutjanus carnpecheanus) fishery on the Bank of Cam- 
peche, Mexico. Note strong difference between curves obtained through arithmetic mean (AM) and 
those obtained through geometric mean regressions (GM); yield curve AAM corresponds to  that 
in Klima (1976, Fig. 3); the corresponding GM curve (AGM), because of the scatter of the data 
points, suggests a lower value of f , ~ .  Similarly, the yield curves obtained by using only contem- 
porary effort (AAM, AGM) differ from those obtained by also using the preceding years' effort 
(BAM, BGM ). Curve S results from an application of Schute's model (but see Example 10.2). 



Table 10.2. Catch-and-effort data for the red snapper fishery on Campeche Bank, Gulf of Mexico, 
illustrating Gulland's method to simulate equilibrium conditions. From Klima (1976, Table 8, 
Figs. 2 and 3). 

Contemporary Average effort I Average effort 11 
Catch effort (contemp. + (contemp. + 2 

No. Year (t x lo3)  (man-days at sea x lo3)  previous year) preceding years) 

SOME MODIFICATIONS OF THE 
PARABOLIC MODEL 

There are various modifications of the basic model in which curves are fitted which differ from 
a parabola (e.g., Fox 1970; Pella and Tomlinson 1969). Of these variants, only the model of Fox 
(1970) is presented here. 

Put simply, this model consists of plotting the natural logarithm of yield per effort on effort 
or 

instead of plotting yield per effort on effort, as in the case of expression (10.10). This provides the 
following set of relationships 

MSY = (ea - l ) /b  . . . 10.18) 

and - bfE 
YE = fea e . . . 10.19) 

Other useful relationships may be found in Fox (1970) or Ricker (1975, p. 330-331). In this 
model, the value of Bop, is always 37% of B,, as opposed to 50% in the parabolic model [see expres- 
sion (10.4)]. 

Program FB 26 can be used, given a set of yield (= catch in weight) and effort data, to assess 
the state of a fishery by using the Schaefer (parabolic) and the Fox (exponential) model, by one 
single entry of data. Values of MSY and fop, are estimated; also values of r2 for the regression 
equations (10.13) and (10.16) are given which allow comparison of the fit of each of the two 
models to a given set of data. 



Here, the Schaefer and Fox models are fitted to data by means of a GM regression (see Chapter 
4 for a definition), which has the effect of automatically accounting for uncertainty: 

- when r2 is low (that is when both catch and effort are estimated with large errors, and/or 
when the catch is strongly affected by environmental perturbations), the GM regression 
will provide lower (more conservative) estimates of optimum effort than an AM regression, 

- when r2 is high (that is when there is a tight relationship between the catch and effort 
data), the GM regression will have a slope and an intercept similar to those of an AM 
regression. 

This feature, generally not considered when fitting surplus production models to data, seems par- 
ticularly appropriate in light of the fact that costly investments are often based solely on the values 
of optimum effort generated by surplus production models. 

An application of Fox's model is given in Example 10.3 (see also Fig. 10.4 and Table 10.3). 
The models discussed above, although representing considerable simplifications or improve- 

ments of the model presented by Schaefer (1954,1957), have a major drawback in that they require 
measures of effort, which are often unavailable and/or unreliable. 

It is, however, not fishing effort itself which "generates" a surplus yield of an exploited stock, 
but fishing mortality. In an exploited fish stock, on the other hand, fishing mortality is often not 
directly measurable, because of the simultaneous effect of natural mortality. 

To resolve this, Csirke and Caddy (1983) suggested to plot annual catch (Y) as a parabolic 
function of total mortality (Z), i.e., 

500 1,000 1,500 2,000 2,500 3,000 

Effort ( no. of standard vessels ) 
Fig. 10.4. Yield curve for the north Java coast trawl fishery (based on data in Table 10.3 
and Example 10.3). 



Table 10.3. Catch-and-effort data from the north Java demersal trawl fishery (all species aggre- 
gated) (from Dwiponggo 1979). 

No. Year 
Catch 

t x lo3 
Effort 

No. of standard vessels 

where Z = F + M, from which the following parameters can be estimated. 

and 

MSY = a - (bt /4b, ) . . . 10.25) 

B, = MSY 4 . . . 10.26) .. 
Im 

An application of this method is given in Example 10.4 (see also Fig. 10.5 and Table 10.4). 

Total mortality ( Z ) 
Fig. 10.5. Yield curve of shorthead anchovy (Stolephorus heterolobus) at Ysabel Pas- 
sage, near New Hanover, Papua New Guinea. M = natural mortality. Numbers refer to 
those in Example 10.4. 



A further property of the model of Csirke and Caddy is that Z in equation (10.20) above can 
be replaced by Z/K, the latter being a parameter which can be estimated from the average length 
composition of the fish catch and without an exact knowledge of the growth parameters of the fish 
in question (see Chapter 5). The modified model thus becomes 

Y = a' + bi (Z/K) + bi (Z/K)? . . . 10.27) 

with 

and Zopt/K = -b: /2a1 . . . 10.29) 

The parameter Zopt/K corresponds to an optimum mean length in the catch (rapt), the value of 
t which may be estimated by trial and error, e.g., from 

Finally, E = F/Z may be estimated for each value of Z/K from the equation 

E = 1 - (MIK) I (ZIK) . . . 10.31) 

which can be used, along with the estimate of M/K, e.g., to estimate the relative yield per recruit 
obtained at each level of Z/K (see Chapter 8). See Chapter 5 for definitions of E, L' and E. 

All of these parameters, it should be mentioned are either solutions of, or are implicit in the 
Schaefer model. The point here is that they can all be derived from quantities (catch, total mortal- 
ity) that can be estimated rather straightforwardly, e.g., using one of the various methods presented 
in Chapter 5. 

When catch data are not available, catch-per-effort data (c/f = U) can be used in a linear regres- 
sion of the form 

where M = (a - U,)/b . . . 10.33) 

and where U, is the catch per effort corresponding to B,, i.e., to the unexploited biomass or virgin 
stock (assuming that B, = B,). Generally, when catch-per-effort data are available, it will be possible 
to estimate U, by using the first two catch-per-effort values in a developing fishery (U1, U2) and 
defining 

U, % 2U1 -U2 . . . 10.34) 

(Obviously, data from biomass survey in an unexploited stock can be used to estimate both U, and 
B, directly). Using U, and equation (10.32), it is then possible to estimate Fopt as 

while a knowledge of B, can be used to estimate MSY from Fopt 

MSY = 0.5BW . Fop, . . . 10.36) 

APPLYING SURPLUS-YIELD MODELS 
TO MULTISPEC-IES STOCKS 

In demersal fisheries, especially in the tropics, the catch tends to consist of a multitude of 
species for which individual assessments are often impossible or inappropriate. 



Table 10.4. Catch and total mortality estimates of shorthead anchovy (Stolephorus heterolobus) in 
Ysabel Passage, near New Hanover, Papua New Guinea. Data from Dalzell (1984); Z estimates 
based on mean lengths. 

Catch Total mortality 
No. Year (t) (Z) 

1 
2 
3 
4 

not used 
5 
6 
7 

It has been a common practice to treat the various fish of tropical and other multispecies 
stocks as one single entity, applying the Schaefer or Fox model to the total multispecies catch of 
these fisheries (see Example 10.3 and FA0 1978). Pope (1979) recently provided a theoretical 
basis for this approach, while some of the problems associated with it were discussed in Pauly 
(1979b). See also Chapter 12. 

Recommended reading: Ricker (1975) gives a good account of the historical development of 
surplus yield models, but it is best to read also some of the original papers on the topic, notably 
those by Graham (1943), Schaefer (1954,1957), Silliman and Gutsell (1958), Schaefer and Beverton 
(1963), Gulland (1969) and Schnute (1977). 

Suggested research topics: Crucial with surplus yield models is the availability of long time- 
series of catch-andeffort data (or, in the case of Csirke and Caddy's model, of catch and total mortal- 
ity data); it is worthwhile to estimate these parameters reliably in an ongoing fishery. Where possible, 
one should also attempt to reconstruct time-series of total mortality (e.g., from length-frequency 
data) for use with available time series of catch. 





Application of Schnute's model to the red snapper fishery on Campeche Bank, 
Mexico. 

Data from Table 10.2 

Computation 

1) Read sides 1 and 2 of Program FB 27 

2) Initialize and enter catch and effort data 

Keystrokes: 4.91 ?' 227 f a 5.02 ? 224 A 4.25 ?' 220 A 4.14 ? 227 A 4.79 ?' 201 A 
3.46 ?' 141 A 3.57 ? 125 A 3.77 ? 123 A 3.98 ?' 145 A 4.37 ?' 149 A 
4.24 ?' 164 A 5.06 ? 182 A 4.79 ?' 179 A 4.38 ?' 166 A 3.53 ? 156 A 

3) Calculate parameters of regression 

Keystrokes Results 

E 0.006 ( R ~ )  
0.268 (a) 

-0.001 (b,) 
-6.359 (b,) 

4) Estimate fishery-related parameters 

f e  0.268 (r,) 
0.001 (q) 

70.309 (B,) 
223.558 (fopt) 

4.712 (MSY) 

As might be seen in Fig. 10.3, the yield curve based on Schnute's model (S) resembles quite 
closely the curve obtained by fitting the catch figures to  the average of contemporary and 
the preceding year's effort (curve BAM). Intuitively, this result makes sense since Schnute's 
model in fact uses the same averaged effort and is fitted with an AM multiple regression. 
The abysmally low value of R2 (= 0.00635) sheds doubt on the reliability of the various 
parameter estimates, however. 







11. The Intrinsic Rate of Population Increase 

INTRODUCTION 

In the preceding chapters, various models (= equations) were presented, each of which illus- 
trated a different aspect of the dynamics of fish populations. 

It is the purpose of this chapter to demonstrate the interrelationships between some of these 
models, to show that several of the equations presented here actually reflect different aspects of the 
same processes. 

The concept most helpful to show interrelationships between different models used in fish 
population dynamics is, paradoxically, rarely used in this field. It is the intrinsic rate of increase (r, ) 
of a population, which may be defined as "the innate capacity of (a) species to increase when popula- 
tion growth is not slowed down by competition" (Pielou 1978). 

The r, concept is extremely important in quantitative ecology, and at least one chapter in 
every good ecology text is devoted to it (e.g., Odum 1971; Slobotkin 1980; Ricklefs 1979). In 
terms of Russel's Axiom (see Chapter I), rm can be defined as 

(when B is low) but this cannot be used for quantitative stock assessment purposes because Russel's 
axiom itself expresses things only qualitatively. 

MAXIMUM SUSTAINABLE YIELDS AND rm 

The intrinsic rate of increase (r,) can be defined quantitatively in terms of the Schaefer 
model, where r,, MSY and B,, the carrying capacity of the environment are related such that: 

rm Bm 
MSY = 4 . . .11.2) 

As discussed in Chapter 10, the Schaefer model is based on the assumption that the growth of 
a fish population released into a new environment can be described by a logistic growth curve. This 
curve has the form 

where B, is the carrying capacity of the environment in terms of weight, r, the intrinsic rate of 
population increase, and ti (=t at inflexion point) is a constant which adjusts the time scale to an 
origin such that t - ti = 0 when Bt = B,/2, Bt being the biomass at time t. B, and Bt may be re- 
placed by N, and Nt when equation (11.3) refers to numbers. When equation (11.3) is used to fit 
data from a selection experiment, Bt is equivalent to the probability of capture, t to the length, and 
ti to LC. (Refer to Chapter 3.) 

Aquarium experiments demonstrate the growth of fish populations can often be approx- 
imated by a logistic curve (Silliman and Gutsell 1958, Fig. 3). In nature, cases of fish populations 
"exploding" into a new environment are obviously difficult to document. Some data, however, are 
available for Red Sea lizardfish (Saurida undosquamis) which penetrated into the Mediterranean 
via the Suez Canal, and after a lag phase (of genetic adjustment?) experienced a rapid increase of 
population size, as documented by catch-per-effort data off the Israel coast (Table 11.1). 

As might be seen from Fig. 11.1 and Table 11.1, the course of the population increase reflected 
in the catch-per-effort data roughly corresponds to a logistic curve, the rm and ti values of which may 



Table 11.1. Data on the growth of a newly established Mediterranean population of Saurida 
undosquamis, a Red Sea immigrant. Data from Ben-Yami and Glaser (1974, Fig. 5B). 

Catchleffort 
Code year (kg/h) 

used 
0 not used 

Coded years 
Fig. 11.1. Logistic growth curve fitted to  catch-per-effort data on a newly established Mediterranean population of 
lizardfish (Saurida undosquamis) (based on data in Table 11.1, and see Example 11.1 for selection of points used in 
curve fitting). 

be estimated by means of Program FB 28 (Example 11.1). MacCall(1980) presented data on a tem- 
perate fish (Engmulis mordm) suggesting a similar logistic increase of biomass. 

Equation (11.2) suggests that when an estimate is available of the virgin biomass of a given 
population (h, or Bo in Gulland 1971) and when it is legitimate to set B, = B, (it is not always 
the case, see Pauly 197913, or May et al. 1979), all that is needed to obtain a preliminary estimate of 
(future) MSY (also called Potential Yield, Py) is an estimate of rm . 

Several, rather elaborate methods are used by ecologists to estimate rm . One of them is the 
calculation of r, from so-called "life tables" (see Pielou 1978, Ricklefs 1979). This method has data 
requirements which fishery biologists will find quite hard to meet and only two studies have come 
to my attention which estimates rm using this approach in fish (Murphy 1967, Pitcher and Hart 
1982). Two HP 67/97 programs are available to estimate rm from life tables. Demography I and 
Demography 11, both in the HP Users' Library Solutions booklet devoted to "Biology". 



Blueweiss et al. (1978) have shown that r, in animals and various small organisms is inversely 
related to body weight and presented a double logarithmic plot of r, on "mean adult body weight" 
(m spanning 22 orders of magnitude. I have added several values to the plot presented by Blueweiss 
et al. (1978) which pertain to fish and whales, the latter expanding the range covered by the plot to 
24 orders of magnitude (Fig. 11.2). 

Although the fit, particularly in organisms ranging from to 10' g is not particularly good, 
a clear relationship emerges which allows, when mean adult body weight is known, a rough estimate 
of r, through the relationship 

where r, is expressed on a yearly basis and W is grams, and computed from W = (W,, + W,)/2; 
W,, is the maximum weight reached by the adults of a stock and W, is their weight at first 
maturity (see Example 11.2). 

Combining expression (11.4) with expression (11.2) gives 

which can be used to obtain first estimates of MSY, i.e., potential yield, when only virgin stock 
size and mean adult body weight are known. 

The results obtained by means of this equation may thus be compared with those obtained 
using Gulland's (1971) well-known relationship 

Adult body weight (w, in g) 

- 10,ooo 

- 1.000 

- loo 

- 10 

- 1.0 

- 0.1 

Fig. 11.2. Relationship between intrinsic rate of populetion increase (r, ) and adult body weight for various organisms. 
(The dots and the line are from Blueweiss et al. 1978; the open squares were added by Pauly 1982a.) 



See also Example (11.3). Expressions (11.5) and (11.6) are rough approximations; with expression 
(11.5) the major problem is the fact that the built-in relationship between W and r, is based on a 
linear regression whose scatter of data is not negligible, while the major drawback of expression 
(11.6) is that the resulting Py estimates are directly proportional to and thus highly sensitive to, 
the value of M used. Also, the validity of (11.6) rests on the assumption that Fopt = M which 
probably does not apply in most stocks (see p. 77). 

STOCK-RECRUITMENT RELATIONSHIPS AND rm 

Another integrative property of r, is that it can also be shown to be an implicit parameter 
of both Beverton and Holt and Ricker-type stock-recruitment curves. This property, which was 
discussed by Murphy (1967) and Eberhardt (1977) will be here touched upon only briefly because 
its various ramifications have not yet been fully investigated. Starting with the second form of 
Ricker's stock-recruitment curve (see Chapter 9), one can define 

where P, is the replacement abundance of parent stock and P, is the parent stock producing maxi- 
mum recruitment (see Chapter 9 for details on these definitions). Subsitution into Ricker's second 
stock-recruitment curve gives: 

Now, it is obvioas that as P approaches zero, the second term of the exponent (PIP,) will also tend 
to approach zero.* Division of both sides of (11.8) with P, when P is very small, yields: 

Since the ratio R/P expresses the ratio between total births in two successive generations at very 
low population sizes there is an identity between (11.9) and the equation used in the ecological 
literature 

where, at very low population sizes 

No is the total number of animals in the population at the beginning of a generation 
NT is the number of animals at the end of that generation 
T is the generation time 

and where 

r, is the ubiquitous intrinsic rate of increase. 

In view of this identity: 

*In Murphy (1967) the word "zero" has been erroneously replaced by "unity." 



which may be called "Murphy's identity". An application of this identity is given in the following 
paragraphs. 

The generation time, T, of an animal is generally quite difficult to estimate (but see Slobotkin 
1980, Fig. 5.2). However, it appears that a great number of the small fish caught in tropical waters 
have growth parameters suggesting a rather short life span (2-4 years) and an age at first maturity 
(t,) of generally one year (Banerji and Krishnan 1973; Qasim 1973a, 197313). High natural mortal- 
ity and lack of substantial post-maturity growth will cause a mean generation time of about 1 year 
in such fish, or: 

Only one data set is readily available which can be used to test these conjectures. In Chapter 9, 
Example 9.4, a value of Pr/Pm was estimated for Lactarius lactarius, a fish with the characteristics 
given in the above paragraph and this value was 2.84. 

The value of W, used in Pauly (1980d) was 193 g, which may roughly correspond to W,,, 
while the value of W, is 57.3 g. Hence, & as defined above, is (193 + 57)/2 = 125 g, from which r, 
is estimated, via equation 11.4, to be 2.60. Conversely, T can be estimated from 

which is similar to the value assumed previously. 
While Murphy (1967) investigated the second form of Ricker's curve, Eberhardt (1977) 

demonstrated a link between the first form of Ricker's curve and the logistic growth curve, which 
led to  the identities 

and 

while the link between Beverton and Holt's stock-recruitment curve and the logistic growth curve 
was established through the identities 

and 

The parameters a' in Ricker's curve and P' in Beverton and Holt's curve are often called "density- 
independent terms"; given equations (11.15) and (11.17), their relationship is given by 

The "densitydependent terms" (0 in Ricker's curve, a' in Beverton and Holt's curve) are also closely 
related, and are approximately the same when r, is small, diverging up to 20% when rm is large; 
this is expressed by the approximations 

which applies when rm is small (Eberhardt 1977; Pitcher and Hart 1982). 



The presentation of these interrelationships between different models and the example for 
Lactan'us lactadus given above are not meant to suggest that values of r, obtained say from equation 
(11.4) and from stock-recruitment relationships should necessarily coincide. Rather, the suggestion 
made earlier by Murphy (1967) is reiterated that there might be here a type of interrelationship 
worth pursuing further which might lead to a further integration of the various concepts used in 
fishery biology. 

Indeed, as the following, last chapter should demonstrate, there is a great need for attempts to 
integrate concepts derived from fish population dynamics with some of those derived by theoretical 
ecologists, and thus to cross-pollinate the two disciplines. 

Recommended reading: Since a good background in ecological theory should help the fishery 
biologist put her or his field into perspective, it may be appropriate to list here some ecological 
texts, all of which discuss, among other things, the intrinsic rate of increase of populations and 
related concepts, e.g., Slobotkin (1980), Odum (1971), Ricklefs (1979) and Pielou (1978). These 
books also contain most of the references needed to plunge into the ecological literature. 

Suggested research topics: Since r, is so closely related to yields, it would seem that attempts 
to estimate this parameter from life tables of commercial fish populations should represent worth- 
while research projects (see Pitcher and Hart 1982 for data requirements and method). Such a study 
also would allow one to identify factors (such as temperature or fecundity) other than body weight 
which may help to predict values of r,, or to improve estimates obtained from plots such as Fig. 
11.2. 









12. Multispecies Fisheries 

INTRODUCTION 

With few exceptions, the models discussed in the previous chapters were developed for use in 
conjunction with single-species stocks and fisheries. 

When using such models, an implicit assumption is that the stock under investigation has only 
negligible interaction with other species, except for those interactions accounted for by the catch-all 
interaction term "M", natural mortality (caused mainly by predation). 

This approach may be justified in temperate waters, where some stocks (e.g., cod, pollock, 
herring, salmon) sustain "aimed" fisheries, in which the fish not belonging to the target species form 
only a minor part of the catch (the "bycatch"). 

In tropical fisheries, especially in demersal fisheries, no single species is aimed at, generally, and 
there is no "bycatch" when the definition above is used, except in shrimp fisheries where the fish 
caught (often 90% of the total catch by weight) are frequently thrown overboard. Table 12.1 re- 
produces the typical catch of a Southeast Asian trawler. The large number of species, none of which 
is dominant, will be noted. 

Table 12.1. A typical trawler catch (45 min haul) from the Java Sea (06' 1 2 ' ~ ,  108' 2 6 ' ~ ,  34-35 m 
depth) made on 5 September 1976 by R/V Mutiara IV showing the diversity of tropical demersal 
multispecies stocks. (Asterisks refer to weight and number raised from a sorted sample of 1 out of 
5 boxes. Invertebrates not included.) 

No. Family Species w 0%) N 

Ariidae 
Balistidae 
Carangidae 
Carangidae 
Carangidae 
Carangidae 
Carangidae 
Carangidae 
Carangidae 
Carangidae 
Chirocentridae 
Clupeidae 
Clupeidae 
Clupeidae 
Clupeidae 
Clupeidae 
Dasyatidae 
Drepanidae 
Engraulidae 
Gemdae 
Fistulariidae 
Formionidae 
Lagocephalidae 
Leiognathidae 
Leiognathidae 
Leiognathidae 
Leiognathidae 

Osteogeniosus militaris 
Abalistes stellaris 
Seriolina nigrofasciata 
Scomberoides sp. 
Alepes kalla 
Alepes djedaba 
Megalaspis cordy la 
Selaroides leptolepis 
Carangoides spp. 
Atropus atropus 
Chirocentrus dorab 
Anadontostoma chacunda 
Opisthopterus valenciennensis 
Dussumieria acuta 
Ilisha sp. 
Sardinella gibbosa 
not identified 
Drepane longimana 
Stolephorus spp. 
Pentaprion longimanus 
not identified 
Formio niger 
not identified 
Leiognathus splendens 
Leiognathus leuciscus 
Leiognathus bindus 
Secutor ruconius 

Continued 
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Table 12.1 continued 

Leiognathidae 
Lutjanidae 
Lutjanidae 
Lutjanidae 
Lutjanidae 
Mullidae 
Nemipteridae 
Nemipteridae 
Pentapodidae 
Platycephalidae 
Plectorhynchidae 
Pomadasy dae 
Pomadasy dae 
Priacanthidae 
Scombridae 
Scombridae 
Scombridae 
Stromateidae 
Stromateidae 
Synodontidae 
Synodontidae 
Synodontidae 
Sphyraenidae 
Scienidae 
Theraponidae 
Triacanthidae 
Trichiuridae 
Trichiuridae 

29 families 

Secutor insidiator 
Lutjanus sanguineus 
Lutjanus johni 
Lutjanus lineolatus 
Caesio erythrogaster 
Upeneus sulphureus 
Nemiptems japonicus 
Nemiptems bathybius 
Pentapodus setosus (?) 
not identified 
Plectorhynchus pictus 
Pomadasys maculatus 
Pomadasys sp. 
Priacanthus macmcanthw 
Scomberomorus guttatus 
Scomberomorus commerson 
Rastrelliger brachysoma 
Pampus chinensis 
Pampus argenteus 
Saurida tumbil 
Saurida elongata 
Saurida longimana 
Sphyraena obtusata 
not identified 
Therapon sp. 
not identified 
Trichiur~s lepturus 
Leptumcanthus savala 

43 genera and over 55 spp 

The goal of fishery biologists studying a fishery is generally to obtain information upon which 
management measures (e.g., catch allocation, effort control) can be based. Most often, these manage- 
ment measures aim at one of the following items: 

- to provide as high a sustained catch as possible 
- to provide a reasonable income for as many people as possible 
- to generate profits as high as possible for those who have invested in the fishery. 

These items, it will be noted, are not necessarily compatible with each other and more often than 
not, they are mutually exclusive (Clark 1976). 

When the policy is to maximize yields, three forms of overfishing must be prevented: 
- growth overfishing, i.e., taking fish that are too small. (The methods used to detect and 

quantify growth overfishing are outlined in Chapter 8) 
- recruitment overfishing, i.e., taking so many adult fish that recruitment of young fish to 

the fishery is affected. (The methods to detect and quantify recruitment overfishing are 
outlined in Chapter 9) 

- ecosystem overfishing, i.e., inducing changes in stock composition through excessive fish- 
ing such that abundant species decline without the subsequent compensatory increase of 
another (group of) species. 

Obviously, when exploiting with an unselective gear a community of widely different fish, some 
large and long-lived, others small and short-lived, it is not possible to prevent growth and recruit- 
ment overfishing of the most sensitive stocks. With increasing effort, some species will then gradually 
disappear resulting at high levels of exploitation in a complete alteration of the original food chains 



and catch compositions and in ecosystem overfishing as well. This, and related problems are reviewed 
in FA0 (1978), Pope (1979), Pauly (1979b), and in several papers included in Pauly and Murphy 
(1982). 

In the following, a brief discussion is given of approaches to modelling and managing multi- 
species systems. 

MODELLING MULTISPECIES SYSTEMS 

Two-species systems 

Attempts by biologists to model quantitatively interacting species started, logically enough, 
with studying the two+pecies case. The pioneers in this field were Lotka (1925) and Volterra (1926), 
who suggested independently what are now known as the Lotka-Volterra equations, 

which describe the rate of change, in numbers, of two competing species, where rml and rma are 
the intrinsic rates of increase of species 1 and species 2 respectively, ml and ma are positive propor- 
tionality constants, and C1 and C2 are interaction terms. 

It can be shown (Gause 1934; von Bertalanffy 1951) that the systems represented by equa- 
tions (12.la and 12.lb) are stable only in the unlikely case that rml/ml = rm2/m2. In all other 
cases, one species (that with the highest rm/m) will survive while the other will become extinct. 
This behavior, the "competitive exclusion principle" of Gause (1934) was demonstrated to occur 
in micro-habitats such as culture bottles and aquaria in a wide variety of animals, including tropical 
fish (Silliman 1975). A pair of Lotka-Volterra equations can also be formulated for a predator- 
prey system: 

where g is a coefficient of negative growth (decline) of the predators (N2) in the absence of prey 
(N1), while r, is the intrinsic rate of increase of the prey population, cl and ca being interaction 
terms. An interesting property of these equations is that they generate oscillations over time, under 
certain circumstances, in the number of prey and predators that are independent of environmental 
fluctuations, and can be used to explain the oscillating behavior of at least some terrestrial predator- 
prey systems. Such oscillations have rarely been reported from tropical waters, one exception being 
possibly Munro (1967) who discussed the oscillatory behavior of a tilapia-tigerfish (Hydrocyon) 
system in Lake McIlwaine, Zimbabwe. 

An HP 67/97 program incorporating the Lotka-Volterra equation ("fox and rabbit case") was 
submitted by J. van Thielen to the HP67/97 Users Library (# 02752D); the "fox and rabbit case" 
can also be simulated on the HP67/97 with the help of the keystroke sequences in Green and 
Lewis (1979). 



The Lotka-Volterra equations, while providing insight into various aspects of the interactions 
between species, have been often criticized because of their extreme simplicity and lack of realism, 
e.g., by Beverton and Holt (1957) who proposed a much more elaborate two-species model. 

However, bringing some realism into the Lotka-Volterra system of equations is relatively 
straightforward. Larkin (1966), who briefly reviewed some earlier variants, suggested the following 
set for predator-prey interactions: 

where rml and rm2 are the intrinsic rates of increase of the preys (N1) and the predators (N2), a1 
and a2 are coefficients of intraspecific competition, cl and c2 are interaction terms, expressing 
decrease for the prey in the presence of predator and increase of the predator in the presence of 
prey. This system of equations, which is far more realistic than the original Lotka-Volterra formu- 
lation, has the following properties: 

- the abundance of predator and prey are mutually dependent 
- the abundance of prey has an upper limit in the absence of predators 
- the abundance of predators has a lower limit in the absence of prey (i.e., they switch to 

another prey and don't become extinct) 
Larkin (1966) presented a discussion of the behavior of the predator-prey system in expression 
(12.3) under exploitation by a fishery. As this behavior is similar to that of the model developed by 
Pope (1979), we shall now go directly to the latter model. 

Pope (1979) presented an equation which is extremely helpful in making species interaction 
visible. The model has the form 

where P and Q are interacting species, a, b, d and e are constants of parabolic yield curves, c l  and 
c~ interaction terms, Yp and YQ yields from species P and Q, respectively, given the fishing mortal- 
ities Fp and FQ and where Yt is the total yield from the two-species system. 

For example we could have 

where P is an abundant prey, Q a less abundant predator and -25 and +25 are the interaction terms, 
positive for the predator whose yield increases in the presence of prey. (This example is illus- 
trated in Fig. 12.2). Table 12.2 presents some combinations of values of a, b, d, e and c l  and c2 
and indicates the type of interaction that these values suggest. Based on the values in Table 12.2 
a series of four figures have been drawn (Figs. 12.1 to 12.4) as in Pope (1979) which demonstrate 
the effects of biological interactions on the combined yields of two interacting species. 

In addition to illustrating biological interactions, Pope's model equation (12.4) also allows 
for a precise definition of what he calls "technological interactions", i.e., the fact that in a multi- 
species fishery (and in fact in "single" species fisheries also) catching a certain quantity of a given 
species necessarily implies catch of a certain quantity of other species. When the ratio of the fishing 
mortalities (Fp, FQ) applied on species P and Q, respectively, remains constant for any level of Fp, 
a straight line is generated which starts at the origin and cuts through the yield isopleths (see lines 



Table 12.2. Constants used for drawing Fis .  12.1 to 12.4. 

Fig. Constants of yield curve and interaction terms System optimum 
no. a b d e C2 MSY F~ F~ 

Fig. 12.1. Combined yield of two similar species, one 
preying to a small extent on the other (see constants 

P = O  of Table 12.2). 

Fig. 12.2. Combined yield from a predatorprey system 
(see constants in Table 12.2). Lines A, B and C refer to 
three fixed F-ratios (see Fig. 12.5). Fishing mortality of prey (F,) 



A, B, and C on Fig. 12.2). The interesting thing about such lines, however is that, while any F-ratio 
necessarily generates a parabolic yield curve (see Fig. 12.5 and Pope 1979 for a mathematical proof), 
this yield curve does not necessarily go through the maximum sustainable yield (MSY) of the whole 
system (see Figs. 12.1 and 12.5). As Pope (1979) demonstrated, the two-species system may be 
extended to any number of species with the overall conclusions remaining that 

- For constant F-ratios, the total yield curve for any system composed of parabolic single 
species curves and linear interaction terms is itself a parabola. 

- The F-ratio occurring in a given fishery does not necessarily generate the MSY, and the 
optimum F-ratios can be found only iteratively by changing F-ratios until MSY is reached. 

Fig. 12.3. Combined yield from a system in which each 
species strongly benefits from the presence of the o t h e r  
mutualism (see constants in Table 12.2). 
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Fig. 12.4. Combined yield from a system in which each 0 
species, to a small extent, benefits h m  the presence of 
the other (see constants in Table 12.2). 
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real MSY \ 

- Fp = 1/2 FQ ( A )  

0.5 1.0 1.5 2.0 

Fishing mortality on species P (Fp 

Fig. 12.5. Graph showing how the choice of a given constant ratio of fishing 
mortalities affects the shape and height of a yield curve; note that one opti- 
mum F-ratio leads to the real MSY of the two-species system (see also 
Fig. 12.2). 

Pope's model is very useful in that it enables the user, at least in the two-species case--to literally see 
the interactions affecting the yields of the system. However, the constants (a, b, c, d, e) of the model 
cannot be estimated, for which reason it generally cannot be used directly for stock assessment 
purposes. 

Concerning equation (12.4) it may finally be mentioned that the intrinsic rates of population 
increase (r,) are implied in it, i.e., 

r m ~  = ~ F P  (opt) 

and 

r m ~  = 2 F ~  (opt) . . . 

where FP(opt) and FQ(opt) are the fishing mortalities which generate MSY in species P and Q, respec- 
tively. 

Program FB 30 is provided here to help the reader quickly calculate values of YT, 
and Y? for any set of constants as well as for finding the MSY and Fopt values of the two-species system. t 

is hoped that exercises using this program and combinations of constants such as exemplified in 
Table 12.2 will help visualize the nature and effects of both technological and biological inter- 
actions (see Example 12.1). 

N-species systems 

It is only since the advent of electronic computers that it has become possible to model systems 
containing more than two species realistically. Particularly, the availability of computers made it 
possible to depart from simplifyingapproaches such as represented by equations (12.1) to (12.4) and 
to incorporate into the models, as suggested earlier by Beverton and Holt (1957), more realistic 
representations of growth, mortality, predation and other processes. This approach is taken in the 



large and complex "North Sea model" of Andersen and Ursin (1977), and in the various models of 
"multispecies VPA" presented by Pope (1979), Helgason and Gislason (1979) and Sparre (1980). 

However, smaller simulation models, involving only a few trophic groups and the transfers 
between them can be used to test and validate hypotheses concerning the interactions within an 
exploited multispecies stock. This approach is best exemplified by Larkin and Gazey (1982) who 
designed a simulation model of the Gulf of Thailand stocks and fisheries and used it for testing 
mechanisms suggested by Pope (1979) and Pauly (197913) to explain the observed changes in catch 
rates of different species groups. Such models, as well as the box model discussed below can also 
help in identifying gaps in our understanding of a system. 

METHOD FOR CONSTRUCTING 
QUANTITATIVE "BOX MODELS" 

While the mathematical simulation of multispecies systems is generally so complex as to dis- 
courage all but very mathematically-oriented biologists, constructing "box" models of an ecosystem 
is rather straightforward. "Box" models are here defined as a class of models where emphasis is on 
the gmphical representation of an ecosystem and where the taxa having similar ecological roles are 
grouped together in "boxes" (see Fig. 12.6). 

Fishing 

I Primory production and detritus I 
Fig. 12.6. Simplified trophic model of Bukit Merah Reservoir, Malay- 
sia. The numbers in the boxes refer to annual mean standing stocks 
in tonnes, wet weight, while the numbers along the arrows express 
annual flows in tonnes (adapted from Yap 1983). 

Box models can be either qualitative as in Pauly's (1975) model of a West-African lagoon, or 
quantitative as in Walsh's (1981) model of the Peruvian upwelling system. 

Quantitative box models consist of four elements: 
a) the taxa included in each box (see Table 12.3 for an example) 
b) the biomass transfer between each box (i.e., the direction of the arrow linking the boxes 

with each other), 



Table 12.3. Data for the construction of a quantitative box-model of Bukit Merah Reservoir, 
Malaysia. Adapted from Yap (1983). 

- 

Trophic group Annual catch 
of fish (tonnes) Representative speciesa F M 

Detritivores 59.8 Labiobarbus festiva 0.58 2.22 
Herbivores 36.4 Osteochilus hasselti 1.18 2.12 
F'iscivores 31.5 Oxyeleotris marmorata 2.61 1.68 
Invertebrate feeders 15.4 - 1 . 5 ~  2 .0~  

-- - 

'Species representative of their trophic group. 
b ~ e a n  of 3 preceding values, taken in absence of other information. 

c) the average biomass represented in each box, and 
d) the average biomass transfer between boxes (i.e., the quantities represented by the arrows) 

(see Fig. 12.6). 
Identifying the taxa to be included in the various boxes involves criteria relating to the size of 

the animals, to their distribution and to their feeding habits. Generally, it will be possible to identify 
groups separated by all three criteria, e.g., 

- large predators, e.g., sharks and groupers, which are large, tend to occur in deeper waters 
and feed on smaller fish, 

- small, demersal, forage fish, e.g., slipmouths, which occur in relatively shallow waters and 
feed on zooplankton or zoobenthos, or 

- small pelagics . . . etc. 
Since food and feeding habits cannot be determined for all species concerned, exhaustive use should 
be made of the available extensive literature on food and feeding habits of fish and of generalizations 
relating the morphology of fishes to their feeding habits. 

Fishing effort ( f )  
Fig. 12.7. A simple economic model of a fiahery with fishing coab linearly propop 
tional to effort. Note that MEY (maximum economic yield, i.e., the maximum 
difference between gross value of catch and cost of fishing) is achieved at a level 
of effort (fi) lower than that needed (fi) to obtain MSY (maximum fsustab- 
able yield). Under conditions of open access to fishing, fishing effort will incream 
until total costs equal the groa value of the catch (i.e., fishing reaches fg, and 
the equilibrium point, EP) and at which profit for the average fiahing unit is zero. 
Note also that lowering the cost line (e.g., by subsidizing the fhhery) lowers the 
point at which equilibrium is reached, and thus lowers the catch (Smith 1981). 



Examples of such generalizations are: 
- large fish with strong, pointed teeth (sharks, conger eels, barracuda) are piscivorous (De 

Groot 1973) 
- piscivorous fish tend to  eat fish about one-quarter to one-fifth of their length (Ursin 1973; 

Cushing 1978) 
- fish with long, coiled guts (longer than 3-4 times their body length) are generally detri- 

tivorous (Pauly 1975) 
- fish with an extremely small mouth are generally zooplanktivorous 
- generalist-type fish, such as snappers, are omnivorous 
- the size of the spaces between the gill-rakers of pelagics gives a direct indication of the size 

of their favorite food, etc. 
This list is not exhaustive but indicates some of the methods which can be used to group fish into 
feeding niches and hence into the various boxes of a model. Obviously, when detailed data are avail- 
able on the food and feeding habits, ecological similarity (= niche overlap) indices can be computed 
to quantify objectively the similarity in the diet of different fish to assist grouping. One such index 
is: 

where paj and pbj are the percentages of a certain food item j in the food of fish species a and b, 
respectively, the index having a value of zero when the two fish species have no food item in com- 
mon, and of unity when both fish species have the same food items in the same percentage composi- 
tion (see Colwell and Futuyama 1971, and Pianka 1973 for another index). 

Obviously, grouping fish and invertebrates into boxes on the basis of their food and feeding 
habits makes the drawing of the arrows which link the various boxes quite easy, such that task (b) 
above becomes part of task (a). Putting numbers into the boxes is a little more complicated. 

The first step is to obtain the mean standing stock in each box (or at least in most of them). 
The most straightforward method to  obtain standing stock estimates is to conduct a trawl survey in 
the case of demersal stocks, or an acoustic survey in the case of pelagic stocks. In both cases, tagging- 
recapture experiments can also be conducted from which biomass and a number of other important 
parameters can be estimated. 

These methods, however, are rather expensive, and in the following a method to bypass the 
problem is shown-at least as a first approach. 

First, estimate the annual yield, by species group that is extracted from the system. Then, using 
methods selected from Chapter 5, first estimate fishing and natural mortality for species represent- 
ative of each (or most) of the boxes of the model. Then estimate mean standing stock from Equa- 
tion (6.7) or by means of any of the other methods available to estimate standing stock in Chapters 
6 and 7. 

It  will generally not be possible to  obtain estimates of mean biomasses (B) for all fish included 
in each box. As a first approximation, however, all the fish in a given box may be assumed to have 
the same fishing mortality (they will have similar sizes and occur at similar places, so it is not a com- 
pletely unreasonable assumption) (see Table 10.3). Putting numbers along the arrows linking boxes 
with each other is now relatively simple: 

- for the arrow linking fish with the fishery, use the yield data themselves, i.e., 

- for the arrows linking predators and their prey use, assuming that all natural mortality is 
due to  predation 

Q = M ~  . . . 12.9) 

where M is the natural mortality and Q is the wet weight of prey consumed by the predators. 
When a predation arrow goes to two or more predators, the value of Q is divided up in 
proportion of the biomass of each predator box (see Fig. 12.6). 



From a box model such as in Fig. 12.6, the following quantities may be estimated: 
a) food consumption per day and unit of weight of the animals in each box. Divide the 

amount (Z Q) going into a box by B, and then by 365, and 
b) the food conversion rate within each box (or by trophic level if appropriate adjustments 

are made), calculated by dividing all matter leaving a box (Z [Y + Q]) by all matter entering 
it. 

The values of food consumption should generally fall between 3% and 6%/day, and those of 
food conversion rate, 5% to 25%. These ranges can also be used to complete empty boxes in the 
model, when values of Y and F are unobtainable, e.g., for zooplankton (see Fig. 12.6). 

Quantitative box models, constructed dong principles such as outlined here can serve the fol- 
lowing purposes : 

- summarizing the data available on a multispecies system 
- allowing for an integration of a fishery with ecological data 
- identifying those parts of the system where gaps in knowledge occur 
- assessing the possible impact of exploiting one stock or the other. 
Useful references that may be consulted when dealing with aquatic food chains and box models 

of exploited systems are Winberg (1971), Steele (1973), Boje and Tomczak (1978), Pauly (1979b), 
Jones (1982) and Polovina and Ow (1983). 

MANAGING MULTISPECIES FISHERIES 

Fortunately, finding out what is necessary to  manage a multispecies fishery rationally is most 
often less complicated than trying to understand how the system works in biological terms. 

Throughout much of the world, as a rule, once exploitation of a stock has begun, the fishery 
rapidly moves toward overfishing because, in the absence of effective regulations, the point of 
equilibrium of a fishery occurs when the costs of fishing becomes as high as the gross returns from 
the fishery as shown in Fig. 12.7 and in Clark (1976). 

Thus, managing a fishery (as opposed to  developing one) is for most purposes synonymous 
with attempting to reduce or redirect fishing effort, in order either to increase the catch and/or to 
reduce losses due to overcapitalization, i.e., increase the income of those remaining in the fishery 
(see Fig. 12.7 and Smith 1981). 

pope (1979) suggested that fitting a parabolic yield curve to time series of catch-and-effort data 
from a multispecies fishery, although it may underestimate MSY, may be an appropriate method to  
identify an optimum level of aggregate effort, and this is, in fact, what is generally done in practice 
when time series of catch-and-effort data are available. However, Larkin (1982) pointed out that, 
contrary to expectations, "there is little evidence that total catches have fallen in tropical fisheries 
due to overfishing. Though catches of individual species have dropped, these often have been made 
up by increases of other species." 

For example, the catch-and-effort data of the Gulf of Thailand demersal trawl fishery (Table 
12.4) have been fitted with a total biomass Schaefer model (SCSP 1978) and a Fox model (FA0 
1978) although the data do not really suggest a downward trend of total catch at high levels of 
effort (although the catch-per-effort rate decreased dramatically). For this reason, a more or less 
flat-topped model would fit the data (see Fig. 12.8). 

Such a model is, for example 

where Y, is the "asymptotic yield" while a is an empirical constant. 
Obviously, when this model is used to reduce a set of catch-and-effort data, the need arises to  

somehow define an optimal level of effort (since infinite effort, giving Y,, would clearly be an un- 
reasonable proposition), especially when economic data are not available from which the equilibrium 
point and maximum economic yield can be defined. 

In analogy to  the Feel concept discussed in Chapter 8, a level of catch and effort may be 
defined at which the slope of the yield Gurve is one-tenth of the slope at the origin (Yo.,, fo.l) by 



first defining the slope of equation (12.10) 

which, when f = 0, reduces to Y, a. 
Thus, fo.l can be obtained from 

Index of effort (trawling hours x lo6) 

Index of effort (trowling hours x 10') 
Fig. 12.8. Comparison of two yield models fitted to catch-and-effort data from a tropical multiipecies fishery 
(the Gulf of Thailand trawl fishery). Upper: Fox model; lower: asymptotic yield model. Note that both 
models suggest that effort should be reduced, and yields stabilized in the neighborhood of 700,000 tonnes. 
(Based on Table 12.4 and Example 12.2). 



while is obtained from 

Yoel = Y, 0.9 

Thus, paraphrasing Gulland and Boerema (1973) who introduced the Foal concept, I wish to suggest 
that "the selection of 10% is arbitrary, but once the 10% figure is accepted, the corresponding catch 
can be calculated objectively. Thus it can be used to provide a commission or other management 
body objective guidance based on scientific grounds". An application of this model to a set of 
catch-and-effort data is given in Example 12.2 (see also Table 12.4) and Fig. 12.8. 

To avoid misunderstandings, it is stressed here that equation (12.10) is not meant to describe 
the whole range of yieldleffort relationships, which must exhibit a decline at very high levels of 
effort, but to help cope with a situation where the yieldleffort relationship shows no maximum and 
where, therefore, a management goal different from MSY must be used. 

Techniques on how to exploit a multispecies stock to obtain a desired species mix or avoid an 
undesired one are not available (Dam 1980). At least some of the following changes may be expected, 
however, given a steadily increasing level of effort on a demersal multispecies stock: 

- a decline of the catch per effort (although not necessarily of the total catch as noted above) 
- a rapid decrease and virtual extinction of very large fish (assuming that they are caught in 

the first place) 
- a decrease in the average size of the fish caught 
- an increase of the relative contributions of low-value, small-sized fish 
- the unexpected increase of previously insignificant components of the system (e.g., squids 

or jellyfish). 
I leave it to the reader to sort out these things in more detail. 

Table 12.4. Nominal catch-and-effort data from the Gulf of Thailand Trawl Fishery. Data derived 
from Fig. 7 in Buzeta (1978). 

Year 
Catch 

t x lo3 
Effort 

trawl-hours x lo6 

Recommended reading: The literature on tropical multispecies fisheries and on the modelling 
of such systems is rapidly growing. Useful contributions are FA0 (1978), Pope (1979), Pauly 
(1979b), Saila and Roedel(1980), Munro (1983), Simpson (1982), Marten and Polovina (1982) and 
Larkin and Gazey (1982). 



Suggested research topics: Evidently, it is difficult to  define a research program that applies to 
all multispecies stocks. However, the following elements should be included in any basic fishery 
research program: 

- monitoring total catch and catch per effort of the fishery 
- monitoring catch per effort of various "indicator" species representing various groups of 

fish (e.g., large, medium- and small-sized) 
- thorough study of the biology and population dynamics of the most abundant and of the 

most valuable species 
- an attempt to construct a "box model" of the system in question 
- an attempt to identify gear that would selectively remove certain groups of species (e.g., 

attempt to  identify the best F-ratios in the system in question). 
The various reviews included in Pauly and Murphy (1982) should be helpful in defining such 

a research program. 





Data from Table 12.4 

We take advantage of the fact that equation (12.10) has the same form as the special VBGF 
[see Chapter 41 (with to = 0) and use Program FB 3 (von Bertalanffy plot) to fit the data. 
Fitting the data is here viewed as finding the values of a and Y, for equation 12.10 which 
generate a curve that goes through the intercept (i.e., for which to = 0); a and Y, cor- 
respond to K and L, of the VBGF, respectively. 

1) Read sides 1 and 2 of Program FB 3. 

2) Select an initial value of Y, (Y, must always be higher than the highest reported catch). 
Upon visual inspection of Table 12.4, we select 850 (x lo3 tonnes) as an appropriate 
seed value. Thus 

Keystrokes: 850 ? 1 f a 190 ? .57 A 310 ? .98A 340 ? 1.35 A 360 ? 1.8 A 430 ?' 2.4 
A 510 ?' 3.2 A 510 ? 3.6 A 520 ? 3.7 A 600 ? 5.05 A 680 ? 5.75 A 800 ? 
8.6 A 550 ? 8.05 A 700 ?' 7.65 A 

3) Obtain value of r2, aand  "to" corresponding to Y, = 850 

Keystrokes Results 

4) Since equation (12.10) implies that "to" = 0, the seed value of Y, = 850 is too high, it is 
reduced to 825, which provides, upon repeating step 3 a value of "tow = -4.470. Thus, 
Y, must be lower, i.e., 810. This provides, upon repeating step 3 a value of "to" = 

--0.073. Clearly, we are on the right track. Further trials with 809 and 808 reveal that 
808 gives a value of "to" very close to zero. Thus, for Y, = 808 we have 

Keystrokes Results 

5) Using Program FB 9, and replacing age by effort and length by yield, we obtain values 
for drawing the yield curve, by first entering the values of a in ST01 and Y, in store A 
(see Table 4.8) then entering the f values and pressing A. 

6) Finally, foe, and Yo., are estimated from equations (12.13) and (12.14) by performing 

Keystrokes Results 

10 LN 



Appendix I. Testing Models and Their Results: An Introduction to  
Sensitivity Analysis and the Jackknife 

INTRODUCTION 

Throughout the twelve chapters of this book, various models have been presented through 
equations all of which provide, given appropriate inputs (e.g., data points), some useful output (a 
"statistic"). As the astute reader will have noted, neither the accuracy, nor the precision of the 
estimated statistics is discussed at length for any of the models presented in these twelve chapters and 
in fact, equations for estimating standard errors of estimates are given in a few cases only. 

The reasons for this are two-fold: 
- for a number of models, equations for the estimation of standard errors are either lacking, 

or inordinately complex, and 
- a simple method exists, called the "jackknife", which can be used to estimate standard 

errors for the output of any model, thus making specific equations for each model super- 
fluous. 

While the jackknife method, presented in detail below, can be used to assess for any model the 
precision associated with estimates of a given statistic (i.e., the width of the confidence interval 
about that statistic), another method must be used to assess the "sensitivity" of a model to its 
input parameters. 

Only "ordinary sensitivity analysis" will be discussed here; it has as its main objective "the 
identification of input parameters which, when changed by a fixed percentage, produce either 
a strong or a weak effect on the model output" (Majkowski 1982). 

SENSITIVITY ANALYSIS 

In ordinary sensitivity analysis, only one parameter is changed at a time, usually by a fixed 
percentage (U 7%). The effect of the changes is expressed by a "D-measure"" which is used to express 
the changes in output caused by changes in the inputs. The D-measure relates the output values in 
the "perturbed" state (i.e., when the parameter values have been changed) to those in the "unper- 
turbed" state (i.e., as occurs when the best available parameter estimates are used). 

An example of a D-measure which can be used for a variety of purposes is 

where X and X0 are perturbed and unperturbed outputs, respectively. Majkowski (1982), from 
whose paper this account is adapted, gave an application of ordinary sensitivity analysis to an equa- 
tion commonly used in tropical fish stock assessment (equation 5.9). A summary of his analysis, - 
based on the special VBGF and the parameter values L, = 28.9 cm, K = 0.46, = 16.4 cm and L' = 
12  cm, (for Nemipterus peronii from the Gulf of Thailand) is reproduced here (Appendix Table 1.1). 

The analysis led to the conclusion that equation (5.9) is extremely sensitive to changes in the 
value - of and that, therefore, every effort must be made, when using this equation, to ensure that 
L is estimated as reliably as possible. 

Similarly, Moreau (1980), who applied ordinary sensitivity analysis to Beverton and Holt's 
yield-per-recruit model (see Chapter 8), found that the parameter which most influences the results 
is natural mortality. He concluded that, when using the yield-per-recruit model, attention must be 
devoted to increasing the accuracy and precision of estimates of M (rather than, e.g., spend resources 
on better estimates of growth parameters). 

*Not to be mistaken for the parameter D in the generalized VBGF (see Chapter 4). 



Appendix Table 1.1. Values of the D-measure (formula 1) for various perturbations in the input 
parameters. The perturbed parameter is indicated in the first column of the table and magnitude 
of the perturbation (U%) in the first row of the table (from Majkowski 1982). 

Two other forms of sensitivity analysis exist in addition to ordinary sensitivity analysis-- 
extended deterministic sensitivity analysis and extended stochastic sensitivity analysis. They allow 
assessment of the impact of simultaneous changes of input parameters, for considering the effects of 
various types of error distributions in the input parameters, etc. (see Majkowski 1982). Ordinary 
sensitivity analysis as presented here, should suffice, however, for most models presented in this book. 

THE JACKKNIFE METHOD 

The underlying principle of Tukey's "jackknife" method is (1) that a given statistic A, com- 
puted via a given model from a certain number (n) of data points will take different values (AAi), 
depending upon which subset of the available data points are used for computation, and (2) that 
the distribution of the A+ values is related to the distribution of the statistic A itself (Miller 1974; 
Tukey 1977; Mosteller and Tukey 1977; Sokal and Rohlf 1981). 

Computationally, the jackknife involves the following steps: 
a) compute the value of the statistic A, using all available data points (n). This results in 

estimate A of the statistic in question, 
b) then compute n new values of the statistic A, but omitting each time another of the n avail- 

able data points. This results in n estimates of "Ai - each estimated by omitting 
a single data point (see Appendix Table I.2), 

c) use the Ai - values to compute "pseudovalues" of A, (@i), through the equation 

d) obtain a new estimate of A through 

A @ i  
A, 

= ------ = 5 
n 

[In a perfect world, the two estimates of A (Al , A P )  would be equal; in reality, they often 
are not. The standard error of A that is estimated by the iackknife (see below) pertains to A 2, 
for which reason it may be mo5e appropriate to stick to A as most useful estimator of A.] 

e) the standard error of A is then computed from 

where sd(4) is the standard deviation of the @ i  values. 
The authors cited above give more detailed accounts of the jackknife, which is illustrated 

here-following a suggestion by S. Saila (pers. comm.)-by the computation of standard error for 
the output of a surplus production model (MSY and fopt as defined in Chapter 10). 



Appendix Table 1.2, which is an extension of Table 10.3, gives the catch-and-effort values 
used and/or omitted for the computation of the Ai - values (i.e., estimates of MSYi - 1 and 
fopt i - 1) computed by omitting the data points (i) pertaining to the years 1969 to 1977. 

As might be seen, the results suggest rather small standard errors for the MSY and f, values, 
which, multiplied with the appropriate 3 value (see Chapter I),  would yield a narrow confidence 
interval. 

This application of the jackknife should have made the versatility of this method obvious. In 
principle, the method can be applied to all models presented in this book-except when the results 
are obtained through accumulation, where values cannot be omitted without distorting the final 
result entirely. 

Table 1.2. Application of the jackknife method to the surplus model Xsee also Chapter 10). 

q-l values Pseudovalues (&) 
# Year Catcha ~ f f o r t ~  MSYi-l fopt i-I @msy &,,t 

- - -- 

'lo3 tonne~ (see Table 10.3). 
b ~ o .  of standard vessels (see Table 10.3). 
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FB 16 Population Size (Petersen's Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FB 17  Leslie's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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FB 23 Conversion Factor "k" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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-31 
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014 CHS 
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016 + 
017 LN 
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019 X2Y 
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P-ram Listing (ml.-) 
S?EP KEVENTRY KEYCODE COYUEWT8 STEP KEY ENTRY KEY CODE COMMENTS 

022 x 
023 P; 
024 x 
025 SIN 
&6 RCLC 
027 X2Y 
028 RCLC 
029 2 
030 x 
031 P ;  
032 x 
033 COS 
034 RCLO 
035 STt8 
036 X Z  

037 STt9 
038 R 1  
039 6580 
040 - 
041 STOE 
042 P 3  
043 RCL3 
044 RCLC 
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046 RCLZ 
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048 x 
049 + 
050 RCLl 
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085 RCL5 
086 RCLA 
087 X 

088 + 
089 RCL2 
090 + 
091 RCLB 
092 RCLC 
093 X 

094 RCL8 
095 RCLB 
096 x 
097 + 
098 RCL6 
099 RCLA 
100 X 

I01 
102 RCL3 
103 + 
104 PC's 
105 ST07 
106 RCLC 
107 x 

-55 

060 

001 001 SLBLa 21 16 11 
, 002 CLRC 16-53 - 

003 ST00 35 00 - 
004 ST04 35 04 _ 
005 ST07 35 07 
Off6 ST09 35 09 
007 PZS 16-51 
008 CLRG 16-53 
009 RAO 16-22 

010 010 RTH 
011 tLBLA 

-55  --( 

,. 094 RtLO 36 00 - 
. 0 5 4  + -55 - 

036 RCL6 36 06 

C 
?to 

- - -  
109 ST06 A 

110 RCLB 3 6 1 2 -  
I l l  r -35 - 
112 + -55 

REGISTERS 
9 
u~ed 

S9 

6 
U6ed 

S6 
c, 

' 5  
w& 

55 
cs 

B C A 
used Used lrsed 

D E i 
cs 

u ~ e d  used C Q U ~  fe 

3 4 
use61 O a 

SO 

7 
used 

S7 
C? 

. 

8 
wed 

sa 
ff# t o  

' b, .' bz 
" c, 

s2 
c* f c3 c4 



STEP KEY ENTRY 

1 3 9  X 

140 STOL 
141 RCL4 
142 X 

143 RCLE 
144 RCLS 

R L  

RL 
RCLE 

X - 35 
$1-3 35-45 03 

P Z S  16-51 

ISZI 
RCLl  

R TH 
tLf3LD 

STOC 
R 1  

ST06  
R1 

S TOA 
RCLO 
RCLO 
RCL I 
RCLA 

X 

t 
RCL2 
RCLB 

KEY COOE COMWNTs 
36 06 
-35 - 

36 15 - 
36 07 - 

-39 - 
16 -51  - 

35-45 06 ' 
-31 ' 

35-45 05 ' 
-31 ' 

35-45 04 - 
16-31 ' 
36 14 ' 
36 06 ' 
-35 - 

35 15 ' 
36 06 ' 

-35 - 
36 15' 
36 07 ' 

- 3 5  - 
36 14' 
36 07 ' 

53 - 
-35 - 

16-51 - 
35-45 09 ' 

-31 ' 
35-45 08 ' 

-31 ' 
35-45 07 ' 

16 -51  - 

1 6 2  RCLO 3 6 1 4 &  
163 RCLS 36 05 

- 
219 + 

I64 x -35 - 220 220 RCL3 
165 STOE 3515: 221 RCLC 
166 RCL5 36 05 _ 222 X 

167 X -35 - 223 + 
168 RCLE 36 15 224 RTN 24 1 

LABELS FLAGS 
0 

1 

2  

3 

A entor &B 
'%b/se 
o 
5 
I 

C 

c 

2 

7 

b 

1 

6 

SET STATUS 

FLAGS TRIG msP D med 
d 

3  

8 

FIX e 
SCI 1If 
ENGO 
n =  2 

ON OFF 
o o es 
1 e31 
2 O E d  
3 0 M  

E 

e 

4 

9 

DEG o 
GRAD 0 
RAD B 



- 
D a- - W ( d  -6) f . $-*-s/;r t~ * ft. &;f 

- - -- - - . . - - k z  L, k- e - 1 - c--c .# bj 



STEP INSTRUCTIONS INPUT 
DATUUNlTZL KEYS 

nu 
, 3 hff f w ~ e  oheodu read,;, 6i&$ f undz d H/s Dm 

mooram card, /? ndt , dd it ma . c 3  0 
LIU 

4 Cu/w/afe RP  IAlO 
I 0  

5 C d ~ h f e  KO, b , & om# C ~~ 
I 0  



- 
SrOA 
RCLB 
RCL4 

X 

RCL6 
RCL 5 

X 

ST08 
RCU 
RCL4 

X 

RCL 6 
RCL6 

X - 
STOC 
RCL4 
RCLZ 
RCL 1 
P:S 

RCL8 
X 

RCLl 
- 

ST00 
RJ 

RCLB 
X 

RCLZ 

X 

STOE 
RCL3 
RCL8 

P S  
RCL3 

X 

RCL4 
X 

STEP KEYENTRY KEY- CWYEUTS 8TEP KEVENTRY KEY CODE COYYEISTS 
001 

010 066 - -45 - 
-45 

- 
35 11 
' 067 RCLC 36 13 - 

068 RCLA 36 11 
36 08 

- 
069 X -35 

36 04 ' om - 070 RCLB 36 12 - 
-35 

- 
071 RCLB 36 12 

36 06 ' 072 x 
- 

36 05 - - 3 s  - 
073 - -4 5 

-35 - - 074 ? -24 

001 *LBLA 2 1 1 1  
03 - 002 3 

* 003 ST04 35 04 - - 004 PZS 16-51 - 
' " 0 0 5  RCL7 3 6 0 7 -  

006 RtL4 36 04 ' 
' 007 X -35 ' 
* 008 RCLS 36 05 ' 

009 RCLS 36 05 - 
010 x -35 - 

00 

057 RCLA 36 11 
058 X -35 - 
059 RCLD 36 i f  - 

, 060 RCL5 36 05 - 
, 061 X -35 - 
- 0 6 2  RCLE 3 6 1 5  

063 - -45 
064 RCLB 36 12 - 
065 X - 3.5 



114 X 

1 1 5  RCL7 
116 RCLl 

1 1 9  RCLC 
1 2 0  RCLL 
121 x 
1 2 2  + 
123 RCLS 
124 RCL3 
1 2 5  x 
126 c - -- 
127 RCLB 
128 X2 

1 2 9  RCLl 
1 3 0  + 

STOE 

S T 0 0  
RCLY 
RCLE - 
STOE 

- 
S T 0 8  
RCLE 
RCL 0 - 
RCLA 

STOC 
RCLD 
RCL4 

RCLC - 
S T 0 0  
RCLB 

R TN 
tLBLE 

R 11) 
RCL J 

CHS 
PRTX 
ST04 

CHS 
RCLO 

CHS 
TONJ 

P i  

z 

PR TX 
ST06 
GSBo 

S I N  
RCL4 

X 

RCL3 
SSBQ - 

l/X 
PRTX 
S T 0 7  

R TN 
1L8LC 
sr00 
RCL6 

6SBa  
SIN 

RCL7 
X 

P i  

2 - 
RCL 4 

X 

RCLB 
RCL 5 

RCL4 
x 
+ 

CHS 
ex 

CHS 
I 

t 

RCL A 
X 

-22 1 2 1 6  RTN 



-- - - - -- 
and bl ogd pa& -@ f/jC miueeeof 6s. 



STEP INSTRUCTIONS INPUT 
OATAlUNlTS 

KEYS 

n r i  

- --k 

4 To estimah vuhe 0.4 L d  oed K ,  en* f ' 
#.a. K wi / /  be q p ~ e s s e d  in?$& ud+s 

d0TES : 
* 5 : hi@d mean modh/y &mwafive .-- 

m I )  War 
7, : / o ~ $ i l ~ c a n  moniWc/ hmptiahm 

I 1 



Pmgrrun Listing 
STEP KEY ENTRY KEY COM STEP KEY ENTRY KEY CODE COMMENTS 

060 ST13 35-55 03 
005 P S  16-51 

062 S T t 0  35-55 00 

008 rL8Ll 21 11 

066 S T + ;  35-55 45 
067 RCLI 36 46 

' 0 1 2  $1'03 3 5 0 3  

073 ST+ i 35-35 45 
Of8 RCLO 36 00 

azo sro r 35 OI 
021 RCLP 36 02 077 RCL4 36 04 

079 RCL7 36 07 

025 RCL4 36 04 

083 RCLO 36 00 
084 PC13 36 03 

029 RCLJ 3 6 0 3  

031 P2S 16-51 

-034  ST08 3512 
091 STOC 3 5 1 3  

036 STOA 35 1 1  

095 RCL7 36 07 
040 GSBl 23 01 096 RCL8 36 08 

042 ST01 35 46 

REGISTERS 
0 
n 

so 
D 

1 2 
X r y  Z r, . 

"' L: '= L,O 
A C 

0 
L C 

3 

~ Y S  

= A *  
D E I 

used used *(red 

4 
9 s 2  

4jk) 

- 5  
xyz 

S5 

6 
ZZ* 

S6 

7 
2% 

S7 

6 
BY 

S8 

9 
B E  

S9 



STEP KEY ENTRY KEY CODE COYYUlCrS STEP K t 3  ENTRY KEY CODE COYlYWTI 

120 

132 $700 35 12 
133 RCL9 36 09 
134 RCLC 3 6 1 3  

138 RCU 36 12 
139 RCL7 3 6 0 7  

144 STOA 35 11 
145 RCL9 36 09 201 RCLC 36 13 

203 RCLA 36 1 1  

157 RCLO 36 00 

113 RCLO 36 00 
114 RCLS 36 05 1 
115 x -35 - 
116 RCL8 36 08 
117 Xz 53 
118 - -4 5 - 
119 X -33 
120 RCLA 36 11 
121 X2 53 
122 - - 45 
123 + -24 
124 sroc 35 13 - 
124 RCLB 36 12 - 
126 RCLA 3 6 1 1  - 
127 RCLC 36 13 - 

170 

180 

169 PRTX -14 
170 RCLB 3 6 1 2 -  
171 PRTX -14 - 
172 RCLC 3 6 1 3  
173 PRlX -14 
174 RTN 24 - 
175 sL8LC 21 13 - 
176 RCLC 36 1 3  ' 
177 X -35 ' 
178 RCLA 36 11 ' 
179 + -55 - 
180 Rcie 36 12 - 
181 + -24 
182 P2S 16-51 - 
183 RCLO 36 00 ' 



. . . .  - - .- .. - -. . . . .  . . .  . .  . ...... 
-6 

_ -  ...I 1 1- -- 
and .- ........ - . . . . . . .  . 

--- ......... .... .. .. ... .... . . . . -  k -? -.bLq : & 



STEP INSTRUCllONS INPUT 
DATANNIT8 KEVS 

nu 
I- 

I I Loo 1 



062 RTN 
063 xLBL1 
064 RCLB 

P H r a m  Listing ( ~ 1 -  112) 

STEP KEY ENTRY KEVCOM COMYENTO STEP KEY ENTRY KEY CODE COMMENTS 

065 4 

066 RCLO 
067 YX 
068 CHS 
069 1 
070 * 
071 LN 
072 CHS 
073 RCLl 
074 RCLO 
075 Y 
076 4 

077 RTN 
078 4LBLc 
079 GSBO 
080 RCLO 
081 + 

082 RTN 
083 U L O  
084 RCLB 
085 + 
086 RCLO 
087 RCLE 
088 + 
089 Y' 
090 CHS 
091 1 
092 + 
093 LN 
094 CHS 
095 RCLl 
096 CSB5 
097 RCLO 
098 x 
049 + 
100 RTN 
101 lLBLE 
102 ST02 
103 XZY 
104 6.561 
105 RCL2 
106 - 
107 CHS 
108 RTN 

001 

080 

- 001 tLBl.2 21 02 
002 RCLD 36 14 - 
003 1/X 52 - 
004 YX 31 - 
005 RTN 24 - 

057 RTN 24 
058 *L8LC 21 13 1 
059 65Bl 23 01 - 
060 RCLO 36 00 
061 + -55 

- .  
A 053 S -24 -( 
- 0 5 4  Yx 31 - 

055 RCLB 36 12 - 056 x . -35 

t 

1 to 

REGISTERS 

I09  rLBLe 21 16 15 1 
110 ST02 35 02 - 
111 X 3 '  -41 - 

. 1 12 GSBO 23 00 

9 

S9 

5 

55 

8 

S8 

D 
0 IE b 

I 

6 

S6 
O tb 
SO 

A 
L o  

7 

57 

2 
used 

S2 
' K 
S1 

B C 
A4.h 

3 4 

S3 S1 



S S P  KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY COO€ COrYEnn 

- -  113 RCL2 36 02 169 tLBLd 21 16 14 
,114 - -45 1 170 170 ST02 35 02 

' 

115 CHS -22 171 UCLO 36 12 
- 

, 116 RTN 24 172 X i Y  -41 
117 tLBLo 21 16 11 - 173 5 
' 118 RCLD 36 14 - 174 RCLO 
' 119  LN 32 - - 175 R U E  

la * 120 e x  33 - 1 7 6  i 

,' 121 CHS 
* 122 l 
-123 + 

124 ESBZ 
125 RCLA 
126 x 

* 127 RM 
* 128 uL8Lb ' 129 RCLE 

130 ' 130 RCLD - 
RCLE 

C 

UCLE 
RCLD - 

Y* 
RCLB 

x 
RTH 

NBLD 
SSBC 
ST02 
RCLO - 
SSB6 

CHS 
1 

t 

RCLD 
1 /X 

1 - 
P 

155 RCLl 
156 RCLO a 157 - - -  ; 

RCLl 
.x 
3 

X 

R TN 
kLBL7 

5 PC 
L OC 

b 
3 
5 
7 
4 

x 

;; 
7 
4 
7 

f 

PRTX 
3 

X 

CHS 
3 

t 

STDD 
PRTX 



koglmr T W ~  - &r%t~7hd Y S F Q N  W m f i n s  :--fo/ufrbns --- --- - 

Dd!e!!l Pouily- _ - - m.gbl2. , /9P/ 
ICLAREI ,-MEC PO- &ox 1501 - - 

Mo k or)' , Mcfm Icllurrile ,-.&/ipphe_s - -- 
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70721 M067ALI P/ FROM MEAN N&/GffT ""s, 

L r r  u 
on 



STEP KEY ENTRY 
1 1 0 0 1  tlBLa 

1 0 0 2  - 

X(O? 
G T O l  

1 
XLY? 
G T O 1  
RCLB 
RCLC 

ABS 
4 

RUD 
RCLC 

ABS 
XLY? 
GTO1 
RCL 1 
RCLO 
RCLB 

- 
18s 

M Y ?  
6702 

XZY 
RCLC 
RCLB 

ENT? 
A8S - 

X 

RCLB 
+ 

ST00 
6T02 

*LBL1 
RCLB 

P H r a m  Lisling ~ 1 - 1 1 2 )  

I<EVmOE m E N T S  STEP KEY ENTRY KEY COM COMMENTS 

36 07 1 106 RCLC 

211611 
-45 - 
-41 

- 
35 01 - 

-35 ' 
35 05 - 

-41 - 
35 04 - 

-51 - 
24 ' 

21 16 15 - 

080 

.m 

057 - -24 ' 1 
058 RCLB 
059 X N  
060 - 
061 ST00 
062 R C U  
063 - 
064 RCLC 
065 RCLB 
066 - 
067 + 

030 RCL7 
051 RCL8 
052 - - . . 
053 RCLA 36 11 -' 

- 054 RCLB 36 12 - - 
055 - -45 
056 I -24 

i 
REQlSTERS 

IN) 

109 '. -24 
110 ST00 35 14 - 
111 tL8L2 21 02 
112 RCLB 3612  

2 

S2 

L 

0 
wed 

SO 

9 
us& 

sg 

A B C 
med bwd I used 

1 
K 

S1 

D E I 
wed I TOL 

7 
used 

57 
5 

S6 
z rh& 

S3 

8 
fwd 

S8 

5 -K(&-bI6 
55 



STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COYYEWTII 
I 1 113 STOR 35 1 1  I I 1 169 ex 33 1 

RCL8 
S TO7 
RCLD 
5 JOB 
GSBD 
S TO8 

X(O? 
GT03 
RCLA 
STOC 
RCL7 
S TO9 

*L BL 3 
RCL9 

130 bBS 
131 RCLB 
132 RBS 
133 X4Y? 
134 GTOE 
135 RCLB 
136 RCLC 
137 ST08 
138 X:Y 
139 STOC 
140 ST00 
141 RCLB 
142 RCLY 
143 S T 0 8  
144 X 3 '  
145 ST09 
146 ST07 
147 GTOE 
148 xLBL5 
149 RCL8 
150 RTN 
151 *18LD 
I52 ST03 
153 RCLS 
154 2 
155 x 
156 CHS 
157 e x  
158 x 
159 3 
160 X 

t - 
RCL5 

3 
X 

CUS 
ex 

RCL3 
X 

RCLJ 
3 

x 
RCL3 

t - 
- 
1 

t 

RCL4 
X 

RCL6 - 



-ram Description 

. - 

- ---- u&.r_-=-K (6 : t ) ,  I K 04 to be/+ p a  
VW-&~$Q.&@.~. 6 h &  f i ~ m u h  . w!!en_-% k 7Hc m e n  rlpe_a_lf_bf& -- 

-- Cap&? ab$wi?ea' .ky _ a  y k ? n  g c s r  a d  where a b %?e -%.n de/k/r_t_. 
kheu 7%e cwfd /<u &nd / /9d9) . " Xne- ed9g " ~e/ccfi&-{at &) ---pf IHq J? 

- a55ff/r?ed. - _. _-._ - -- 

~ n g  UL .* w- Ir_ /jGh?& -$k f;, ($1 arn he p.k fr - -- (3-g rwir. ) ad- 
- - ---dpndr mf/ieyrr/W f (rl ) !My@)_ r_-dh/M ctAbu/d be- &%- .dGe 

- 7 5 t e q . d  adL!? - ?%. /. -!?;fi /?* @4$-. irnma~&y - , ~ r v f  bn _k.+e. 



User Instructions 



STEP KEY ENTRY 

002 CLRG 
P t S  

CLRG 
S TO2 

R& 
ST01 

R.l 
ST00 

RL 
ST00 

CLX 
RTN 

r L B L a  
Sf c 

ST+3 
RCLO 
RCLO 

YX 
RCLZ 
RCL 0 

Y X  

LN 
PR TX 
R C L 3  

L N 
PR T X  
RCL 2 
R C L I  - 
S TO2 

RL 
R/S 
X 3 '  
I+ 

R TN - 

KEY CODE 

21 16 1 1  - 
16-53 - 
16-51 - 
16-53 _ 
35 02 

-31 
35 46 

-31 
35 1 4 -  

-31 - 
35 00 

-51 - 
2 4  

2 1  1 1  
16-11 

35-55 03 - 
36 00 
36 14 - 

31 
36 02 - 
36 14 

31 
4 5  _ 
32 

-1 4 
36 03 

32 
-14 

36 02 - 
36 46 . 

-45 - 
35 02 - 

- 31 
51 - 

-4 1 
56 
24 

STEP KEY ENTRY KEY CODE STEP KEY ENTRY 

R C L 9  
A 

ENTP 
ENT? 
RCL 4 

x * 
RCL9 

a 

RCLS 
X;Y - - 
S JOB 

.k 

RCL 6 
X2 

RCL9 
- 
CHS 

R C L 7  
t - 

SPC 
PRTX 
RCL6 
RCL4 
PCLB 

X - 
R C L 9  

SrOA 
PRTX 
RCLB 
PRTX 

P,'S 
R TN 

KEY CODE 

. 
LABELS FLAGS 

0 

1 

2 
, 

3 

A 

a 

o 

5 

REGISTERS 

B 

b 

1 

6 

SET STATUS 

FLAGS TRIG DlSP 

0 
Loo 

SO 

ON OFF 

1 0 
0 0 0 

2 0 0 
3 0 0  

C 

c 

2 

7 

K 
St 

GRAD 0 
DEG 0 

RAD 0 

D 

d 

3 

8 

SCI 0 
FIX 0 

ENG 0 
n = 

2 
L ' w  

S2 

A 
inbcep' 

E 

e 

4 

9 

D 

D 

S3 

B 
u/ape 

F I 
dL 

C 

4 

S4 
ZX 

5 

S5 
ZX* 

6 

S6 
rr' 

7 

S7 
Tya 

6 

SB 
=%Y 

9 

2 h  
S9 



Pro@arn Deseript ion 

I Program Description, Equrtlon8, VarkbIes, etc. . 

I 
-- -- 

--- -- Bofi.-m_~~&&_ defe h e ~  mdfyed frtr use ur/j/h fkeymrahied 

opnh Limb and Wwnlnge ~ ~ P O ~ Q P  JP/+&&-JJ Hie i rmd y mhes 6 -he inc/uaQpl- - 
-- - - in * - u m & ! & ( z ~ L z  %!&- ~ e p k r 5 -  $4af r ~POYA dc n-u 

- i f o m  ~l&ch *pp/h2d_ .&&yhy f~ ~f5wwhj -ny&bn am 



f bkr fa, AL , K , 0 and h d b / / i c  L'a 
f $ X is ~ ~ k n o u m  . cnkr 4 ~ h & a / )  di 

6 &&P E ~ X  nrr'dpoint and .+eqrea~  t' L 
7 - 

L A/ 



044 PRTX 
045 RTN 
046 *LBLB 
047 ST00 
048 R1 
049 ST08 
050 ssao 
051 RCL4 
052 x 
053 CHS 
054 ex 
055 CHS 

GSBl 

RTN 
JLBL1 
RCL5 

RCLD 
YX 

CHS 
i 

t 
LN 

C HS 
RCL l 

RCLD 
- 

RTN 
rl 8LE 

P?S 
SP C 

RCLB 
RCL4 
RCL6 

X 

RCL 9 

038 RCL7 
039 i 

040 LN 
041 SPC 
042 PRTX 
043 X:Y 

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS 
001 

010 

-31 
35 08 
23 00 - 
36 04 
-35 - 
-22 , 
33 - 

-22 - 
1 056 I 01 

020 ST04 
021 ST05 
022 ST06 
023 ST07 
024 ST08 
025 ST09 
026 P2S 
027 CLX 
028 RTN 
$29 t L  BLA 
030 ST00 
831 R.l 
032 ST08 
033 GS80 
034 ST07 
035 RCLB 
036 GSBl 
037 RCLO 

801 $LBLa 21 16 11 
002 P:S 16-51 
083 CLRG 16-53 - 
804 P:S 16-51 - 
005 STOD 3 5 1 4 -  
006 RJ -31 - 
007 ST01 35 01 
008 RJ -31 
009 2 02 
010 ? -24 - 
011 STOC 3513  
Of2 X2Y -41 
013 ST05 3505 
014 CLX -51 - 
015 RTN 24 
816 *LBLb 21 16 12 
017 ST04 35 04 
018 P2S 16-51 - 
019 0 00 1 

110 

060 

070 

104 - 
105 ENTf 
106 ENT? 
107 RCL4 
108 X2 

109 RCL9 
110 + 
11f RCL5 
112 8 3 '  -41 1 

REGISTERS 

857 + - 
058 l /X 
059 RCLO 
060 X 

061 LN 
862 SPC 
063 PR7X 
064 RCL8 
065 RCLC 
066 - 
067 GS8l 
068 PRTX 
069 RTN 
070 #LBLO 
071 RCLC 
072 + 

073 GSB1 
074 RCL8 

1 075 RCLC 

0 
used 

SO 

1 
K 

S1 

2 
w d  

5% 

D E I A 
ad 

B 
b C 

A 

3 
ased 

$3 

4 

2, 
S4 
2% 

5 
A0 

55 
2%' 

6 

S8 

Zy 

7 
ad 

S7 *' 
8 

usad 
S8 

zxy 

9 

S9 
za. 



- 
ST06 

X 

RCLC 
x z  

RCL 9 

CHS 
RCL 7 

f 
- 

PRTX 
RCLC 
RCL4 
RCLB 

X 

RCL9 
- 

STOA 
PRTX 
RCLB 

CHS 
PR TX 

P:S 
RTN 

-ram Listing ,113 edl 
STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS 

I 1 113 

I I I I I I I 

A la . 
LABELS I FLAGS I SET STATUS 

I r  

DlSP 

FIX L 
SCI r-1 
ENG D 
n = d  





I if He mean I I 
} Z o.rd K frwm Mean Lenq9-4 I 
I - I 



Program -on, ~qudonh ~.rkw .tc. AS - demonsfro fed by Lbert (/975)+ esi/inofes 
and 2-. M ~ L  be- obtahqd from 2 rneoe- /&gfhs, p m h e  , o. 1-3 a t  

~ ~ m i h e n t  ( 4 .  ) fibs ti ona' dz (corres=@/k9 4 W-meoq byY 
dvt%. f ~ o  ?uo*om, w&/l b e m e ,  in ferms o$ f ie  $eaem//te< V&.6E--_ 

- - 
Once hw been _co/ur/o fed , _.A% v2ue of I k obfhi? -- --- - - - --- - 

_ girn,pkfied--Cf~io~--of fhe 0/gOrl'7ul~m ghen /h ~bert (19 



User Instmotions 

Ll hfer NO ond co/ccr/afe Fond M F-- 

STEP INSTRUCTIONS INPUT KEYS DATAIUNITS 
I I I-1ri 

I 

OVTWT 
DATUUNITS 

0.000 

mdcd + h e  

P ' 
Q 

b 

f 
M 



STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS 

001 . 

LABELS 

001 *LBLa 21 16 11 
1 002 CLRG 16-53 I 

003 P Z S  16-51 _ 004 CLRG 16-53 
005 CLX -51 - 

* 006 RTN 
- 

24 
* 0 0 7  cLBLA 21 1 1 -  
* 008 LN 32 - 

FLAGS 
0 

1 

. 
2 

3 

A lu,- 
a inih'a lilt 
0 

5 

009 RCLO 36 00 - 
010 e+ 56 - 
011 1 0 1 

* 012 ST+O 35-55 00 - 
* 013 RCLO 36 OD - 

014 1 01 - 
015 - -45 - 

' 016 RTN 24 - 

REGISTERS 

Ow 

B 

b 

1 

6 

SET STATUS 

FLAGS TRIG DlSP 

0 
Icsed 

SO 

1 
01% P2S 16-51 + 

049 RCL4 36 04 
. 050 RCL8 36 12 - 
. 051 X -35 - 

052 - -45 
053 RCL9 36 09 
054 + -24 - 
055 5704 35 11 
056 PRTX -14 

- 

080 

ON OFF 
o B1 
1 0 eP 
2 
3 n 0  

057 RCLB 36 12 - 
058 PRTX -14 

' 059 PZS 16-51 - 
060 R7N 24 

C 

c 

2 

7 

1 

S1 

061 lrL6l.e 
062 RCLB 
063 e x  

DEG El 
GRAD 
RAD 

A o Is d C 

D 

d 

3 

8 

FIX eP 
SCI O 
ENG 
n = 3  

2 

S2 

5,: 0 ,  b 
e 

4 

9 

0 

3 

S3 

E 

4 

S4 r x 
I 

5 

S5 
ZxZ 

6 

S6 

Zj, 

7 

57 

By2 

8 

SB 

Pxy  

9 

s9 
n 







User Instrvetions 

STEP INSTRUCTIONS INPUT 
DATNUNI'TS KEYS 

n r i  



065 RCLS 
066 X 

067 RCL7 
068 X 
069 - 
070 ST08 
071 X 2  

072 RCLO 
073 X)Y? 
074 Cl01 
075 RCL1 

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS 

1 001 *LBLa 21 1 6 1 1 .  
1 002 5707 35 07 , 

-31 . 
35 09 . 

-31 
35 02 

02 
-74 

RCLS 
X 

RCLB 
X 3  - 

RCL9 
X:Y - 

ST09 
GTOO 

rLBL1 
RCL 9 
SPC 

PRTX 
RCLZ 

t 
5203 

ex  
RCL6 

x 
PR T X  

R TN 
JrLBL8 

RJ 
S TO6 

R? 
RCLZ 

2 - 
ex 
Y 

XZY 
RCLZ 

ex 
052 RCL5 
053 X 

OBO 

-1 
054 CHS -22 
055 1 01 - 
056 + -55 

057 RCL9 36 09 
058 RCL3 36 03 : 
059 4 -24 
060 X - 35 
061 RCL6 36  06 
062 X -35 
063 RCL4 36 04 

t o  110 X -35 ' 
111  + -55 - 
112 ST02 3 5 0 5 -  

I V r r  ". 
1 056 + -55 

1 064 X e  53 ' 

I 
.-- - - 

1 1 1 2  ST02 3 5 0 5 1  
REGISTERS REGISTERS 

' T 0 L  
SO 

6 
&I 

s6 

' T 0 L  
SO 

6 
&I 

s6 

1 
usd 

S1 

1 
usd 

S1 

7 
4. 

57 

D E I A 

2~ 

52 

7 
4. 

57 

D E I B C A 

2~ 

52 

8 
cfred 

sa 

B C 
i 

,3 z 
S3 

9 
F 

S9 

8 
cfred 

sa 
i 

,3 z 
S3 

9 
F 

S9 

4 
used 

S4 

'5 
uced 

s5 

4 
used 

S4 

'5 
uced 

s5 



STEP KEY ENTRY KEY CODE STEP KWENTRY KEVCOOE 

120 SPC 16-11 





User Instructions 

I - f  7 [ --:I -- -- 

i f  .J [El 

STEP OUtWT 
DATAIUNITS 

I - 1 1  

I I I I r _ 1 u  

INSTRUCTlONS 

/r, 

AS 
Es- = 

21-s  , 

. T I - r  

INPUT 
DATIIUNITS KEYS 



- - -  
020 RCL8 
021 RCLO 
022 Y* 
023 - 
024 + 
025 RClU 
026 2 
027 + 
028 Y X  
029 ST06 
030 RTU 
031 rL8LR 

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE GOMMENTS 

3 5 1 3  
033 GSBe 2 3 1 6  I 5  - 
034 RCLS 36 05 - 
035 ST09 35 09 ' 
036 x -35 
037 RCLC 36 13 - 
038 4 -55 - 
039 RCL6 36 06 - 
040 x -35 - 

061 

010 

S ros 
RCL7 
ST08 
RCLB - 
ST07 
RCL 5 

SPC - 

065 RTN 
066 eLBI.8 
067 CHS 
068 1 
069 + 
070 RCLP 
071 XZY 
072 t 
073 SPC 
074 PRTX 

001 ~ L B L ~  E l  16 11 - 
002 t -24 - 
003 X:Y -41 - 
004 ST00 35 14 _ 
005 z -24 
006 SrOO 35 00 . 
007 CLX -51 . 
008 RTN 24 
009 *LBLe 21 16 15 

077 PRTX 
078 RTN 
079 lrLBLb 

049 PRTX -14 
ow 050 RCL9 36 09 

051 - 
052 RCLC 
053 KY 
054 5 

055 PRTX 
056 RTN 
057 xL6Lc 

080 5100 
081 R1 
082 ST00 
083 CLX 
084 RTN 
065 *LBLd 
086 XZY 
087 S 

088 ST05 

010 RCLA 36 11 058 ST08 
011 RCLD 36 14 
012 YX 31 - 
013 RCLl 3 6 0 7  
014 RCLO 36 t4  ' 
Of5 YX 31 
016 - -45 

059 X3 '  
080 060 St08 

061 X:Y 
062 - 
063 ST07 
064 CLX 

017 RCLA 
018 RCLO 
019 Y* 

FLAGS 
0 

1 

2 

3 

LABELS SET STATUS 

FLAGS TRIG DlSP 
A 
f 

V/KD 
0 

5 

REGISTERS 

FIX D l  
SCI I3 
ENG 
n = j  

ON OFF 
o 13 BI 
r 0 
2 0 
3 0 D  

9, F 
bm M/KP 
1 

6 

DEG 
GRAD 0 
RAD 0 

O M I K D  
SO 

7 
Lz 

S7 

C ~ ~ ,  , 4 
2 

7 

K 
S1 

8 fh wrd 
9 

S8 S9 

I 
A B 

AL L, 

D 

d 
+ N. 

3 

8 

2 
NI 

S2 

E C 
t i - x  

E 

e-. IL 
4 

9 

I 

z 
S3 

NZ 
S5 

4 

9 
XL 

S6 



nu. - -  dona If en? ff i _6hw t Q-e/yfi/k - . Dodie/ &d_y b fss. , /98/ 
[ C L A  K M ,  M C C - P - ~ .  Box /50/ Addras . . - -  

-- -  ---.- M o k u ~ ,  _Me fro +ni/o , Pr/i~;op/'nez - -  - 

- -- 
subsfi'A<n? hnp% jb ope ( U S ~ ~  /he pnera A rd hB6~ ) Q H ~  

-. na-mar?qinq8 -cjy8vss 
9 . 3  2) 



013 RCLO 
014 YY 
015 E L I  
016 RCLE 
017 - 
018 SJ-01 
019 PCCO 
020 YX 
021 - 
022 X2Y 
023 5 

024 LN 
025 RCLC 
026 + 
027 RCLO 
028 5 

029 ST00 
030 RCL9 
031 GSB8 
032 ST09 
033 RCLZ 
034 GSBB 
035 ST02 
036 2 
037 5 

038 CHS 
039 eK 
040 ST04 
041 RCL6 
042 x 
043 RCL7 
044 RCU 
045 CHS 
016 ex 
047 X 

048 + 
049 ST01 
050 QBLO 
051 RCL9 
052 CHS 

STEP KEY ENTRY KEY CODE C O ~ E W I S  STEP KEY ENTRY KEY CODE COMMENTS 

059 RCL4 
060 X 2  
061 RCLS 
062 x 
063 CHS 
064 1 
065 + 
066 RCL9 
067 RCL3 
068 + 
069 X 

070 RCLC 
071 x 
072 RCL4 
073 Xz 
074 RCL5 
075 x 
076 RCL7 
077 X 

010 

078 - 
079 5108 
080 X2 
081 RCLO 
082 X)Y? 
083 6101 
084 RCLl 
085 RCLS 
086 X 
087 RCLB 
088 X:Y 
089 + 
090 RCL9 
091 X:y 
092 - 
093 ST09 
094 6100 
095 *LBLJ 
096 RCL9 
097 RCLB 
098 + 
099 ST09 
roo SPC 
101 PRTX 
102 RCLZ 

001 eL6I.A ' 21 l !  1 0 5 7  + -55 
002 ST07 35 07 1 058 ST03 35 03 
003 R1 
004 ST06 
00s KLI 
006 RCLO 
007 Yz 
008 RCLI 
009 RCLO 
010 YX 
011 - 
012 RCLA 

103 RCl.6 
104 + 
105 5702 
106 + 
107 GSBB 

053 ex 
054 ST05 

I 
. .." 

0.55 RCL2 36 02 I 111 PRTX 
056 RCL9 36 09 1 112 RTN 24 1 

REQISTERS 

' c 6 / 5  
S7 

6 
X ~ / L ; .  

S6 

0 
)DL/& 

SO 

A C 

i LOO 4 t  K 

8 
,,~d 

S8 

D E I o 4~ 4 

4 
@/a 

54 

9 
C 

s9 
'&d/& 
s1 

' ~ a d / 6  
S5 

2 
M/I/.S 
s2 

, 3 ~ / z i  
53 



114 RCL8 36 12 

119 sroy 35 09 
120 RCLZ 36 02 

135 STOE 3 5 1 5  

137 ST06 35 06 

140 RCL4 36 04 

142 $100 35 00 

146 ST+3 35-55 03 
147 RCL6 3606 
I48 RCLE 36 15 

IS1 RCL5 36 05 

153 RCL4 36 04 

156 RCLO 36 00 



P q m m  k.alp(l00, Equmlono, V w b b h ,  .(a In ~ n o / ~ ~ ~  hoes' (~PI# WOV@W&&. 9 e e . 2  
(/972) c b M  ondybis fo a _me&od su/:&bh &-fie ono@& cf ~ B I ' ~ ~ - Q , ?  - _ - 

kg@ dab 6ff~uc'uI~ (1965) _ Y/i.fira/ /bpy/&& A~&s/JL-[Y&L cue- pc wed- 
_ & afi-mdc Y~s@&9 mcw&/i+ ~d ppu/tb& r~~tg*~ ca* -.-& - &+ dA& .- _ 

G'u//o@i YPA A s  hk # w m  - . - .. - - - - - - - - 



user Instrudions 

STEP INSTRUCTIONS INPUT 
DATUUN1TS KEYS 

I I 

I f I Enter ~ r o m s f e r  d u e s  I hl, 
I v I 

I 
J Enfer porame fet- values 08 u6ove, om;fiiso 

t,, 



022 CHS 
023 ex 
024 3 
025 X 

026 RCLI 
027 RCL3 
028 + 
029 + 
030 - 
031 RCL5 
032 RCLI 
033 x 
034 2 
035 
036 CUS 
037 e x  
039 3 
039 3 

040 RCLl 
04 1 2 
042 X 

043 RCL3 
044 + 

045 : 
046 t 
047 RCLS 
048 RCL1 
049 X 

050 3 

084 CHS 
085 e x  
086 CHS 
087 1 
088 + 

089 RCL3 
090 + 
091 RCLl 
092 RCL3 
093 + 

094 ST07 
095 RCL6 
096 X 
097 CHS 
098 ex 
099 CHS 
100 I 
101 + 

102 RCLS 
103 RCLJ 

-55 
36 05 - 
36 01 - 

36 01 104 X -35 - 
-35 

' - 
105 CHS - 22 

03 
' 

106 ex 33 
05L X -35 107 3 03 

' 

052 CHS -22 108 X -35 
' 

053 e x  33 109 X -35 _ ' 

054 RCL1 36 01 . 1 to 110 RCL7 3 6 0 7 -  
055 3 03 - 111 t -24 , 
056 X -35 112 -45 , 

RECHSTERS 
9 

1 - C  
S9 

7 
4mrn- t ,  wed % / K  
S8 S7 s0 

1 I 

' F 
S4 

, M ,3 2 
s2 

O $0 
SO 

5 
& - t o  
55 

1 

S1 

A B C 
t-3 k(a C 

0 

t c  



139 RCLl 
140 3 
141 X 

142 RCL3 
143 + 
144 ST07 
145 R C L 6  
146 X 

147 CHS 
148 ex 
149 CHS 
150 1 
151 + 

152 RCL5 
153 RCLI 
154 X 
155 3 
156 r 
157 CHS 
158 ex 

175 + 

176 ST09 
177 3 
178 % 

179 RCL8 
180 1/X 
I81 RCLE 
182 CHS 
1 83 1 
184 + 
185 x 
186 ST07 
187 1 
188 + 
189 t 
190 CHS 
191 1 
192 + 

STEP KEY ENTRY KEY CODE C0UNmT8 STEP UIEYENTRY UEVCODE CWYL)CI, 

193 RCU 
194 X Z  
195 3 
196 X 

197 R C L 7  
198 2 
199 X 

2 00 1 
201 + 
202 + 
203 + 
204 RCLY 
205 3 
206 Yx 
207 RCL7 
208 3 
209 x 
210 1 
211 + 
212 ' 
213 - 
214 RCL9 

113 SrOB 35 08 
114 RCLI 3601: 
115 2 02 
116 X -35 - 
117 RCL3 3 6 0 3  
118 + -55 

215 RCL8 
216 YX 
217 X 

218 RCLE 
219 % 

119 ST07 
120 120 RCLC 

121 x 
122 CHS 
123 ex 
124 CHS 
125 J 
126 + 
127 R C l 5  
128 RCLI 
129 X 

130 130 2 
131 X 

132 CHS 
133 ex 

170 

169 6TOb 22 1612 
170 *LBLC 21 13 1 
171 STOE 3 5 1 5 -  
172 RCLC 36 13 - 
173 CHS -22 
1 74 f 01 - 

- -  - 
159 x 

160 160 RCL7 
161 * 
162 RCLB 
163 X2Y 
164 - 
165 RCL8 
166 X 

167 RCL4 
168 x I I 

LABELS FLAGS 
0 

1 

2  

3 

A 00U '57 
a ~cpd 
o 
5 

B~ancs '57 
b 

wed 
1 

6 

s n  STATUS 

FLAGS TRIQ 0#)P 
ON OFF 

o 0 e 
1 0 m 
2 O P P  
3 0 8 

' 6 4 ~  '66 
c 

2  

7 

DEG 
GRAD 0 
RAD 0 

D 

d 

3 

8 

FIX B 
8CI Q 
EN00 
n =  3 

E 

e 

4 

D 



_ where Z = f f f l ,  q = $c,_t,., r, =te - 5  o d r ,  = &,, - gc : ,_.  
- ---- -. 





004 RCLl 
005 RCLO 

007 P=S 
008 RCLA 

Y 

WS 
e* 

ST03 
RCLE 
RCLO 

1 
f 

ST02 
RCL 1 
RCL 0 

+ 
RCLl - 
STOJ 

1 
ST07 
ST06 
ST04 

0 
ST08 
S TO5 

tLBLO 
ST09 
RCL 1 
RCLB 

f 

ENTt 
ENTt 
RCLZ 

+ 
X 

RCL I 
RCLB 

+ 
RCL8 

C 

r 
LSTX 

1 
+ 
f 

055 ENTt 
056 ENTt -21 

076 RCLL 
077 RCL8 
078 + 
079 RCL8 
080 + 
081 + 

082 LS7X 
083 I 
084 - 
085 ? 

086 RCL3 
087 x 
088 ENT? 
089 ENTt 
090 RCL4 
091 x 
032 RCL5 
093 
094 STM 
0% %:Y 
096 RCL6 
097 
098 RCL7 
099 f 

100 ST06 
101 X#0? 
102 + 
103 PCL9 
104 HZY 
105 X#Y? 

C 

22 00 -l 
L 

CONMEIIT8 STEP KEY ENTRY KEY CODE 

059 RCL4 36 04 

061 ST05 35 05 

065 RCL6 36 06 

071 sra8 35 08 
072 RCLP 36 02 

110 

107 RCL3 36 03 - 
108 RCLl 36 01 - 
109 Y X  31 
110 % -35 _ 
111 1 01 , 
112 RCL3 36 03 

AMISTIERS 
8 9 

cued u d  
S8 s9 

7 
a& 

S7 

6 
used 

96 

A K 
C 

Ma0 
D 

D IE 6 

5 
used 

Ss 
O M P 

S1 
r, 

. 2  4 % 
s2 
C, 



114 RCL2 
115 YX 
116 X 

117 RCLJ 
I 1 8  4 

119 SPC 
120 PRfX 
121 RCLB 
122 x 
123 RCLI 
124 x 
125 RCLh 
126 e 
127 P:S 
128 RCLl 
129 PC10 
130 - 
131 P 3  
132 RCLI 
133 RCLO 
134 + 
135 x 
136 ex 
137 x 
138 PRTX 
139 P2S 
140 RCL 1 
141 RCLZ 
142 - 
143 P S  
144 RCLO 
145 x 
146 CHS 
147 e x  
149 x 
149 PRTX 
150 RTN 
151 sLBL8 
152 ST01 
153 RCLI) 
154 PZS 
155 ST05 
156 P:S 
157 RCLD 
158 x 
159 3 
160 X 

STEP KEY ENTRY KEY CODE STEP KWElVTRY KEY COOE COYYll(n 

I 1 1 1 3  - 45 169 S T ~ A  3 5 1 1 -  
36 02 ' 170 170 CLX -51 - 

31 
- 

171 RTN 24 - 
-35 

- 
172 8LBLa 21 16 11 - 

36 Of 
' 

173 P S  16-51 - 
-24 

- 
174 Sf02 3502- 

16-11 
' 

175 R1 4 1  
-14  
' 

176 ST00 35 W 
36 12 ' 177 P 3  16-51- 

-35 
- 

178 CLH -51 
36 46 

' 
179 R7N 24 

-35 ' 180 180 U L c  21 16 13 ' 

36 if ' 181 P 3  16-51 - 
-24 ' 182 ST01 3s 01 - 

16-5r ' 183 PZS 16-51 
- 

36 01 ' 184 CLX -51 
- 

36 00 ' 185 RIN 24 - 
-45 - I 





User lnstruetions 



002 RCLZ 
003 4 

004 ST03 
005 1 4  
006 ST09 
007 ST05 
008 RCLC 
009 RCLO 
010 - 
011 ST07 
012 RCLJ 
013 X 
014 CHS 
015 ex  
016 3 
017 x 
018 RCL3 
019 RCLJ 
020 + 
021 + 

STEP KEY ENTRY KEY CODE 

001 1 001 mltl 21 11 
36 02 

ST-9 
RCL 7 
RCLI 

X 

2 
X 

CHS 
ex 

3 
X 

RCLJ 
2 

X 

RCL3 
+ 
* 

STEP KEY ENTRY KEY CODE - 
STt9 
REV 
RCL 1 

X 
3 

x 
CHS 

e x  
RCL l 

3 
X 

RCLJ 
t 

ST-9 
RCL5 
5704 
RCLb 
RCLO - 
ST08 
RCL 1 

X 

CHS 
ex 
3 

X 

RCLI 
RCL 3 

t 

ST-4 
RCL8 
RCLI 

X 

2 
X 
I 

FLAGS 
0 

1 . 
2 

3 

LABELS SET STATUS 

FLAGS TRIG DISP 

REGIS1 ERS 

E 

e 

4 

9 

FIX @4 
SCI 
ENG 
n- J 

ON OFF 
o 0 
1 0 
2 
3 0 B  

A 
, + K  
a 

0 

5 

DEG E! 
GRAD 0 
RAD 0 

C 

c 

2 

7 

B 

b 

1 

6 

8 
f t i  

SB 

7 
r, 

57 

D 

d 

3  

8 

9 

SC. 

A B I" t k 
i 

"/z 
S5 

O to 
SO 

6 

S6 

2 
S3 

D 

4 
wed 

S4 

1 
K 

S1 

2 
M 

52 

E I 



. . .  . . . .  - .. ......... . 

. . . . . . .  .....-..... .- .- and . ..~. . 



- entered, w / o r n  : o aro I .  o . . .- 

JlD 5 , and sfart snfe~~jtg 
P- v a h e s  a// over o&h.  

TEP INSTRUCTIONS INPUT KEYS DATNUNITS 

l o  
S-mIl - -- F 

OUTPUT 
DATMJNlTS 

1 0.ooo 

i 

- 
i -1 

f *  

di 
s ' 

i 

a 

I I 

CAM1 . 

A 
P, C h W  , 



003 P2S 16-51 RCLS 36 M 
004 CLRE 16-53 078 STt3 35-55 03 

879 RCL3 36 03 

007 r L B L I  21 11 
0 0 8  ST+J 35-55 0 1  

083 RCLA 36 11 
010 ST00 35 00 

0 4 8  RCL9 36 09 

014 FZ? 1 6 2 3 0 2  
013 ClD0 2 2 0 0  

090 RCLl 36 01 

055 RCLS 36 06 
0 9 6  RCL4 36 04 
057 RCLB 36 12 

021 nL8L8 21 12 
022 SF2 1621  02 096 *LBLe 21 16 15 

0 6 0  RCL9 36 09 

RCL8 36 08 

RCL9 36 0 9  
rLBLD 21 1 4  

RCLI  3611  



- --A_. -. - 

o*flpd bq -/i@r&y h4e ~1uh4s o/ 8 q w s v d ~  He hemom? n e w  (XM)  - -  --- 
-4 fit egpp&d ~cm,;f/nent jbr *e w/&s P- vio/we.s. Be cmvzr&w 
XL:-ra/uec lo r e  ~ r r e s p o m + ~ p  onMmef/c meom rahes (IM) jb / / rus  86e 
p o ~ d ~ e  odkned bq fieker (19 75) . 



2 ng FORN ( R ~)"b  P ii? * Some hi*) 



003 P2S 16-51 
004 CLR6 16-53 

010 ST00 35 00 

013 RCLO 36 00 
014 F2? 16 23 02 
015 CT00 22 00 

018 tLBLO 21 00 
16 56 

I 24 
019 2- 
020 RTN 
021 tLBLb 
022 SF2 
023 ETOd 
024 rLBLE 
025 PZS 
026 SPC 
027 RCL8 
028 RCL4 
029 R C L 6  
030 
031 RCL9 
032 + 
033 - 
034 ENTt 
035 ENT? 
036 RCL4 
037 X i  
038 RCL9 
039 + 
040 RCLS 
041 X 3  
042 - 
043 + 
044 STOB 
045 X 
046 RCL6 
at7 X* 
048 RCW 

077 1 
078 e x  
079 4 
080 PRrX 
081 RTN 
082 tLBLC 
083 ST00 
08f R C L 6  
085 CHS 
086 X 

087 ex 
088 RCLO 
089 x 
090 RCLB 
091 x 
092 R TN 
093 *LBLd 
094 CSBC 
095 RCLO 
096 + 
097 RTH 

COYYEWTS STEP KEYENTRY KEY CODE 

060 RCL9 36 09 

064 STOA 35 11 
065 FZ? 16 23 02 

070 STOB 35 12 

075 RCLB 36 12 



Program Listing Hl3w.d 
STEP KEYENTRY KEYCOW COYYEWn STEP KEYENTRY KEY- - 

t 1 113 ST06 35 00 169 x -35 ' 

1 1 1 4  RCL4 3 6 0 4 :  170 170 PRTX -I4 
- 

-24 - 171 RTN 24 
-22 
Of 

-55 

115 r 
116 CHS 
117 I 
I18 + 
119 RCL3 
120 x 
121 e* 
122 RCLO 
123 X 

124 LO6 
125 RCLS 
126 LOC 
127 - 
128 Xe 
129 ST46 
130 1 
131 sr+7 
132 RCL7 
133 RTN 
134 tLBLc 
135 RCL6 
136 RCL7 
137 1 
138 - 
139 ST00 
I40 + 
141 RCLO 
142 x 
143 RCLT 
144 t 

145 1 
146 
147 1 
148 5 
149 1 
150 8 
151 x 
152 l o X  
153 ST08 
154 RTN 
15s *LBLB 
156 ST00 
157 RE14 
158 I 
159 CHS 
160 1 
161 + 
162 RCL3 
163 x 
164 ex 
165 RCLO 
166 x u 167 PRTX 





User Instrueths 

STEP INSTRUCTIONS INPUT 
DATAIUNITS KEYS 

I 

' L-2U 

5 1 !opt ond H.SY c 4 

FOX MODE,! -=4:1q 

-.-. 

8 , f O P ~  ond MSY 1 -- 

OUTPUT 
DATNUMTS 

0 . 0 0 0  

i 

i - f  

t-L 

0 

b 

f opt 
MS Y 



STt4 
X2 

ST+S 
RCL 2 
STt6 

Xe 
STt7 
RCL 2 
RCLO 

X 
ST+8 

I 
STt9 
RCL 1 
RCLO 

)I+ 
R TN 

*LNB 
ST00 - 
ST01 

LN 
S702 
RCL 0 
ST-4 

x z  
ST-5 
RCL2 

P-ram Listing - 112) 

SlE? KEYENTRY UWcOOE COYYEWlS STEP KEY ENTRY KEY CODE COY ME^ 

- 
RCL5 

X:Y 

ST08 
If 

RCL6 
X2 

RCL9 - 
CHS 

RCL 7 
+ - 

PR TX 
IX 

RCLB 
x: v 

S 100 
RCLC 
RCL 4 
RCLB 

x 
- 

RCL9 - 

-057 SPC 16-11 
058 RCL8 36 08 - 
059 RCL4 36 04 
060 RCL6 36 06 - 
061 r -35 - 

' 062 RCL9 36 09 - 
063 t -24 - 
064 - 
' 065 ENTt 

066 ENTt 
' 067 RCL4 

068 Xe 
' 069 RCLJ 

wo 

001 

- 

010 
-* 

- OOJ ux4 21 16 11 
002 CLRG 16-53 ' 

" 003 P J  16-51 - 
004 CLRC 16-53 - 

- 005 CLX -51 - 
- 006 RTN 24 - 
' 007 tLBU 21 11 - 
- a  008 ST00 35 00 - 
' 009 + -24 - 

010 Sr0l 33 Of - 
" 0 1 1  LN 32 - 
- 012 ST02 35 02 ' 

013 RCLO 36 00 - 

- 042 ST-6 35-45 06 - 
.so43 Xz 53 - .. 044 ST-7 35-45 07 - 

045 RCLP 36 02 - 
r 1 046 RCLO 36 00 - 

goo 

1 to 

I 

050 

+ 098 ST04 
" 099 PRTX 
' 100 RCLB 
" 101 PRTX 

102 P:S 
103 RTN 

" 104 *LBLe 21 16 15 - 
'105  SPC 16-11- 
' 106 RCL8 36 08 - 
" 107 RCL4 36 04 - 

108 RCLC 36 06 - 
'109  x -35 - 

"110 RCLY 3 6 0 9 -  
111 + -24 
112 - -45 

0 4 7  x -35 - 
048 ST-8 35-45 00 - 
049 1 01 - 

. 050 ST-9 35-45 09 - 

. 051 RCLO 36 00 - 

REQISTERS 

j 052 RCLl 36 01 - 
.053 6- 1 6 5 6 -  
. 054 RTN 24 - 
. 055 rL8LE 21 I 5  - 
,056 PZS 16-51-  

9 
n 

SQ 
n 

7 
BY' 

S7 
z y a  

6 z 
S6 

3)' 

A i-pr Ie-) I' slop (b) I C 

8 
~ x y  

SB 
x 

' 0  E I 

5 cx a 
s5 

2 %  

4 
P X  

54 
2% 

0 
used 

SO 

1 2 
w I d  

S1 

3 ~ u x - m  

FB* 



STEP KEY ENTRY KEY- 

Progm Listing o r s r d  
COYYlEWn STEP KEYENTRY KEY COM COYYOnn 

1 1 3  ENr? -21 1 6 9  RTW 24 
114 ENT? -21 - 170 1 7 0  XLBLD 21 14' 
1 1 5  RCL4 3 6 0 4 -  171 SPC 16-11- 
116 X2 53 172 RCLI 3 6 1 1 e  
11 7 RCL9 36 09 - 173 RUB 3612-  
118 + -24 1 7 4  CHS -22 

- 
119 RCLS 3 6 0 5  175 2 

120 
02 
- 

120 X i V  -41 - 1 7 6  X -35 - 
121 - -45 - 1 7 7  $ -24 
122 + -24 178 PRTX -14 - 
123 ST08 35 12 1 7 9  RCLI 3 6 1 1 -  
124 x 

- 
- 35 180 53 - 

125 RCL6 
126 X2 
127 RCL9 
128 + 
129 CHS 

130 130 R C L 7  
131 t 

160 t L 5 L c  21 16 13 
161 ST00 35 00 
162 RCLB 36 12 

164 RCLA 3611 

167 RCLO 3600 

101 RCLB 36 12 

188 tLBLd 21 1 6  1 4  

1 9 4  RCLh 3 6  11 
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User Instmetions 

INSTRUCTIONS INPUT 
DATAlUNlTS KEYS 

r-u 
I D  



KEY ENTRY KEY COO€ 

001 *LBLo. 21 16 f J  
002 CLRG 16-53 
003 STOA 
004 R1 
005 STOC 
006 RGLR 
007 + 
008 ST08 
009 CLX 
01 0 RTN 
01.1 rtLBLA 
012 S T N  
013 RL 
014 5T00 
015 RCLE 
Olb r 
017 ST01 
018 RCLB 
019 + 

020 2 
021 5 

022 P:S 
023 ST00 
024 RCLE 
025 RCLR 
026 + 

027 2 
828 + 
029 ST01 
030 RCLI 
031 RCLB 

L N 

035 RCLE 

038 STOC 
039 RCLl 
040 ST08 
041 RCL2 
042 ST01 
043 RCLl 
044 STOD 
045 RCLO 
046 STOE 

PtS 
ST48 

X2 

ST+5 
RCLD 
STt7 

XP 
ST+4 
RCLl 

Pmgram Listing 

077 RCLO 
078 RCL4 
079 X 

080 RCL7 
081 X Z  
082 - 
083 ST00 
084 RCLO 
085 RCL3 
086 x 
087 RCL8 
088 RCL9 
089 x 
a90 - 
091 x 
092 STOC 
093 RCLO 
094 RCLI 
095 x 
096 RCL 7 
097 RCL8 
098 X 
099 - 
100 STOA 
101 RCLO 
102 RCL2 
103 X 

104 RCL7 
105 RCL9 
106 x 
107 - 
108 ST06 
109 x 
110 RCLC 
111 K f Y  

COYIEMTS STEP KEY ENTRY KEY CODE 

060 RCLD 36 14 

062 ST41 35-55 01 
063 RCLO 36 14 
064 RCLl 36 46 

066 Sl+2 35-55 02 
067 RCU 36 15 

072 STtO 35-55 00 
073 RCLO 36 00 

076 SPC 16-11 



STEP KEY ENTRY KEY CODE STEP KEY ENTRY KEY CODE 

- 1 1 4  RCLO 3 6 0 0 1  I 

127 RCLA 
1 2 8  RCLC 

RCLO - 
ST08 
RCL9 
RCLC 
RCL8 

X 

RCLB 
RCL 7 

X 
- 

RCLO - 
ST00 
RCL9 

X 

RCLB 
RCL2 

X 

4 

RCLC 
RCLJ 

X 

t 

RCL 9 
X* 

RCLO - - 
RCLC 
RCL9 

Y, 

1 6 9  RCL4 3 6  11 
170 PRTX -14 
171 RCLB 3612 

1 113 RCLD 36 1 4  1 - 
i 115 RCL5 3 6 0 5 1  

1 6 4  RCLO 
165 + 

170 

i73 RCLC 3613 
174 PRTW -14 
175 RTN 24 
176 tL6l.e 21 16 15 
177 SPC 

RCLB 
PRTX 
RCl.6 

CHS 
PRTX 
RCLC 
RCLB 

X 

RCLR 

11% 
PRTX 
STOU 

T- 

SET STATUS 

TRIG D(SP 

- - 
- - - - 

1 167 + 
1 1 6 8  PRTX - I I I I 

RCL A 
RCLB 

CHS 
i 

2 - 
PRTX 
GSBC 
PRTX 

R TN 
XLBLC 

STOJ 
RCLB 

X 

RcLe 
- 

1 
C 

RCLO 
X 

RCLB 
X 

CHS 
RCL J 

X 

R r N  

FLAGS 

FLAGS 
0 

LABELS 

' 
2 

3  

A 
dota e n h  

aini fio li ze 
o 

5 

ON OFF 
o 0 [PI 
1 I 

- 2  0 011 
3 0 6 4  

B 

b 

1 

6 

DEG 
GRAD 0 
RAD 

FIX a 
SCI 11 
E N G D  
n = 3  

Cf r cofch 
c 

2 

7 

E 
+ a h 4 , 6 ,  

d 

3  

8 

e etc. rm . q, 
4 

9 



023 CSBJ 
9 

025 ST01 
026 RCLC 

' 027 GSBl 
' 028 RCLA 
' 029 RCLB 

030 X 

031 ST41 
1 032 RCLl 

033 RCLC 
034 x 
035 ST+Z 
036 RCLB 
037 RCLC 
038 x 
039 ST*3 
040 1 
041 srto 
042 RCLO 
043 RTN 

I 044 *LBL1 
045 ST+; 
046 RCLl 
047 3 
048 - 
049 ST01 
050 R 1  
051 XQ 
052 $7'4; 

079 RCLO 
080 RCL2 
081 x 
082 RCL7 
083 RCL9 
084 X 

085 - 
086 STOB 
087 
088 RCLC 
089 X:Y 
090 - 
091 RCLD 
092 RCLO 
093 RCL5 
094 X 

095 m a  
096 Xz 
097 - 
098 X 

099 RCLll 
100 XZ 
101 - 
102 4 

103 STOC 
104 RCL8 
105 RCLfi 
106 RCLC 
107 X 
108 - 

053 RTN 24 
054 rL8LE 21 15 1 
055 RCLO 36 00 - 
056 RCL4 36 04 

I 

110 

REOlSlERS 

109 RCLO 36 14  ' - 
110 4 -24 
111 STOB 3 5 1 2 -  
112 RCLY 36 09 

Z, 
S8 

0 n 
SO 

xz 
S9 

I 

1 xxy . 
S1 

3 
CYI  

53 

D E I 
used used A B !a bi 

2z2 
56 

2 
zxz 

S2 

C 
4 

7 x i  
S7 

4 w 
S4 

"' X Y *  
S5 



~ L I I I  LIBCing w r r d  
STEP KEY ENTRY KEYCODE C O Y Y ~  STEP KEYENTRY KEY CODE 

134 RCL9 36 09 

136 RCLO 36 00 

140 RCL9 3 6 0 9  

142 RCLO 36 00 

201 XLBL8 21 12 

151 RCLC 36 13 207 RCLB 36 12 

157 RCLA 36 11 
158 RCLC 36 13 

145 + 
146 PRTX 
147 RCLA 
148 PRTX 
149 RCLB 



STEP INsTRUCllONs INPUT 
DATAlUNlTS KEYS 

I I I r l  



Program Lisling -1121 

STEP KEYENTRY KEYCOO€ COYYENTS STEP KEY ENTRY KEY OOM COYYEMTS 
001 

010 010 s -24 * 
011 ST07 35 07 - 067 RCLB 36 12 

- 012 48s 16 31 ' 
013 RCL9 3 6 0 9 -  
014 X>Y? 16-34 ' 
015 GTOb 22 16 12 ' 
01 6 rLBL0 21 14 ' 

073 RCLJ 36 01 

019 rLBLC 21 13 075 STOC 3 5 1 3  

021 RCL5 36 05 077 X(O? 16-45 
078 SF2 16 21 02 

023 sr05 35 05 079 5704 35 04 
024 C58E 23 15 080 RCLO 3 6 1 4  
025 RCL6 36 06 081 RCLO 36 00 

027 ST06 35 06 
028 X)Y? 16-34 
OW 6700 22 00 
030 RCL7 3607  

088 RCL3 36 03 

093 ST08 35 08 

095 X(O? 16-45 
096 Sf f  16 21 01 

041 6T00 22 14 097 P . 3  16-51 
042 *LBLB 21 12 098 ST00 35 00 
043 IS71 16 26 46 099 P 3  16-51 
044 RCLl 36 46 100 FO? 16 23 00 

046 X=Y? 16-33 
047 6TOc 22 16 13 
046) CTOD 22 14 
049 rLBLb 21 16 12 
050 RCLi 36 45 106 #LBLR 21 11 

107 SPC 16-11 
052 IS21 16 26 46 108 ST01 3501 

109 CFI 16 22 01 

001 wLBLo 21 16 11 
002 ST09 35 09 - 
003 R1 -31 
004 ST07 35 07 
005 *LBLc 21 16 13 - - 
006 0 00 
007 ST01 35 4 6 -  
008 RCL7 36 07 - 
009 2 02 ' 

080 

057 CSBE 23 15 
058 CHs -22 , 
059 PRTX -14 , 
060 R/S 51 , 
061 t L B L E  21 15 
062 RCLI 36 I1  
063 RCLJ 36 01 . 
064 x -35 . 
065 RCLl 36 Of - 



Program Listing 
STEP KEYEMRY KEY CODE COYYI?IVTS STEP KEY ENTRY KEY CODE COYYEWT(I 

I 1 113 FZ? 162302 1 I I I I 
C l o t  
F!? 

6703 
RCLQ 
X (O? 

CLX 
PRTX 
P S  

RCLO 
P 3  

XCO? 
CLX 

PR TX 
127 + 
128 PRTX 
129 RTN 
130 xLBL3 
131 RCL4 
132 RCLC 
133 - 
134 X(0? 
135 CLX 
136 PRTX 
137 0 
138 PRTX 
139 C Y  
140 PRTX 
141 RTN 
142 xLBL1 
143 F1? 
144 GT02 
145 CLX 
146 PRTX 
147 PZS 
148 RCLO 
149 P2S 
150 RCLB 
151 - 
152 X<O? 
153 CLX 
154 PRTX 
155 PRTX 
156 RTfl 
157 rLBL2 
158 CLX 
159 PRTX 
160 PRTX 
161 PRTX 
162 RTN 



Program bdptm,  -OM, v- o t ~ .  @pe @79) 940ryed )%ofL$ &p/r : ~pcGies yield 
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aka c o r ~ e ~ ~ o n d .  h o pm&/o , i. e. - -- 



Appendix 1h. Use of Calculators Other Than HP 67/97 

In this Appendix, a brief discussion is presented of the suitability of the models included in 
Chapters 1 to 12, and of the Programs FB 1 to FB 30 for implementation with calculators other 
than the HP 67/97, specifically the HP 65, HP 41C and HP 41CV of the Hewlett-Packard Company, 
TI-58 and TI-59 of Texas Instruments, Inc. and miscellaneous other scientific calculators. 

Wholesale conversion of the programs in Appendix I1 for use on a HP 65 is possible only in the 
case of rather short programs (e.g., FB 14), using about half or less of the memory available on the 
HP 67/97. In some other cases, the sequential approach discussed under "miscellaneous calculators" 
may be applied (see below). 

HP 41C AND HP 41CV 

Programs FB 1 to FB 30 have been found to run on an HP 41C without modifications in most 
cases; all tests were performed using pre-programmed HP 67/97 program cards and an HP 82104A 
Card Reader. When such a card reader and/or pre-programmed cards are not available, conversion 
of the programs in Appendix I1 can be performed using the selection of translated keystrokes in 
Appendix Table 111.1. 

Experienced users of HP 41C/41CV may also wish to use the large amount of memory available 
in these calculators to improve on the programs presented here, some of which had to be condensed 
(and thus rendered less user friendly) to fit into the limited memory space of the HP 67/97. 

This model uses an "Algebraic Operating System" (AOS) as does the more advanced TI-59, 
which is radically different from the "Reverse Polish Notation" (RPN) implemented on HP calcula- 
tors. The difference between AOS and RPN renders direct translation of HP programs into TI 
"language" particularly difficult. For this reason, a short program is presented in Appendix Fig. 
111.1, which, according to its author (Hoyer 1983) allows the running of programs written in RPN 
on TI-58 (and TI-59). The following paragraphs are a translation (from German) of the comments 
published along with this program. 

"This program simulates on TI-58/59 the RPN as used on HP calculators. The necessary func- 
tions which operate the stack are defined by the keys A to E, as follows: 

A = Enter 
B = Clear stack 
C = Roll up (f) 
D = Rolldown (4) 
E = Last X 
Addition, subtraction, multiplication and division are performed via SBR+, SBR-, SBRX and 

SBR t , respectively. The use of the TI'S T-register to simulate the HP's Y-register makes it possible 
to use tests such as X=Y?, X > Y?, etc. This allows for even large RPN programs to be used with 
TI calculators after only small modifications". 

Users of the more sophisticated TI-59 have, in addition to the possibility of using the program 
in Appendix Fig. 111.1 the option of using a "RPN-simulator", available as a "Solid State Module" 
from Texas Instruments, Inc., which, when plugged in a TI-59, translates RPN programs (from HP 
65 and HP 67/97) into AOS-compatible keystroke sequences. The very comprehensive manual which 
comes with the "RPN Simulator", gives all necessary details on the conversion. The memory avail- 



cm - centimeter 
cl, c2 - multiplyers for estimating Z and its standard error (p. 53, Table 5.2) 

- interaction terms in Lotka-Volterra's equations and variants thereof (Chapter 12) 
C - catch, in numbers (p. 13) 

- parameter of the seasonally oscillating version of the VBGF (p. 37, Fig. 4.12) 
- multiplicative factor for debiasing recruitment estimates in Beverton and Holt's S/R relationship (p. 132) 

ct - terminal catch, as used in VPA and cohort analysis (p. 100) 
C2 - parameter in Powell's equation for estimation of Z/K (p. 70) 
C (L1, 00)- catch in number, from the lower limit (L, ) of a given length class upward (equation 5.12) 
C.V. - coefficient of variation, i.e., C.V. = X1s.d .,,,, (p. 33,36) 

- power of weight to which anabolism is proportional (p. 23, 24) 
- degree of freedom, i.e., "real" number of cases available for testing a statistical hypothesis (p. 3) 
- growth rate, in length, of an average fish in a stock (p. 37) 
- growth rate, in weight, of an average fish in a stock (p. 23) 
- growth rate of a fish population, in weight (p. 138) 
- growth rate of a fish population, in numbers (p. 163) 
- increase of catch per unit of effort (p. 122) 
- gill "surface factor", a parameter of the generalized VBGF (p. 23, 24) 
- a measure of the "sensitivity" of the output to changes in the inputs of a given model (p. 23, 24) 
- any difference; examples are: 
- length increment, width of length class in grouped data (p. 79) 
- time difference, e.g., the time needed by an average fish to grow from the lower to the upper limit of 

a length class (p. 62) 
- a growth rate expressed as difference equation (p. 45) 
- a temperature difference, e.g., the difference between warmest (T,) and coldest (T,) mean monthly 

temperature (p. 40) 
- size increment, when referring either to length or weight (p. 233) 

-- base of the natural (or Naperian) logarithms; e = 2.71828 (p. 12) 
- exploitation rate; E = F/Z (p. 76) 
- subscript to express equilibrium, steady state conditions, or stable age population. Used explicitly in 

Chapter 10 only, however, equilibrium assumption implicit in many models presented in this book 
(see p. 69-70) 

- exploitation rate producing MSY (p. 76) 
- terminal exploitation rate, as used in Jones' length cohort analysis (Table 7.7) 

- fishing effort 
- level of effort generating MSY (p. 140) 
- level of effort at which dY/df is 1/10 of its value when f is close to zero (p. 172-173) 
- instantaneous rate of fishing mortality (p. 52) 
- symbol of the F-distribution (p. 212) 
- Fork length; length of a fish when measured up to the central rays of the caudal fin (p. 31) 
- fishing mortality generating MSY (p. 76) 
- terminal fishing mortality, as used in VPA and cohort analysis (p. 100) 
- level of fishing mortality at which the marginal increase in yield per recruit reaches 1/10 of the marginal 

increase computed at a very low value of F (p. 120,121) 

- "pseudovalue" of an statistic; used with the jackknife (p. 178) 

- @am (P. 6) 
- a coefficient of population decline; the opposite of r, (p. 163) 
- biomass increase resulting from the growth of individual fishes; used in Russel's axiom (p. 1) 
- geometric mean; used to characterize "type II", or "functional" regression (p. 31) 

- coefficient of anabolism, used in the derivation of the VBGF (p. 23) 
- harmonic mean (p. 132) 



- symbol or subscript used for counting items; used here only in a few equations (particularly in Chapter 
7) where the need for unambiguous definitions made its use necessary 

- Roman numeral, equal to 1; used to express age (year) groups (Table 4.3) 

- coefficient of catabolism (equation 4.1) 
- proportion of fish above age tk in a stock of fish (p. 121,122) 
- knots = 1.852 km/h (p. 97) 
- "stress factor", a parameter of the VBGF (p. 23) 

- log,, logarithm of base e (p. 13) 
- log,,,, logarithm of base 10 (p. 5) 
- "length" of a fish, shrimp, etc. (length itself is defined differently, depending on what is measured, see 

TL, SL, FL, etc.) (p. 5) 
- a length not smaller than the smallest length of fish fully represented in catch samples; used to compute - 

L (P. 55) 
- mean length of fish, computed from L' upward (p. 55) 
- mean of two lengths, e.g., mean of length at tagging (L,) and at recapture (Lz) (p. 33, Table 4.6) 
- overall mean length of fish in catch samples (equation 5.10) 
- mean length of fish at first capture; equivalent to Lm of other authors (Fig. 3.1) 
- length at the inflexion point of the generalized VBGF, when D # 1 (Table 4.8) 
- maximum length reached by the fish of a given stock (p. 29) -- largest size ever recorded from a given fishspecies (p. 29) 
- smallest length represented in one, or several samples (p. 10) 
- lower limit of highest length class considered in computing L, from trawl selection experiment data 

(equation 3.1) 
- mean length above L' in a stock maintained at MSY (p. 146) 
- mean length at first recruitment (p. 68,114) 
- mean length at age t (p. 23) 
- asymptotic length, i.e., the mean length the fish of a given stock would reach if they were to grow 

forever (p. 23) 

L(oo) - preliminary estimate of L,, obtained, e.g., through equation (4.16) (see p. 29) 

m - number of fish marked (or tagged) for a Petersen population estimate (p. 91) 
m,, m, - proportionality constants in the Lotka-Volterra equation (p. 163) 

- instantaneous rate of natural mortality, i.e., of mortality due to all causes except fishing (p. 52) 
- biomass of fish dying of all causes other than fishing in Russel's axiom (p. 1) 
- Maximum Sustainable Yield (p. 139) 

- number of items in a sample, number of cases investigated, etc. (p. 6) 
- counter for items; similar in use to  "i" (equation 3.1) 
- number of marked fish recovered in a Petersen population estimate (p. 91) 
- size, in numbers, of a population (p. 91) 
- number of fish in a given size class of a catch sample (p. 60) 
- abbreviation for number (p. 10) 
- initial number of fish in a cohort (p. 52) or a population (p. 94) 
- total number of fish tagged and released in an experiment (p. 74) 
- number of recoveries per time interval in a tagging experiment (p. 74) 
- number of fish at the end of a generation started with an initial number No (p. 155) 
- environmental carrying capacity for a given stock, in numbers; corresponds to B, (see under this symbol) 

and to the parameter "K" in the ecological literature (p. 152) 

- multiplicative factor in equation (4.2~1) 
- percentage in gut of species i of food item j (p. 170) 
- constant in equations (8.10) and (8.11) 
- probability of capture (p. 12) 
- production (p. 53) 
- parents, or parental egg production in SIR relationships (p. 129) 
- parental stock producing maximum recruitment in a Ricker curve (p. 133) 
- replacement abundance of parental stock in a Ricker curve (p. 133) 
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