Fish Population Dynamics in Tropical Waters: A Manual for Use with Programmable Calculators

Daniel Pauly

Fish Population Dynamics in Tropical Waters: A Manual for Use with Programmable Calculators

D. Pauly

1984

INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES

Fish Population Dynamics in Tropical
 Waters: A Manual for Use with
 Programmable Calculators

D. PAuLY

1984

Published by the International Center for Living Aquatic Resources Management, MCC P.O. Box 1501, Makati, Metro Manila, Philippines

Copyright 1984 by Daniel Pauly and the International Center for Living Aquatic Resources Management

Printed in Manila, Philippines

Pauly, D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Studies and Reviews 8, 325 p . International Center for Living Aquatic Resources Management, Manila, Philippines.

ISSN 0115-4389
ISBN 971-1022-03-6 cloth ISBN 971-1022-04-4 paper

Table of Contents

List of Figures vi
List of Tables ix
List of Examples xi
Foreword xiii
Acknowledgements xiv
Abstract Xv

1. How to Use this Manual 1
2. Length-Weight Relationships 5
Introduction 5
Parameter Estimation 5
3. Mesh Selection 10
Introduction 10
Trawl Mesh Selection 10
Gillnet Selection 12
Using a Selection Curve to Adjust Catch Samples 17
4. Fish Growth 23
Introduction 23
Data Needed for Parameter Estimation 26
Methods for Parameter Estimation 28
The von Bertalanffy plot 29
The Ford-Walford plot 31
The Gulland and Holt plot 33
The Munro plot 35
Fitting seasonally oscillating length-growth data 37
Extended Gulland and Holt plot 39
Growth: A Concluding Program 41
5. Total, Natural and Fishing Mortalities 52
Introduction 52
Estimating Total Mortality 53
Total mortality from the oldest animal in the catch 53
Total mortality from the mean size in the catch 55
Estimation of Z from cumulative plots 56
Catch curves and length-converted catch curves 58
Further inferences from length-converted catch curves 64
Estimating Z from a pseudo-catch curve 66
Simultaneous Estimation of Z and K 67
Estimation of Z/K 70
1st case: the Beverton and Holt formula of 1956 70
2nd case: using the variance of the mean length 70
3rd case: using a nomogram and the mean weight of fish in the catch 70
4th case: estimating Z / K from the shape of the length-frequency distribution 70
Methods for Splitting Z into M and F 71
Plot of Z on effort 72
Analysis of tagging data. 73
Method for Obtaining Independent Estimates of M 74
Exploitation Rates and Potential Yields 76
6. Estimation of Population Size 91
Introduction 91
Population Size Through Tagging (Petersen Estimates) 91
Standing Stock Estimation with the Swept-Area Method 92
Population Size from Catch and Fishing Mortality 93
Population Size as Estimated by Leslie's Method 94
7. Estimation of Past Population Sizes Using Virtual Population Analysis and Cohort Analysis 100
Introduction 100
Derivation of a Length-Structured VPA Model 101
Discussion of the Length-Structured VPA Model 103
Applications of Age-Structured VPA and Cohort Analysis 105
Application of Length Cohort Analysis and Length-Structured VPA 105
8. Yield-Per-Recruit Assessment 114
Introduction 114
Estimation of Yield Per Recruit 115
Comparison of Various Equations for Yield-Per-Recruit Estimation 119
The Use of the Yield-Per-Recruit Model: A Warning 120
An Alternative Use of Beverton and Holt's Yield Equation 121
9. Stock-Recruitment Relationships 129
Introduction 129
The Stock-Recruitment Relationship of Beverton and Holt 129
Ricker's Stock-Recruitment Relationships 132
First form of Ricker's curve 132
Second form of Ricker's curve 134
10. Surplus-Yield Models 138
Introduction 138
The "Equilibrium" Problem 141
Some Modifications of the Parabolic Model 143
Applying Surplus-Yield Models to Multispecies Stocks 146
11. The Intrinsic Rate of Population Increase 152
Introduction 152
Maximum Sustainable Yields and r_{m} 152
Stock-Recruitment Relationships and r_{m} 155
12. Multispecies Fisheries 161
Introduction 161
Modelling Multispecies Systems. 163
Two-species systems 163
N -species systems 167
Method for Constructing Quantitative "Box Models" 168
Managing Multispecies Fisheries 171
Appendix I. Testing Models and Their Results: An Introduction to Sensitivity Analysis and the Jackknife 177
Appendix II. List of Programs and Program Listings 180
Appendix III. Use of Calculators Other Than HP 67/97 305
List of Symbols and Their Definitions. 309
References. 314
Author Index 323
Program Card Holder

List of Figures

1.1 Factors responsible for stock size increase and decrease 2
1.2 Geographic distribution of examples used in this book 4
2.1 Length-weight relationship for the threadfin bream (Nemipterus marginatus) from the South China Sea 7
3.1 Selection curve of slipmouth (Leiognathus equulus) caught with $7.8-\mathrm{cm}$ mesh nets 11
3.2 Nomogram for estimation of selection factors of fishes from their body proportion 11
3.3 Logarithm of catch ratios plotted on length for Tilapia esculenta caught with gillnets of two different mesh sizes. 15
3.4 Selection curves for Tilapia escutenta caught with gillnets of two different mesh sizes 15
3.5 Plot of natural logarithms of catch ratios against length and ln length to show effect of logarithmic transformation of length 16
3.6 Selection curve of Tilapia galilaea caught with gillnets of two mesh sizes 16
3.7 Difference between a gillnet sample and the same sample, adjusted for mesh selection 17
4.1 Relationship between the maximum body weight reached in different groups of fish and the power linking their weight to their metabolic rate or gill surface area 25
4.2 Growth curve of millet-seed butterfly fish (Chaetodon miliaris) off Oahu, Hawaii 27
4.3 Relationship between the goodness of fit of a von Bertalanffy plot and the selected value of $L_{(\infty)}$ 30
4.4 Two Ford-Walford plots for Atlantic yellowfin (Thunnus albacares) based on the special and generalized VBGF 32
4.5 Differences between the special and generalized VBGF as applied to growth data for Atlantic yellowfin (Thunnus albacares) 32
4.6 Estimation of growth parameters for the ocean surgeon fish (Acanthurus bahianus) off the Virgin Islands by means of a Gulland and Holt plot 34
4.7 Scattergram of growth increment for ocean surgeon fish (Acanthurus bahianus), as obtained from tagging data 35
4.8 Gulland and Holt plot and "forced" Gulland and Holt plot for the Queen parrot fish (Scarus vetula) off the Virgin Islands. 36
4.9 Graph showing how the coefficient of variation of the K-values obtained from a Munro plot depends on the selected value of $L_{(\infty)}$ 36
4.10 Seasonally oscillating growth of the halfbeak (Hemirhamphus brasiliensis) off Florida. 37
4.11 Graph showing how an optimal value of $\mathrm{L}_{(\infty)}$ can be selected when fitting seasonally oscillating length-growth data. 38
4.12 Relationship between the amplitude of seasonal growth oscillations of fish and shrimps and the difference between highest and lowest mean monthly temperature of their habitats. 40
5.1 Decrease of a cohort of 100 fish subjected to different levels of mortality 52
5.2 Jones' cumulative plot for the estimation of Z / K (or Z) 57
5.3 Sparre's cumulative plot for the estimation of Z (or Z / K) 58
5.4 Catch curve for red porgy (Pagrus pagrus) caught off North and South Carolina, U.S.A 59
5.5 A length-converted catch curve 61
5.6 Length-converted catch curve for yellow striped goatfish (Upeneus vittatus) from Manila Bay, Philippines 63
5.7 Length-converted catch curve 63
5.8 Relationship between mean length and water depth in slipmouths (Leiognathus splendens) caught off Southeast Kalimantan, Indonesia 66
5.9 Relationship between average catch per effort of Leiognathus splendens and water depth in western Indonesian waters. 67
5.10 Pseudo-catch curve for Leiognathus splendens in western Indonesian waters 67
5.11 Growth curve of the white goby (Glossogobius giurus) in Laguna de Bay, Philippines as estimated using Ebert's method. 69
5.12 Powell's nomogram for the estimation of Z/K from the relationship between the mean weight in the catch, the asymptotic length and the lowest size at full retention. 71
5.13 Overall shapes of length-frequency plots, given different values of Z / K 71
5.14 Length-frequency data from Table 5.4, fitted with an exponential curve to demonstrate that Z/K for Epinephelus sexfasciatus is 2 or greater 72
5.15 Plot of total mortality (Z) on effort for the yellow striped trevally (Selaroides leptolepis) in the Gulf of Thailand trawl fishery 73
5.16 Analysis of tag return data for chub mackerel (Rastrelliger neglectus) from the Gulf of Thailand. 75
6.1 Leslie plots for reef eels (Kaupichthys hyoproroides) and bluehead wrasses (Thalassoma bifasciatum) from an isolated Bahamian reef patch. 95
7.1 Relationship between the length class interval in which catch data are grouped and the percentage difference between the results obtained using Jones' length cohort analysis and length-structured VPA 104
7.2 Population sizes of a cohort of Moroccan sardines (Sardina pilchardus) as estimated by (age-structured) virtual population analysis. 106
8.1 Yield per recruit as a function of fishing mortality for the slipmouth (Leiognathus splendens) 115
8.2 Yield isopleth diagram for the snapper (Lutjanus sanguineus) of the South China Sea 116
8.3 Stock assessment of the swordfish (Xiphias gladius) off Florida, based on the relative yield-per-recruit concept 117
8.4 Comparison of yield curves based on different methods to compensate for allometry when performing a yield-per-recruit analysis. 118
8.5 Yield-per-recruit curve of the threadfin bream (Nemipterus marginatus) from the South China Sea 121
9.1 Types of stock-recruitment relationships used in fishery research 130
9.2 Beverton and Holt type stock-recruitment relationship for the sea bream (Taius tumifrons) (East China Sea) 131
9.3 Stock-recruitment data of false trevally (Lactarius lactarius) in the Gulf of Thailand, fitted with Ricker curves. 131
10.1 The simple Schaefer model. A) the logistic curve and its first derivative.
B) the yield-biomass and the yield-effort relationships 138
10.2 Yield curve of Peruvian anchoveta (Engraulis ringens) off Peru 141
10.3 Yield curves for the red snapper (Lutjanus campecheanus) fishery on the Bank of Campeche, Mexico 142
10.4 Yield curve for the north Java coast trawl fishery 144
10.5 Yield curve of shorthead anchovy (Stolephorus heterolobus) at Ysabel Passage, Papua New Guinea 145
11.1 Logistic growth curve fitted to catch-per-effort data on a newly established Mediterranean population of lizardfish (Saurida undosquamis) 153
11.2 Relationship between intrinsic rate of population increase and adult body weight for various organisms 154
12.1 Combined yield of two similar species, one preying to a small extent on the other 165
12.2 Combined yield from a predator-prey system 165
12.3 Combined yield from a system in which each species strongly benefits from the presence of the other 166
12.4 Combined yield from a system in which each species, to a small extent, benefits from the presence of the other. 166
12.5 Graph showing how the choice of a given constant ratio of fishing mortalities affects the shape and height of a yield curve 167
12.6 Simplified trophic model of Bukit Merah Reservoir, Malaysia. 168
12.7 A simple economic model of a fishery with fishing costs linearly proportional to effort. 169
12.8 Comparison of two yield models fitted to catch-and-effort data from a tropical multispecies fishery 172
Appendix Figures
III. 1 Program for implementing RPN on TI-58/59 calculators 307
III. 2 Basic structure of several programs in Appendix II. 308

List of Tables

2.1 Data for establishing a length-weight relationship for the threadfin bream (Nemipterus marginatus) from the southern tip of the South China Sea 6
2.2 Data for establishing the length-weight relationship of Leiognathus splendens from the Eastern Java Sea 7
3.1 Trawl selection data for Leiognathus equulus obtained with $7.8-\mathrm{cm}$ meshed nets in Mombasa Harbour, Kenya 10
3.2 Morphometric data for Leiognathus equulus for rapid estimation of mean length at first capture. 13
3.3 Catch by length of two gillnets to estimate their selection for Tilapia esculenta in Lake Victoria. 14
3.4 Catch by length of two gillnets for estimation of their selection for Tilapia galilaea in Volta Lake, Ghana. 17
4.1 Data for and results of the comparison of growth parameters obtained from length- and from weight-at-age data 26
4.2 A set of length-at-(absolute) age data, pertaining to millet-seed butter- flyfish (Chaetodon miliaris) from Oahu, Hawaii. 27
4.3 A set of length-at-(relative) age data, pertaining to male Nile carps (Labeo niloticus) from a freshwater body near Alexandria (Egypt) 28
4.4 Length-at-age data for the Atlantic yellowfin (Thunnus albacares) off Senegal for use with a Ford-Walford plot 31
4.5 Length at tagging, length at recapture and time at large for tagged ocean surgeon fish (Acanthurus bahianus) from the Virgin Islands 33
4.6 Length at tagging, length at recapture and days at large of tagged Queen parrot fish (Scarus vetula) from the Virgin Islands 34
4.7 Seasonal growth of halfbeak (Hemirhamphus brasiliensis) off Western Florida. 39
4.8 Constants to be stored for each of the solutions of the generalized von Bertalanffy Growth Formula 41
5.1 Maximum observed size, maximum observed age and estimated mortality for 12 coral reef fish of New Caledonia 54
5.2 Table of coefficients for estimating Z and its standard error. 54
5.3 Maximum reported age and estimated total mortality of selected Brazilian fresh water and marine fish 55
5.4 Data for the estimation of Z / K and Z for the banded grouper (Epinephelus sexfasciatus) of the Visayan Sea, Philippines 60
5.5 Criteria for assessing the suitability of length-frequency samples for estimating Z 60
5.6 Derivation of a selection curve from the left side of a length-converted catch curve 65
5.7 Values of t_{1} and t_{2} for use with L_{1} and L_{2} values, given the month of recruitment 68
5.8 Length-frequency data for the goby (Glossogobius giurus) from Cardona, Laguna de Bay, Philippines 69
5.9 Data for estimating M and q for Selaroides leptolepis from the Gulf of Thailand 72
5.10 Number of tagged and recovered chub mackerels (Rastrelliger neglectus) grouped according to time spent at large after releasing. 74
6.1 Variants of equations for Petersen estimates of population, as suggested by various authors 92
6.2 Successive sample sizes of reef eels (Kaupichthys hyoproroides) from an isolated Bahamian patch reef. 94
6.3 Successive sample sizes of blueheard wrasses (Thalassoma bifasciatum) from an isolated Bahamian patch reef 94
7.1 Review of work on the sensitivity of virtual population analysis and cohort analysis 101
7.2 Comparison of results obtained using Jones' length cohort analysis and VPA using catch-at-length data on Merluccius merluccius off Senegal ($6-\mathrm{cm}$ classes) 103
7.3 Comparison of results using Jones' length cohort analysis and length- structured VPA ($24-\mathrm{cm}$ classes) 104
7.4 Some properties of four methods for the analysis of sequential catch data 105
7.5 Estimation by means of Gulland's virtual population analysis of the population (in numbers) and the fishing mortality of a cohort of sardines (Sardina pilchardus) caught off Morocco 106
7.6 Estimation of the population size and fishing mortality of a cohort of Peruvian anchovy (Engraulis ringens) by means of Pope's cohort analysis 107
7.7 Estimation of population size and exploitation rate for a West African stock of hake (Merluccius merluccius) based on Jones' length cohort analysis 108
8.1 Growth data of a hypothetical tuna 117
8.2 Parameter values of different growth equations for use in yield-per- recruit analysis 118
8.3 Data for the estimation of $\mathrm{F}_{0.1}$ for Nemipterus marginatus from the South China Sea 121
9.1 Data for the derivation a Beverton and Holt type relationship for sea bream (Taius tumifrons) from the East China Sea 132
9.2 Data for the derivation of Ricker type stock-recruitment relationships for the false trevally (Lactarius lactarius) from the Gulf of Thailand 133
10.1 Catch-and-effort data for anchoveta (Engraulis ringens) off Peru. 141
10.2 Catch-and-effort data for the red snapper fishery on Campeche Bank, Gulf of Mexico 143
10.3 Catch-and-effort data from the north Java demersal trawl fishery 145
10.4 Catch and total mortality estimates of shorthead anchovy (Stolephorus heterolobus) in Ysabel Passage, Papua New Guinea 147
11.1 Data on the growth of a newly established Mediterranean population of Saurida undosquamis 153
12.1 A typical trawler catch from the Java Sea made on 5 September 1976 by R / V Mutiara $I V$ 161
12.2 Constants used for drawing Figs. 12.1 to 12.4 165
12.3 Data for the construction of a quantitative box-model of Bukit Merah Reservoir, Malaysia 169
12.4 Nominal catch-andeffort data from the Gulf of Thailand Trawl Fishery 173
Appendix Tables
1.1 Values of the D-measure (formula 1) for various perturbations in the input parameters. 178
L2 Application of the jackknife method to the surplus model. 179
III. 1 Guide for the conversion of the HP 97 keystrokes to HP 41C/41CV functions 306

Foreword

Fifteen years ago, in Jamaica, I purchased my first electronic calculator, a typewriter-sized affair which had four functions and no memory, and it revolutionized my life. The cheapest of the modern hand-held calculators do more, for less than one hundredth of the price that I paid in 1979. Around the same period, I was using a mainframe computer manned by an army of staff to perform yield-per-recruit computations. The reader will find that their hand-held programmable calculators will execute such computations in a few seconds, by the touch of a button.

It is a feature of our times that new hardware becomes outmoded with remarkable speed. The reader who purchases this book will find that models of the calculators for which the programs were originally written are already difficult to acquire, as they have been replaced by faster and more sophisticated models (which will still run the programs presented here). Likewise, programmable calculators are already being replaced by microcomputers and many readers will wish to translate the programs contained in this book into computer languages.

The scientist working in a sophisticated fisheries laboratory will be aware that many of the routines incorporated in this book are already available in the memories of the mini- or mainframe computers to which they have access and for such individuals, the programs given here will be useful for on-the-spot calculations without moving to a terminal. Convenient yes, but not a remarkable benefit. However, fisheries scientists, particularly in the developing countries, who are working in small, modestly equipped laboratories, remote from the advanced electronic gadgetry of this decade, will find that their lives and working abilities are radically changed by this book because it will now be possible to do complex analyses of data in the remotest field station or even at sea, and in places without regular power supplies, programmers and systems analysts.

Doubtless, many disastrously erroneous analyses will emerge when inappropriate or poor sample data are used to generate estimates, and the dictum of "garbage in \rightarrow garbage out" will more frequently be seen in operation-but this will be a small price to pay for the real advances, improved scientific output and scientifically-based fisheries management decisions which will emerge as a result of the publication of this book.

Additionally, ecologists in fields other than fisheries will find that many of the routines given here are easily adapted to non-fisheries applications-which will hopefully help to overcome the needless dichotomy which has tended to separate fisheries science from the rest of ecology.

This book is doubly welcome because, while there are numerous texts which give clear instructions on how to collect data, there are remarkably few which give any instructions on how to analyze what has been collected. W.E. Ricker's Handbook of Computations and Interpretation of Biological Statistics of Fish Populations and John Gulland's Manual of Fish Stock Assessment have been the mainstays of fish population dynamics for many years and both are sufficiently intimidating-in terms of their mathematics-to have cured many biologists of any inclination to pursue a career in the quantitative aspects of fisheries science. In contrast, readers will not fail to be impresssed by the lucidity and incisiveness which characterizes this manual and which will rightfully earn Dr. Pauly a permanent niche in the annals of fisheries science.

Acknowledgements

I wish to express my gratitude to John Munro, Saul Saila and Erik Ursin for reading the entire draft of this book, and for suggesting various improvements, and to John Gulland and Jorge Csirke, who read and proposed changes for several draft chapters.

Thanks are also due to Lourdes "Deng" Palomares for tracing the program listings by hand, and to Aye Pyo for checking the computational examples.

I would like also to express my most sincere appreciation of the efforts of Per Sparre and John Hoenig. Per not only read the entire draft but also checked the derivation of each equation, spotting in the process a frighteningly large number of errors and ill-defined notions, and developing en passant two new models that he was kind enough to let me incorporate into Chapter 5 of this book. John, on the other hand, accepted the dreary task of checking the galley proofs; his efforts led similarly to the identification of a number of errors of the most insidious kind, all of which would have been most deleterious; I would have hated to see them in the printed version.

It must be stressed here that neither he, nor Per, nor the other reviewers agreed entirely with the selection of items presented here, or with my interpretation of them. Here, I bear full responsibility, as I do with regard to any remaining errors, typographical or other, which readers may spot.

Daniel Pauly

Manila
March 1984

Abstract

This manual is a selection, from the entire field of fish population dynamics, of methods which are applicable to tropical fish and fisheries and can be implemented with the help of programmable calculators.

The methods selected cover the following areas: length-weight relationships, mesh selection, growth, mortality, population size estimation by various methods (e.g., tagging, virtual population analysis), yield-per-recruit assessments, stock-recruitment relationships, surplus-yield models, the rate of increase of populations and aspects of multispecies stocks and fisheries.

The program listing and user instructions of thirty programs for use with HP 67/97 programmable calculators are included; the translation of these programs for use with other types of calculators especially HP 41 and TI 59 is discussed. Sixty computational examples including complete keystroke sequences are provided to illustrate the methods presented in the text. These examples are drawn exclusively from subtropical and tropical stocks and fisheries.

1. How to Use this Manual

Students of fishery biology in tropical developing countries generally find their textbooks replete with cod and haddock, salmon and trout. There is not even one little example pertaining say, to the chub mackerels, the scads or the various demersal percoids, although these fish often support significant and well-documented fisheries throughout the tropics (Marr 1978).

A manual, such as the one presented here, cannot alone compensate for this sad state of affairs. What this manual will do, however, is demonstrate that:
i. there are at present enough original publications on tropical fish and fisheries to exemplify most aspects of fish population dynamics and stock assessment,
ii. there is no further need, when investigating tropical stocks, to compare one's results with those obtained in temperate areas of the world-"lateral" comparisons, involving several similar tropical stocks being generally far more illuminating.
At this point, the question might arise as to what fish population dynamics are all about. A now classic axiom, formulated by Russel (1931) may be used to answer this question. This axiom states that

$$
\mathrm{B}_{2}=\mathrm{B}_{1}+\left(\mathrm{R}^{*}+\mathrm{G}^{*}\right)-\left(\mathrm{M}^{*}+\mathrm{Y}\right)
$$

where B_{1} and B_{2} are the total weights of the exploited phase of a fish stock (or population) at the beginning and end, respectively, of a given time period, while R denotes the recruitment (in weight) to the exploited phase, G^{*} the growth of individuals in the exploited phase, M^{*} the biomass of fish that died due to natural causes in the exploited phase, and Y the yield or catch (in weight) during the aforementioned time period. In other words, the axiom states that in a "closed" population (no emigration, no immigration), the primary factors responsible for weight increments to the stock are recruitment and growth, while the factors responsible for weight loss are natural mortality and capture by the fishery (see also Fig. 1.1).

Population dynamics now can be simply defined as the quantitative study of the four primary factors listed in Russel's axiom. Tropical fish population dynamics, then, can be more specifically defined as the set of methods which can be used quantitatively to interpret data on: 1) stock sizes, 2) recruitment, 3) growth and 4) natural mortality of tropical fish, such that potential catches can be predicted or such that existing fisheries can be knowledgeably managed.

As will be seen, the dynamics of tropical fish are not very different from those of their temperate counterparts, the major differences being: 1) the ranges of sizes are generally smaller, 2) the time periods are shorter, 3) the intensity of seasonal phenomena is reduced.

Accounting for the differences between tropical and temperate systems is therefore basically a question of adjusting one's scales, the "trick" with tropical fish being to turn what appears to be a liability (i.e., that they operate on scales different from those of temperate fish) into an asset.

For example, the fact that many demersal stocks in tropical waters consist of short-lived fish sometimes prevents aging by means of annuli, but allows one to follow the growth and decay of a cohort within a period of 12 months. When there are well-defined spawning seasons (as is often the case), one can then:

- determine growth from length-frequency data without encountering many of the problems of applying this method to long-lived temperate fishes,
- estimate the age, in days, of individual fish,
- estimate absolute recruit numbers from the relationship of yield per recruit with the catch, and
- neglect time-lag effects when fitting surplus-production models to catch-and-effort data.

Also, the extremely large number of species often encountered in the tropics (especially in demersal fisheries), which many authors have generally considered a major problem, may be viewed as a beautiful set of replicates from which not only one, but several sets of parameter estimates can

factors responsible	factors responsible
for stock size	for stock size
increase	decrease

Fig. 1.1. Factors responsible for size increase and decrease in exploited and unexploited stocks (modified after Ricker 1975).
be obtained, for example, to assess the impact of fishing on a multispecies stock (see Chapter 12).
The next 10 chapters of this manual deal with single-species stocks, and only the last chapter deals explicitly with multispecies problems. This 10 to 1 ratio should not conceal the fact that most tropical stocks are part of a multispecies community, and that the other species inevitably affect the dynamics of the stocks under investigation. Chapter 12 is, therefore, very important.

The thirty programs presented here are all original, although a few of them are built around, or incorporate routines written by other authors; the latter are acknowledged in the program descriptions (Appendix II).

The astute reader will note that many, if not all of the programs presented here could be written more elegantly, shortened or otherwise improved. It is only after writing these programs that the author came across such excellent books on calculator programming as Smith (1977), Ball (1978) and Green and Lewis (1979).

Statistical problems per se are given little emphasis in this book, for two reasons. First, fish population dynamics, despite recent improvements, are still mainly based on deterministic models (i.e., on models which assume the input data are known perfectly, and which thus ignore the stochastic nature of the inputs). Second, statistics are best learnt from texts explicitly devoted to that subject. Such texts as Draper and Smith (1966), Snedecor and Cochran (1967), Gomez and Gomez (1976), Weber (1980) or Sokal and Rohlf (1981), include both the theoretical background to some of the approaches used for the programs presented here and methods by which these sometimes crude approaches could be refined.

Some possible improvements and refinements are as follows:

- the use of model II instead of model I regressions (or "GM" instead of "AM" regressions) in a number of cases where the former might be more appropriate (Ricker 1973; Laws and Archie 1981),
- the correction of bias in cases where certain parameters are estimated via linear regression by taking the inverse of the variables,
- the correction of bias where a parameter is derived by taking the antilog of a regression intercept (Sprugel 1983),
- the computation of the standard error of parameter estimates where such routines are missing.
Chatterjee and Price (1977) should be consulted for simple methods to deal with these biases, as well as for a detailed account of residual analysis, a method that is extremely useful whenever regression analysis is applied.

Several programs included in this manual provide approximate estimates of standard error (s.e.) for a number of statistics. These were obtained from the square root of the variance in those cases where an equation was readily available which gave the variance of a given statistic, on the assumption that the statistic in question has a normal distribution.

When equations for the estimation of the variance of a given statistic are missing, approximate values of the standard errors can be obtained using the "jackknife" method of Tukey (1977), which is presented in Appendix I.

Confidence intervals are computed by multiplying the "t-statistic" by the standard error. When a large number of degrees of freedom are available, the confidence intervals of a given statistic, A , are thus computed from:

$$
\mathrm{A} \pm 1.96 \cdot \text { s.e. }{ }_{(\mathrm{A})}=95 \% \text { confidence interval of } \mathrm{A}
$$

or

$$
A \pm 2.58 \cdot \text { s.e. }{ }_{(A)}=99 \% \text { confidence interval of } A
$$

For low numbers of degrees of freedom (d.f. $\leqslant 50$), table values of the t-statistic must be used.
It is recalled here, finally, that the term "standard error" is used for the square root of the variance of a given statistic, while the term "standard deviation" is used for the square root of the variance of a set of values of a given variable (see Sokal and Rohlf 1981).

Two types of readers will make use of this manual: those who "believe" in fish population dynamics, and in whatever comes out of a computer (or calculator), and those who don't.

For the latter, little instruction is needed since they already will know how to deal with the contents of this book. The "believer" readers are likely to be students or unfortunate colleagues who might think that given the equations in this book, and the programs to solve them, all they have to do is press the appropriate buttons of their calculator. Clearly, this would be a recipe for disaster. Fish population dynamics are at present in a state of flux and virtually all of the assumptions, approaches and methods presented here have been challenged at least once by highly competent scientists. Furthermore, the application of many of these methods to tropical stocks is rather new, and their overall applicability to all stocks in many cases still needs to be confirmed, especially the new methods presented in this manual.

To give a "feel" of this, several equally legitimate methods and/or equations are usually presented to solve a given problem; these methods generally give somewhat different results, for reasons that are not obvious in the majority of cases. This will help the "believers" appreciate that nothing can replace one's own thorough knowledge of the various aspects of a given problem. Also, it is
imperative when using any of the methods and approaches presented herein to read the original literature; references are given throughout the text and in a special "recommended reading" section in each of the following chapters.

The methods presented in this book are illustrated by at least one example, based in all cases on data obtained in the tropics or subtropics (Fig. 1.2). Altogether, 60 examples are provided. All include a full keystroke sequence for HP 67/97 calculators and results, to which a brief comment has generally been added. These examples can also be used for testing the programs numbered FB 1 to FB 30 after they have been entered from the listings in Appendix II, into a calculator. The examples can be easily located in the colored pages at the end of Chapters 2-12. Holders for 30 HP 67/97 (and HP 41C) program cards are provided at the end of this book.

Fig. 1.2. Geographic distribution of examples used in this book, showing that most examples are drawn from the intertropical belt.

The user should follow the procedures below when using this manual and the programs it contains:

1) always read the original literature on the models and approaches presented here,
2) use (whenever possible) several methods to estimate the value of a given parameter and try to identify the sources of the differences in the estimates when such differences occur,
3) estimate standard errors, using the jackknife where appropriate, and perform sensitivity analyses (see Appendix I),
4) always check whether the results obtained make biological sense,
5) try to identify possible sources of biases in the model used here and attempt to improve Programs FB 1 to FB 30,
6) consider that more rigorous methods for estimating certain parameters are possible, and
7) do not blame the author for the nonsensical results that may result from thoughtless applications of the methods and programs given here.

2. Length-Weight Relationships

INTRODUCTION

The relationship between the length (L) and the weight (W) of fish can generally be expressed by the equation:

$$
\mathrm{W}=\mathrm{a} \cdot \mathrm{~L}^{\mathrm{b}}
$$

where a is a factor discussed below and the exponent b lies between 2.5 and 3.5 , usually close to 3 . Carlander $(1969,1977)$ has demonstrated from an extraordinarily large number of length-weight data, stemming from a wide variety of fishes, that values of $\mathrm{b}<2.5$ or $\mathrm{b}>3.5$ are generally based on a very small range of sizes and/or that such values of b are most likely to be erroneous. When $b=3$, weight growth is called isometric, meaning that it proceeds in the "same" dimension as the cube of length. When $\mathrm{b} \neq 3$, weight growth is allometric, meaning that it proceeds in a "different" dimension (differing from L^{3}). Allometric growth can be either positive $(b>3)$ or negative ($b<3$). Another way of relating length and weight is to define a condition factor (c.f.) such that

$$
\text { c.f. }=W \cdot 100 / \mathrm{L}^{3}
$$

When weight growth is isometric $(b=3)$, we also have

$$
\text { c.f. } / 100=\mathrm{a}
$$

where a is the multiplicative factor in equation (2.1). The reason for the multiplication by 100 in equation (2.2), it may be mentioned, is to bring the value of the condition factor of fishes with a "normal" shape close to unity when grams are used to express the weight, and centimeters to express the length. It must be emphasized, however, that the c.f. in a given fish species or stock can be compared to that of another species or stock only if the same units and definitions have been used (e.g., total length in cm and live or ungutted weight in g). The units and definitions must always be stated.

In addition many factors, such as sex, time of year, stage of maturity, stomach contents and others influence the numerical magnitude of the condition factor. Comparisons should only be made when these factors are roughly equivalent among samples to be compared.

The values of a in equation (2.1), on the other hand, cannot be used for interspecies or interstock comparisons, even when the same units and definitions are used, unless the values of b are exactly the same. The values of b, finally, are not affected by the units or definitions used.

PARAMETER ESTIMATION

The values of a and b in equation (2.1) are estimated in Program FB 1 by means of a "linearized" form of that equation, namely

$$
\log W=\log a+b \cdot \log L
$$

that is by taking (base 10) logarithms on both sides and by estimating the values of $\log a$ and of b by means of a linear regression.

This procedure of using ordinary least-square regression to estimate a and b only approximate these parameters, and results in estimates of the standard errors that are not very reliable; alternative procedures, e.g., the use of non-linear least-squares estimations should be considered where possible.

Program FB 1 also calculates single values of c.f. when L/W data are entered, computes an individual or mean c.f. value after one or several pairs of L / W values have been entered and estimates L from W and/or W from L when values of a and b, or an estimate of the condition factor are available.

When expression (2.4) is fitted to data, the coefficient of determination (r^{2}) is also estimated by program FB1. This coefficient has the value of the correlation coefficient squared, and is used in all those programs that are presented here in which an estimator of the goodness of fit is given. It has the advantage over the correlation coefficient that it expresses directly the proportion of the variance that is "explained" by the regression (e.g., of $\log W$ on $\log L$). For example, $r^{2}=0.92$ means that 92% of the variance in a set of values is accounted for, or explained, by a regression, while $100-92=8 \%$ remains "unexplained", that is, must be attributed to other cause(s), e.g., to random variability.

As will be seen in the following chapters, a number of models (= equations) used in fish population dynamics assume that the exponent of the length-weight relationship is equal to 3 . Also some models can be considerably simplified when this exponent is actually equal to 3 . For these reasons, Program FB 1 incorporates a routine which calculates the value of $\hat{\mathrm{t}}$ that can be used to test whether a value of b calculated by this program is significantly different from 3. The equation used to compute the t-statistic is

$$
\hat{\mathrm{t}}=\frac{\mathrm{s.d} \cdot(\mathrm{x})}{\mathrm{s.d} \cdot(\mathrm{y})} \cdot \frac{|\mathrm{b}-3|}{\sqrt{1-\mathrm{r}^{2}}} \cdot \sqrt{\mathrm{n}-2}
$$

where s.d. ${ }_{(x)}$ is the standard deviation of the $\log \mathrm{L}$ values, and s.d. ${ }_{(\mathrm{y})}$ the standard deviation of the $\log W$ values, n being the number of fish used in the computation. The value of b is different from 3 if \hat{t} is greater than the tabled value of t for $n-2$ d.f. (see Example 2.1).

Table 2.1 presents data which can be used for establishing a length-weight relationship (see also Example 2.1).

Table 2.1. Data for establishing a length-weight relationship for the threadfin bream (Nemipterus marginatus) from the southern tip of the South China Sea (live weight in g).

$\#$	TL (cm)	W (g)	$\#$	TL (cm)	W (g)
1	8.1	6.3	9.6	10	16.6
2	10.2	11.6	11	17.7	65.5
3	11.9	18.5	12	18.7	69.4
4	12.2	26.2	13	19.0	76.4
5	13.8	36.1	14	20.6	82.5
6	14.8	40.1	15	21.9	106.6
7	15.7	47.3	16	22.9	113.8
8					

When large numbers of fish have been measured, entering the L / W data pairs can become quite tedious. In such cases, a common practice is to arrange the data by length groups, and to calculate the mean weight for each length class. The data should then look as in Table 2.2.

Using Program FB 1, the length-weight relationship and/or the mean condition factor may be calculated with the L/W data pairs having been "weighted" by the sample size. Example 2.2 shows how the data of Table 2.2 may be used in this context. Example 2.3, finally, shows how a single data pair (one value each of L and W) can be used to obtain a preliminary estimate of c.f.

Fig. 2.1. Length-weight relationship for the threadfin bream (Nemipterus marginatus) from the South China Sea (based on data in Table 2.1 and Example 2.1).

Table 2.2. Data for establishing the length-weight relationship of Leiognathus splendens from the Eastern Java Sea (total length in cm , live weight in g).

\#	Class limits low high	Class midlength	Mean weight	\mathbf{n}
1	$6.00-6.49$	6.25	5.28	1
2	$6.50-6.99$	6.75	4.07	1
3	$7.00-7.49$	7.25	6.91	11
4	$7.50-7.99$	7.75	8.46	26
5	$8.00-8.49$	8.25	10.15	26
6	$8.50-8.99$	8.75	11.88	23
7	$9.00-9.49$	9.25	13.77	16
8	$9.50-9.99$	9.75	17.13	2
9	$10.00-10.49$	10.25	19.29	7
10	$10.50-10.99$	10.75	22.57	9
11	$11.00-11.49$	11.25	25.54	7
12	$11.50-11.99$	11.75	38.66	3
13	$12.00-12.49$	12.25	-	7
-	$13.00-12.99$	13.75	46.73	0
14	$13.50-13.99$	13.75	-	1
	$14.00-14.49$	14.25	55.91	0
15	$14.50-14.99$	14.75	65.63	1
16	$15.00-15.49$	15.25	1	
17				1

Recommended reading: The following papers and books contain useful reviews of aspects of the length-weight relationships of fish: Kesteven (1947), Le Cren (1951), Carlander (1969, 1977), Weatherley (1972), Ricker (1973, 1975), Balon (1974).

Suggested research topics: Estimating a and b in various commercially exploited fish stocks, plotting c.f. values of adults of similar sizes against month of the year to detect changes due to spawning, and comparing the c.f. values of fishes of similar sizes, both parasitized and unparasitized.

Several of the models discussed in the following chapters of this manual require estimates of the mean size at first capture, that is the length at which 50% of the fish entering a trawl net are retained by the gear (L_{c}).

The parameter L_{c} is particularly interesting in that it is the length at which the numbers of smaller fish caught retained by the cod end compensate for the number of larger fish not yet retained by the cod end (see shaded areas in Fig. 3.1).

While L_{c} can be estimated graphically, a more precise method is to order the catch data as in Table 3.1 and to estimate L_{c} from

$$
L_{c}=L_{n+1}-\Sigma_{P_{i}}
$$

where L_{n} is the lower limit of the highest length class considered (when this equation is used the fish must be grouped in classes of width equal to unity, e.g., 1 cm), while $\Sigma_{P_{1}}$ is the sum of the fractions retained, as shown in Table 3.1 (see also Example 3.1).

Another method to estimate L_{c} is to fit the retention data with a logistic curve of the form

$$
\mathrm{P}=1 /\left(1+\mathrm{e}^{-\mathrm{r}_{\mathrm{m}}\left(\mathrm{~L}-\mathrm{L}_{\mathrm{c}}\right)}\right)
$$

where P is the probability of capture, L the midpoint of a length class and r_{m} is a constant whose value increases with the steepness of the selection curve; both equations (3.1) and (3.2) assume the selection curve to be symmetrical or nearly so.

A program is provided here (FB 29) which can be used to fit a logistic curve to data obtained by a trawl selection experiment (Example 3.2). However, this approach gives best results when the selection curve is symmetrical about the L_{c} value, and it is thus necessary to first plot the data to check if the requirement for symmetry is at least reasonably met (see Example 3.2 and Fig. 3.1).

In general, L_{c} can be considered proportional to the mesh size of the cod-end meshes; the proportionality constant is called the selection factor (S.F.). When known, it can be used to estimate L_{c} from the relationship

$$
L_{c}=\text { S.F. } x \text { mesh size }
$$

It has been demonstrated by several authors that the selection factor of fishes is generally related to their overall shape, i.e., slender fishes have high selection factors while bulky fishes have low selection factors. This property has been used by the author to derive a nomogram (Fig. 3.2), based on a large number of published results of selection experiments, and which can be used to estimate approximate values of selection factors of fishes, given their "girth factor" (maximum girth/total length) or their "depth ratio" (standard length/maximum body depth). (See Table 3.2 and Example 3.3).

GILLNET SELECTION

Whereas trawl selection is essentially a one-sided affair (with only smaller fish having a reduced probability of capture), gillnets tend to select negatively both small and large fish. The former simply go through the mesh without getting caught, while the latter are too big to insert themselves into a mesh. Thus, when the fish are actually "gilled" (that is caught with their head in the mesh, with the net's twine retaining the fish by their operculum), the resulting selection curve has the shape of a normal distribution, and the length at optimum efficiency (optimum length) will be proportional to mesh size. The selection curve of gillnets can be estimated, when the fish are "gilled" as described above, by using two gillnets of different mesh sizes, if the following applies:
-- both selection curves are normally distributed,

Fish Population Dynamics in Tropical Waters: A Manual
for Use with Programmable Calculators

To Sandra, Ilya and Angela

Table 3.2. Morphometric data for Leiognathus equulus for rapid estimation of mean length at first capture (L_{c}). ${ }^{\text {a }}$

Total length (cm)	Standard length (cm)	Maximum girth (cm)	Maximum body depth (cm)
10.2	8.2	9.9	4.5
10.5	8.6	10.6	5.0
11.3	9.0	11.1	4.8
14.0	11.5	14.2	6.3
14.3	11.8	14.0	6.1
14.4	11.8	13.7	6.0
16.4	13.2	16.3	7.6
16.7	13.2	16.5	7.4
18.4	14.9	18.3	8.4
	17.8	22.8	10.5
$\frac{147.4}{}$	120.0	14.74	66.6
	12.00		6.66

[^0]- the two selection curves have the same standard deviation,
- optimum length is proportional to mesh size,
- the two nets have overlapping selection ranges.

In such cases, given catches obtained by the smaller mesh of size A and the larger mesh of size B, the optimum length corresponding to $A\left(L_{A}\right)$ and the optimum length corresponding to $B\left(L_{B}\right)$ can be estimated from the catch by length class of each mesh $\left(C_{A}, C_{B}\right)$ through a linear regression of the form $y=a+b x$, where

$$
\begin{align*}
& y=\ln \frac{C_{B}}{C_{A}} \\
& x=L \text { (class midpoint) }
\end{align*}
$$

The ratio $\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{B}}$ is called the catch ratio.
The intercept and slope of this regression can then be used to estimate the optimum lengths from

$$
L_{A}=\frac{-2 a \cdot A}{b(A+B)}
$$

and

$$
L_{B}=\frac{-2 a \cdot B}{b(A+B)}
$$

while the standard deviation of both selection curves is estimated from

$$
\text { s.d. }=\sqrt{\frac{2 a(A-B)}{b^{2}(A+B)}}
$$

Once L_{A}, L_{B} and s.d. have been estimated, the probability of capture (P) at a given length (L) is given for mesh A by

$$
P_{A}=\exp \left(-\frac{\left(L-L_{A}\right)^{2}}{2 \text { s.d. }^{2}}\right)
$$

and for mesh B by

$$
P_{B}=\exp \left(-\frac{\left(L-L_{B}\right)^{2}}{2 s . d^{2}}\right)
$$

The derivation of these equations may be found in Gulland (1969, p. 90-92); this method was proposed by Holt (1963) on the basis of pioneering work by Baranov (1914).

Although the method gives reasonable results in the case of the example provided here (Example 3.4, Table 3.3, Figs. 3.3 and 3.4), various authors have shown that gillnet selection curves frequently have shapes other than normal (= bell-shaped). This applies especially to large, spiny fishes, which, in addition to being gilled often entangle themselves, which results in asymmetrical selection curves. In such cases, it may be necessary to use more elaborate methods to estimate the selectivity of the net(s) under investigation, e.g., those of Gulland and Harding (1961), or Hamley (1975).

When the selection curves for a given fish species are only slightly asymmetrical and drawn to the right, it is still possible to apply the Baranov/Holt method outlined above using the logarithm

Table 3.3. Catch by length of two gillnets to estimate their selection for Tilapia esculenta in Lake Victoria. Simplified from Table 1 in Garrod (1961).

${ }^{a}$ Note that, when comparing two nets, only those lengths can be used for which there are nonzero catch data on both sides.
of the lengths (and of the mesh sizes) instead of the lengths (and mesh sizes) in all computations. This approach is illustrated in Example 3.5, which is based on the data pertaining to Tilapia galilaea caught in Volta Lake, Ghana (Table 3.4). As might be seen in Fig. 3.5A, the plot of the natural logarithm of catch ratio against length is not linear (thus suggesting that the simple Baranov/Holt model is inappropriate). The plot of the natural logarithm of catch ratio against that of length (Fig. 3.5B) is linear however, and provides parameters from which asymmetrical selection curves can be drawn (Fig. 3.6),

Fig. 3.3. Logarithm of catch ratios plotted for length in Tilapia esculenta caught with gillnets of two different mesh sizes (based on data in Table 3.3 and Example 3.4). (Note that one could also argue that the logarithmic model in Fig. 3.5 would fit the data better than the simpler model used here.)

Fig. 3.4. Selection curves for Tilapia esculenta caught with gillnets of two different mesh sizes (based on Example 3.4).

Fig. 3.5. Plot of natural logarithms of catch ratios against length (A) and ln length (B) to show effect of logarithmic transformation of length. Based on data of Table 3.4. Note non-linearity of relationship A (dotted line drawn by eye); see also Example 3.5 and text.

Fig. 3.6. Selection curve of Tilapia galilaea caught with gillnets of two mesh sizes ($A=7.6 \mathrm{~cm}, \mathrm{~B}=\mathbf{1 0 . 2} \mathbf{~ c m}$). Based on data in Table 3.4 and Example 3.5.

Table 3.4. Catch by length of two gillnets for estimation of their selection for Tilapia galilaea in Volta Lake, Ghana. ${ }^{\text {a }}$

Midpoint of length class (cm) ${ }^{\text {b }}$	Mesh sizes (cm)		Probability of capture at mesh sizes	
	7.6	10.2		
	No. of fish caught		7.6 cm	10.2 cm
17.5	75	1	0.803	0.016
19.5	95	7	0.994	0.068
21.5	36	15	0.929	0.190
23.5	14	6	0.705	0.391
25.5	5	10	0.457	0.633
27.5	2	4	0.262	0.849

[^1]
USING A SELECTION CURVE

TO ADJUST CATCH SAMPLES

Conducting and interpreting selection experiments, e.g., with the models proposed above, represent only half of the work that must be done to obtain catch samples that are representative of a given fish population. The other half of the work, obviously, is to use the selection curves obtained to adjust the available samples. Such adjustment is done by simply dividing the number of fish caught, for each length class, by the probability of capture of that length class, i.e., using the relationship

$$
\begin{align*}
& \text { true relative abundance } \\
& \text { in the population }
\end{align*}=\frac{\text { relative abundance in sample }}{\text { probability of capture }}
$$

Fig. 3.7 shows, as an example, the catch sample of Tilapia galilaea in Table 3.4 ($7.6-\mathrm{cm}$ meshes) and the computed true (relative) abundances in the population.

Fig. 3.7. Difference between a gillnet sample and the same sample, adjusted for mesh selection (based on data of Table 3.4, $7.6-\mathrm{cm}$ meshes and Example 3.5). The difference between the two samples is relatively small in this example, but can be quite dramatic when large ranges of sizes are represented in the catch.

Recommended reading: Mesh selection for both trawl and gillnets is discussed in Gulland (1969, p. 84-95) who derives the various equations presented in this chapter. For trawl selection, further details may be found in Beverton and Holt (1957, p. 221-233) and Pope et al. (1975), while McCombie and Fry (1960), Gulland and Harding (1961) and Hamley (1975) describe methods for assessing the selectivity of gillnets when the assumptions of the models presented above are not met, e.g., when the selection curves are strongly asymmetrical.

It is extremely important for fishery biologists to have a good knowledge of the gears used in a given fishery, and of the properties of such gears. Brandt (1972) and Baranov (1976) may be consulted for gear descriptions and the study of gear properties, respectively.

Passive gears, such as traps, longlines, gillnets, etc. tend to interfere with each other and to become saturated. These and related problems are reviewed in Munro (1974) and Eggers et al. (1982).

Suggested research topics: Estimate selection ogives, L_{c}, and selection factors of important commercial species. In multispecies fisheries, use the knowledge gained in the fashion of Sinoda et al. (1979).

EXAMPLE 3.1

Estimation of the mean length at first capture (L_{c}) and selection factor of Leiognathus equulus by means of a trawl selection experiment.

Data from Table 3.1
Computation

1) Read sides 1 and 2 of Program FB 2
2) Keystrokes
$8 \mathrm{fa} 4 \uparrow 0 \mathrm{~A} 35 \uparrow 2 \mathrm{~A} 198 \uparrow 22 \mathrm{~A} 170 \uparrow 56 \mathrm{~A} 76 \uparrow 42 \mathrm{~A} 45 \uparrow 34 \mathrm{~A} 25 \uparrow 19 \mathrm{~A} 7 \uparrow$
$21 \mathrm{~A} 0 \uparrow 12 \mathrm{~A} 1 \uparrow 3 \mathrm{~A} 0 \uparrow 5 \mathrm{~A} 0 \uparrow 5 \mathrm{~A} 0 \uparrow 3 \mathrm{~A} 0 \uparrow 1 \mathrm{~A} 0 \uparrow 1 \mathrm{~A} 0 \uparrow 1 \mathrm{~A}$
Keystrokes Results
3) Calculate L_{c}
4) Calculate the selection factor (S.F.) (i.e., divide by the mesh size used):
$\mathrm{fb} \quad 13.88$
7.88
\div
$\left(L_{c}\right)$
(S.F.)

See Example 3.2 for another method to estimate S.F., also applied to Leiognathus equulus.

Data from Table 3.1 (but note that midpoints are used instead of the lower class limits)

Computations

1) Read side 1 of Program FB 29
2) Keystrokes
$1 \mathrm{f} \mathrm{a} .054 \uparrow 9.5 \mathrm{~A} .1 \uparrow 10.5 \mathrm{~A} .248 \uparrow 11.5 \mathrm{~A} .356 \uparrow 12.5 \mathrm{~A} .43 \uparrow 13.5 \mathrm{~A} .432 \uparrow$
$14.5 \mathrm{~A} .75 \uparrow 15.5 \mathrm{~A}$
(note that midlengths above 15.5 were skipped; see below)
3) Estimate goodness of fit and $L_{c_{-}}$

Keystroke	Results
E	$0.938\left(\mathrm{r}^{2}\right)$
	$0.591\left(\mathrm{r}_{\mathrm{m}}\right)$
	$14.002\left(\mathrm{~L}_{\mathrm{c}}\right)$

4) To draw curve as in Fig. 3.2 enter class midpoint, and obtain fraction retained, as follows

	Keystrokes	Results
	7.5 C	0.021 (frac. retained)
	8.5 C	0.037 (frac. retained)
and	etc.	
and		

5) Divide L_{c} by the mesh size used (here 7.88 cm) to estimate the selection factor.

Keystrokes	Results
$14.002 \uparrow$	-
$7.88 \div$	1.777
(S.F.)	

The value of L_{c} obtained here (14 cm) is very close to the value obtained earlier (13.9 cm). However, this was achieved by omitting all values associated with lengths higher than 15.5 cm . This step was necessary because the program used here does not allow for the entry of 1.00 as a fraction retained. The selective removal of all such values, on the other hand, would cause a bias in the curve estimation. Thus, the best solution here was to omit all lengths from the first which couldn't be entered. As Fig. 3.1 shows, the resulting curve gives a good fit to the data.

EXAMPLE 3.3

Estimation of the selection factor of Leiognathus equulus by means of morphometric data and a nomogram (Fig. 3.2).

Data from Table 3.2

1) Calculate the "girth factor" (maximum girth/total length)

Keystrokes: $14.74 \uparrow 14.83 \div$
girth factor $=0.99$
2) Calculate the "depth ratio" (standard length/maximum body depth)

Keystrokes: $12 \uparrow 6.66 \div$
depth ratio $=1.80$
3) Use the calculated "girth factor" and "depth ratio" to estimate two values of S.F. via the nomogram in Fig. 3.2. This results in a mean estimate of S.F. of ≈ 1.8 which compares well with the values of 1.76 and 1.78 estimated in Examples 3.1 and 3.2, respectively.

Estimation of the selection curves for Tilapia esculenta caught with gillnets of two different mesh sizes.

Data from Table 3.3
Computation

1) Read sides 1 and 2 of Program FB 2
2) Keystrokes
$8.1 \uparrow 9.1$ fe $90 \uparrow 1 \uparrow 19.5 \mathrm{C} 199 \uparrow 9 \uparrow 20.5 \mathrm{C} 182 \uparrow 53 \uparrow 21.5 \mathrm{C} 119 \uparrow 290 \uparrow 22.5 \mathrm{C}$ $29 \uparrow 357 \uparrow 23.5 \mathrm{C}$
3) Calculate parameters of selection curves

Keystrokes	Results	
E	0.996	$\left(\mathrm{r}^{2}\right)$
	-39.801	(a)
	1.801	(b)
	20.818	(L
	23.388	(L)
	1.195	(s.d.)

4) Obtain P-values to draw selection curves

Keystrokes	Results	
17 D	0.006	(P)
18 D	0.062	(P)
etc.		

Step 4 allows the quick estimation of values of P (= probability of capture) for any length, using mesh A; to obtain values pertaining to mesh B, enter the length value and press fd (see Users' Instruction for Program FB 2 and Fig. 3.4 for selecting the curves pertaining to this example).

EXAMPLE 3.5

Estimation of asymmetrical selection curves for Tilapia galilaea caught with gillnets of two different sizes.

Data from Table 3.4

Computation

1) Read sides 1 and 2 of Program FB 2
2) Keystrokes

> fSTF1 $7.6 \uparrow 10.2$ fe $75 \uparrow 1 \uparrow 17.5 \mathrm{C} 95 \uparrow 7 \uparrow 19.5 \mathrm{C} 36 \uparrow 15 \uparrow 21.5 \mathrm{C} 14 \uparrow 6 \uparrow 23.5$ C $5 \uparrow 10 \uparrow 25.5 \mathrm{C} 2 \uparrow 4 \uparrow 27.5 \mathrm{C}$
3) Calculate parameters of selection curves

> Keystrokes Results
$\mathrm{E} \quad 0.941 \quad\left(\mathrm{r}^{2}\right)$
-36.024 (a)
11.224 (b)
$19.936 \quad\left(\mathrm{~L}_{\mathrm{A}}\right)$
$30.774 \quad\left(\mathrm{~L}_{\mathrm{B}}\right)$
0.197 (s.d.)
(but note that s.d. is expressed in $\log _{e}$ units)
4) Obtain P-values to draw selection curve for mesh A

Keystrokes	Results	
17.5 D	0.803	(P)
19.5 D	0.994	(P)
etc. (see Table 3.4 and Fig. 3.6)		

For mesh B, enter midpoints and press fd instead of D; remember that all computations in this example must be performed with flag 1 set, and that it should be cleared to get back to linear plots of \ln catch ratio on length and to symmetrical selection curves.

4. Fish Growth

INTRODUCTION

Growth may be defined as the change over time of the body mass (\cong body weight) of a fish, being the net result of two processes with opposite tendencies, one building-up body substances (anabolism) and the other breaking these substances down (catabolism) or

$$
\mathrm{dw} / \mathrm{dt}=\mathrm{HW} \mathrm{w}^{\mathrm{d}}-\mathrm{kW}
$$

where dw/dt is the change in body weight per unit time, H is the coefficient of anabolism and k is the coefficient of catabolism. The process of anabolism is here viewed as being proportional to a certain power (d) of the fish weight (W), while catabolism is proportional to weight itself (von Bertalanffy 1938; Pauly 1981).

Equation (4.1) is a differential equation which may be integrated in two ways:
a) by setting the value of d at $2 / 3$. This leads to what is widely known as the Von Bertalanffy Growth Formula (VBGF), which is here called special VBGF.
b) by allowing d to take a certain range of values, including $2 / 3$. This leads to what will be called the generalized VBGF (Pauly 1981).
Most growth-related programs in this manual allow the use of both forms of the VBGF, and there is no need to fear that the use of a "new" growth equation will complicate things. The reason why the generalized VBGF is introduced here is that this form of the growth equation allows smaller deviations when fitting growth data and a biological interpretation of the equation parameters, as intended by von Bertalanffy (1951) (see Pauly 1981).

Details on the integration of expression (4.1) to a growth curve have been presented in Taylor (1962) and Pauly (1979a). It suffices to mention here that, in the course of this integration, the weights in expression (4.1) are replaced by length such that

$$
\mathrm{HW}^{\mathrm{d}}=\mathrm{pL}^{\mathrm{a}}
$$

and

$$
\mathrm{W}=\mathrm{q} \mathrm{~L}^{\mathrm{b}}
$$

Also a "surface factor D " is defined such that

$$
\begin{equation*}
\mathrm{D}=\mathrm{b}-\mathrm{a}=\mathrm{b}(1-\mathrm{d}) \tag{4.3}
\end{equation*}
$$

The integration for length growth yields the equation

$$
L_{t}^{D}=L_{\infty}^{D}\left(1-e^{-K D\left(t-t_{o}\right)}\right)
$$

or

$$
L_{t}=L_{\infty}\left(1-e^{-K D\left(t-t_{o}\right)}\right)^{1 / D}
$$

where
L_{∞} is the asymptotic length, that is the mean length the fish of a given stock would reach if they were to grow indefinitely.
K is a growth constant which may be conceived as a "stress factor", with $\mathrm{K}=\mathrm{k} / 3$
(relative) age". Table 4.3 gives an example of such data. From such data, L_{∞}, (or W_{∞}) and K may be estimated, but not t_{0}, which is due to the fact that what is really known are age differences, not actual ages. To obtain estimates of t_{o}, a knowledge of the absolute age of fish of given size is necessary, as might be obtained, e.g., from aging by means of daily otolith rings (Pannella 1971) or from a detailed knowledge of the life-history of a fish, inclusive of the exact spawning season.

Table 4.3. A set of length-at-(relative) age data, pertaining to male Nile carps (Labeo niloticus) from a freshwater body near Alexandria (Egypt). ${ }^{\text {a }}$

Age group (relative age, in years)	Length (cm)	N
I	19.6	184
II	37.4	73
III	45.7	11
IV	51.0	3

[^2]Throughout most of this manual, I have used the term size-at-age both for data on size at absolute and at relative age, and distinguished between the two only when the distinction was essential to the point being made.

Size-at-age data (in the wider sense) are required in this manual for Programs FB 3 (von Bertalanffy Plot), FB 4 (Ford-Walford Plot) and FB 7 (seasonal length growth).

Data on size increase in time may be typically represented by the tagging-recapture data of Table 4.4. With this type of data, we do not know the age of any fish, nor do we even have a series of sizes at relative ages. Still, it is possible to derive from data of this type an estimate of asymptotic size and K, given values of D, by means of Program FB 5 (Gulland and Holt Plot) or Program FB 6 (Munro Plot).

This manual, it must be stressed here, shows how to interpret growth data, not how to obtain them. Introductions into the literature on fish aging, including validation techniques applicable to tropical fish, are given by Mohr (1927, 1930 and 1934), Graham (1929), Suvorov (1959), Menon (1950), Bagenal (1974), Pauly (1978), by Brothers (1980), who also reviews techniques for aging tropical fish by means of daily otolith rings, and most recently by Beamish and McFarlane (1983).

METHODS FOR PARAMETER ESTIMATION

A method for obtaining first estimates of asymptotic size
Various authors, notably Beverton (1963) and Taylor (1958), have noted that there is generally a good agreement in various fish stocks, between $L_{\text {max }}$, the largest length recorded from a given stock and L_{∞}, the asymptotic length estimated for that stock.

Taylor (1958) in fact suggested the rule of thumb

$$
L_{\max } / 0.95 \approx L_{(\infty)}
$$

which for weight becomes

$$
\mathrm{W}_{\max } / 0.86 \approx \mathrm{~W}_{(\infty)}
$$

and where $L_{(\infty)}$ and $W_{(\infty)}$ are used (instead of L_{∞} and W_{∞}) to distinguish such preliminary estimates from values of asymptotic size obtained from growth data, e.g., by means of a Ford-Walford plot (see below).

Two problems are associated with this method to obtain preliminary estimates of asymptotic size. The first problem is that of properly defining $L_{\text {max }}$ (or $W_{\max }$); S. Garcia, FAO (pers. comm.) suggests $\mathrm{L}_{\text {max }}$ and $\mathrm{W}_{\text {max }}$ should be derived by averaging the sizes of several large specimens from a well-sampled stock, whenever possible, rather than using only one single value. In either case, it is important to distinguish $\mathrm{L}_{\max }$ (and $\mathrm{W}_{\max }$) from $\mathrm{L}_{\max . \text { ever }}$ (and $\mathrm{W}_{\text {max. ever }}$), i.e., to distinguish the maximum size on record from a given stock from the maximum size recorded from a given species of fish (see e.g., Intern. Game Fish Assn. 1978). Obviously, values of $L_{\text {max. ever }}$, or $W_{\text {max. ever }}$ will not do for use with equation (4.16) or (4.17), because the "record" fish will most probably have grown under environmental conditions different from those applying to the stock under investigation.

The second problem associated with the use of expression (4.16) or (4.17) to obtain preliminary estimates of asymptotic size lies in the fact that in fish capable of reaching very large sizes, the use of the special VBGF implies that $\mathrm{L}_{\infty} \gg \mathrm{L}_{\max }$ (and $\mathrm{W}_{\infty} \gg \mathrm{W}_{\text {max }}$), as shown in Pauly (1981) (see also Example 4.9 and Fig. 4.5). The reason for this is that the assumption embedded in the special VBGF that $\mathrm{D}=1$, which is more or less erroneous in most fish, is most erroneous in those fish that are capable of reaching large sizes (see Fig. 4.1). Using $D=1$, instead of the appropriate value of D has in these fish the effect of generating values of asymptotic sizes much larger than the maximum known from the stocks in question (Pauly 1981). Thus, in fish capable of reaching large sizes ($>50 \mathrm{~cm}$) it is imperative, when using expression (4.16) or (4.17) to compute and use the appropriate value of D.

The von Bertalanffy plot

Historically, the first method for estimating the parameters of the VBGF was that proposed by von Bertalanffy (1934). The method requires the use of a set value for the asymptotic size ($\mathrm{L}_{(\infty)}$, or $W_{(\infty)}$).

The generalized VBGF

$$
L_{t}{ }^{D}=L_{(\infty)} D \cdot\left(1-e^{-K D\left(t-t_{o}\right)}\right)
$$

can also be written

$$
\left(L_{t} / L_{(\infty)}\right)^{D}=1-e^{-K D\left(t-t_{0}\right)}
$$

and

$$
1-\left(L_{t} / L_{(\infty)}\right)^{D}=e^{-K D\left(t-t_{0}\right)}
$$

or

$$
-\ln \left[1-\left(\mathrm{L}_{\mathrm{t}} / \mathrm{L}_{(\infty)}\right)^{\mathrm{D}}\right]=-\mathrm{KD}_{\mathrm{o}}+\mathrm{KDt}
$$

Expression (4.21) has the form of a linear regression, $y=a+b x$,
where

$$
y=-\ln \left[1-\left(L_{t} / L_{(\infty)}\right)^{D}\right]
$$

and

$$
x=t
$$

which, given a set of length-at-age data, a value of D and an estimate of $L_{(\infty)}$, provides values of intercept (a) and slope (b) which can be used to obtain K and t_{0} through

$$
K=b / D
$$

and

$$
t_{o}=--a / b
$$

Also, a value of r^{2} is generated which estimates the goodness of fit and which can be used to test whether the use of a different value of $\mathrm{L}_{(\infty)}$ improves the linearity of the regression. The latter

Fig. 4.3. Relationship between the goodness of fit of a von Bertalanffy plot (expressed by the coefficient of determination) and the selected value of $L_{(\infty)}$ (based on data in Table 4.3 and Example 4.2).
feature, therefore, can be used to obtain by trial and error the value of $\mathrm{L}_{(\infty)}$ which brings r^{2} to its maximum. See Example 4.2 and Fig. 4.3.

The use of a von Bertalanffy plot has the following advantages:
a) the values of t (ages) do not need to be equidistant (see Example 4.1)
b) the mean length values used in the regression can be weighed by sample size (as in Example 4.2)
c) the value of t_{o} is estimated directly when absolute ages are provided (as in Example 4.1)
d) the use of a forcing value of $L_{(\infty)}$ helps in obtaining (rough) estimates of K even when the growth data are not asymptotic.

The Ford-Walford plot

Of all methods used for estimating the parameters of the VBGF, the Ford-Walford plot (Ford 1933; Walford 1946) is the most commonly used. The method is based on a rewritten version of the VBGF:

$$
L_{t+1} D=a+b L_{t}{ }^{D}
$$

from which is derived

$$
L_{\infty}=\left(\frac{a}{1-b}\right)^{1 / D}
$$

and

$$
K=-\frac{\ln b}{D}
$$

Here, $L_{t}{ }^{D}$ and $L_{t+1}{ }^{D}$ pertain to length separated by a constant time interval ($1=$ year, month or week, etc.). Table 4.4 shows how size-at-age data need to be rearranged for use in a Ford-Walford plot.

A point must be mentioned which pertains to the regression model used in conjunction with the Ford-Walford plot. The linear regression models normally used in this manual (as well as in the HP 67/97 Standard PAC) are arithmetic mean (AM) regressions, also called type I, or predictive regressions. In this regression type, it is implied that the ordinate (y) values are measured with error, or have natural variability, while the abscissa value (x) are measured without error or not to have natural variability. This assumption applies in the case of the von Bertalanffy plot. In the case of the Ford-Walford plot, however, the use of an AM regression introduces a bias, due to the fact that both the y values ($=L_{t+1}{ }^{D}$) and the x values ($=L_{t}{ }^{D}$) are measured with the same error (they are indeed the same data, used twice!). In such a case, a geometric mean (GM) regression (also called type II, or functional regression) has to be used (Ricker 1973; Laws and Archie 1981).

In practice this consists in calculating the a, b and r^{2} values of an AM regression, then calculating the GM slope (b^{\prime}) from

$$
b^{\prime}=b / r
$$

and the GM intercept (a^{\prime}) from

$$
a^{\prime}=\bar{y}-\left(b^{\prime} \bar{x}\right)
$$

where \bar{x} is the mean of the $L_{t}{ }^{D}$ values and \bar{y} the mean of the $L_{t+1}{ }^{D}$ values. The values of a^{\prime} and b^{\prime} are then inserted into equation (4.27) and equation (4.28) instead of the values of a and b.

Table 4.4. Length-at-age data for the Atlantic yellowfin (Thunnus albacares) ${ }^{\text {a }}$ off Senegal for use with a Ford-Walford plot.

Age (years)	FL (cm)	Rearrangement for Ford-Walford plot	
1	35	$L_{t}(=x)$	$L_{t+1}(=y)$
2	55	35	55
3	75	55	75
4	90	75	90
5	105	90	105
6	115	105	115

[^3]The computations outlined here are all performed by Program FB 4 and data are provided in Table 4.4 for calculating Example 4.3 (see also Figs. 4.4 and 4.5). The Ford-Walford plot has a few advantages over the von Bertalanffy plot-an estimate of L_{∞} is obtained immediately, and it is relatively easy to compute.

Fig. 4.4. Two Ford-Walford plots for Atlantic yellowfin (Thunnus albacares), based on the special and generalized VBGF (based on Table 4.4 and Example 4.3).

Fig. 4.5. Differences between the special and generalized VBGF as applied to growth data for Atlantic yellowfin (Thunnus albacares) (based on Example 4.3).

These advantages, as it seems, are outweighed by the disadvantages of this method, namely:

- The plot requires that the data are equidistant in time (the time between size values being years, months, weeks, etc.).
- The points are unevenly spaced along the plot (see Fig. 4.4) which introduces a slight bias when calculating the regression parameters.
- The points, being combined from two values of size-at-age cannot be readily weighed by sample size.
- One value of size-at-age is always lost (because it has no corresponding value of L_{t+1}).
- The value of t_{o} must be estimated separately.

Variants of the basic Ford-Walford plot have been published (e.g., Gulland 1969; Hohendorf 1966), but the negative features of this plot can hardly be compensated for; it would appear that the Ford-Walford plot is in fact inferior to the original von Bertalanffy plot.

The Gulland and Holt plot

Another method for estimating L_{∞} and K from growth data is provided by the feature that a plot of size increments per unit time against mean size (for the increment in question) gives a straight line, whose slope-with sign changed-closely corresponds to the value of K, or including the parameter D:

$$
\frac{L_{2}^{D}-L_{1}^{D}}{t_{2}-t_{1}} \approx a-K D \bar{L}^{D}
$$

where $\bar{L}^{\mathrm{D}}=\left(\mathrm{L}_{1}{ }^{\mathrm{D}}+\mathrm{L}_{2}{ }^{\mathrm{D}}\right) / 2$, and where L_{1} and L_{2} are successive lengths, pertaining to times t_{1} and t_{2}, respectively (Gulland and Holt 1959).

Table 4.5 gives an example of data of this kind, which are typically obtained from tagging studies or from length-frequency data. The method uses normal size-at-age data, at equal or unequal

Table 4.5. Length at tagging (L_{1}), length at recapture $\left(\mathrm{L}_{2}\right)$ and time at large for tagged ocean surgeon fish (Acanthurus bahianus) from the Virgin Islands. ${ }^{\text {a }}$

No.	$\mathrm{L}_{1}(\mathrm{~cm})$	L_{2}	Days out	Annual K^{b}	Mean temp. ${ }^{\text {c }}$ (in ${ }^{\circ} \mathrm{C}$)
1	9.7	10.2	53	0.370	27.48
2	10.5	10.9	33	0.518	28.61
3	10.9	11.8	108	0.385	27.79
4	11.1	12.0	102	0.419	29.29
5	12.4	15.5	272	0.808	28.37
6	12.8	13.6	48	1.007	28.89
7	14.0	14.3	53	0.405	27.55
8	16.1	16.4	73	0.500	27.99
9	16.3	16.5	63	0.407	27.54
10	17.0	17.2	106	0.321	28.00
11	17.7	18.0	111	0.707	28.30

[^4]intervals, granted that the values of $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$ stay small in relation to the longevity of the fish (Gulland and Holt 1959).

Equation (4.31), it will be noted, has the form of a linear regression $y=a+b x$ with

$$
\mathbf{x}=\mathbf{L}^{\mathbf{D}}
$$

and

$$
\begin{equation*}
\mathrm{y}=\frac{\mathrm{L}_{2} \mathrm{D}-\mathrm{L}_{1}^{\mathrm{D}}}{\mathrm{t}_{2}-\mathrm{t}_{1}} \tag{...4.33}
\end{equation*}
$$

the intercept (a) and slope (b) of which provide values of K and L_{∞} through the relationships

$$
\mathrm{K}=-\mathrm{b} / \mathrm{D}
$$

and

$$
\begin{equation*}
L_{\infty}=\left(\frac{a}{K D}\right)^{1 / D} \tag{...4.35}
\end{equation*}
$$

Sometimes, the method does not provide reasonable parameter estimates, when the $\overline{\mathrm{L}}{ }^{\mathrm{D}}$ data are too close to each other (Table 4.6, Fig. 4.6). In such a case, a set value of $\mathrm{L}_{(\infty)}$ may be used in connec-

Table 4.6. Length at tagging (L_{1}), length at recapture (L_{2}) and days at large of tagged Queen parrot fish (Scarus vetula) from the Virgin Islands. ${ }^{\text {a }}$

No.	$\mathrm{L}_{1}(\mathrm{~cm})$	L_{2}	Days out	$\overline{\mathrm{L}}$	$\mathrm{cm} /$ day
1	14.0	16.9	48	15.45	0.0604
2	20.8	27.6	189	24.2	0.0360
3	24.8	26.5			
			$\overline{\mathrm{x}}=21.77 ;$	$\overline{\mathrm{y}}=0.0439$	

[^5]

Fig. 4.6. Estimation of growth parameters for the ocean surgeon fish (Acanthurus bahianus) off the Virgin Islands by means of a Gulland and Holt plot (based on data in Table 4.5 and Example 4.4).
tion with the means of all \bar{L}^{D} values (\bar{x}) and of all $\frac{L_{2}{ }^{D}-L_{1} D}{t_{2}-t_{1}}$ values (\bar{y}) to obtain an estimate of
K through

$$
K \approx \frac{\bar{y}}{\left(L_{\infty} D-\bar{x}\right) \cdot D}
$$

This method, called a "forced" Gulland and Holt plot, allows the estimation of K even when only one pair of x and y values is available.

Program FB 5 provides estimation of L_{∞} and K , or W_{∞} and K given appropriate data (as exemplified in Tables 4.5 and 4.6 and Fig. 4.8). When values of $L_{(\infty)}$, or of $W_{(\infty)}$ are supplied, only K is estimated (Examples 4.4 and 4.5).

Care should be taken, when using tagging data in conjunction with a Gulland and Holt plot, to identify and reject those data pertaining to fish whose growth was severely reduced or halted, e.g., as a result of tagging wounds. It is generally necessary to draw a scattergram prior to all calculations to identify such values of x and y (see Fig. 4.7 for an example). For this purpose, Program FB 5 has been given a routine which provides for the output of the x and y values.

The Munro plot

Munro (1982) suggested that

$$
\log _{e}\left(L_{\infty}-L_{a}\right)-\log _{e}\left(L_{\infty}-L_{b}\right)=K(b-a)
$$

which becomes, in the notation used here, and in terms of the generalized VBGF

$$
\ln \left(L_{(\infty)} D-L_{1}{ }^{D}\right)-\ln \left(L_{(\infty)} D-L_{2}{ }^{D}\right)=K D\left(t_{2}-t_{1}\right)
$$

Given a value of D and trial values of $L_{(\infty)}$, this equation can be used to calculate single values of K (one for each triplet of L_{1}, L_{2} and time values). The calculated values of K are close to each other when an optimal value of $L_{(\infty)}$ has been selected, and differ widely from each other when the selected value of $\mathrm{L}_{(\infty)}$ is too high or too low.

Fig. 4.7. Scattergram of growth increment for ocean surgeon fish (Acanthurus bahianus), as obtained from tagging data (the selection of points used was done using a rigorous criterion, see Table 4.5).

Fig. 4.8. Gulland and Holt plot (dotted line) and "forced" Gulland and Holt plot (solid line) for the Queen parrot fish (Scarus vetula) off the Virgin Islands (based on data in Table 4.6 and Example 4.5).

Thus, by calculating, for a given value of $L_{(\infty)}$, the coefficient of variation of the K-values (C.V. of $K=\frac{\text { standard deviation of the } K \text { values }}{\text { mean value of } K}$), one may select by trial and error the value of $L_{(\infty)}$ which produces the lowest coefficient of variation for a given set of data. Program FB 6 (Munro plot) can be used for this purpose (see Table 4.5, Example 4.6, Fig. 4.9).

This method resembles the (forced) Gulland and Holt plot in that data for unequal time intervals can be used, e.g., tagging data. It has, however, the distinct advantage over the Gulland and Holt plot of providing accurate solutions (K values) irrespective of the length of the time inter-$\operatorname{val}(\mathrm{s})\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right.$ values).

Fig. 4.9. Graph showing how the coefficient of variation (C.V.) of the K -values obtained from a Munro plot depends on the selected value of $\mathrm{L}_{(\infty)}$ (based on data in Table 4.5 and Example 4.6).

Alternatively, when a value of L_{∞} is reliably known (e.g., as obtained by the procedure outlined above), single values of K can be output (see Table 4.5) which can be compared and/or plotted against any variable likely to affect the growth of individual fish (e.g., mean water temperature during time at large).

Fitting seasonally oscillating length-growth data
In sub-tropical waters, and even more so in temperate waters, the growth of fish is fastest in summer time when temperatures are highest, and slowest in winter time when temperatures are lowest, the growth oscillation roughly following a sine wave curve of period one year (Fig. 4.10).

The inclusion of a sinusoid element of period one year into the VBGF has, therefore, the effect of considerably improving the fit of a growth curve and the accuracy of estimated values of the growth parameters in cases of growth seasonality (Pauly and Gaschütz 1979; Gaschütz et al. 1980).

The "seasonalized" version of the generalized VBGF has the form

$$
L_{t}^{D}=L_{\infty} D\left(1-e^{-\left[K D\left(t-t_{o}\right)+C \frac{K D}{2 \pi} \sin 2 \pi\left(t-t_{s}\right)\right]}\right)
$$

Where L_{∞}, D, K and t_{o} are parameters of the "unseasonalized" VBGF while C expresses the amplitude of the growth oscillations and t_{s} the start of the sinusoid growth oscillations with respect to $\mathrm{t}=0$.

The value of C is defined such that, if $C=1$, the growth rate ($\mathrm{dl} / \mathrm{dt}$) is zero exactly once a year. ${ }^{\text {a }}$ Values of $0<C<1$ indicate a slowing down of the growth rate in winter time without $\mathrm{dl} / \mathrm{dt}$ ever reaching zero, while $\mathrm{C}=0$, finally corresponds to the unseasonalized VBGF. The para-

Fig. 4.10. Seasonally oscillating growth of the halfbeak (Hemirhamphus brasiliensis) off Florida (based on data in Table 4.7 and Example 4.7).
meter t_{s} is defined such that $t_{s}+0.5=$ "winter point", i.e., the time of the year when growth is slowest.

Given values of $\mathrm{L}_{(\infty)}$, D and a set of seasonally oscillating length-at-age data, the parameters $\mathrm{K}, \mathrm{C}, \mathrm{t}_{\mathrm{o}}$ and t_{s} of equation (4.39) can be easily estimated from a multiple linear regression of the form

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}
$$

where $y=\ln \left(1-L_{t}{ }^{D} / L_{\infty}{ }^{D}\right)$

$$
\begin{align*}
& x_{1}=t \text { (age must be always expressed in years) } \\
& x_{2}=\sin 2 \pi t
\end{align*}
$$

$$
20
$$

and $\quad x_{3}=\cos 2 \pi t$
and where the parameters K, t_{o}, C and t_{s} are estimated from the relationships

$$
\begin{align*}
& \mathrm{a}=\mathrm{KD} \mathrm{t}_{\mathrm{o}} \\
& \mathrm{~b}_{1}=-\mathrm{KD} \\
& \mathrm{~b}_{2}=-\mathrm{KD} \frac{\mathrm{C}}{2 \pi} \cos 2 \pi \mathrm{t}_{\mathrm{s}} \\
& \mathrm{~b}_{3}=\mathrm{KD} \frac{\mathrm{C}}{2 \pi} \sin 2 \pi \mathrm{t}_{\mathrm{s}}
\end{align*}
$$

and $\quad t_{s}=\left\{\arctan \left(-\mathrm{b}_{3} / \mathrm{b}_{2}\right)\right\} / 2 \pi$
The only parameters which cannot be estimated directly from the seasonally oscillating growth data are $\mathrm{L}_{(\infty)}$ and D . The input value of $\mathrm{L}_{(\infty)}$, however, can be improved by means of the same trial and error techniques suggested for the von Bertalanffy and the Munro plots, because Program FB 7 has a routine for computing R^{2} (multiple coefficient of determination, analogous to r^{2}) the value of which may be maximized by means of a few plots with different estimates of $\mathrm{L}_{(\infty)}$ (see Table 4.7, Example 4.7 and Fig. 4.11). Hoenig and Choudary (1983) give a method to derive standard errors of the parameters of equation (4.39).

Fig. 4.11. Graph showing how an optimal value of $L_{(\infty)}$ can be selected when fitting seasonally oscillating length-growth data (based on data in Table 4.7 and Example 4.7).

Table 4.7. Seasonal growth of halfbeak (Hemirhamphus brasiliensis) off Western Florida, U.S.A. ${ }^{\text {a }}$

Relative age in months	$\mathrm{FL}_{(\mathrm{cm})}$	Relative age in months	$\mathrm{FL}_{(\mathrm{cm})}$
3	16.8	12	22.2
4	18.9	13	22.5
5	19.4	14	23.2
6	20.0	15	23.6
7	19.8	16	25.0
8	21.0	18	25.5
9	20.8	21	26.4
10	21.5	24	26.4
11	21.5	-	-

${ }^{\text {a }}$ As read off Fig. 5 in Berkeley and Houde (1978), who also give 31 cm for $\mathrm{FL}_{\text {max }}$.
Program FB 7, as opposed to the other programs for estimating the parameters of the VBGF, cannot be used to fit weight growth data, even after conversion of W to $W^{1 / b}$, because weight oscillations have in fish a structure different from that of length oscillations (see Shul'man 1974).

Extended Gulland and Holt plot

The seasonally oscillating growth model presented above (equation 4.39) is very sensitive, even to small seasonal oscillations. Using this model, growth oscillations have been demonstrated using data previously thought to depict growth patterns unaffected by the relatively small oscillations of environmental factors that occur in the tropics (Pauly and Ingles 1981). For this reason, it becomes necessary to consider growth oscillations not only with regard to size-at-age data, but also with regard to size increment data (i.e., tagging data), which have been frequently used to estimate the growth parameters of tropical fish.

The method proposed here is a modification of the Gulland and Holt plot, discussed earlier in this chapter. The new method may be called "extended Gulland and Holt plot"; it consists of extending the earlier method

$$
\frac{L_{2}{ }^{\mathrm{D}}-\mathrm{L}_{1}^{\mathrm{D}}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\mathrm{a}+\mathrm{bX}
$$

where $\mathrm{b}=-\mathrm{KD}$ and $\mathrm{x}=\left(\mathrm{L}_{1}{ }^{\mathrm{D}}+\mathrm{L}_{2}{ }^{\mathrm{D}}\right) / 2$ into a multiple regression of the form

$$
\mathrm{y}=\mathrm{a}+\mathrm{b}_{1} \mathrm{x}_{1}+\mathrm{b}_{2} \mathrm{x}_{2}
$$

where $\mathrm{y}=\left(\mathrm{L}_{2}{ }^{\mathrm{D}}-\mathrm{L}_{1}{ }^{\mathrm{D}}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$, and $\mathrm{x}_{1}=\left(\mathrm{L}_{1}{ }^{\mathrm{D}}+\mathrm{L}_{2}{ }^{\mathrm{D}}\right) / 2$, as in the Gulland and Holt plot, and where x_{2} is the value, during the time $t_{1}-t_{2}$, of the environmental factor most likely to affect the growth of the fish while at large. (Obviously, the expression may be extended to any number of additional terms, up to $b_{n} X_{n}$, but this will not be investigated here.)

As shown in Fig. 4.12, the amplitude of seasonal growth oscillations in different fishes is extremely well correlated with the difference between annual minimum and maximum temperature of the water masses they inhabit, for which reason the most meaningful factor to insert for X_{2} in expression (4.51) is the average temperature encountered by the fishes while at large (between times t_{1} and t_{2}.

Thus, the model becomes

$$
\frac{L_{2}{ }^{\mathrm{D}}-\mathrm{L}_{1}{ }^{\mathrm{D}}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\mathrm{a}+\mathrm{b}_{1}\left(\frac{\mathrm{~L}_{1}{ }^{\mathrm{D}}+\mathrm{L}_{2}{ }^{\mathrm{D}}}{2}\right)+\mathrm{b}_{2} \mathrm{~T}
$$

Fig. 4.12. Relationship between the amplitude of seasonal growth oscillations (C) of fish and shrimps and the difference between highest and lowest mean monthly temperature of their habitats (ΔT). Adapted from Pauly et al. (in press).
where T is the mean environmental temperature in ${ }^{\circ} \mathrm{C}$ during an interval $\mathrm{t}_{\mathbf{1}}$ to $\mathrm{t}_{\mathbf{2}}$. From this, the value of L_{∞} corresponding to the mean annual temperature (T) (hence, to a value of L_{∞} unaffected by temperature fluctuations) can be estimated as:

$$
L_{\infty}=\left(\frac{a+\left(b_{2} T_{m}\right)}{-b_{1}}\right)^{1 / D}
$$

while K and C can be estimated from

$$
K=-b_{1} / D
$$

and

$$
C=\frac{b_{2}\left(T_{s}-T_{w}\right)}{2\left[a+\left(b_{2} T\right)\right]}
$$

respectively, T_{s} ("summer") being the highest and T_{w} ("winter") the lowest mean monthly temperature of the water body in question.

The method, as might be seen from Example 4.8, is extremely sensitive and can detect and quantify temperature effects that are extremely slight.

In analogy to the "forced Gulland and Holt plot", the method can also be used to estimate K (while accounting for seasonal growth oscillations) with a forcing value of $\mathrm{L}_{(\infty)}$, using

$$
K \approx\left[a+\left(b_{2} T_{m}\right)\right] / L_{(\infty)} D
$$

(See Example 4.8.).

GROWTH: A CONCLUDING PROGRAM

More methods suitable to estimate growth parameters by means of HP 67/97 calculators are available, especially from the HP "Users Library". The six methods proposed here are quite sufficient, however, for most problems and this chapter concludes with a straightforward, but hopefully helpful program.

Program FB 9 simply gives solutions for the generalized versions of the VBGF and their derivatives and also estimates the parameters d and D from equations (4.8) and (4.9). Table 4.8 gives an overview of the various output values that are calculated, given an appropriate set of values for the parameters needed for the calculation (see Examples 4.9 and 4.10).

Table 4.8. Constants to be stored for each of the solutions of the generalized von Bertalanffy Growth Formula (see Program FB 9).

Label	Values estimated	Constants required in stores						Input	Output
		L_{∞}	W_{∞}	K	D	t_{0}	b		
A	length at a given age	X	-	X	X	X	-	t	$L_{\text {L }}$
B	weight at a given age	-	X	X	X	X	X	t	$\mathrm{W}_{\mathbf{t}}$
C	age at a given length	X	-	X	X	X	-	$L_{\text {t }}$	t
c	age at a given weight	-	X	X	X	X	X	W_{t}	t
E	t_{0} for given length and age ${ }^{\text {a }}$	X	-	X	X	-	-	$L_{\text {L }}, \mathrm{t}$	t_{0}
e	t_{0} for given weight and age ${ }^{\text {a }}$	--	X	X	X	-	X	W_{t}, t	t_{0}
a	length at inflexion point of curve ${ }^{\text {b }}$	X	-	X	X	-	-	-	L_{i}
b	weight at inflexion point of curve	-	X	X	X	-	X	-	W_{i}
D	growth rate at a given length	X	-	X	X	-	X	$L_{\text {L }}$	dl/ $/ \mathrm{dt}$
d	growth rate at a given weight	-	X	X	X	-	X	$\mathrm{W}_{\mathrm{t}_{\mathrm{c}}}$	dw/dt
7	values of d and D	-	-	-	-	-	-	$\mathrm{W}_{\text {max }}$	d, D
	Stores:	A	B	1	D	0	E		

${ }^{\text {a }}$ The values of t_{o} may be summed up ($\Sigma+$), then averaged (\bar{x}).
${ }^{b}$ Applicable only when $\mathrm{D}<1$.
${ }^{c} W_{\text {max }}$ must be expressed in grams.

This program, although consisting of very simple steps, can help save a considerable amount of time to whomever has to draw various growth and related curves.

Recommended reading: The literature on fish growth is immense, and a list of recommended reading on this subject is necessarily highly subjective. Nevertheless, here are some useful references: von Bertalanffy (1938), Beverton and Holt (1959), Cushing (1981), Taylor (1962), Pannella (1971), Fryer and Iles (1972), Weatherley (1972), Bagenal (1974), Shul'man (1974), Ricker (1975, Chapter 9), Lowe-McConnell (1975, Chapter 9), Jones (1976a), Ricker (1979), Brothers (1980) and even Pauly (1981).

Suggested research topics: Estimate growth parameters of commercially exploited fishes, and of little-investigated groups (e.g., coral reef fish). Compare growth curves obtained with the special VBGF with growth curves obtained using the generalized VBGF, especially in tuna. Estimate the age of fish by means of daily rings in their otoliths (see Brothers 1980). Assess the intensity of seasonal growth oscillations in tropical fish, and establish the cause for these oscillations.

Reanalyze previously published length-frequency data (or data on file somewhere) by new methods (see, e.g., Pauly and David 1981) and use the resulting growth prameters to derive growthrelated parameters (e.g., mortality rates; see next chapter).

Estimation of L_{∞} and K for Thunnus albacares off Senegal by means of a Ford-
EXAMPLE $4: 3$ Walford plot, special and generalized VBGF.

Data from Table 4.4
Computations
Case I, with D = 1

1) Read sides 1 and 2 of Program FB 4
2) Keystrokes
$35 \uparrow 1 \mathrm{fa} 55 \mathrm{~A} 75 \mathrm{~A} 90 \mathrm{~A} 105 \mathrm{~A} 115 \mathrm{~A}$
Keystrokes Results
3) Compute r^{2}, K and L_{∞}

E	0.996	$\left(\mathbf{r}^{2}\right)$
	0.150	$(\mathrm{~K})$
	186.6	$\left(\mathrm{~L}_{\infty}\right)$

Case II, with $\mathrm{D}=0.47^{*}$
4) Keystrokes
$35 \uparrow .47$ fa 55 A 75 A 90 A 105 A 115 A
5) Compute r^{2}, K and L_{∞}

E $\quad 0.998$
153.9

Note the slight improvement of the goodness of fit ($0.998>0.996$), the higher value of K and the lower value of $\mathrm{L}_{\infty}\left(\approx \mathrm{L}_{\max }=146.5\right.$ in Postel 1955) resulting from the use of the generalized VBGF. See Fig. 4.5 for a view of the differences between the special and generalized VBGF.
*Obtained from $W_{\text {max }}=60 \mathrm{~kg}$ and equation 4.10 (see Fig. 4.1 and Program FB 9).

Using a Gulland and Holt plot to estimate L_{∞} and K for ocean surgeon fish (Acanthurus bahianus) from the Virgin Islands.

Data from Table 4.5
Computation

1) Read sides 1 and 2 of Program FB 5.
2) Keystrokes

1 f a $9.7 \uparrow 10.2 \uparrow 53$ A $10.5 \uparrow 10.9 \uparrow 33$ A $10.9 \uparrow 11.8 \uparrow 108$ A $11.1 \uparrow 12 \uparrow 102 \mathrm{~A}$ $12.4 \uparrow 15.5 \uparrow 272 \mathrm{~A} 12.8 \uparrow 13.6 \uparrow 48$ A $14 \uparrow 14.3 \uparrow 53 \mathrm{~A} 16.1 \uparrow 16.4 \uparrow 73 \mathrm{~A} 16.3$ $\uparrow 16.5 \uparrow 63 \mathrm{~A} 17 \uparrow 17.2 \uparrow 106 \mathrm{~A} 17.7 \uparrow 18 \uparrow 111 \mathrm{~A}$
3) Calculate r^{2}, K and L_{∞}

	Keystrokes	Results	
	E	0.496	$\left(\mathrm{r}^{2}\right)$
		0.001	$(\mathrm{~K})$
		20.336	$\left(\mathrm{~L}_{\infty}\right)$
4) Putting K on an annual basis	$\mathrm{X} \leftrightharpoons \mathrm{Y}$	0.001	
	365 x	0.432	$(\mathrm{~K})$

Hence, the growth parameters are $L_{\infty}=20.4$ and $K=0.432$ (see Fig. 4.6). For plotting the data and results on a graph (such as Figs. 4.6, 4.7) press C; the procedure is then as follows (data of Table 4.6):

\quad Keystrokes:	Output:	$\overline{\mathrm{L}}$	$\Delta \mathrm{L} / \Delta \mathrm{t}$	i
$14 \uparrow 16.9 \uparrow 48 \mathrm{~A}$				
$20.8 \uparrow 27.6 \uparrow 189 \mathrm{~A}$		15.45	0.060	1
$24.8 \uparrow 26.5 \uparrow 48 \mathrm{~A}$		24.20	0.036	2
etc. $\ldots \ldots .$.		$\ldots 5$	0.035	3
.			\ldots	\ldots

The intercept and slope of the regression line are in STO A and STO B, respectively, and may be recalled to trace the line.

Using a "forced" Gulland and Holt plot to estimate K when a value of $L_{\text {max }}$ and growth increment data are available.

Tagging data from Table 4.6. Also, Randall (1968) gives for the fish in question a value of $L_{\max }=$ " 20 inches".

Computations

1) Read sides 1 and 2 of Program FB 5.
2) Estimation of $L_{(\infty)}$, in cm

Keystrokes	Results	
$20 \uparrow$		
$0.95 \div$	21.053	
$2.54 \times$	53.474	$\left(\mathrm{~L}_{(\infty)}\right)$

3) Estimation of K

Keystrokes:
 Results

1 f a $14 \uparrow 16.9 \uparrow 48$ A $20.8 \uparrow 27.6 \uparrow$
0.001
(K) 189 A $24.8 \uparrow 26.5 \uparrow 48$ A 53.5 fc
(rounded up)
4) Putting K on an annual basis: $365 x$
0.505
(K)

Hence, the growth parameters are $L_{(\infty)} \approx 53.5 \mathrm{~cm}$ and $K \approx 0.505$. See Example 4.6 on how to draw the graph.

Calculating values of K, and using these to improve a first trial value of $L_{(\infty)}$ for ocean surgeon fish (Acanthurus bahianus) by means of a Munro plot.

Data from Table 4.5
Computations

1) Read side 1 of Program FB 6.
2) Select trial value of $L_{(\infty)}$, e.g., as obtained from a Gulland and Holt plot; try $L_{(\infty)}=20 \mathrm{~cm}$.
3) Keystrokes
$20 \uparrow 1 \mathrm{f}$ a $9.7 \uparrow 10.2 \uparrow 53 \mathrm{~A} 10.5 \uparrow 10.9 \uparrow 33$ A $10.9 \uparrow 11.8 \uparrow 108$ A $11.1 \uparrow 12 \uparrow$ 102 A $12.4 \uparrow 15.5 \uparrow 272$ A 个 $12.8 \uparrow 13.6 \uparrow 48$ A $14 \uparrow 14.3 \uparrow 53$ A $16.1 \uparrow 16.4 \uparrow 73$ A $16.3 \uparrow 16.5 \uparrow 63$ A $17 \uparrow 17.2 \uparrow 106$ A $17.7 \uparrow 18 \uparrow 111 \mathrm{~A}$
4) Calculate mean value of K and C.V.

Keystrokes	Results	
E	0.448	$(\overline{\mathrm{~K}})$
	0.425	(C.V.)

5) Compute \bar{K} and C.V. for $L_{(\infty)}=18.5,19.0,19.5,20.5$ and plot C.V. values. The results should look as in Fig. 4.9, which allows for an estimate of best $L_{(\infty)}\left(\right.$ hence, $\left.L_{\infty}\right)=19.25$, corresponding to $\overline{\mathrm{K}}=0.532$ and C.V. 0.408 .
6) To obtain single values of K, select a good value of $L_{(\infty)}$ and perform:

Keystrokes	Results	
$19.25 \uparrow 1$ f a fSTFO $\uparrow 9.7 \uparrow 10.2 \uparrow 53 \mathrm{~A}$		
$10.5 \uparrow 10.9 \uparrow 33 \mathrm{~A}$	0.370	$\left(\mathrm{~K}_{1}\right)$
$10.9 \uparrow 11.8 \uparrow 108 \mathrm{~A}$	0.518	$\left(\mathrm{~K}_{2}\right)$
etc. (see Table 4.5 , right column)	0.385	$\left(\mathrm{~K}_{3}\right)$

The estimates of K may then be plotted against variables likely to influence growth rate (e.g., water temperature while at large).

Determination of growth parameters from seasonally oscillating length-at-age data for the halfbeak (Hemirhamphus brasiliensis).

Data from Table 4.7 (and using $\mathrm{D}=1$)
Computations

1) Read sides 1 and 2 of Program FB 7 (a).
2) Compute preliminary value of $L_{(\infty)}$ from $L_{\max }=31 \mathrm{~cm}$.
Keystrokes Results

$31 \uparrow$		
$.95 \div$	32.6	$\left(\mathrm{~L}_{(\infty)}\right)$

3) Initialize and enter length-at-age data

Keystrokes
$10 \uparrow 5 \mathrm{y}^{\mathrm{x}} \mathrm{f}$ a $3 \uparrow 12 \div 16.8 \uparrow 32.6$ A $4 \uparrow 12 \div 18.9 \uparrow 32.6$ A $5 \uparrow 12 \div 19.4 \uparrow 32.6$ A $6 \uparrow 12 \div 20 \uparrow 32.6$ A $7 \uparrow 12 \div 19.8 \uparrow 32.6$ A $8 \uparrow 12 \div 21 \uparrow 32.6$ A $9 \uparrow 12 \div 20.8$ $\uparrow 32.6 \mathrm{~A} 10 \uparrow 12 \div 21.5 \uparrow 32.6$ A $11 \uparrow 12 \div 21.5 \uparrow 32.6 \mathrm{~A} 12 \uparrow 12 \div 22.2 \uparrow 32.6 \mathrm{~A}$ $13 \uparrow 12 \div 22.5 \uparrow 32.6$ A $14 \uparrow 12 \div 23.2 \uparrow 32.6$ A $15 \uparrow 12 \div 23.6 \uparrow 32.6$ A $16 \uparrow 12$ $\div 25 \uparrow 32.6$ A $18 \uparrow 12 \div 25.5 \uparrow 32.6$ A $21 \uparrow 12 \div 26.4 \uparrow 32.6$ A $24 \uparrow 12 \div 26.4$ $\uparrow 32.6 \mathrm{~A}$
4) Read sides 1 and 2 of Program FB 7 (b).
5) Perform:

Keystrokes	Results	
A	0.98783	$\left(\mathbf{R}^{2}\right)$
E	0.58094	$(\mathrm{~K} \cdot \mathrm{D})$
	-1.03386	$\left(\mathrm{t}_{\mathrm{o}}\right)$
	-0.27326	$\left(\right.$ old $\left.\mathrm{t}_{\mathrm{s}}\right)$
	-0.68498	$(-\mathrm{C})$

6) Adjust t_{s} and C values (see User's Instruction FB 7 (b))

Keystrokes Results

CHS	0.68498	(C)
0.273 CHS	-0.273	(old t_{s})
$0.5+$	0.227	(new t_{s})

7) Repeat steps $3-6$ with different values of $L_{(\infty)}$ and plot resulting R^{2} values against the $L_{(\infty)}$. A figure similar to Fig. 4.11 should emerge from which the best value of L_{∞} can be selected. (The best value of $\mathrm{L}_{(\infty)}$ happens to 32.6 cm .)
8) To trace the growth curve follow User's Instruction FB 7 (b).

Estimating the growth parameters and the seasonal growth oscillations of Acanthurus bahianus from the Virgin Islands．

Data from Table 4.5
1）Read sides 1 and 2 of Program FB 8.
2）D is set equal to unity．
3）Keystrokes


```
27.54 A 17 个17.2 个106 个28 A 17.7 个18 个111 个28.3 A
```

4）Estimate R^{2} ，intercept and slopes

Keystrokes	Results	
E	0.648	$\left(\mathbf{R}^{2}\right)$
	-0.065	$\left(\mathbf{a}^{2}\right)$
	0.001	$\left(\mathbf{b}_{1}\right)$
	0.003	$\left(\mathbf{b}_{2}\right)$

5）Calculate value of L_{∞} corresponding to the mean annual temperature (\bar{T}) and K

	Keystrokes	Results	
	$28.5 \mathrm{C}(\overline{\mathrm{T}})$	22.079	$\left(\mathrm{~L}_{\infty}\right)$
to put value of K on annual basis do：	365 x	0.001	$\left(\mathrm{~K}_{\mathrm{d}}\right)$
			0.387
$\left(\mathrm{~K}_{\mathrm{y}}\right)$			

6）To estimate value of C ，enter T_{s}, T_{w} and \bar{T}
Keystrokes Results

$$
\begin{array}{ll}
29.4 \uparrow & \\
27.2 \uparrow & \\
28.5 \mathrm{f} \mathrm{c} & 0.146
\end{array}
$$

7）To estimate value of K based on a forcing value of asymptotic length do

Keystrokes Results

| （value of $\mathrm{L}_{(\infty)}$ in Example $\left.4.4=\right)$ | $20.4 \uparrow$ | | |
| ---: | :--- | :--- | :--- | :--- |
| $\left(\mathrm{~T}_{\mathrm{m}}=\right)$ | 28.5 fe | 0.001 | $\left(\mathrm{~K}_{\mathrm{d}}\right)$ |
| to put value of K on an annual basis do： | 365 x | 0.419 | $\left(\mathrm{~K}_{\mathrm{y}}\right)$ |

This last result（ $\mathrm{K}=0.419$ ）corresponds well with that obtained with the same data used in conjunction with a simple Gulland and Holt plot（see Example 4．4，where a value of $K=0.432$ was estimated for $\mathrm{L}_{\infty}=20.4$ ．）

5. Total, Natural and Fishing Mortalities

INTRODUCTION

In fishery biology, the most useful manner of expressing the decay (= decrease) through time of a group of fish born at the same time (a cohort) is by means of "instantaneous" rates. These rates, of which there are three (Z, M, F), are defined by the following two expressions:

$$
\begin{equation*}
N_{t}=N_{o} \cdot e^{-Z t} \tag{5.1}
\end{equation*}
$$

where N_{o} is the (initial) number of fish at time zero, and N_{t} is the number of remaining fish at the end of time $t ; Z$ is the instantaneous rate of total mortality. An advantage of such decay rates is that they can be added or subtracted. Thus we have

$$
\mathrm{Z}=\mathrm{M}+\mathrm{F}
$$

where M is the instantaneous rate of natural mortality and F the instantaneous rate of fishing mortality. Obviously, when $F=0, Z=M$, which means that natural and total mortality have the same value when there is no fishing, i.e., in an unexploited stock (Fig. 5.1).

Fig. 5.1. Decrease of a cohort of 100 fish (initially), subjected to different levels of mortality ; $L_{c}=$ mean length at first capture.

Instantaneous rates (i.e., "exponential" rates) of mortality can be converted to the fraction surviving through equations such as

$$
S=\frac{N_{t}}{N_{o}}
$$

where S is the fraction surviving after time t, while

$$
A=1-S
$$

is the fraction of the stock dead after time t. Although used by a number of authors, percentage mortalities are not further discussed in this book, because they are too cumbersome to handle in comparison with instantaneous rates (see Beverton and Holt 1956, p. 68 for reasons).

Mortalities, whether expressed as instantaneous rates or as fractions, always refer to a certain period of time. Throughout this book, the year is used as the conventional unit, unless mentioned otherwise.

Fishery biologists have two main jobs as far as mortalities are concerned:
a) to estimate total mortality;
b) to split their estimates of total mortality where appropriate into separate estimates of natural and fishing mortalities.
A number of methods are proposed here by which these aims can be achieved, given suitable inputs.
Ecologists, on the other hand, will be pleased to know that Z, as defined here, is equivalent to the inverse of the mean age of the animals in a population (computed from the age when Z is more or less constant) and, hence, as shown by Allen (1971) equal to their "turnover rate", i.e., to the production/biomass ratio (P / B ratio) that is so difficult to estimate reliably using the various methods described in the ecological literature (e.g., Chapman 1968; Winberg 1971).

ESTIMATING TOTAL MORTALITY

Total mortality from the oldest animal in the catch
Following a number of earlier authors who had demonstrated the existence of a strong relationship between the longevity of fish (in the wild) and their mortality, Hoenig (1984) assembled data on a large number of aquatic animals (molluscs, fish and cetaceans) from which he derived the relationship

$$
\ln \mathrm{Z}=1.44-0.984 \ln t_{\max }
$$

where $t_{\text {max }}$ is the maximum age (in years) observed in a given stock, and Z is defined as above.
Although the "fit" of equation (5.5) is rather good ($r^{2}=0.82$ for 130 data pairs), it should be realized, when using this equation, that the estimates of Z thus obtained are very approximate, possibly biased downward (J.M. Hoenig, pers. comm.) and should therefore be revised as additional information becomes available. Table 5.1 gives examples of the application of equation (5.5) which, given its simplicity, needs not be illustrated by a computational example.

When, in addition to $t_{\max }$ and t_{c} the size of the sample (n) from which $t_{\max }$ was determined is also known, it becomes possible to estimate Z and its standard error (s.e.(Z) from the relationships derived by Hoenig and Lawing (1982),

$$
\mathrm{Z}=\frac{1}{\mathrm{c}_{1} \cdot\left(\mathrm{t}_{\max } \cdot \mathrm{t}_{\mathrm{c}}\right)}
$$

and

$$
\text { s.e. }(Z)=\sqrt{c_{2} \cdot Z^{2}}
$$

where c_{1} and c_{2} are coefficients whose values depend on n (see Table 5.2).
Hoenig and Lawing (1982), whose paper should be consulted for the derivation of equations (5.6), (5.7) and of Table 5.2, stress that "fast growing, short-lived species with minimal variability in length about age are best suited for this method". This is so because in such cases, n, the sample size, is not the number of fish actually aged, but the number of fish from which a subsample, consisting of the largest fish was taken. Thus, if say, 200 fish have been inspected, from which the 20 largest were selected for aging, then the value of n will be 200 , not 20 (this assumes, obviously that the oldest fish of the sample of 200 will be among the 20 largest). This feature appears particularly valuable in all those cases where fish must be aged by the tedious procedure of counting daily rings (Hoenig and Lawing 1982).

Table 5.1. Maximum observed size ($\mathrm{L}_{\text {max }}, \mathrm{W}_{\text {max }}$), maximum observed age ($\mathrm{t}_{\max }$) and estimated mortality (Z) for 12 coral reef fish of New Caledonia. ${ }^{\text {a }}$

Family Species	$\begin{gathered} \mathrm{L}_{\text {max }}(\text { standard } \\ \text { length, in } \mathrm{cm}) \end{gathered}$	$\begin{aligned} & \mathrm{W}_{\text {max }} \text { (live } \\ & \text { weight, in } \mathrm{g} \text {) } \end{aligned}$	$\begin{gathered} \mathrm{t}_{\text {max }} \\ \text { (in years) } \end{gathered}$	$\mathrm{Z}^{\text {b }}$
Holocentridae				
Adioryx spinifer	25.8	572	13	0.34
Serranidae				
Epinephelus summana	20.8	263	16	0.28
Carangidae				
Caranx ignobilis	76.4	10,765	9	0.49
Lutjanidae				
Lutjanus argentimaculatus	60.7	5,870	18	0.25
Lutjanus gibbus	37.0	1,735	18	0.25
Lutjanus sebae	69.5	13,810	35	0.13
Pomadasyidae				
Plectorhynchus chaetodonoides	43.1	2,715	21	0.21
Plectorhynchus pictus	39.2	1,970	11	0.40
Pomadasys hasta	31.8	87.3	12	0.37
Lethrinidae				
Lethrinus harak	24.3	450	15	0.29
Lethrinus obsoletus	25.0	501	14	0.31
Monotaris grandoculis	39.2	2,730	11	0.40

${ }^{\text {a }}$ Size and age data adapted from Loubens (1980, Table VI); the values of $t_{\text {max }}$ are based on limited samples (sample sizes not given) which, however contained large-sized adults.
${ }^{\mathrm{b}}$ Estimated from Equation (5.5).

Table 5.2. Table of coefficients for estimating Z and its standard error using equations (5.6) and (5.7) (from Hoenig and Lawing 1982).

n^{a}	c_{1}	$\mathbf{c}_{\mathbf{2}}$	n^{a}	\mathbf{c}_{1}	$\mathbf{c}_{\mathbf{2}}$
5	0.583	0.416	110	0.200	0.050
10	0.405	0.196	120	0.196	0.048
15	0.344	0.142	140	0.190	0.045
20	0.311	0.117	160	0.185	0.043
25	0.290	0.102	180	0.181	0.041
30	0.274	0.091	200	0.178	0.040
35	0.263	0.084	250	0.171	0.037
40	0.253	0.078	300	0.165	0.035
45	0.245	0.074	350	0.161	0.033
50	0.239	0.070	400	0.157	0.032
55	0.233	0.067	450	0.155	0.031
60	0.228	0.064	500	0.152	0.030
65	0.224	0.062	600	0.148	0.028
70	0.220	0.060	700	0.144	0.027
75	0.217	0.058	800	0.142	0.026
80	0.214	0.057	900	0.139	0.025
90	0.208	0.054	1,000	0.137	0.025
100	0.204	0.052			

[^6]Table 5.3 gives values of Z and its standard error as obtained by application of equations (5.6) and (5.7); the method is also illustrated in Example 5.1.

Family Species	$t_{\mathbf{t g r a x}^{\text {max }}}$	n	Location, sampling date(s)	Author(s) E	$\mathrm{Z}^{\text {imated }}$	s.e. (Z)
Auchenipteridae						
Trachychorystes galeatus $\%$	3.5	83	Banabuiú Reservoir	Nomura	1.35	0.32
	3.5		Caera State, 1971 (F)	et al. (1976)	1.40	0.32
Characidae						
Prochilodus scrofa ?				Godoy	0.50	0.09
Prochilodus scrofa	9	$485\}$	São Paulo State, 1947 (F)	(1959)	0.73	0.13
Sciaenidae						
Plagioscion squamosissimus	6	103 ,	Amanari Reservoir,	Nomura and	0.82	0.19
Plagioscion squamosissimus ${ }^{\text {d }}$	7	134 ?	Caera State, 1960-2 (F)	Oliviera (1976)	0.74	0.16
Micropogon furnieri ${ }_{\text {O }}$	6	229 \}	Off Iguape, Caera	Rodrigues	0.96	0.19
Micropogon furnieri ${ }_{0}$	7	115	State ${ }_{\text {1 }}$ 1966-7 (M)	(1968)	0.72	0.16
Macrodon ancylodon 9 \& ${ }^{*}$	11	9,947	Off Sao Paulo, 1975 -6 (M)	Lara (1951)	0.66	0.11

[^7]Total mortality from the mean size in the catch
The following expression (Beverton and Holt 1957; Gulland 1969) can be used to estimate Z from the mean weight $(\overline{\bar{W}})$ of fish in the catch from a given population:

$$
\overline{\bar{W}}=W_{\infty}\left\{1-\frac{3 Z \exp (-a)}{Z+K}+\frac{3 Z \exp (-2 a)}{Z+2 K}-\frac{Z \exp (-3 a)}{Z+3 K}\right\}
$$

where $a=K \cdot\left(t_{c}-t_{o}\right)$, with K and W_{∞} pertaining to the special VBGF (i.e., when $D=1$) and where t_{c} is the mean age at first capture (corresponding to L_{c} as defined in Chapter 2) obtained by a given gear. Equation (5.8) it will be noted, can be solved for Z only iteratively (Program FB 10, Example 5.2). Also, the equation requires an estimate of t_{o}, which may sometimes be difficult to obtain.

Another equation, proposed by Beverton and Holt (1956), is more generally used to estimate Z from the mean size in the catch. When used in conjunction with the generalized VBGF, it has the form

$$
Z=\frac{K D\left(L_{\infty}^{D}-\bar{L}^{D}\right)}{\bar{L}^{D}-L^{\prime D}}
$$

where $\overline{\mathrm{L}}$ is the mean length of all fish $\geqslant \mathrm{L}^{\prime}$, the latter being (a length not smaller than) the smallest length of fish fully represented in the length-frequency data at hand. L^{\prime} is always $>L_{c}$, as defined in Chapter 2, except in true cases of "knife-edge selection", where $L^{\prime}=L_{c}$. [A method is given further below in connection with a discussion of length-converted catch curves to obtain reasonable estimates of L' from a set of length-frequency data.]

A sensitivity analysis of this widely-used equation is given in Appendix I; on the average, equation (5.9) gives results (values of Z) which are equal to those obtained with length-converted catch curves (see below).

Occasionally, data are available in the literature where the mean length has been computed from the whole range of length in the catch rather than from L^{\prime} upward. In such cases, minimum estimates of Z can still be obtained, using

$$
\mathrm{Z}_{\min }=\frac{\mathrm{KD}\left(\mathrm{~L}_{\infty}^{\mathrm{D}}-\overline{\mathrm{L}}^{\mathrm{D}}\right)}{\overline{\mathrm{L}}^{\mathrm{D}}-\mathrm{L}_{\mathrm{c}}^{\mathrm{D}}}
$$

where $\overline{\bar{L}}$ is the overall mean length and L_{c} is the 50% retention length. See Chapter 2 for various methods to compute \mathbf{L}_{c}.

Another type of widely available data is mean weights of fish, as obtained by simply weighing ing a haul, counting the fish caught and dividing the weight by the number caught. Such values of $\overline{\bar{W}}$, however, do not represent the weight corresponding to a given value of $\overline{\bar{L}}$; rather, they are biased upward. This effect should partly offset the negative bias in equation (5.10) such that

$$
\mathrm{Z} \approx \frac{\mathrm{KD}\left(\mathrm{~W}_{\infty}^{\mathrm{D} / 3}-\overline{\overline{\mathrm{W}}}^{\mathrm{D} / 3}\right)}{\overline{\mathrm{W}}^{\mathrm{D} / 3}-\mathrm{W}_{\mathrm{c}}^{\mathrm{D} / 3}}
$$

where W_{∞} and W_{c} are the weights corresponding to L_{∞} and L_{c}, respectively. It will be realized that this equation gives quite approximate results, and that, as in the case of equation (5.5), every effort should be made to revise the estimates of Z based on it as soon as additional information become available.

Example 5.3 presents applications of equations (5.9), (5.10) and (5.11).
Although computationally convenient, simple equations such as (5.9 to 5.11) have two disadvantages, one of them major. Equations (5.9 to 5.11) require estimates of L_{c} or L^{\prime}; the first of these parameters involves either conducting selection experiments, or using shape measurements and the nomogram presented in Chapter 2. The second of these parameters, on the other hand, can be estimated from length-frequency data; this, however, involves plotting the data in a form akin to a length-converted catch curve, at which point it will be more appropriate to estimate Z from the catch curve itself (see below).

The major objection to the use of mean size data for estimating Z is, however, that one quite literally doesn't see what one is doing. While computation of one single value of Z from the mean of a wide range of sizes implies that mortality is constant, the assumption itself cannot be verified. The semi-graphical methods presented further below, particularly the length-converted catch curves, do allow verification of this assumption. Also, they allow the selection of data points to use in the estimation of Z , and hence the estimation of values of Z applying only to certain ranges of size something which cannot be done using summary statistics, such as mean lengths or mean weights. [Mean sizes can be used directly to draw inferences on the status of a stock or fishery without being expressed in terms of Z. Henderson (1972) provides a theoretical background for this approach which was applied to tropical fish by Ita (1980), but won't be discussed here.]

Estimation of \mathbf{Z} from cumulative plots
When length-frequency data or catch-at-length data are available which were obtained over a period during which conditions can be considered constant, several methods can be used to estimate Z which are less crude than the ones presented above. The first of these was proposed by Jones (1981) to estimate Z / K; it is presented here, however, among methods for the estimation of Z because it led to another method, developed by Sparre (MS) which is closely related to Jones' method, but allows direct estimation of Z.

The basic equation in Jones' method, expressed in terms of the generalized VBGF, has the form of a linear regression,

$$
\ln C\left(L_{i}, \infty\right)=a+\frac{Z}{K D} \cdot \ln \left(L_{\infty}^{D}-L_{i}^{D}\right)
$$

where $C\left(L_{i}, \infty\right)$ is the cumulative catch (computed from the highest length class with non-zero catch) corresponding to a given length class, and L_{i} is the lower limit of that length class, the ∞ symbol expressing that the catch considers a range from L_{i} to all larger sizes.

However, as shown in Fig. 5.2, the plot of the $\ln C\left(L_{i}, \infty\right)$ values on the $\ln \left(L_{\infty}^{D}-L_{i}^{D}\right)$ values is linear only over the central part of its range and deviates markedly from linearity when very large and very small fish are considered.

Fig. 5.2. Jones' cumulative plot for the estimation of \mathbf{Z} / K (or Z), as applied to the data of Table 5.4. The points to be included in the regression are selected after transformation and plotting of the data (see Example 5.4).

Thus, when applying this method, it is necessary to draw a scattergram of the computed values and to select visually the points belonging to the straight segment of the plot (see Example 5.4). Sparre's modification of equation (5.12) resembles a catch curve (see below for definition) in that the ages (or relative ages) are used for the x -axis and that Z (or Z / K) is estimated from the slope of a descending series of points. The equation used has the form

$$
\ln C\left(L_{i}, \infty\right)=a+b t^{\prime}
$$

where $\ln C\left(L_{i}, \infty\right)$ is defined as above and t^{\prime} is the (relative) age corresponding to L_{i}, while b, with sign changed, provides an estimate of Z (the relative ages are estimated through conversion from length to age) based on the straight part of the plot. A routine has been incorporated in Program FB 11 which produces values of $C\left(L_{i}, \infty\right)$ and t^{\prime} such that a scattergram can be drawn, from which the values usable in the estimation of Z can be selected (see Fig. 5.3 and Example 5.5).

When K is not known, Sparre's method can still be used; in this case, a value of one (unity) has to be used instead of K, which results in the relative ages being defined as

$$
t^{\prime}=\left(t-t_{0}\right) \cdot K
$$

The slope (b in equation 5.13) will then be equal to Z / K.
Both Jones' and Sparre's methods are extremely ingenious methods which lead to exact values of Z or Z / K, given suitable data and appropriate selection of data points to be included in the regression. However, both methods give results which, because of the cumulation of the catches, are extremely sensitive to the values of the catches in the largest size groups, even when they are not included in the linear regression. Thus, these methods should not be used when the catch composition data used were obtained from gears that markedly select for or against very large fish.

Fig. 5.3. Sparre's cumulative plot for the estimation of Z (or Z / K), as applied to the data of Table 5.4 (see Example 5.5).

Catch curves and length-converted catch curves
One of the methods most commonly applied in temperate waters to estimate the total mortality of fish is the "catch curve" method, which has been reviewed in Beverton and Holt (1956), Chapman and Robson (1960), Robson and Chapman (1961) and Ricker (1975, Chapter 2).

Essentially, the method consists of a plot of the natural logarithm of the number of fish in various age groups (N_{t}) against their corresponding age (t), or

$$
\ln N_{t}=a+b t
$$

Z being estimated from the slope b, with sign changed, or the descending, right arm of the plot (Fig. 5.4).

The following assumptions are involved here:

1) Z is the same in all age groups used in the plot,
2) all age groups used in the plot were recruited with the same abundance (or the recruitment fluctuations have been small and of random character),
3) all age groups used in the plot are equally vulnerable to the gear used for sampling,
4) the sample used is large enough and covers enough age groups to effectively represent the average population structure over the period of time considered.
The authors of this method should be consulted for more detailed treatment of the assumptions involved in catch curves.

Often, in order to broaden the data base from which inferences are drawn (i.e., in order to meet assumption 4 above), the samples used for catch-curve analysis are constructed in three steps, as follows:
i) record the lengths of very large samples of fish,
ii) age a subsample of fish, and construct an "age-length key", and
iii) separate the large length-frequency sample into an age-frequency sample by means of the age-length key obtained in (ii).

Fig. 5.4. Catch curve for red porgy (Pagrus pagrus) caught off North and South Carolina, U.S.A. The curve is based on 13,120 measured specimens, of which 222 were actually aged. Note slight non-linearity of curve which, on the average, suggests a value of $Z=0.65$ (adapted, with modifications, from Manooch and Huntsman 1977, Fig. 3).

This indirect procedure was introduced by Fridrikson (1934) and is discussed in detail in Gulland (1966) and Allen (1966), and was applied by Manooch and Huntsman (1977) in their study of red porgy mortality (see Fig. 5.4). However, it has hardly ever been used in tropical waters, where the very few authors who have used catch curves have tended to construct them directly, based on relatively small samples of aged fish. As shown by Kimura (1977), there are several cases where this procedure is indeed more appropriate.

A major disadvantage of the age-structured catch curves represented by equation (5.15) is that they cannot be used in conjunction with animals that presently cannot be aged individually, such as shrimps, lobsters and some molluscs.
"Length-converted catch curves", as will be shown below, allow the use of catch curves with animals that cannot be aged; moreover, the method, being based solely on length-frequency samples, allows the use of large samples without construction of age-length keys.

The estimation of Z from a length-converted catch curve involves the following steps:
i) pooling of length-frequency samples to obtain a single, large length-frequency sample representative of the population for the period under consideration;
ii) construction of the catch curve proper, using the large sample in (i) and a set of growth parameters (see below);
iii) estimation of Z from the descending right arm of the catch curve.

Pooling of length-frequency samples (e.g., of monthly samples) over a longer period of time (at least one year) is particularly needed in short-lived fish and shrimps, because their whole population structure is affected by seasonal "pulses" of recruitment, generally one or two per year (Pauly and Navaluna 1983). Also, to prevent a single, larger (monthly) sample from unduly affecting the total (annual) sample, the various samples may be given the same weight, by conversion to percentages prior to adding to obtain a single overall sample.

There are many alternatives to a scheme where each sample is given the same weight. For example, it might be more appropriate to weigh the samples by the square root of their size when the fishery catch is not known, or by the catch when it is known. However, empirical studies concerning appropriate sample sizes and weighing factors for length-converted catch curves are still lacking. Table 5.5 is given here to suggest sample sizes which at present seem appropriate.

Table 5.4. Data for the estimation of Z / K and Z for the banded grouper (Epinephelus sexfasciatus) of the Visayan Sea, Philippines (from Pauly and Ingles 1981). ${ }^{\text {a }}$

Lower class limit (cm)	Midpoint of class (cm)	$\mathbf{N}^{\mathbf{b}}$
4	5	5
6	7	29
8	9	114
10	11	161
12	13	143
14	15	118
16	17	61
18	19	50
20	21	32
22	23	17
24	25	4
26	27	4

${ }^{\mathrm{a}}$ To be used in conjunction with $\mathrm{L}_{\infty}=30.9, \mathrm{~K}=0.51$ and $\mathrm{D}=1$.
${ }^{\mathrm{b}}$ As obtained by pooling a number of samples representing a whole year.

Table 5.5. Criteria for assessing the suitability of length-frequency samples for estimating Z (modified from Munro and Thompson 1973).

Total sample size (no. fish)	Time (in months) over which data for total sample were accumulated ${ }^{\text {a }}$				
	1	2	4	6	12
$1-99$	0	0	0	0	0
$100-499$	0	0	1	2	2
$500-999$	1	1	2	3	4
1,000-1,499	1	2	3	4	5
1,500 - \quad -	2	3	4	5	$5+$
0 = not usable		$2=$ fair		$4=$ very good	
$1=$ poor		$3=$ good		5 = excellent	

[^8]There are also several methods by which a length-converted catch curve may be constructed. However, they all must account for the fact that fish growth in length is not linear, but slows down as length and age increase. This slowing down has the effect that older size groups contain more age groups than do younger size groups. In other words, it takes larger fishes longer to "leave" a certain size group, they "pile-up" (Baranov 1918), or "stack-up" (van Sickle 1977) in the size classes pertaining to old, large, slow-growing fish. Correcting for this effect is rather straightforward, and three methods by which this can be achieved here will be discussed here.

The first approach, analogous to but improved upon those discussed in Ricker (1975, p. 33 and p. 60-64) and van Sickle (1977), consists of multiplying the number in each length class by the growth rate of the fish in that class. This results in a catch curve equation of the form

$$
\log N_{j} \cdot\left(d l_{i} / d t\right)=a+b t_{i}^{\prime}
$$

where $\mathrm{dl}_{\mathrm{i}} / \mathrm{dt}$ is the growth rate and $\mathrm{t}_{\mathrm{i}}^{\prime}$ the relative age corresponding to length class (i), respectively. In practice ($\mathrm{dl}_{\mathrm{i}} / \mathrm{dt}$) can be estimated from the VBGF as the growth rate pertaining to the median length, or "midlength" of length class (i), while t ' can be estimated as the relative age corresponding to the median of class (i) as estimated, using the appropriate growth parameters, through conversion using the VBGF. "Relative" ages are used here because using t_{0} (which leads to absolute ages) is not necessary in conjunction with catch curves, where Z is estimated from a slope.

Fig. 5.5 gives an example of such catch curve, constructed from the data in Table 5.4 and using Program FB 9 with which values of $\mathrm{dl}_{\mathrm{i}} / \mathrm{dt}$ and t^{\prime} can be computed (see Example 5.6).

Equation (5.16) allows ready estimation of the bias caused by not accounting for the "pile-up" effect mentioned above. This is done by first rewriting equation (5.16) as

$$
\ln N-\ln (d l / d t)=a+b t^{\prime}
$$

or

$$
\ln N=a+b t^{\prime}-\ln (d l / d t)
$$

Now, in terms of the generalized VBGF, the growth rate can be expressed as

$$
\mathrm{dl} / \mathrm{dt}=\ln \left(\mathrm{K} \cdot \mathrm{D} \cdot \mathrm{~L}_{\infty}^{\mathrm{D}}\right)+\mathrm{KD}\left(\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{o}}\right)
$$

where K, D, L_{∞} and t_{o} are parameters of the generalized VBGF, and relative t^{\prime} is the age corresponding to a given midlength. Inserting (5.19) in (5.13) gives

$$
\ln N=a+b t^{\prime}-\ln \left(K D L_{\infty}^{D}\right)-K D\left(t^{\prime}-t_{o}\right)
$$

or

$$
\ln N=a+b t^{\prime}-\ln \left(K D L_{\infty}^{D}\right)-K D t^{\prime}+K D t_{o}
$$

Fig. 5.5. A length-converted catch curve, based on the data of Table 5.4. The first point to be included in the estimation of $Z\left(P_{1}\right)$ is clearly defined (see text). Note that each point is independent of all others and thus could be deleted singly from the computation of Z.

Equation (5.21), it will be noted, has 3 constant terms with regard to the variable N and t^{\prime}, namely $a, \ln \left(K_{D} D_{\infty}^{D}\right)$ and $K D t_{0}$. Since Z in equation (5.16) is estimated as a slope, these 3 constant terms can be grouped into one single new term (a^{\prime}) which becomes the intercept of a new equation of the form

$$
\ln N=a^{\prime}+b t^{\prime}-K D t^{\prime}
$$

which gives, rearranged

$$
\ln N=a^{\prime}+(b-K D) t^{\prime}
$$

as a new equation for a length-converted catch curve. Therefore,

$$
-b+K D=Z
$$

It follows from this that the bias resulting from the non-consideration of the "pile-up" effect (i.e., resulting from using $\ln \mathrm{N}$ instead of $\ln (\mathrm{N} \cdot \mathrm{dl} / \mathrm{dt})$ as ordinate of a length-converted catch curve) is equal to KD , or to K when the special VBGF is used (i.e., when $\mathrm{D}=1$). (See Example 5.7.)

Two practical applications of this finding come to mind:
(i) It becomes possible to correct biased values of Z obtained by various authors who didn't account for the "pile-up" effect (by simply adding K times D to their (biased) estimate of Z) (see e.g., Berry 1970; Nzioka 1983).
(ii) The estimation of Z from a length-converted catch curve becomes simpler, since one can first ignore the "pile-up" effect then compensate for it by addking K • D to the absolute value of the curve's slope (see Example 5.7).
When K is not known, equations such as (5.16) and (5.24) can still be used; in such cases, a value of unity (one) should be used instead of K when computing the relative ages, which are then defined by equation (5.14). The slope of the catch curve, with sign changed, will then be equal to $(\mathrm{Z} / \mathrm{K})-1$.

Another type of length-converted catch curve is defined by the equation

$$
\ln \mathrm{N}_{\mathrm{i}} / \Delta \mathrm{t}_{\mathrm{i}}=\mathrm{a}+\mathrm{bt} \mathrm{t}_{\mathrm{i}}^{\prime}
$$

where N_{i} and t_{i}^{\prime} are defined as in equation (5.16), and where Δt_{i} is the time needed, on the average by the fish to grow through length class i. This equation accounts for the "piling-up" effect through division of the N_{i}-values by $\Delta \mathrm{t}_{\mathrm{i}}$, the inverse of the growth rates by which the N_{i} values are multiplied in equation (5.16). Hence, equation (5.25) is a slightly modified version of (5.16), and its properties, e.g., with regard to not accounting for the "piling-up" effect are the same.

Since equations (5.16) and (5.25) are equivalent, only one Program (FB 12) is given here for the computation of length-converted catch curves. This program implements equation (5.25) rather than (5.16) because the former has already been presented and discussed elsewhere (Pauly 1980a, 1982a, 1983; Pauly and Ingles 1981; Gulland 1983).

Example 5.8 shows the application of equation (5.25) and Program FB 12 to the data of Table 5.4. It will be noted that as in the earlier models, the points of a length-converted catch curve must be drawn for selection of the values to include in the regression equation. This selection must account for two features of a length-converted catch curve:

- as in age-structured catch curves, the points belonging to the ascending, left arm of the curve must not be included because they represent incompletely selected and/or incompletely recruited animals, and
- the conversion of length to (relative) ages by means of the VBGF, when involving fish whose length is very close to L_{∞}, generates unrealistically high "ages" which cannot be included either.

Suggested criteria for the selection of points to be included in the computation of Z are:

1) the first point to be included (P_{1} on Figs. $5.5,5.6$ and 5.7) should be the point immediately to the right of the highest point. The latter may still be affected by incomplete selection and/or recruitment and is considered to be part of the ascending, left part of the curve;
2) points should be deleted that were obtained through conversion from lengths within 5% of L_{∞} (see Fig. 5.6 for an example of such points);
3) the points selected should fit along, or close to, a straight line, and one single outlier may be excluded, particularly when it is based on few fish only.
Concerning the first of these criteria, it might be added that point P_{1} corresponds to the length class whose lower class limit represents an estimate of L^{\prime} as required for equation (5.9). The third of these criteria must not be misunderstood to provide an excuse for the wholesale deletion of points until one's preconceived notion of linearity is achieved; rather it allows deletion of one point. When

Fig. 5.6. Length-converted catch curve for yellow striped goatfish (Upeneus vittatus) from Manila Bay, Philippines, showing a point pertaining to a length close to L_{∞} which should not be used in the computation of Z (from Pauly 1982a).

Fig. 5.7. Length-converted catch curve, based on equation (5.25) and the data of Table 5.4. The broken line, which parallels the catch curve, was obtained using equation (5.28). As shown in Example 5.9, the two lines provide virtually identical estimates of Z.
the curve as a whole seems to deviate from linearity, the appropriate approach should be to test whether this deviation is significant or not, using any of the statistical tests available for this purpose (e.g., Guilford and Fruchter 1978, p. 277-280).

Non-linearity of length-converted catch curves (see e.g., Fig. 5.4), that is their response to systematic changes in fishing effort or recruitment are akin to those of age-structured catch curves. The exhaustive discussions of the general properties of catch curves in Beverton and Holt (1956) and Ricker (1975) also apply to length-converted catch curves.

When reviewing the draft of this book, P. Sparre (pers. comm.) derived a form of a length-converted catch curve which involves none of the approximations in (5.16) and (5.25), by defining

- $N\left(t_{1}, t_{2}\right)=$ number of fish caught between ages t_{1} and t_{2}, with $\Delta t=t_{2}-t_{1}$
- $\mathrm{t}_{\mathrm{L}^{\prime}}=$ the age corresponding to L^{\prime} (see above for definition of L^{\prime})
- $\mathrm{E}=\mathrm{F} / \mathrm{Z}$ (see below for a more detailed definition)
from which

$$
N\left(t_{1}, t_{2}\right)=N_{t^{\prime}} e^{-Z\left(t_{1}-t_{L^{\prime}}\right)} \cdot E\left(1-e^{-Z \Delta t}\right)
$$

or

$$
\ln \mathrm{N}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=-\mathrm{Zt}_{1}+\mathrm{Zt}_{\mathrm{L}^{\prime}}+\ln \left\{\mathrm{N}_{\mathrm{t}^{\prime}} \cdot \mathrm{E}\left(1-\mathrm{e}^{-\mathrm{Z} \Delta \mathrm{t}}\right)\right\}
$$

which leads, with some rearrangement, to a new equation for a length-converted catch curve of the form

$$
\ln \frac{N_{i}}{\left(1-e^{-Z \Delta t_{i}}\right)}=a-Z t_{i}^{\prime}
$$

where N_{i} is the number of fish in a given length class $i ; \Delta t_{i}$ the time needed to growth through class i and t_{i} ' the relative age corresponding to the lower limit of class i.

Equation (5.28), although it can be solved only iteratively, has the definite advantage that no approximation is involved, as opposed to equation (5.25) where both the division of N_{i} by Δt_{i} and the use of relative ages corresponding to the midlengths of the length classes involve approximations.

Thus, equation (5.28) can be used to test the accuracy of the results obtained through equation (5.16) or (5.25). Example 5.8, which is typical of the many cases investigated so far, shows that equation (5.25) (and consequently 5.16 also) provide values of Z which differ only by a small fraction (less than 1%) from those obtained iteratively from equation (5.28). Therefore, the simpler model (5.25) generates results which are estimates of Z, and not only "proportional to Z ", as suggested in Gulland (1983).

Further inferences from length-converted catch curves
Length-converted catch curves, in addition to allowing for the direct estimation of Z from length-frequency data, have the added advantage over "age-structured" catch curves of allowing a number of inferences to be drawn through detailed examination of the left, ascending arm of the curve, which is generally ignored in catch-curve analysis.

When the selection curve of the gear used to sample the data at hand is known, M can be estimated from the left side of a catch curve (Munro 1984). Conversely, when natural mortality is known, the selection curve of the gear can be inferred from the shape of the ascending arm of a length-converted catch curve. Only the latter of these two methods will be discussed here, as Munro's method, although quite elegant, has data requirements which limit its applicability.

Table 5.6 illustrates the derivation of selection data (probabilities of capture, by length) based on the left side of a selection curve and an estimate of M. The computational steps involved here are as follows:
(i) Set up a table which draws together all information needed for further analysis (these values are in square brackets in Table 5.6).
(ii) Compute times to grow from one class midpoint to the next and write $\Delta \mathrm{t}$ values as in Table 5.6.
(iii) Interpolate mortalities (Mortality I in Table 5.6) between Z and M (whose values should pertain to the highest length class with zero catch; see Table 5.6). The step size for the interpolations is estimated from $(Z-M) /(n+1)$ where n is the number of classes for which mortality must be interpolated (here, $n=4$).
(iv) The mortalities estimated in (iii) are estimates of the mortality within a given length class. The mortality between adjacent length classes (Mortality II) are estimated by taking means between adjacent length classes (see Table 5.6).
(v) Compute numbers available from equation given in Table 5.6, starting with number of fish in the first class where the probability of capture is equal to unity (i.e., corresponding to point P_{1}).
(vi) Obtain probabilities of capture by dividing, for each length class, the number caught $\left(\mathrm{C}_{\mathrm{i}}\right)$ by the number available (N_{i}).
The method as outlined here is extremely useful in that it derives quantities which are normally obtained from costly selection experiments from readily obtained length-frequency samples and a reasonable estimate of M, which is easy to obtain when growth parameters are available (see below).

In stocks that are unexploited, the estimate of Z obtained from the catch curve can serve as the estimate of M ; otherwise, the computations remain the same except, obviously that the interpolations between Z and M are superfluous because the same value of $\mathrm{Z}=\mathrm{M}$ is used throughout. The special case, $\mathrm{Z}=\mathrm{M}$, formed the basis of the approach of Pauly et al. (in press) to estimate approximate selection curves from the backward projection of the straight segment of a length-con-

Table 5.6. Derivation of a selection curve from the left side of a length-converted catch curve (all values in square brackets must be available before attempting to complete table).

Class limits ${ }^{\text {a }}$		Midpoint	Numbers caught $\left(C_{i}\right)$	Δt (class midpoint to midpoint) ${ }^{\text {b }}$	$\begin{aligned} & \text { Mortality } \\ & \stackrel{\mathrm{I}}{\rightarrow} \mathrm{Z})^{\mathrm{c}} \end{aligned}$	Mortality II (means)	Numbers available$\left(\mathrm{N}_{\mathrm{i}}\right)^{\mathrm{d}}$	$\mathrm{P}=\mathrm{C}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}}$
Lower	Upper							
2	4	3	[0]	-	[$\mathrm{M}=1.14$]	-	-	[0]
4	6	5	5	0.158	1.28	1.35	448	0.0112
6	8	7	29	0.171	1.42	1.49	362	0.0801
8	10	9	114	0.188	1.56	1.63	281	0.4057
10	12	11	161	0.208	1.70	1.77	207	0.7778
$12=L^{\prime}$	14	13	[143] ${ }^{\text {e }}$	-	[$\mathrm{Z}=1.84$]	- .	[143] ${ }^{\text {e }}$	[1.00]

${ }^{\text {a }}$ Actual upper class limits are $3.999,5.999$, etc., but are rounded for convenience.
$\left.\begin{array}{l}{ }^{b} \text { Computed from } \frac{1}{K D} \ln \left\{\frac{L_{\infty}^{D}-L_{2}^{D}}{L_{\infty}^{D}-L_{1}^{D}}\right. \\ \text { respectively. }\end{array}\right\}$ where L_{1}, L_{2} are the lower and upper class limits,
${ }^{c}$ Values between Z and M interpolated lineary.
${ }^{d}$ Computed from $N_{i}=N_{i+1} e^{2 \Delta t}$, where N_{i+1} is the number available in a given length class and N_{i} the number available in the next lower length class.
${ }^{\text {e }}$ This number may be taken as the actual number caught in the first length class that is fully selected (i.e., corresponding to \mathbf{P}_{1}). However, a better approach is to compute this number from the equation of the catch curve, for the midpoint in question. In this example, the two values of N are similar.
verted catch curve. This approach is now superseded by the more versatile and accurate method illustrated by Table 5.6.

The accuracy of the method outlined here depends critically on the following assumption being met:
(i) The gear in question is a trawl or has a selection curve similar to that of a trawl (where it is only the smaller fish that are selected against).
(ii) The smallest fish caught ($\mathrm{L}_{\mathrm{min}}$) are fully recruited.
(iii) The value of M used for the fish just below $L_{\text {min }}$ and the mortalities generated by interpolation between M and the Z value for the fully selected animals are accurate.
The first of these assumptions can be easily verified. The second, which will often be violated, implies that the resulting probabilities will not strictly refer to a selection curve, but to a resultant curve, i.e., to the product of a selection with a recruitment curve (Gulland 1969). Whether this assumption is met or not will thus affect the interpretation of the results, but not their computation.

The third of these assumptions can be assessed quite straightforwardly. The effects of changes in the value of M used on the probabilities of capture are easy to compute (see Appendix I for a brief introduction to sensitivity analysis). Anon. (1982) compared estimates of length at first capture obtained from selection experiments with length at first capture estimated through the approach proposed here (but using the special case where M is set equal to Z, see above) and obtained a good match for the cases investigated, Mediterranean sardines and hakes.

Chapter 2 should be consulted for the interpretation and use of selection curves, notably for the computation of mean lengths at first capture.

Estimating Z from a pseudo-catch curve
When the average size of the animals of a population under investigation displays a significant relationship to the water depth, or distance from the coast (or any other environmental gradient), it will generally be difficult to obtain size-frequency samples representative of the population as a whole. Various schemes of stratified sampling may be applied to deal with such a situation. However, as far as the estimation of Z is concerned, the best approach may be to actually use, in conjunction with a "pseudo-catch curve" as defined in Pauly (1980c), the gradient along which the population is distributed.

Here the method is applied to the case where the mean size of fish increases and their numbers decrease with water depth-the environmental gradient one is most likely to encounter.

To apply the pseudo-catch curve method, the following items are required:

1) data allowing quantification of the size-depth relationship (this might be a relationship involving mean length and depth, or mean weight and depth; in the case of the former a length-weight relationship is also needed). An example of such relationship is given as Fig. 5.8;

Fig. 5.8. Relationship between mean length and water depth in slipmouths (Leiognathus splendens) caught off Southeast Kalimantan, Indonesia (from Pauly 1980c).
2) catch-per-effort data stratified by depth and representative of the whole depth range inhabited by the investigated population. An example of such data is given as Fig. 5.9;
3) the growth parameters $\mathrm{L}_{\infty}, \mathrm{K}$ (or $\mathrm{W}_{\infty}, \mathrm{K}$) and D of the VBGF.

The method consists of (1) using the size-depth relationship and the growth parameters to compute the mean (relative) age corresponding to the size at each depth for which a catch-per-effort value is available; (2) dividing the mean weight at depth into the corresponding c / f value to obtain the average "number at depth"; (3) plotting the natural logarithm of the numbers at depth against the corresponding relative age (see Fig. 5.10 for an example), and estimating (-) Z from the slope.

The computations involved are outlined in Example 5.9.
This method, as emphasized in Pauly (1980c), was developed mainly to estimate Z from data which have been gathered and/or published for miscellaneous purposes and which could not be used directly for the construction of a real length-converted catch curve.

Fig. 5.9. Relationship between average catch per effort of Leiognathus splendens and water depth in western Indonesian waters (from Pauly 1977).

SIMULTANEOUS ESTIMATION OF Z AND K
Saila and Lough (1981), based on a model developed by Ebert (1973), presented a method for the estimation of total mortality which has the advantage of also estimating the value of K of the VBGF given a set value for the asymptotic length $L_{(\infty)}$, an assumed value for the length at recruitment $\left(L_{r}\right)$ and two successive mean lengths ($\mathrm{L}_{1}, \mathrm{~L}_{2}$) obtained twice within a year ($\mathrm{t}_{1}, \mathrm{t}_{2}$) at times that are as far apart as possible.

Given these inputs (and a value of D when the generalized VBGF is used), K can be estimated from

$$
K=\frac{\ln \frac{L_{\infty}^{D}-\overline{\mathrm{L}}_{2}^{D}}{L_{\infty}^{D}-\overline{\mathrm{L}}_{1}^{D}}}{\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right) \cdot D}
$$

while Z is estimated iteratively as the value which fulfills

and
where

$$
N=\text { integer part of }\{[-(\ln 0.0001) / Z]+1\}
$$

and

$$
\left.b=\left(L_{(\infty)}^{\mathrm{D}}-\mathrm{L}_{\mathrm{r}}^{\mathrm{D}}\right) / \mathrm{L}_{(\infty)}^{\mathrm{D}}\right)
$$

A table (5.7) is provided here from which t_{1}, t_{2} values can be read off, given the months of sampling and of recruitment (i.e., the months during which the length-frequency data were sampled from which $\overline{\bar{L}}_{1}, \overline{\bar{L}}_{2}$ and L_{r} were estimated). Assumptions of this method are that (a) the VBGF and equation (5.1) describe the growth and mortality, respectively, of the investigated stock; (b) recruitment occurs during a brief period of time, and only once a year; (c) interannual variations of recruitment are negligible, i.e., the stock has a stable population with a stationary age distribution; and (d) $\overline{\bar{L}}_{1}$, $\overline{\mathrm{L}}_{2}, \mathrm{~L}_{\mathrm{r}}$ and $\mathrm{L}_{(\infty)}$ are good estimates of the actual values.

Of these assumptions, (c) may be the most crucial one, and the one whose validity may be the most difficult to assess. It must be understood, however, that this assumption is made not only here,

Table 5.7. Values of t_{1} and t_{2} for use with L_{1} and L_{2} values, given the month of recruitment. ${ }^{\text {a }}$

[^9]but also in the various equations used to estimate Z from mean size data, as well as in all "catch curve" related methods (see above). The validity of assumption (b), on the other hand, can be assessed quite straightforwardly, e.g., by plotting the available length-frequency data and inspecting them visually for the pattern of recruitment (see Fig. 5.11). Assumption (a) is made throughout this manual and requires no further comment.

The method presented here for estimating Z and K simultaneously, as incorporated in Program FB 13, generates results that are very sensitive to small errors affecting the input parameters, particularly the values of $\overline{\bar{L}}{ }_{1}^{D}-L_{r}^{D}$ and $\overline{\bar{L}}{ }_{2}^{D}-L_{r}^{D}$. On the other hand, the values of t_{1} and t_{2} have a comparatively smaller effect on the results. Still, they will be improved by using exact values of t_{1}, t_{2} for which reason a table (5.7) was included here which can be used to obtain directly the appropriate values of t_{1}, t_{2}, given the months of recruitment and sampling. The table also allows for interpolations when the exact dates in the months are known.

As this method-and a number of other methods discussed in this manual-involve the use of mean lengths, a routine has been included in Program FB 13 which can be used to compute rapidly the weighted mean lengths (or mean weights, or any weighted mean for that matter) from sizefrequency data. The routine also computes the standard deviation of the variates and the standard error of the mean. This use of the routine is illustrated in Example 5.3 (see also Table 5.8).

Table 5.8. Length-frequency data for the goby (Glossogobius giurus) from Cardona, Laguna de Bay, Philippines. ${ }^{\text {a }}$

${ }^{\text {a }}$ Adapted from data in Marquez (1960).

Fig. 5.11. Growth curve of the white goby (Glossogobius giurus) in Laguna de Bay, Philippines as estimated using Ebert's method (based on data in Table 5.8 and Example 5.10).

ESTIMATION OF Z/K

While the estimation of Z requires either a knowledge of the growth parameters of a stock, or that the age of at least a few fish is known, a number of methods exist which allow for the estimation of a parameter $-\mathrm{Z} / \mathrm{K}$-which is closely related to Z , yet require no information on age or growth for its estimation.

A few of these methods have been presented above (cumulative plots, length-converted catch curves); in these, use of 1 (one) instead of the value of K leads to the estimation of Z / K instead of Z.

Powell (1979) derived a general model for the estimation of Z / K from which he derived four special cases, as follows:

1st case: the Beverton and Holt formula of 1956
Probably the simplest method for estimating Z / K is to rewrite equation (5.9) such that

$$
\mathrm{Z} / \mathrm{K}=\frac{\mathrm{D}\left(\mathrm{~L}_{\infty}^{\mathrm{D}}-\overline{\mathrm{L}}^{\mathrm{D}}\right)}{\overline{\mathrm{L}}^{\mathrm{D}}-\mathrm{L}^{\prime \mathrm{D}}}
$$

where all parameters are defined as in (5.9). This model is illustrated in Example 5.11. However, the reservations mentioned earlier with regards to (5.9) apply to this model also.

2nd case: using the variance of the mean length
Powell (1979) derived for the estimation of Z / K the equation

$$
\mathrm{Z} / \mathrm{K}=\frac{2 \mathrm{C}^{2}}{1-\mathrm{C}^{2}}
$$

where in terms of the special VBGF

$$
\mathrm{C}^{2}=\left(\mathrm{s} . \mathrm{d}_{(\mathrm{L})}\right)^{2} /\left(\overline{\mathrm{L}}-\mathrm{L}^{\prime}\right)^{2}
$$

where $\overline{\mathrm{L}}$ and L^{\prime} are defined as previously, and where s.d.(L) ${ }_{(\mathrm{L})}$ is the standard deviation of the L values used in computing \bar{L}.

Several applications of equation (5.36) suggest that this model produces values of Z / K which are generally biased downward (see Example 5.11). On the other hand, the model does not require any estimate of asymptotic size, which might be viewed as an advantage over equation (5.34).

3rd case: using a nomogram and the mean weight of fish in the catch
Fig. 5.12 reproduces a nomogram presented by Powell (1979) to roughly estimate Z / K from the mean weight of fish in the catch and a few ancillary values.

4th case: estimating Z / K from the shape of the length-frequency distribution
Fig. 5.13 gives a redrawn version of Fig. 110 in Powell (1979), which may be used to obtain a crude, preliminary estimate of Z / K given a set of length-frequency data representative of a given population in which individual growth is described by the special VBGF.

The main reasons why Powell's graphs (Figs. 5.12 and 5.13) are given here is not their feature of allowing crude estimates of Z / K. Rather these graphs, particularly Fig. 5.13, have been included because they show how Z / K is related to major properties of fish stocks.

Fig. 5.12. Powell's nomogram for the estimation of Z / K (special VBGF) from the relationship between the mean weight ($\overline{\mathrm{W}}$) in the catch, the asymptotic length and the lowest size at full retention (L^{\prime} and W^{\prime}).

Fig. 5.13. Overall shapes of length-frequency plots, given different values of Z/K (special VBGF). Adapted from Powell (1979, Fig. 110) and Johnson (1981, Figs. 1 and 2). See text for definitions of r and K-configurations.

For example, Fig. 5.13 shows that fish with very low mortalities and even slower growth, e.g., the whitefish of unexploited northern Canadian lakes (Johnson 1981), display such a considerable "pile-up effect" (see above for definition) that large fish are more numerous than fish of intermediate size, a phenomenon which Johnson calls "K-configuration", as opposed to the "r-configuration" occurring when fish numbers decrease exponentially with size (see Figs. 5.13 and 5.14).

Whether fishes with a clear "K-configuration" occur in the tropics is unclear; this would be surprising, however, given that the ratio M / K (and hence Z / K also) is generally higher in tropical fishes than in temperate fishes (see below). The ecology texts listed in Chapter 11 may be consulted, incidentally, for definitions of " r - and K-strategies", from which Johnson (1981) derived the concept of r - and K -configurations.

METHODS FOR SPLITTING Z INTO M AND F

Two methods will be presented here which allow division of estimates of Z into their constituent parts, M and F, while a third (the method of Csirke and Caddy) is discussed in Chapter 10.

These methods are (1) plotting different values of Z on their corresponding effort and (2) analysis of tag return data.

Fig. 5.14. Length-frequency data from Table 5.4, fitted with an exponential curve to demonstrate that Z / K for Epinephelus sexfasciatus is 2 or greater (see text, Fig. 5.13 and Example 5.11).

Plot of Z on effort

When two or more values of Z are available which pertain to different periods (years or groups of years) with different levels of fishing effort (f) (as for example in Table 5.9), a linear plot of Z on f will provide an estimate of M through the relationship

$$
\mathrm{Z}=\mathrm{M}+\mathrm{qf}
$$

Table 5.9. Data for estimating M and q for Selaroides leptolepis from the Gulf of Thailand. ${ }^{\text {a }}$

Year	Effort $^{\text {b }}$	$\overline{\mathrm{L}}$	$\mathrm{Z}^{\text {c }}$
1966	2.08	13.25	2.41
1967	2.08	13.01	2.69
1968	3.50	19.99	2.72
1969	3.60	13.07	2.62
1970	7.19	12.37	3.73
1972	9.94	12.30	3.88
1973	6.06	12.01	4.61
1974	4.87	12.60	3.30
\bar{X}		12.70	3.25

${ }^{\text {a }}$ Based on data in Boonyubol and Hongskul (1978).
${ }^{\text {b }}$ In millions of trawling hours.
${ }^{〔}$ As estimated from $\mathrm{Z}=\mathrm{K} \cdot\left(\mathrm{L}_{\infty}-\overline{\mathrm{L}}\right) /\left(\overline{\mathrm{L}}-\mathrm{L}{ }^{\prime}\right)$, with $\mathrm{L}_{\infty}=20 \mathrm{~cm}, \mathrm{~K}=1.16$ and $\mathrm{L}=10 \mathrm{~cm}$.
where q is the "catchability coefficient", which relates effort to fishing mortality such that

$$
\mathbf{F}=\mathbf{q} \cdot \mathbf{f}
$$

Equation (5.38), it must be realized, applies only when f measures effective effort (as opposed to nominal effort, as expressed, e.g., by simple "number of boats") and provides a measure of effort which is indeed proportional to F (see Rothschild 1977, and contributions in Gulland 1964).

A program for estimating the values of M and q is superfluous here as equation (5.38) provides yet another linear regression with intercept equal to M and slope equal to q (see Example 5.13 and Fig. 5.15).

When only one value of Z is available, or when the available values of Z and f cover too small a range for reasonable values of M and q to be obtained, the catchability coefficient (q) may be estimated through

$$
q=(\bar{Z}-M) / \bar{f}
$$

where \bar{Z} is the mean of the available values of Z (or a single value of Z) and \bar{f} is the mean of the values of f (or a single value of f), M being an independent estimate of natural mortality. (See Ricker 1975, p. 172-174, and Example 5.15.)

Fig. 5.15. Plot of total mortality (Z) on effort for the yellow striped trevally (Selaroides leptolepis) in the Gulf of Thailand trawl fishery, to obtain values of M and q (based on data in Table 5.9 and Example 5.13).

Analysis of tagging data
There is a very voluminous literature on methods to estimate mortalities by means of tagging studies. Reviews may be found in Jones (1977), Ricker (1975) and White et al. (1982). Only one
case will be discussed here, namely that of tagging experiments in which all tagging is performed at one time (say over a period of a few days) and in which both fishing and natural mortality can be assumed constant during the period of the experiment.

In such cases, the analysis consists of simply plotting the natural logarithm of the number of recoveries, grouped by time intervals, on the number of the time intervals, or

$$
\ln N_{r}=a+b r^{\prime}
$$

where $\ln N_{r}$ is the natural logarithm of the number of recoveries (N_{r}) per time interval and where r^{\prime} is the time interval number (starting with 0 , see Table 5.10). The slope of such a plot provides, with sign changed, an estimate of Z, while the intercept a can be used to estimate F through the relationship

$$
F=\frac{e^{a} \cdot Z}{N_{o}\left(1-e^{-Z}\right)}
$$

where N_{o} is the total number of fish tagged and released (and provided there is no significant tag shedding, tag-induced mortality or non-recovery of tagged fish).

Table 5.10. Number of tagged and recovered chub mackerels (Rastrelliger neglectus), grouped according to time spent at large after releasing. ${ }^{\text {a }}$

No. of month $\left(r^{\prime}\right)^{b}$	No. of recoveries
0	1,052
1	748
2	165
3	46
4	8

[^10]Natural mortality is obtained by subtracting F from Z; then Z, F and M are converted to annual rates by multiplication by the number of times one of the time intervals is contained in a year (see Example 5.13).

Equations (5.40) and (5.41) are adapted from Gulland (1969, p. 76) whose chapter on tagging should be consulted for details on the method, particularly with regard to potential sources of errors.

It should be mentioned moreover, that tagging studies in other than well-monitored, singlespecies pelagic stocks (e.g., tuna and mackerels) are, in the tropics at least, generally very difficult to conduct successfully, particularly with regard to sufficient numbers of returns. Also, such studies are often too expensive to be cost-effective (Stephenson 1981; Pauly 1982a).

METHOD FOR OBTAINING INDEPENDENT ESTIMATES OF M

It has been demonstrated by various authors that the values of the parameter K of the VBGF are closely linked with longevity in fish (see e.g., Beverton and Holt 1959). This can be demonstrated on the basis of the observation that in nature the oldest fish of a stock generally grow to about 95% of their asymptotic length (Taylor 1958; Beverton 1963). This rule, which was derived from growth data used in conjunction with the special VBGF, does not strictly apply to large fish, such as tuna (see Pauly 1981). Still, in small fish at least, when

$$
L_{t}=L_{\infty}\left(1-e^{-K\left(t-t_{o}\right)}\right)
$$

Fig. 5.16. Analysis of tag return data for chub mackerel (Rastrelliger neglectus) from the Gulf of Thailand (based on data in Table 5.10 and Example 5.13).
then

$$
t-t_{o}=\frac{\ln \left(1-\left(L_{t} / L_{\infty}\right)\right)}{-K}
$$

or, inserting 95% of L_{∞} for $L_{\text {max }}$

$$
t_{\max }-t_{o}=\frac{2.9957}{K}
$$

or, ignoring t_{o}

$$
\mathrm{t}_{\max } \approx \frac{3}{\mathrm{~K}}
$$

where $t_{\max }$ is the longevity of the fish in question.
That natural mortality should, in fishes, be inversely correlated with longevity and hence be correlated with K , seems obvious (see also equation 5.5). Natural mortality should also inversely correlate with size, since large fish should have, as a rule, fewer predators than small fish.

Natural mortality can also be demonstrated to be correlated to mean environmental temperature in fishes, although the interpretation of this phenomenon is still open (Pauly 1980b).

These various interrelationships can be expressed for length growth data by the multiple regression

$$
\log M=-0.0066-0.279 \log L_{\infty}+0.6543 \log K+0.463 \log \bar{T}
$$

and for weight growth data by

$$
\log M=-0.2107-0.0824 \log W_{\infty}+0.6757 \log K+0.4687 \log \bar{T}
$$

where M is the natural mortality in a given stock, L_{∞} (total length, in cm) and W_{∞} (live weight, in g) being the asymptotic size of that stock; K (as well as L_{∞} and W_{∞}) refers to the special VBGF and is expressed on an annual basis; the value of \bar{T} is the annual mean temperature $\left({ }^{\circ} \mathrm{C}\right)$ of the water in which the stock in question lives. These equations are incorporated in Program FB 15. [Negative temperature values for polar fishes, down to $-2^{\circ} \mathrm{C}$ may be used for input in Program FB 15, because an "effective physiological temperature" (Pauly 1980b), which happens to be always positive, is computed internally for all values of $T<3.5^{\circ}$ and $T \geqslant-2.0^{\circ} \mathrm{C}$.]

In general, the estimates of M provided by equations (5.46) and (5.47) are quite reasonable, especially because a very large number (175) of independent estimates of M have been used for their derivation. Also the fish considered covered an extremely wide range of sizes, taxa and habitats.

However, estimates of M obtained from these expressions may be biased upward in the case of strongly schooling fishes, such as the sardine-like fishes and downward in the case of polar fishes. Correction factors and a further discussion of equations (5.46) and (5.47) are given in Pauly (1980b), along with all data used in the derivation.

Equations (5.46) and (5.47) are incorporated into Program FB 15, which estimates M given the appropriate growth parameters of the special VBGF and an estimate of T, such as may be obtained from an oceanographic atlas (see Example 5.14).

EXPLOITATION RATES AND POTENTIAL YIELDS

Certain stock assessment methods, such as Beverton and Holt's relative yield-per-recruit assessment (Beverton and Holt 1966) and Jones' (1974) length cohort analysis (see following chapters) make exhaustive use of exploitation rates, which define the fraction (in numbers) of an age class which will be caught during the fished life span (or: $\mathrm{E}=$ number caught/number dying of all causes).

In terms of mortality rates, the exploitation rate is defined by

$$
E=\frac{F}{F+M}=\frac{F}{Z}
$$

Another definition of E is given by

$$
\mathrm{E}=1-\frac{\mathrm{M} / \mathrm{K}}{\mathrm{Z} / \mathrm{K}}
$$

which implies that the exploitation rate of a stock can be assessed without their age or growth parameters being known (see Example 5.15).

When, on the other hand, only M and E are known, F can be estimated from

$$
\mathrm{F}=\mathrm{M} \cdot \mathrm{E} /(1-\mathrm{E})
$$

Gulland (1971) suggested that in a stock that is optimally exploited, fishing mortality should be about equal to natural mortality, or

$$
\mathrm{F}_{\mathrm{opt}} \approx \mathbf{M}
$$

which corresponds to

$$
\mathrm{E}_{\mathrm{opt}} \approx 0.5
$$

and which also leads to the well-known equation

$$
\mathrm{P}_{\mathrm{y}} \approx 0.5 \mathrm{M} \mathrm{~B}_{\mathrm{o}}
$$

which states that the potential yield of a stock is about equal to half the virgin biomass $\left(\mathrm{B}_{\mathrm{o}}\right)$ times the natural mortality prevailing in that stock (see Gulland 1971 p. x, xi for the two approaches that lead to this model).

Although widely used, equation (5.53) has been criticized by a number of authors, notably Francis (1974) and Caddy and Csirke (1983) who showed that the assumption $M \approx \mathrm{~F}_{\text {opt }}$ does not apply in a large number of stocks, notably in stocks of fish and shrimps low in the food chain.

Beddington and Cooke (1983) investigated equation (5.53) in great detail and concluded, on the basis of numerous simulations, that equation (5.53) generally overestimates potential yields by a factor which is itself a function of M. Thus, they showed that, for values of M ranging between 0.2 and 1, equation (5.53) overestimates potential yields by a factor of 2-3. For higher values of M -as often occurs in small tropical fish-equation (5.53) possibly overestimates potential yields by a factor of 3-4.

Thus, rather than $\mathrm{E}_{\mathrm{opt}} \approx 0.5$, it could well be that the optimum exploitation rate is-particularly in small fish with high recruitment variability-as low as 0.2 or, tentatively

$$
P_{\mathrm{y}} \approx 0.2 \mathrm{M} \mathrm{~B}_{\mathrm{o}}
$$

Clearly, these results are very important and warrant further research on this topic. Also, they make it imperative to use approximations such as discussed here only in the last resort, and then very conservatively, e.g., by relying on (5.54) rather than (5.53).

Recommended reading: Although less abundant than the literature on growth, the literature on mortality is quite large. Some useful reviews are: Beverton and Holt (1956, 1959), Robson and Chapman (1961), Gulland (1969, 1971) and Ricker (1975).

Suggested research topics: Compare estimates of Z obtained from catch curves of commercially important fish with estimates obtained from mean sizes in the catch (using different equations to compute the latter). Attempt to estimate M from Z and effort data, and compare the estimate(s) of M with independent estimates obtained from expressions (5.46 and 5.47). Attempt to partition F into different fishing gears, and M into different predators. Investigate changes in F and in M.

Estimation of Z and its standard error from the maximum age of a fish sample.

Rodrigues (1968) aged 115 male specimens of the croaker (Micropogon furnieri) caught off Caera State, Brazil. The maximum age was 7 years. What is the total mortality in the stock from which the 115 fish were taken, if t_{c} is set at zero?

To obtain Z and its standard error, first read off the value of c_{1} and c_{2} corresponding to $\mathrm{n}=115$. These values, interpolated between the values for $\mathrm{n}=110$ and $\mathrm{n}=120$, are 0.198 and 0.049 , respectively. Then perform

$$
\begin{array}{ccl}
\text { Keystrokes } & \text { Results } & \\
& & \\
197 \uparrow .198 \mathrm{X} \div & 0.72 & \mathrm{Z} \\
\mathrm{X}^{2} .049 \times \sqrt{\mathrm{X}} & 0.16 & \text { s.e.(Z) }
\end{array}
$$

Other values of Z and s.e. ${ }_{(Z)}$ in Brazilian fishes are given in Table 5.3.

Estimation of Z from the mean weight of the catch (iterative solution).

If the following set of growth parameters of the special VBGF (corresponding to a small tuna are available) $W_{\infty}=10 \mathrm{~kg}, \mathrm{t}_{\mathrm{o}}=-0.8$, with $\mathrm{t}_{\mathrm{c}}=0.95$ and the mean weight in the catch is equal to $\overline{\mathrm{W}}=5 \mathrm{~kg}$; what is the total mortality? The tolerated error of Z will be 0.001 .

Computations:

1) Read sides 1 and 2 of Program FB 10.
2) Initialize

Keystrokes Results

$10 \uparrow .5 \uparrow .95 \uparrow$		
.8 CHS fa 5 ffb		
.001 fe 4 A	-2.47	$[\mathrm{f}(\mathrm{a})]$
0.1 B	3.34	$[\mathrm{f}(\mathrm{b})]$
E	0.58	(Z)

Note: Depending on the values of $f(a)$ and $f(b)$, the iteration time can go beyond one minute.

Estimation of Z from the mean length of the catch.

Case I: Thompson and Munro (1978) give for the Jamaican grouper (Epinephelus guttatus) the parameter values $\mathrm{L}_{\infty}=52 \mathrm{~cm}, \mathrm{~K}=0.28(\mathrm{D}=1), \mathrm{L}^{\prime}=34$ and $\mathrm{L}=38.7$. What is the total mortality?

Keystrokes Result

$$
\begin{align*}
& .28 \uparrow 52 \uparrow 38.7- \\
& \times 38.7 \uparrow 34-\div 0.792 \tag{Z}
\end{align*}
$$

Case II: Table 5.4 gives length-frequency data (averaged over one year to simulate equilibrium) for another grouper (Epinephelus sexfasciatus) from the Philippines. The data are used to illustrate the operation of the routine in Program FB 13 for the rapid computation of mean lengths and the effects of the omission of large fish on the estimated values of \mathbf{Z}.

1) Load sides 1 and 2 of Program FB 13
2) Store $L^{\prime}, \Delta L$ and initialize; keystrokes: $12 \uparrow 2 \mathrm{fb}$
3) Enter frequencies needed for computation of the mean length and its standard error

Keystrokes: 143 A 118 A 61 A 50 A 32 A 17 A 4 A
4) Compute the mean length and its standard error

Keystroke Results

B	425	(n)
	15.951	($\overline{\mathrm{L}}$)
	3.018	(s.d.(L)
	0.146	(s.e. $(\overline{\mathrm{L}}$)

5) Now recompute the mean length after adding the last frequency, which was omitted in step (3).

Keystroke	Results	
4 AB	429	$\left(\frac{\mathrm{n})}{}\right.$
	16.054	$(\overline{\mathrm{~L}})$
	3.186	(s.d. $\left.{ }_{(\mathrm{L})}\right)$
	0.154	(s.e.($\overline{\mathrm{L}})$

6) Finally, compute Z for the two values of \bar{L} (15.951 and 16.054) using the same keystroke sequence as given in Case I of this Example.
The results should be Z values equal to 1.868 when the last frequency is omitted, and 1.93 when it is included.

This Example illustrates that the values of Z obtained from mean lengths are quite sensitive to the inclusion of the few fish in the largest size classes (see text for a discussion of the problem that this represents). It will also be noted that an extraneous knowledge of L^{\prime} is required by this method, as opposed to what occurs when semi-graphical methods are used (cumulative plots, length-converted catch curves).

Estimation of Z using Jones' method.

Data from Table 5.4

Computations

1) Read side 1 of Program FB 11.
2) Enter $L_{\infty}, D, \Delta L, L_{\text {max }}$ and initialize

Keystrokes: $\mathbf{3 0 . 9} \uparrow 1 \uparrow 2 \uparrow 26$
3) Enter all catches, starting with that corresponding to the largest fish

Keystrokes	Results	
4 A	1.589	$\operatorname{In}\left(\mathrm{~L}_{\infty}^{\mathrm{D}}-\mathrm{L}_{\mathbf{i}}^{\mathrm{D}}\right)$
	1.386	$\operatorname{In} \mathrm{C}\left(\mathrm{L}_{\mathbf{i}},{ }^{\circ}\right)$
4 A	1.932	\ldots
	2.079	\ldots
17 A	2.186	\ldots
	3.219	\ldots

4) Plot the $\operatorname{In}\left(L_{\infty}^{D}-L_{i}^{D}\right)$ and In $C\left(L_{i}^{D}, \infty\right)$ data as in Fig. 5.2 and select points to be included in linear regression (see Fig. 5.2 for points selected).
5) Re-initialize, and re-enter data

Keystrokes: $30.9 \uparrow 1 \uparrow 2 \uparrow 26$ fa4 A 4 AR/S 17 AR/S 32 AR/S 50 AR/S 61 AR/S 118 A R/S 143 A R/S 161 A R/S
6) Compute parameters of linear regression and estimate Z / K.

Keystroke	Results	
E	0.998	$\left(\mathbf{r}^{2}\right)$
	-5.235	(a)
	3.846	$(b=Z / K)$

7) Calculate Z through multiplication of Z / K with K .

Keystroke	Result
. $51 \times$	1.961

As will be shown further below, this result $(Z=1.961)$ is very similar to those obtained using a number of different methods (i.e., various forms of the length-converted catch curve) if the same data points are included in the analysis.

Estimation of Z using Sparre's method.

Data from Table 5.4
Computations

1) Read side 1 of Program FB 11.
2) Enter $L_{\infty}, D, \Delta L, L_{\text {max }}$ and initialize

Keystrokes: $30.9 \uparrow 1 \mathrm{D} 26 \mathrm{fa}$
3) Enter K

Keystrokes: $30.9 \uparrow 1 \uparrow 2 \uparrow 26$ fa
4) Enter all catches, starting with that corresponding to the largest fish

Keystrokes	Results	
4 B	3.611	
	1.386	$\ln ^{L_{i}} \mathrm{C}\left(L_{i}, \infty\right)$
4 B	2.940
	2.079
17 B	2.441	
	3.219	...
etc.		

5) Plot the $t_{L_{i}}^{\prime}$ and $\ln C\left(L_{i}, \infty\right)$ data as in Fig. 5.3 and select points to be included in the linear regression (see Fig. 5.3 for points selected).
6) Re-initialize and re-enter data

Keystrokes: $30.9 \uparrow 1 \uparrow 2 \uparrow 26 \mathrm{fa} .51 \mathrm{STO} 14 \mathrm{~B} 4 \mathrm{BR} / \mathrm{S} 17 \mathrm{BR} / \mathrm{S} 32 \mathrm{BR} / \mathrm{S} 50 \mathrm{BR} / \mathrm{S}$ 61 B R/S 118 B R/S 143 B R/S 161 B R/S
7) Compute parameters of linear regression and estimate Z

Keystroke	Results	
E	0.998	$\left(\mathrm{r}^{2}\right)$
	7.959	(a)
	-1.961	$(\mathrm{~b}=-\mathrm{Z})$

It will be noted that the result $(Z=1.961)$ is exactly the same as that obtained using Jones' method.

Estimating Z from length-frequency data using a length-converted catch curve in which the "piling-up" effect is corrected for by the use of growth rates.

Data from Table 5.4.

1) Use Program FB 9 to compute the growth rate (d / dt) and relative ages (t^{\prime}) corresponding to the class midpoints in Table 5.4; also compute $\ln \mathrm{N}(\mathrm{dl} / \mathrm{dt})$ for each class midpoint, and record results as shown here.

Class midpoint

| (cm) | N | d / dt | $\ln \mathrm{N}(\mathrm{d} / \mathrm{dt})$ | t^{\prime} |
| ---: | ---: | :---: | :---: | :---: | | Remarks |
| :--- |
| 5 |

2) Plot these data as in Fig. 5.5 and select points to be included in regression.
3) Compute parameters of a length-converted catch curve using linear regression (standard Pac SDO 3A), using t^{\prime} for the x-axis and $\ln N \cdot(d l / d t)$ for the y-axis. When x - and y-values (see above) have been entered, compute parameters of catch curve:

Keystroke	Results	
\mathbf{C}	0.974	(r 2)
	9.087	(a)
	-1.831	(b)

Thus Z is equal to 1.83 , a value close to those estimated from the same data set using different methods (see Examples 5.3, 5.4 and 5.5).

It will also be noted that the plot in Fig. 5.4 gives no reason to delete the last point (that corresponding to $\mathrm{t}^{\prime} \approx 4$ years), which however, had to be deleted in Figs. 5.2 and 5.3.

Showing that not correcting for the "piling-up" effect leads to negatively biased estimates of Z.

Data from Example 5.6

1) Use the linear regression program (standard Pac SDO 3A) to estimate the parameters of a plot of $\ln \mathrm{N}$ on t^{\prime}, using only the values of N and t^{\prime} in Example 5.6 corresponding to fishes with class midpoints ranging from 13 to 27 cm . Read sides 1 and 2 of SDO 3A, enter data, with $\mathrm{x}=\mathrm{t}$ f and $\mathrm{y}=\ln \mathrm{N}$.
2) Estimate parameters of regression line

Keystroke	Results	
\mathbf{C}	0.951	(r 2)
	6.331	(a)
	-1.322	(b)

3) Since the value of K in Table 5.4 was equal to 0.51 and $D=1, Z$ is obtained by adding 0.51 to the absolute value of the slope or

Keystrokes	Result
CHS .51 +	1.832

As might be seen from Example $5.6 \mathrm{Z}=1.83$ is a value that was obtained when directly accounting for the "piling-up" effect. Thus, not accounting for this effect indeed leads to slopes with absolute values equal to $\mathrm{Z}-\mathrm{KD}$.

EXAMPLE 5.8

Estimation of Z from a length-converted catch curve (using $N / \Delta t$) with subsequent improvement using Sparre's method.

Data from Table 5.4
Computations

1) Read sides 1 and 2 of Program FB 12
2) Enter $L_{\infty}, \Delta L, K, D$ and initialize

Keystrokes: $30.9 \uparrow 2 \uparrow .51 \uparrow 1 \mathrm{fa}$
3) Enter class midlengths and frequencies

Keystrokes	Results
$5 \uparrow 5 \mathrm{~A}$	$3.497(\ln (\mathrm{~N} / \Delta \mathrm{t}))$
	$0.346\left(\mathrm{t}^{\prime}\right)$
$7 \uparrow 29 \mathrm{~A}$	$5.174(\ln (\mathrm{~N} / \Delta \mathrm{t}))$
	$0.504\left(\mathrm{t}^{\prime}\right)$

etc.

Estimation of K and Z in a stock of the white goby (Glossogobius giurus) using Ebert's method as improved by Saila and Lough (1981).

Data from Table 5.8

Computations

1) By inspection of the data in Table 5.8, the month of recruitment is set as August (1958); and the length at recruitment set at 8 cm (as the mean length in the two most abundant length classes in August).
2) Two sampling months, September (1958) and June (1959) are selected which, together with August as month of recruitment, provide, using Table 5.7 , values of t_{1} and t_{2} equal to 0.091 and 0.909 , respectively.
3) The mean lengths $\overline{\bar{L}}_{1}$ and $\overline{\bar{L}}_{2}$ are computed by combining the monthly means for August, September and October, and the means for May, June and July, respectively (see Table 5.8). (Combining the samples has the effect of reducing the effects of sampling variability on the estimates of $\overline{\mathrm{L}}_{1}$ and $\overline{\mathrm{L}}_{2}$).
4) $\mathrm{L}_{(\infty)}$ is estimated from the largest fish in Table 5.8 as 26.5 cm .
5) Read sides 1 and 2 of Program FB 13 and enter parameters estimated above.

Keystrokes: $8 \uparrow 9.5 \uparrow 16.8 \uparrow 1 \mathrm{fa} .091 \uparrow .909 \uparrow 26.5 \mathrm{R} / \mathrm{S}$
6) Enter initial guess of Z and iterate

Keystroke	Results	
1 E	1	$\left(\mathrm{Z}_{1}\right)$
	1.103	$\left(\mathrm{Z}_{2}\right)^{*}$
	$\cdots \cdots$	etc.
	0.686	$(\mathrm{~K})$
value reached after 8 iterations	3.143	(Z final)

*When the second value of Z has a negative sign, this means that the initial guess of Z was much too high. In this case, press R/S, set STO 0 to 8 to zero, and start again with step 5.

Estimating Z / K from length-frequency data.

Case I
Thompson and Munro (1974) estimated $\mathrm{L}_{(\infty)}$ from $\mathrm{L}_{\text {max }}$ in Epinephelus striatus as approximately 90 cm , while K could not be estimated reliably. The mean length at unexploited oceanic banks off Jamaica is 69 cm , with $\mathrm{L}^{\prime}=60 \mathrm{~cm}$. What is the value of M / K (special VBGF)?
Computation
Keystrokes Results

$90 \uparrow$		
$69-$		
$69 \uparrow$		
$60-\div$	2.33	(M/K)

Let's assume the mean length of Epinephelus striatus in a certain exploited area is 65 cm , with $L_{(\infty)}=90 \mathrm{~cm}$ and $L^{\prime}=60$. What is the value of Z / K ?
Computation

Keystrokes	Results	
$90 \uparrow$		
$65-$		
$65 \uparrow$		
$60-\div$	5.00	$(\mathrm{Z} / \mathrm{K})$

Case II

The data in Table 5.4 and a value of $L^{\prime}=12 \mathrm{~cm}$ are used to compute Z / K using equations (5.35) and (5.36). First the value of \mathbf{C}^{2} is computed, using parameter values computed with Program FB 13 (see Example 5.3 for computation of mean length (16.054) and s.d. (L) (3.186) and equation (5.35):

Keystrokes	Results	
$3.186 \mathrm{x}^{2}$		
$16.054 \uparrow 12$		
$-\mathrm{x}^{2} \div$	0.618	$\left(\mathrm{C}^{2}\right)$

Then use value of C^{2} to compute Z / K, using equation (5.31)

Keystrokes	Results	
$.618 \uparrow$		
$2 \times 1 \uparrow$		
$.618-\div$	3.236	$(\mathrm{Z} / \mathrm{K})$

This value of Z / K, when multiplied with the value of K given in Table 5.4 (0.51) leads to an estimate of $Z=1.65$ which is lower than that obtained using other methods (see Examples 5.3 to 5.9)(see text).

Case III
The length-frequency data in Table 5.4 have been drawn in Fig. 5.14. It might be seen that, beyond L^{\prime} the frequencies decline exponentially, a feature which is made more visible by the exponential curve superimposed on the data. Hence, using Fig. 5.14 as reference, we infer that Z / K is equal to or higher than 2 , a fact substantiated by all previous analyses.

Table 6.1. Variants of equations (6.1) and (6.2) suggested by various authors. See also Program FB 16 and Example 6.1. Adapted from Jones (1977).

	Type of Reference	sampling	population size (N)

(A) Bailey (1951)	Direct	$\mathrm{N}=\frac{\mathrm{T} \cdot \mathrm{n}}{\mathrm{m}}$	$\text { s.e. }(N)=\left(\frac{T^{2} n(n-m)}{m^{3}}\right)^{1 / 2}$
(B) Bailey (1952)	Direct	$\mathrm{N}=\frac{\mathrm{T}(\mathrm{n}+1)}{\mathrm{m}+1}$	s.e. $(N)=\left(\frac{T^{2}(n+1)(n-m)}{(m+1)^{2}(m+2)}\right)^{1 / 2}$
(C) Chapman (1951) Schaefer (1951)	Direct	$N=\frac{(T+1)(\mathrm{n}+1)}{\mathrm{m}+1}-1$	s.e. $(N)=\left(N^{2}\left[\frac{N}{n T}+2\left(\frac{N^{2}}{n T}\right)+6\left(\frac{N}{n T}\right)\right]^{3}\right)^{1 / 2}$
(D) Bailey (1951)	Inverse	$\mathrm{N}=\frac{\mathrm{n}(\mathrm{T}+1)}{\mathrm{m}}-1$	s.e. $(\mathrm{N})=\left(\frac{(\mathrm{T}-\mathrm{m}+1)(\mathrm{N}+1)(\mathrm{N}-\mathrm{T})}{\mathrm{m}(\mathrm{T}+2)}\right)^{1 / 2}$

a"Direct" sampling means that sampling is continued until a predetermined sample size (n) is obtained; "inverse" sampling means that sampling is carried out until a predetermined number of tagged animals (m) is obtained.

STANDING STOCK ESTIMATION WITH THE SWEPT-AREA METHOD

In areas where the bottom is smooth enough for trawling, the standing stock sizes of demersal fishes (B) can be obtained from the relationship

$$
\mathbf{B}=\frac{\overline{\mathbf{c}} / \mathbf{f} \cdot \mathbf{A}}{\mathbf{a} \cdot \mathbf{X}_{1}}
$$

where \bar{c} / f is the mean catch/effort obtained during a survey (or in a given stratum), A the total survey (or stratum) area and a the area swept by the trawl in one unit of effort (e.g., one hour), X_{1} being the proportion of the fish in the path of the net which are actually retained by it ($1 / X_{1}$ may be termed "escapement factor").

For trawlers such as those used in Southeast Asia, a value of $X_{1}=0.5$ is commonly used in survey work (Isarankura 1971; Saeger et al. 1976; SCSP 1978), and for the Gulf of Thailand at least, there is some evidence that this value is appropriate (Pauly 1980d).

For the western Indian Ocean south of the equator, it has been suggested, on the other hand, that all fish in the path of the trawl might be caught, which corresponds to $\mathrm{X}_{1}=1$ (Gulland 1979, p. 3), a figure also suggested by Dickson (1974). The difference between these two values of X_{1} ($0.5 \& 1$) is difficult to resolve and attempts should be made, wherever possible, to substantiate the values of X_{1} used in an assessment by as much corroborative evidence as possible, because the value of X_{1} used in equation (6.3) has a very strong effect on standing stock estimates. Using $X_{1}=0.5$, for example instead of $X_{1}=1$ doubles the estimated value of B.

The surface swept by the gear in one unit of effort is computed from the expression

$$
\mathrm{a}=\mathrm{t} \cdot \mathrm{~V} \cdot \mathrm{~h} \cdot \mathrm{X}_{2}
$$

where V is the speed of the trawler, over ground, when trawling, h is the length of the trawl's head rope (see Fig. 6.1), t is the time spent trawling and X_{2} is a fraction equal to the effective width of the net divided by the length of the head rope.

In the Caribbean, a value of $\mathrm{X}_{2}=0.6$ was used by Klima (1976), while in Southeast Asian waters values of X_{2} ranging from 0.66 (Shindo 1973) to 0.4 (SCSP 1978) have been proposed, with 0.5 possibly being (for Southeast Asian waters at least) the best compromise (Pauly 1980d).

Gulland (1969) showed that

$$
\mathrm{F}=\frac{\mathrm{a} \cdot \mathrm{f} \mathrm{X}_{1}}{\mathrm{~A}}
$$

i.e., that the fishing mortality exerted on a given stock is equal to the product of the area swept in a year by the combined activity of a fleet of trawlers $(a \cdot f)$ times X_{1}, divided by the total area inhabited by the stock in question. The swept area method, thus, can be used both to estimate standing stocks and fishing mortality (Example 6.2). The method has been adapted, under certain assumptions pertaining to the behavior of fish, to line fishing over coral reefs (Wheeler and Ommaney 1953; Gulland 1979).

POPULATION SIZE FROM CATCH

AND FISHING MORTALITY

Sekharan (1974), based on Beverton and Holt (1957) showed that:

$$
\frac{\mathrm{Y}}{\mathrm{~F}}=\overline{\mathrm{N}} \cdot \overline{\overline{\mathrm{~W}}}
$$

from which one obtains

$$
\frac{\mathrm{Y}}{\mathrm{~F}}=\overline{\mathrm{B}}
$$

where Y is the annual catch, in weight, F the instantaneous fishing mortality rate (on an annual basis), $\overline{\mathrm{N}}$ the mean number of fish in the stock, $\overline{\mathrm{W}}$ their mean weight, and $\overline{\mathrm{B}}$ the mean biomass in the course of a year.

This relationship, simple as it is, can also be used with great advantage, e.g., to estimate the standing stock of exploited coral reef fish, as suggested by Marshall (1980) on the basis of difficulties with the standard methods for estimating the biomass of coral reef fish (reviewed in Russel et al. 1978).

Equation (6.7) obviously can be rewritten

$$
\mathrm{F}=\mathrm{Y} / \overline{\mathrm{B}}
$$

which can be used to estimate fishing mortality from the catch and an independent estimate of $\overline{\mathbf{B}}$, as obtained from the swept area method (see above) or by an acoustic survey. (See Example 6.3).

POPULATION SIZE AS ESTIMATED

BY LESLIE'S METHOD

When the fish population of a body of water is fished down so rapidly that the effects of recruitment, immigration and natural mortality can be neglected, we have

$$
c / f=q N_{o}-q \Sigma_{t}
$$

which expresses that catch per effort (c/f) in a given time period (t) plotted against the cumulative catch up to that period $\left(\Sigma_{t}\right)$ gives a straight line, the slope of which is an estimate of the catchability coefficient (q) and whose intercept $\mathrm{q} \mathrm{N}_{\mathrm{n}}$, divided by q provides an estimate of N_{o}, the population size prior to its reduction by fishing (Example 6.1, Case I, Table 6.2). When the special case applies that effort is constant for the period under consideration, the c / f values can be replaced by catch values, in which case F is estimated instead of $q^{\text {a }}$ (Example 6.4, Case II, Table 6.3).

Table 6.2. Successive sample sizes of reef eels (Kaupichthys hyoproroides) from an isolated Bahamian patch reef. ${ }^{\text {a }}$

Samples	No. of fish collected	Effort ${ }^{\mathbf{b}}$
A	5	1
C	4	1
D E	3	1

[^11]Table 6.3. Successive sample sizes of bluehead wrasses (Thalassoma bifasciatum) from an isolated Bahamian patch reef. ${ }^{\text {a }}$

Samples	No. of fish collected	Effort ${ }^{\mathbf{b}}$
A	8	1
C	5	1

[^12][^13]

Fig. 6.1. Leslie plots for reef eels (Kaupichthys hyoproroides) and bluehead wrasses (Thalassoma bifasciatum) from an isolated Bahamian reef patch, with estimates of virgin population sizes (based on data in Tables 6.2,6.3 and Example 6.4).

Recommended reading: For reviews of some of the voluminous literature on tagging see Ricker (1975) and Jones (1977). Kato and Yamada (1975) give application of a rather sophisticated method (Jolly-Seber) to a stock of seabreams in southern Japan, while Yap and Furtado (1980) give an application of various methods to a stock from a Malaysian river. The swept-area method is discussed in more detail in Gulland (1969). Ricker (1975) gives a discussion of Leslie's and related methods with several examples.

Suggested research topics: Use several methods to estimate population sizes on reefs, in enclosed or semi-enclosed water bodies, determine which methods give comparable results and why. Compare the population size of adjacent areas in relation to different fishing intensities.

Petersen population estimate of tigerfish (Hydrocynus vittatus) in the Sanyati Gorge, Lake Kariba, Zimbabwe.

Langerman (1980) conducted marking and tagging experiments on tigerfish (Hydrocynus vittatus) (Fam. Characinidae) in Sanyati Gorge, Lake Kariba, and concluded that under the conditions in and around that reservoir, tagging was superior to marketing with fluorescent dye. In an experiment conducted in 1979, $T=984$ fish were tagged and released. Upon fishing one day later with a chartered vessel, 3,253 fish were caught, 68 of which bore tags. If the various assumptions involved in Petersen population estimates were met, what was the population size and its standard error?

Computation

1) Read sides 1 and 2 of Program FB 16
2) Enter data and initialize

Keystrokes $984 \uparrow 3253 \uparrow 68 \mathrm{fa}$
3) Calculate population size using different formulae (see Table 6.1)

Keystrokes	Results	
A	47,073	(N)
	5,648	s.e.(N)
B	46,405	(N)
	5,487	s.e.(N)
C	46,451	(N)
	5,680	s.e.

Since sampling was direct, option D (inverse sampling) need not be considered. Note that the results using the three sets of equations give similar results; Langerman's paper also suggests that the assumptions involved in Petersen estimates were reasonably met. The population of tigerfish in the part of Sanyati Gorge for which the experiment was representative was about $46,600 \pm 560$.

Use of the swept-area method to estimate demersal standing stock size and fishing mortality in San Miguel Bay, Philippines.
A) Standing Stock

Vakily (1982) gives the following data for typical trawlers operating in San Miguel Bay, Philippines:

Trawling speed 2 knots (conversion knots to $\mathrm{km} / \mathrm{h}: \mathrm{kn} \cdot 1.83=\mathrm{km} / \mathrm{h}$)
Length of headrope 17 m (headrope length/actual spread of net $=0.5=X_{2}$)
Fraction of fish in the part of the net that are retained by the gear $\left(X_{1}\right)=0.50$ (assumed)
Mean catch per hour (in 1979-80): 33.5 kg
Total area of San Miguel Bay $=840 \mathrm{~km}^{2}$
The estimation of the surface swept during one hour (a) is thus (according to equation 6.4):

Keystrokes	Results	
$2 \uparrow$ (knots)		
$1.83 \times$ (convers. to $\mathrm{km} / \mathrm{h})$		
$0.017 \times$ (headrope, in km$)$		
$.5 \times\left(\mathrm{X}_{2}\right)$	0.031	$\left(\mathrm{a}, \mathrm{in} \mathrm{km}^{2}\right)$

The standing stock (B) is then obtained via equation (6.3) and

```
0.0335 \uparrow(c/f, in tonnes)
840 X (area of SM Bay)
X\leftrightharpoonsY(put a in display)
.5 X \div (use X }\mp@subsup{X}{1}{}\mathrm{ and finish) 1,809.065 (B, in tonnes)
```

B) Fishing mortality

Vakily (1982) gives $5,966 \mathrm{~km}^{2}$ for the surface area swept annually by all trawlers in San Miguel Bay. The fishing mortality induced by trawlers according to equation (6.5) is thus

Keystrokes Results

$$
\begin{aligned}
& 5,966 \uparrow \text { (area swept annually) } \\
& \quad 0.5 \times\left(\mathrm{X}_{1}\right) \\
& 840 \div \text { (area of bay) }
\end{aligned}
$$

Applications of the relationships linking catch, fishing mortality and mean

Case 1: Estimation of average standing stock
Sekharan (1974) gives for oil sardine (Sardinella longiceps) and for mackerel (Rastrelliger kanagurta) from southwestern Indian waters the following data (all on an annual basis):

	Z	M	F	Y (tonnes)
S. longiceps	1.66	1.12	0.54	210,000
R. kanagurta	2.05	0.90	1.15	65,000

What are the mean standing stock sizes?
Computation

Keystrokes	Results
210,000	
$\uparrow .54 \div$	(or $\approx 388,889(\overline{\mathrm{~B}})$
$65,000 \uparrow$	
$1.15 \div$	(or $\approx 56,520(\overline{\mathrm{~B}})$

Case 2: Estimation of fishing mortality
Anon. (1979b, Table 12, p. 161) gives for carangid spp. (Trachurus spp., Caranx rhonchus) for 1970 to 1976 a mean annual catch of $465,000 \mathrm{t}$. Acoustic surveys conducted in the region under consideration (West African Coast from Mauritania to Liberia) provided an average carangid standing stock estimate of $4,200,000 \mathrm{t}$. What is the fishing mortality inflicted on carangids?

Computation

Keystrokes	Results
$465,000 \uparrow$	
$4,200,000 \div$	$0.11(\overline{\mathrm{~F}})$

As concluded in Anon. (1979b) "for fish of moderate longevity, this is a low but not insignificant value which suggests that stocks are lightly to moderately exploited."

Estimation of unfished population size $\left(N_{o}\right)$ by means of Leslie's equation.

Case I: effort changing
Data from Table 6.2
Computation

1) Read side 1 of Program FB 17
2) Initialize and enter catch and effort data

Keystrokes: fa $5 \uparrow 1 \mathrm{~A} 4 \uparrow 1 \mathrm{~A} 3 \uparrow 1 \mathrm{~A} 1 \uparrow 2 \mathrm{~A}$

3) Calculate r^{2}, q and N_{o}

Keystrokes	Results	
E	0.88	$\left(\mathbf{r}^{2}\right)$
	5.39	$\left(a=q N_{o}\right)$
	-0.35	$(b=-\mathrm{q})$
	15.46	$\left(\mathrm{~N}_{\mathrm{o}}\right)$

Case II: effort constant
Data from Table 6.3
Computation

1) Read side 1 of Program FB 17
2) Initialize and enter catch data

Keystrokes: fa8B5B4B
3) Calculate r^{2}, F and N_{o}

Keystrokes	Results	
E	0.98	$\left(\mathrm{r}^{2}\right)$
	7.86	$\left(\mathrm{a}=\mathrm{F} \mathrm{N}_{\mathrm{o}}\right)$
	-0.31	$(\mathrm{~b}=-\mathrm{F})$
	25.05	$\left(\mathrm{~N}_{\mathrm{o}}\right)$

Note the interesting result that the catchability (q) is similar with both fishes i.e., their susceptibility to rotenone is similar (see also Fig. 6.1).

7. Estimation of Past Population Sizes Using Virtual Population Analysis and Cohort Analysis

INTRODUCTION

The following four methods form an extremely powerful set of tools for the analysis of catch data from which reliable estimates of past population sizes (in numbers) and fishing mortality can be derived.

These four methods are:

- Virtual population analysis (VPA)
- Cohort analysis
- Length cohort analysis
- Length-structured VPA

Beverton and Holt (1957, p. 179) showed that the catch $\left(\mathrm{C}_{\mathrm{i}}\right)$ from a population during a unit time period (i) is equal to the product of the population size at the beginning of the time period $\left(\mathrm{N}_{\mathfrak{i}}\right)$ times the fraction of the deaths caused by fishing, times the fraction of total deaths, or

$$
C_{i}=\frac{F_{i}}{Z_{i}}\left(1-e^{-Z_{i}}\right) N_{i}
$$

where $\quad F_{i}$ is the fishing mortality in the ith period
M is the natural moriaiity, generally assumed constant for all periods
and $\quad Z_{i}=F_{i}+M$
The version of Beverton and Holt's catch equation which has become most widely used for stock assessment purposes, however, is

$$
\frac{N_{i+1}}{C_{i}}=\frac{Z_{i} \cdot e^{-Z_{i}}}{F_{i}\left(1-e^{-Z_{i}}\right)}
$$

also written

$$
\frac{C_{i}}{N_{i}+1}=\frac{F_{i}}{Z_{i}}\left(e^{Z_{i}}-1\right)
$$

which is the equation in Gulland's (1965) virtual population analysis and which can be derived from (7.1) by substituting for N_{i} the relationship

$$
N_{i}=N_{i+1} \cdot e^{Z_{i}}
$$

Equation (7.2) is used with catch-at-age data from the whole of a fishery, and covering most of the life span of a given cohort* (thus VPA is used to estimate retroactively the size of past cohorts), an estimate of M and a (guessed) value of the fishing mortality that affected the oldest age group of a given cohort (terminal F, or F_{t}). The terminal fishing mortality (F_{t}) and the terminal catch (C_{t}) are used to estimate the size of the terminal population $\left(\mathrm{N}_{\mathrm{t}}\right)$, either from

$$
N_{t}=\frac{C_{t} \cdot Z_{t}}{F_{t}\left(1-e^{-Z_{t}}\right)}
$$

or from

$$
N_{t}=C_{t} \cdot Z_{t} / F_{t}
$$

[^14]Generally, equation (7.4) is used when the cohort is not extinct past N_{t} (and C_{t}), while equation (7.5) is used when C_{t} includes the last remnants of a cohort (Mesnil 1980). Then, using N_{t} as initial value of N_{i+1}, F_{i} and N_{i} values are estimated sequentially from older to younger age groups ("backward") by repeatedly solving equations (7.2) and (7.3), respectively.

Several authors have investigated the properties of equation (7.2) and its variants and their findings are summarized in Table 7.1.

Table 7.1. Review of work on the sensitivity of virtual population analysis and cohort analysis.

Equation No.	Author of equation	Sensitivity analysis by	Property investigated	Main result(s)
(7.1)	Beverton and Holt (1957) based on Baranov (1918)	Jones (1961)	Convergence of F -values toward true solution	"Backward" computation ensures convergence; forward computation leads to divergence
(7.1)	Beverton and Holt (1957) based on Baranov (1918)	Murphy (1965), Tomlinson (1970)	Convergence of F -values toward true solution	Confirmed Jones' result
(7.2)	Gulland (1965)	Pope (1972)	Errors due to erroneous F_{t} Sampling error of catches	Rapid convergence toward true F granted F_{i} 's are high Graph given to assess effects of sampling errors on F_{i} 's
(7.2)	Gulland (1965)	Agger et al. (1971)	Sampling error of catches	'rRelative error of F is about half the relative error of that found in the catches"
(7.2)	Gulland (1965)	Agger et al. (1973)	Erroneous M value	If M is overestimated, F is generally underestimated, and conversely
(7.2)	Gulland (1965)	Ulltang (1977)	M varying between years, and other properties	Stock sizes will be under- or overestimated, but relative changes will be approximately correct; see original paper for other properties
(7.2)	Gulland (1965)	Sims (1982)	Effects of seasonal fishing	Effects not severe unless M and/or F are not very high
(7.11)	Pope (1972)	Pope (1972)	Choice of M	Value of $M>0.3$ for one time increment (generally 1 year) should not be used
(7.9)	Jones (1974)	Jones (1979)	Choice of L_{∞} and M / K	Graphs given showing influence of L_{∞} and M / K on results and "critical" value of M / K determined
(7.9)	Jones (1974)	Sparre (1979)	$\left.\begin{array}{l} \text { Choice of } M \\ \text { exponential body } \\ \text { growth* } \\ \text { emigration* } \\ \text { difference with VPA } \\ \text { version } \end{array}\right\}$	The same results were obtained independently: No limitation as to value of M; differs herein from cohort analysis; results
(7.9)	Jones (1974)	Pauly (this chapter)	Choice of M difference with VPA version (effect of length cass increment)	highly sensitive to length increments: with large increments, F is overestimated and stock size is underestimated

*See Sparre (1979) for this part of his results.

DERIVATION OF A LENGTH-
STRUCTURED VPA MODEL
Generalizing equation (7.2) for any time interval (Δt) gives

$$
\frac{N_{i}+\Delta t}{C_{i}}=\frac{Z_{i} \cdot e^{-Z_{i} \cdot \Delta t}}{F_{i}\left(1-e^{-Z_{i} \cdot \Delta t}\right)}
$$

or

$$
C_{i}=N_{i}+\Delta t \frac{F_{i}}{Z_{i}}\left(e^{Z_{i} \Delta t}-1\right)
$$

with all other parameters defined as in (7.2); these equations allow for structuring catch data in terms of length, rather than time intervals.

Converting length to age requires the use of a mathematical expression of fish growth. Used here is the generalized VBGF (see Chapter 4). Thus, any age t_{1} pertaining to a length L_{1} can be obtained from

$$
t_{1}=\frac{-\ln \left(1-\frac{L_{1}{ }^{D}}{L_{\infty}^{D}}\right)}{K D}+t_{0}
$$

and similarly for age t_{2}, pertaining to L_{2}. From the length-age relationships for L_{1} and $L_{2}, \Delta t$ is obtained as the difference between t_{2} and t_{1}, or after some rearrangement

$$
\Delta t=\frac{\ln \left(\frac{L_{\infty}{ }^{D}-L_{1}{ }^{D}}{L_{\infty}^{D}-L_{2}{ }^{D}}\right)}{K D}
$$

which can be substituted for Δt in equation (7.6).
Thus, given catch-at-length data from a stock with stable age distribution, equation (7.6) can be used in a fashion similar to equation (7.2) to estimate, starting from a (guessed) terminal fishing mortality (affecting the largest length group) the number of fish in the smaller size classes and the fishing mortalities affecting them.

When equation (7.6) is used in conjunction with values of Δt that are not constant (i.e., when the Δt values are computed from length-converted ages), the results obtained will not apply to a specific cohort of fish, but rather pertain (for a given value of M) to the population sizes (per length class) that must have existed, on the average, for the observed catch to have been produced by the estimated values of F. The method is thus analogous to Jones' length cohort analysis (Jones 1974, 1979,1981) which, in terms of the generalized VBGF is expressed by

$$
\mathrm{N}_{1} \approx\left(\mathrm{~N}_{2} \cdot \mathrm{X}_{\mathrm{L}}+\mathrm{C}_{1,2}\right) \mathrm{X}_{\mathrm{L}}
$$

where

$$
X_{L}=\left(\frac{L_{\infty}^{D}-L_{1}{ }^{D}}{L_{\infty}^{D}-L_{2}^{D}}\right)^{M /(2 K D)}
$$

where $\mathrm{C}_{1,2}$ is the number of fish caught in a given time period with stable age distribution with length between L_{1} and L_{2} and where N_{1} and N_{2} represent the population size (in number) with length L_{1} and L_{2}, respectively.

Jones' length cohort analysis is particularly helpful in that it requires, in addition to the value of D (see Chapter 4), a knowledge of only 2 parameters, L_{∞} and the ratio M / K; the latter, as shown by Beverton and Holt (1959) tends to vary less between different groups of fish than either K or M alone (see also Chapter 5). However, a problem with Jones' method is that it is derived from the approximate "cohort analysis" of Pope (1972) i.e.,

$$
\mathrm{N}_{\mathrm{i}} \approx \mathrm{~N}_{\mathrm{i}+1} \cdot \mathrm{e}^{\mathrm{M}}+\mathrm{C}_{\mathrm{i}} \cdot \mathrm{e}^{\mathrm{M} / 2}
$$

through generalizing for any time interval i.e.,

$$
N_{i} \approx N_{i}+\Delta t e^{M \Delta t}+C_{i} e^{M \Delta t / 2}
$$

Since equation (7.6), which gives precise results and the approximation in (7.9) can both be used to obtain estimates of population size and fishing mortality from the same set of catch-at-length data, equation (7.6) can be used to assess the closeness of the approximation involved in (7.9). This is done in the example in Table 7.2. As might be seen in this table, the combination of parameter values used generates a mean difference between the results obtained with Jones' method and those obtained using equation (7.6) of only 0.7% for the population estimates and 2.2% for the fishing mortality estimates.

However, regrouping the catch data in Table 7.2 into larger and larger length class intervals produces increasing differences between the fishing mortality estimates (and population estimates) obtained by the two methods (Table 7.3, Fig. 7.1), suggesting that Jones' length cohort analysis may indeed be quite sensitive to coarse groupings of the catch data.

Varying the value of natural mortality used for the analysis produces, on the other hand, virtually no additional differences between the results of the two methods, i.e., the difference remained close to 2% for $\mathrm{M}=0.1$ to $\mathrm{M}=1.0$.

DISCUSSION OF THE LENGTHSTRUCTURED VPA MODEL

The main drawback of the length-structured VPA proposed here (equations 7.6 and 7.6 a) and of length cohort analysis (equation 7.9) is the necessary assumption of a stable age distribution, which

Table 7.2. Comparison of results obtained using Jones' length cohort analysis and VPA using catch-at-length data on Merluccius merluccius off Senegal.

[^15]Table 7.3. Comparison of results using Jones' length cohort analysis (A) and length-structured VPA (B) ($24-\mathrm{cm}$ classes) (see also Table 7.2).

Length (cm)	Catch ('000)	Population size			Fishing mortality		
		A	B	\% diff.	A	B	\% diff.
12	51,713	93,010	84,379	-9.3	0.487	0.646	32.6
36	5,805	11,592	10,265	-11.4	0.357	0.482	35.0
60	521	1,236	1,087	-12.1	0.234	0.308	31.6
84	46 ($\mathrm{L}_{\text {ter }}$)	$92\left(\mathrm{~N}_{\mathrm{t}}\right)$	$92\left(\mathrm{~N}_{\mathbf{t}}\right)$	-	0.280 (F_{t})	0.280 ($\mathrm{F}_{\underline{t}}$)	-
>84	-	-	-	-	-	- $\overline{\mathbf{x}}$	33.1

Fig. 7.1. Relationship between the length class interval in which catch data are grouped and the percentage difference between the results obtained using Jones' length cohort analysis and length-structured VPA. The calculation of the percentage difference is illustrated in Tables 7.2 and 7.3, which also document two of the four points plotted in this figure.
is not required in age-structured VPA. However, a number of methods have become widely accepted and used for stock assessment which rest on the same assumption of a stable age distribution, such as the estimation of total mortality from catch curves or from the mean length of fish in catch samples (see Chapter 5). As in the case of the procedure recommended for use with the above methods, a stable age distribution can be simulated in the case of length-structured VPA or length cohort
analysis by averaging catch data for a length of time during which recruitment and fishing mortality can be assumed to have been constant.

Jones' length cohort analysis has the following advantages over the new method proposed here:

- it does not require separate estimates of K and M, but only of the ratio M / K, and
- it provides direct solutions, i.e., the solution does not need to be obtained iteratively, as in the case of solutions to (7.6)
On the other hand, Jones' method appears quite sensitive to coarse grouping of the catch data, a feature which may limit the applicability of the method where it may be most needed, e.g., when working with catch statistics of commercially graded penaeid shrimps (see Jones and Van Zalinge 1981).

APPLICATIONS OF AGE-STRUCTURED

VPA AND COHORT ANALYSIS

Following are applications of the four methods in Table 7.4. Example 7.1, based on the data in Table 7.5, presents an application of VPA to Moroccan sardines (see also Fig. 7.2). Example 7.2, based on the data in Table 7.6, presents an application of cohort analysis to the Peruvian anchoveta. As might be seen from Table 7.6, the estimates of fishing mortality in young fish obtained by cohort analysis (and hence, by VPA) are virtually independent of the first guess of terminal mortality. This property is most useful, and is one of the main reasons why these methods have become so popular, at least around the North Atlantic.

Table 7.4. Some properties of four methods for the analysis of sequential catch data.

solution	iterative, but precise	direct, but approximate
requirement	VPA catch-at-age data (single cohort)	Murphy (1965) Gulland (1965)
(stable age distribution)	Pope's cohort analysis (1972)	

APPLICATION OF LENGTH COHORT ANALYSIS AND LENGTH-STRUCTURED VPA

Among the various methods presented in this manual, length cohort analysis and lengthstructured VPA may potentially be the most useful for tropical fisheries. However, to obtain population sizes and fishing mortalities based on these methods, it is necessary to have good catch-at-length data.

Converting catch in weight to catch-at-length data is rather straightforward, given length-frequency data representative of the catch, and the parameters of the length-weight relationship in the stock in question. A step-by-step approach to this conversion is given in Example 7.3. Once catch-at-length data are obtained, either length cohort analysis or length-structured VPA can be applied, as illustrated in Examples 7.4 and 7.5 and Table 7.7.

Table 7.5. Estimation by means of Gulland's virtual population analysis of the population (in numbers) and the fishing mortality (F) of a cohort of sardines (Sardina pilchardus) caught off Morocco. ${ }^{\text {a }}$

$\begin{array}{c}\text { Year of } \\ \text { capture }\end{array}$	Trimester	Catch	Population	F (per trimester)	Annual F
1973	3	15,624	$14,382,198$	0.00	
	4	139,836	$11,761,034$	0.01	
1974	1	66,207	$9,502,830$	0.01	
	2	33,191	$7,720,459$	0.00	
	3	514,256	$6,290,998$	0.09	
	4	319,612	$4,686,819$	0.08	
1975	1	106,583	$3,548,903$	0.03	
	2	383,842	$2,809,370$	0.16	
	3	235,246	$1,954,320$	0.14	
1976	4	434,354	$1,388,058$	0.42	

${ }^{\text {a }}$ From Anon. (1978a, Table 1, p. 33) who also suggests values of $\mathrm{M}=0.8$ (per year, hence 0.2 per trimester) and of $F_{t}=0.8$ (per year, hence 0.2 per trimester).

Fig. 7.2. Population sizes of a cohort of Moroccan sardines (Sardina pilchardus) as estimated by (age-structured) virtual population analysis (based on data in Table 7.5 and Example 7.1).

Table 7.6. Estimation of the population size in numbers (N) and fishing mortality (F) of a cohort of Peruvian anchovy (Engraulis ringens) by means of Pope's cohort analysis.

Time of capture	Catch ${ }^{\text {a }}$ (in millions of	$\mathrm{N}^{\text {b }}$	$\mathrm{F}^{\text {c }}$	$\mathrm{F}^{\text {d }}$	$\mathrm{F}^{\text {e }}$
Year Months	individuals)	(in millions)	(per 2 months)	(per 2 months)	(per 2 months)
1968 Nov-Dec	8,230	1,858,412	0.00	0.00	0.00
1969 Jan-Feb	120,060	1,514,092	0.09	0.09	0.09
Mar-Apr	168,580	1,130,999	0.18	0.18	0.18
May-June	21,380	773,446	0.03	0.03	0.03
Jul-Aug	0	613,899	0.00	0.00	0.00
Sep-Oct	21,860	502,618	0.05	0.05	0.05
Nov-Dec	7,410	391,729	0.02	0.02	0.02
1970 Jan-Feb	7,390	314,016	0.03	0.03	0.03
Mar-Apr	15,560	250,408	0.07	0.07	0.07
May-June	6,420	190,937	0.04	0.04	0.04
Jul-Aug	0	150,517	0.00	0.00	0.00
Sep-Oct	43,310	123,233	0.49	0.47	0.50
Nov-Dec	27,220	61,706	0.67	0.62	0.69
1971 Jan-Feb	0	25,891	0.00	0.00	0.00
Mar-Apr	11,160	21,198	0.87	0.75	0.94
May-June	1,290	7,257	0.22	0.17	0.25
Jul-Aug	0	4,775	0.00	0.00	0.00
Sep-Oct	1,020	3,909	0.34	0.25	0.41
Nov-Dec	1,160	2,278	0.83	0.51	1.21
1972 Jan-Feb	0	815	0.00	0.00	0.00
Mar-Apr	$110 \mathrm{C}_{\mathrm{t}}$	$\mathrm{N}_{\mathrm{t}}=667$	$\mathrm{F}_{\mathrm{t}}=0.20$	$\mathrm{F}_{\mathrm{t}}=0.10$	$\mathrm{F}_{\mathrm{t}}=0.40$

[^16]Unfortunately, the catch and landing data-collection systems of most tropical countries are not geared toward collecting catch and landing data and length-frequency data representative of that catch, with the result that the methods outlined here generally cannot be applied to those fisheries. Yet these methods are extremely well-suited for use in tropical fisheries, where fishing is often conducted with a multitude of gears, the number and sampling properties of which are difficult to assess. Using such methods, it is thus possible to assess the impact on the fish themselves of all those gears in the form of values of F which can be used to state whether too many or not enough fish of certain sizes are being captured by the fishery as a whole or segments of it.

Finally, another important property of VPA and related methods is that the resulting population estimates of young (small) fish are estimates of absolute recruitment. Recruitment, as discussed in more detail in Chapter 9, is generally extremely difficult to estimate although it is an extremely important parameter.

It seems thus appropriate to stress here the need for fishery biologists working in tropical countries to help their fisheries department set up a catch reporting system which-at least for major fisheries-will allow for catch-at-length, and later catch-at-age data to emerge.

Table 7.7. Estimation of population size and exploitation rate for a West African stock of hake (Merluccius merluccius) based on Jones' length cohort analysis. ${ }^{\text {a }}$

Length (in cm)	Catch (in thousands)	Population (in thousands)	Exploitation rate (F / Z)	Annual Z	Annual F
6	1,823	98,919	0.13	0.32	0.04
12	14,463	84,393	0.58	0.67	0.39
18	25,227	59,476	0.79	1.35	1.07
24	8,134	27,623	0.70	0.93	0.65
30	3,889	15,968	0.64	0.77	0.49
36	2,959	9,861	0.68	0.87	0.59
42	1,871	5,501	0.70	0.93	0.65
48	653	2,819	0.58	0.67	0.39
54	322	1,691	0.51	0.57	0.29
60	228	1,057	0.52	0.59	0.31
66	181	621	0.59	0.68	0.40
72	96	314	0.58	0.67	0.39
78	16	$96\left(\mathrm{~N}_{\mathfrak{t}}\right)$	$0.58\left(\mathrm{E}_{\mathrm{t}}\right)$	0.39	0.11
$84\left(\mathrm{~L}_{\text {ter }}\right.$)	$46\left(\mathrm{C}_{\mathrm{t}}\right)$				(0.56)

[^17]Recommended reading: The literature on VPA and cohort analysis is growing rapidly as far as applications are concerned. However, both Gulland (1965)* and Jones (1974) are technically unpublished papers which are rather hard to get, while Ricker's (1975) discussion of VPA and cohort analysis is rather opaque. Best is to get Pope (1972)* for both VPA and cohort analysis, and the recent manual of Jones (1981) or Jones and van Zalinge (1981) for length cohort analysis. For those who understand French, the best introduction to (age-structured) VPA and cohort analysis will be that of Mesnil (1980).

Suggested research topics: Convert catch data in weight to catch-at-length data using the method outlined in Example 7.3, and apply these data to either length cohort analysis or length-structured VPA. Then using the method of Jones (1979), assess the impact of a change in fishing mortality, mesh size or both. Use the results to assess the relative impact of several fisheries exploiting the same stock (e.g., a small-scale inshore fishery and a large-scale offshore fishery).

[^18]Population sizes and fishing mortality of Moroccan sardines (Sardina pilchardus)

Data: catch-at-age data of Table 7.5

Computation

1) Read sides 1 and 2 of Program FB 18.
2) Initialize, enter M, terminal fishing mortality and terminal catch.

Keystrokes: . 0001 STO $0.2 \uparrow .2 \uparrow 17538 \mathrm{f}$ a. This results in $\mathrm{N}_{\mathrm{t}}=106394.09$
3) Enter the catch from the period immediately preceding that during which the terminal catch was made.

	Keystrokes	Results	
	7859 A	0.06	$\left(\mathrm{~F}_{\mathbf{i}}\right)$
now enter the next earlier catch		138611.82	$\left(\mathbf{N}_{\mathbf{i}}\right)$
	5225 A	0.03	$\left(\mathrm{~F}_{\mathbf{i}}\right)$
and so on		175062.55	$\left(\mathrm{~N}_{\mathbf{i}}\right)$
until you arrive at	\ldots.	$\cdots \cdots$	
	15624 A	0.00	$\left(\mathrm{~F}_{\mathbf{i}}\right)$
		14382197.51	$\left(\mathrm{~N}_{\mathbf{i}}\right)$

The results of virtual population analysis (VPA) should be recorded in a manner similar to that used for Table 7.5.

EXAMPLE 7.2

Population sizes and fishing mortality of Peruvian anchoveta (Engraulis ringens) as determined by Pope's cohort analysis.

Data: Catch-at-age data of Table 7.6

Computation

1) Read sides 1 and 2 of Program FB 18.
2) Initialize, enter M and estimate the terminal population, with a terminal catch of 110 million fish and a terminal \mathbf{F} of 0.2 .

Keystrokes: .0001 STO $0.2 \uparrow .2 \uparrow 110 \mathrm{f}$ a This results in $\mathrm{N}_{\mathrm{t}}=667.31$.
3) Enter the catch from the period immediately preceding that during which the terminal catch was made.

	Keystrokes	Results	
	0 B	0.000	$\left(\mathbf{F}_{\mathrm{i}}\right)$
now enter the next earlier catch		815.51	$\left(\mathrm{~N}_{\mathrm{i}}\right)$
	1160 B	0.83	$\left(\mathrm{~F}_{\mathrm{i}}\right)$
and so on		227.51	$\left(\mathrm{~N}_{\mathrm{i}}\right)$
until you arrive at	\ldots.		
	8230 B	0.00	$\left(\mathrm{~F}_{\mathrm{i}}\right)$
		1858412.26	$\left(\mathrm{~N}_{\mathrm{i}}\right)$

The cohort analysis, which should be recorded in a manner similar to Table 7.6 is now essentially complete. Its results (the F_{i} and N_{i} values) can be used to assess the stock directly (e.g., was the fishing mortality too high?) or may be used as input in other models (e.g., those requiring estimates of absolute recruitment). (Alternatively, F_{i} values considered more reasonable than the first F_{t} can be used as new F_{t} and the analysis run again.)

Conversion of length-frequency data to catch-at-length data, given data on bulk

Data from Table 5.8. We shall assume that the length-weight relationship of Glossogobius giurus is described by $W=0.01 \mathrm{~L}^{3}$, where W is expressed in g and L in cm .

Computation

1) Read sides 1 and 2 of Program FB 20.
2) Enter the parameters a and b of L / W relationship.

Keystrokes: . $01 \uparrow 3 \mathrm{fb}$
3) Then enter lower limit of smallest length class considered, and width of length class (see Table 5.8, August sample).

Keystrokes: $4 \uparrow 2 \mathrm{fc}$
4) Now enter frequencies, successively

Keystrokes: 1 C 138 C 153 C 49 C 9 C
(The numbers appearing after each entry are the mean weights of the fish in each length class)
5) Compute total weight of sample

Keystroke	Results	
E	2530	(weight of sample)
	7.23	(mean fish weight)

6) Now assume 100 kg ($=100,000 \mathrm{~g}$) of Glossogobius giurus had been caught in August. This would imply, given that the length-frequency sample is representative of the catch, that the equivalent of this sample has been caught $100,000 / 2,530=39.53$ times; thus each of the frequency in the length-frequency sample must be multiplied by the raising factor 39.53. The resulting numbers are catch-at-length data, as used in length-cohort analysis and length-structured VPA.

Population sizes and exploitation rate of West African hake (Merluccius merluccius) as determined by Jones' length cohort analysis.

Data: Catch-at-length data of Table 7.7
Computation

1) Read side 1 of Program FB 19.
2) Enter parameters needed, initialize and calculate N_{t}.

Keystrokes: 130 STOA $2.8 \uparrow 1 \mathrm{fb} 84 \uparrow 6 \mathrm{fc} .5 \uparrow 46 \mathrm{fd} \quad$ Result: $92\left(\mathrm{~N}_{\mathrm{t}}\right)$
3) Enter the catch for the length interval immediately preceding that to which C_{t} refers.

	Keystrokes	Results	
	16 A	148.68	$\left(\mathrm{~N}_{\mathrm{i}}\right)$
		0.28	$\left(\mathrm{E}_{\mathrm{i}}\right)$
now enter the catch pertaining to the next smaller length class	96 A	313.71	$\left(\mathrm{~N}_{\mathrm{i}}\right)$
		0.58	$\left(\mathrm{E}_{\mathrm{i}}\right)$
and so on			
until you arrive at	\ldots	$\ldots \ldots$	
	1823 A	98919.30	$\left(\mathrm{~N}_{\mathrm{i}}\right)$
		0.13	$\left(\mathrm{E}_{\mathrm{i}}\right)$

Unless you have a value of M (rather than just a value of $M / K D$), the length cohort analysis is now completed.
4) If a value of M is available, values of Z and F (both on an annual basis) can be estimated by performing

	Keystrokes	Results	
store M	.28 STO2		
estimate Z	.5 B	0.56	(Z)
and F		0.28	(F)
corresponding to	$.28 ~ B$	0.39	(Z)
the values of E		0.11	(F)

etc. (see Table 7.3)
It must be realized that as opposed to VPA and cohort analysis performed on catch-at-age data, length "cohort" analysis does not estimate population numbers pertaining to a specific cohort. Rather, the "population" estimates are the number needed to account for the catch at each size.

Population sizes and fishing mortality of West African hake as determined by length-structured VPA.

Data: catch-at-length data of Table 7.7 (the data are the same as those in Table 7.2, which also gives the source for $\mathrm{L}_{\infty}=130 \mathrm{~cm}, \mathrm{~K}=0.10, \mathrm{D}=1$ and $\mathrm{M}=0.28$).

Computation

1) Read sides 1 and 2 of Program FB 20.
2) Enter parameters needed:

Keystrokes: 130 STO A. 1 STO C 1 STO D . 28 STO 284 STOI 6 STO E $10 \uparrow 4$ CHS $\mathrm{Y}^{\mathrm{X}} \mathrm{STO}^{\mathrm{O}}$
3) Estimate terminal population:

> Keystrokes Results
enter F_{t}
$.28 \uparrow$
and C_{t}
4) Run VPA:

Note that the results are almost the same as those obtained with Jones' length cohort analysis. (See also Table 7.2.)

8. Yield-Per-Recruit Assessment

INTRODUCTION

This chapter contains some of the most horrible-looking equations used in fish population dynamics, and an attempt to explain how these equations are derived would certainly deter all but the most enthusiastic readers. Thus, rather shan derive any of the equations included in this chapter, I will simply present them, and hope that they will gradually become familiar, especially after frequent use and consulting the original literature.

A new concept needs to be introduced at this stage, that of the "recruit". Although the definition may vary between authors, we may here visualize recruits as 1) fully metamorphosed young fish, 2) fish whose growth is described adequately by some form of the VBGF, 3) fish whose instantaneous rate of natural mortality is similar to that of the adults, and 4) fish which occur at (or swim into) the fishing ground(s). Such recruits have an average age t_{r}, an average length L_{r} and an average weight W_{r}. Upon reaching the age t_{r}, the recruits may be caught immediately, in which case the mean age at first capture $\left(t_{c}\right)$ is equal to the age at recruitment $\left(t_{c}=t_{r}\right)$. Alternatively, the recruits may be caught at a more advanced age (and a correspondingly larger size, L_{c} and W_{c}). In such case, the number of recruits actually entering the fishery (R_{c}) will be less than the initial number of recruits (R_{r}), or

$$
R_{c}=R_{r} \cdot e^{-M\left(t_{c}-t_{r}\right)}
$$

Now, there is, for each combination of t_{c} and F values, a yield per recruit ($\mathrm{Y} / \mathrm{R}=$ catch in weight, per recruit) the value of which can be estimated from various equations whose exact form depends on the model used to describe the growth of the fish. In the following paragraphs, equations for the estimation of Y / R will be given for various forms of the VBGF, i.e.,

Case I:

$$
W_{t}=W_{\infty}\left(1-e^{-K\left(t-t_{o}\right)}\right)^{3}
$$

or special VBGF, as based on conversion from length using the isometric length-weight relationship

$$
\mathrm{W}=(\text { c.f. } / 100) \mathrm{L}^{3}
$$

Case II:

$$
W_{t}=W_{\infty}\left(1-e^{-K\left(t--t_{o}\right)}\right)^{b}
$$

which is a form of the special VBGF where the exponent (b) of the length-weight relationship is allowed to take values other than 3 , i.e.,

$$
\mathrm{W}=\mathrm{a} \cdot \mathrm{~L}^{\mathrm{b}}, \mathrm{~b} \neq 3
$$

Case III:

$$
W_{t}=W_{\infty}\left(1-e^{-K D(3 / b)\left(t-t_{o}\right)}\right)^{b / D}
$$

the generalized VBGF for growth in weight.

ESTIMATION OF YIELD PER RECRUIT

Case I

Case I is that of Beverton and Holt (1957) for computing yield per recruit. The equation they proposed for this purpose is:

$$
\begin{align*}
& Y / R_{r}=F \cdot e^{-M r_{2}} W_{\infty}\left\{\frac{1-e^{-Z r_{3}}}{Z}-\frac{3 e^{-K r_{1}}\left(1-e^{-(Z+K) r_{3}}\right)}{Z+K}\right. \\
& \left.+\frac{3 e^{-2 K r_{1}\left(1-e^{-(Z+2 K) r_{3}}\right)}}{Z+2 K}-\frac{e^{-3 K r_{1}}\left(1-e^{-(Z+3 K) r_{3}}\right)}{Z+3 K}\right\}
\end{align*}
$$

where $Z=F+M$
$r_{1}=t_{c}-t_{0}$
$r_{2}=t_{c}-t_{r}$
$r_{3}=t_{\text {max }}-t_{c}$
with W_{∞}, K and t_{0} being growth parameters, t_{c} the mean age at first capture, t_{r} the mean age at recruitment and $t_{\text {max }}$ "the maximum age of significant contribution to the fishery" or more simply, the longevity of the fish in question (see Ricker 1975).

The effect of the exact value of $\mathrm{t}_{\text {max }}$ is generally very small, and equation (8.7) can be considerably simplified by setting $\mathrm{t}_{\text {max }}=\infty$, in which case equation (8.7) becomes

$$
Y / R_{r}=F \cdot e^{-M r_{2}} W_{\infty}\left\{\frac{1}{Z}-\frac{3 e^{-K r_{1}}}{Z+K}+\frac{3 e^{-2 K r_{1}}}{Z+2 K}-\frac{e^{--3 K r_{1}}}{Z+3 K}\right\}
$$

in which all other parameters are defined as in equation (8.7).
Both equations (8.7) and (8.8) can be used to assess the effect of different values of t_{c} (corresponding, e.g., to a given mesh size) and values of F (corresponding to a certain amount of fishing effort) on the yield per recruit (Examples 8.1 and 8.2). The results of such computations are generally presented in the form of "yield curves", as in Fig. 8.1, from which the effect of increasing mesh size (e.g., from a size generating $t_{c}=0.2 \mathrm{yr}$ to a size generating $\mathrm{t}_{\mathrm{c}}=0.3 \mathrm{yr}$) can be assessed.

Fig. 8.1. Yield per recruit as a function of fishing mortality for the slipmouth (Leiognathus splendens) for two values of mean age at first capture (based on Example 8.1).

Another, more elaborate form of presenting the results of a yield-per-recruit analysis is the "yield-isopleth diagram", which shows the response of yield per recuit to both t_{c} and F over a wide range of both parameters, to allow the best selection of mesh size for given F, or a best F for a given mesh size (see Fig. 8.2). Program FB 21 can be used for this purpose.

Equation (8.7) requires the estimation of six constants (in addition to t_{c} and F which are used as variables) while equation (8.8) requires five constants.

In 1964, Beverton and Holt presented a modified version of their yield equation which requires only three input parameters, $M / K, c\left(=L_{c} / L_{\infty}\right)$ and $E(=F / Z)$ and which has the form

$$
Y^{\prime} / R_{r}=E(1-c)^{M / K} \cdot\left\{1-\frac{3(1-c)}{1+\frac{(1-E)}{(M / K)}}+\frac{3(1-c)^{2}}{1+\frac{2(1-E)}{(M / K)}}-\frac{(1-c)^{3}}{1+\frac{3(1-E)}{(M / K)}}\right\}
$$

Here, however, it is not a yield per recruit in units of weight that is estimated, but something (Y^{\prime} / R_{r}) proportional to it; this doesn't really matter because the absolute number of recruits (R_{r}) is not known anyway. Management advice is most often based on relative yield (see Example 8.3 and Fig. 8.3). Values of Y^{\prime} / R_{r} have been tabulated by Beverton and Holt (1964) for a wide range of $\mathrm{M} / \mathrm{K}, \mathrm{c}$ and E values. Given appropriate inputs, program FB 21 provides the same values as those in Beverton and Holt (1964), whose paper, however, should still be consulted for more details.
[The relationship between ordinary Y / R_{r} (as given in Equation (8.8)) and Y^{\prime} / R_{r} is given by $\left.Y / R_{r}=\left(Y^{\prime} / R_{r}\right) \cdot\left(W_{\infty} \cdot \exp -M\left(\mathrm{t}_{\mathrm{r}}-\mathrm{t}_{\mathrm{o}}\right)\right)\right]$.

Fig. 8.2. Yield isopleth diagram for the snapper (Lutjanus sanguineus) of the South China Sea (from Pauly 1979b; see Example 8.2).

Fig. 8.3. Stock assessment of the swordfish (Xiphias gladius) off Florida, based on the relative yield-per-recruit concept (based on Example 8.3).

Case II
All three equations given above assume that growth in weight is isometric. This is often not the case and the value of b in the length-weight relationship generally ranges between 2.5 and 3.5 (see Chapter 2). The weight-at-age data of Table 8.1 were constructed to represent such a case, with $b=3.3$.

Two methods are available to use the yield equations given above, even when growth is allometric.

The first of these methods simply consists of proceeding as if the length-weight relationship were isometric, i.e., of calculating a mean condition factor (which assumes $b=3$) from the lengthweight data at hand, then to use this mean condition factor to convert L_{∞} to W_{∞}. This method stems from Beverton and Holt (1957).
[For the data of Table 8.1, a mean condition factor of 1.887 is obtained which can be used to convert the value of $L_{\infty}=186.5 \mathrm{~cm}$ obtained from a Ford-Walford Plot to a value of $W_{\infty}=122.6 \mathrm{~kg}$

Table 8.1. Growth data of a hypothetical tuna reaching $146.5 \mathrm{~cm}\left(\mathrm{~L}_{\text {max }}\right)$ and $60 \mathrm{~kg}\left(\mathrm{~W}_{\text {max }}\right)^{\text {a }}$

Age (years)	FL (cm)	Weight (g)
1	35	648
2	55	2,879
3	75	14,011
4	90	24,318
5	105	32,833

[^19](Table 8.2). The value of K is that provided by the same Ford-Walford plot, while the value of t_{o} is the mean of six estimates of t_{0} obtained by solving the growth equation for that parameter (by means of Program FB 9). Then the growth parameters are used to estimate t_{c} from W_{c}, t_{c} is set equal to t_{r}, and equation (8.8) is used to estimate Y / R_{r} (see Table 8.2 and Fig. 8.4).]

The second of these methods consists of calculating growth parameters directly from the weight data, and setting $b=3$ (this can be done easily with the programs presented in Chapter 4). This results in values of K and t_{o} different from those that would have been obtained by computing the growth parameters from length data (see Table 8.2). However, once these parameter values have been derived from $b=3$, any of the three equations given above can be used to estimate yield per recruit (see Table 8.2 and Fig. 8.4). This method was suggested by Paulik and Gales (1964).

Table 8.2. Parameter values of different growth equations based on the data of Table 8.1 for use in yield-per-recruit analysis. (W_{∞} and K values stem from Ford-Walford plots.)

Method	D	$\mathrm{W}_{\infty}(\mathrm{kg})$	K	$\mathrm{t}_{\mathrm{o}}{ }^{\mathrm{a}}$	b	$\mathrm{t}_{\mathbf{c}}{ }^{\mathrm{b}}$
Beverton and Holt (1957)	1	122.60	0.150	-0.535	3	2.28
Paulik and Gales (1964)	1	194.36	0.129	-0.265	3	2.45
Jones (1957)	1	162.25	0.150	-0.795	3.3	2.35
Generalized VBGF	0.47	85.95	0.582	-2.035	3.3	2.39

[^20]

Fig. 8.4. Comparison of yield curves based on different methods to compensate for allometry when performing a yield-per-recruit analysis (see Table 8.2, Example 8.4 and text).

Another method for dealing with allometry in yield-per-recruit computations is the use of the incomplete β-function, as proposed by Jones (1957).

Here, the yield per recruit, when $t_{\text {max }}=\infty$, is given by

$$
\mathrm{Y} / \mathrm{R}_{\mathrm{r}}=\mathrm{F} / \mathrm{K} \cdot \mathrm{e}^{\mathrm{Zr}_{1}-\mathrm{Mr}_{2}} \mathrm{~W}_{\infty}\{\beta[\mathrm{X}, \mathrm{P}, \mathrm{Q}]\}
$$

```
where \(X=e^{-K r_{1}}\)
    \(\mathrm{P}=\mathrm{Z} / \mathrm{K}\)
    \(\mathrm{Q}=\mathrm{b}+1\) ( b being the length/weight exponent),
and \(\quad \beta=\) being the symbol of the incomplete beta function
with \(\quad r_{1}=t_{c}-t_{0}\)
and \(\quad r_{2}=t_{c}-t_{r}\)
```

Tables of the incomplete β-function have been presented by Wilimovsky and Wicklund (1963); these tables are not needed here because Program FB 22 estimates the appropriate values of the incomplete β-function (see Example 8.4, Fig. 8.4 and text below).

Case III
The incomplete β-function, besides allowing for the integration of the special VBGF with $\mathrm{b} \neq$ 3 , also allows for the integration of the generalized VBGF and its use in yield-per-recruit analysis. When the generalized VBGF is used, and $t_{\text {max }}=\infty$, we have

$$
\mathrm{Y} / \mathrm{R}_{\mathrm{r}}=\frac{\mathrm{F} \cdot \mathrm{~b}}{3 \mathrm{KD}} \cdot \mathrm{e}^{\mathrm{Zr}_{1}-\mathrm{Mr}_{2}} \mathrm{~W}_{\infty}\{\beta[\mathrm{X}, \mathrm{P}, \mathrm{Q}]\}
$$

where $X=e^{-3 K D r_{1} / b}$
$\mathrm{P}=\mathrm{Zb} / 3 \mathrm{KD}$
and $\quad Q=(b / D)+1$
with r_{1} and r_{2} being defined as above.
Thus, using the data of Table 8.1, first to estimate D (from $\mathrm{W}_{\text {max }}$ and Program FB 9) then to estimate W_{∞} and K , with $\mathrm{D}=0.47$ and $\mathrm{b}=3.3$, it is possible to obtain growth parameters suitable for incorporation into equation (8.11) (see Table 8.2). Program FB 22 can then be used to estimate $\mathrm{Y} / \mathrm{R}_{\mathrm{r}}$ values for these, or any other combination of growth parameters (see Example 8.5).

COMPARISON OF VARIOUS EQUATIONS FOR YIELD-PER-RECRUIT ESTIMATION

Of the various equations available for the estimation of yield per recruit, the first [equation (8.7)] is the one which contains the most parameters. In fact, of the parameters used, one ($t_{\text {max }}$) is quite superfluous and may be set for most practical purposes equal to ∞, especially when Z is high (see Ricker 1975, p. 257).

Equation (8.8), on the other hand, is still widely used (when $b \approx 3$) and several examples are available of its application to tropical stocks (see recommended reading).

Equation (8.9) is particularly useful in situations where a detailed knowledge of the growth and mortality of the stock in question is not available. The results obtained from this equation are proportional to those obtained by means of equation (8.8) and allow a quick assessment of a fishery (Fig. 8.3).

Of the several methods available for compensating for allometry in yield-per-recruit analysis, that of Jones (1957) gave the results which differed most from those obtained using the generalized

VBGF, which serves as a benchmark (Fig. 8.4). The marked differences between the results obtained by Jones' method and the other methods are to a large extent due to growth beyond the ages considered in Table 8.1. This suggests that Jones' method is least robust with regard to violations of the assumption that $\mathrm{t}_{\max }=\infty$ in equation (8.10).

Paulik and Gales (1964) and Ricker (1975, p. 225) suggested that the "Chapman-Richards" curve (Richards 1959), which is essentially a form of the generalized VBGF, could be easily integrated by means of the incomplete β-function. Published examples have been wanting. This account (i.e., Case III) closes the gap.

THE USE OF THE YIELD-PER-RECRUIT MODEL: A WARNING

The yield-per-recruit model, although very elegant and still suited to the management of certain stocks (such as the North Sea plaice (Pleuronectes platessa)) should be used with caution.

Fishermen are not interested in an imaginary "yield per recruit"; they are interested in a physical yield of fish, and this yield is the product of the yield per recruit times the absolute number of recruits produced in the stock. Yield is directly proportional to yield per recruit over a wide range of fishing mortalities only if it can be assumed that there is no relationship-over a wide range of F values-between the size of the parental stock of fish and its progeny (see chapter on stock-recruitment relationships).

Where this assumption does not apply-and it does not seem to apply to more than a few stocks-the values of F and t_{c} needed to produce a maximum yield per recruit could well also generate an abysmally low yield, because the "best" value of F (the one maximizing yield per recruit) could also reduce the parental stock to a level at which virtually no recruits are produced.

Moreover, it must be realized that the finding of yield-per-recruit analyses apply to long-term or equilibrium situations only. In the short term, an increase of fishing mortality or a decrease in size at first capture always results in higher yields, even when the yield-per-recruit analysis predicts lower yields. Similarly, a decrease of fishing mortality or an increase in size at first capture always results in lower yields in the short term, although in the long run higher yields may be reached.

The duration of the transition period can be of several years in fish which have a high longevity and are subjected to exploitation over a number of years, as in a number of temperate stocks such as cod or halibut. In short-lived animals, the transition period will be much shorter; in the case of very short-lived animals, such as most penaeid shrimps, the distinction between "immediate" and "long-term" effect does not even apply, because the stocks are never in equilibrium. This and related problems are reviewed in Garcia and Le Reste (1981) who present a number of methods for the quantification of short- and long-term effects of changes in fishing mortality and mesh size (see also Jones 1981).

Another important feature of the yield-per-recruit model is that yield per recruit is maximized at low values of F only in the case of large, long-lived, low mortality fish, such as the swordfish (Xiphias gladius) (see Fig. 8.3). In small tropical fish, the values of F which maximize yield per recruit are generally extremely high (see Fig. 8.1). Thus, managing a tropical fishery based on a species of small fish (let alone a multispecies fishery based on such fish) using only yield-per-recruit analyses can be very misleading (see Pauly 1979b; Pauly and Martosubroto 1980).

It may be mentioned, finally, that in temperate waters, an (arbitrary) agreement has emerged to generally limit F (for assessment of stocks whose stock-recruitment relationships are unknown) to the value which corresponds to $1 / 10$ of the rate of increase of yield per recruit that can be obtained by increasing F, at low levels of F (Gulland and Boerema 1973). This concept, called $F_{0.1}$ is illustrated in Fig. 8.5, Table 8.3 and Example 8.6. The $\mathrm{F}_{0.1}$ concept may be viewed as a surrogate for MEY (Maximum Economic Yield, see Fig. 12.7), applicable in situations where economic data on the performance of a fishery are lacking. A concept analogous to $\mathrm{F}_{0.1}$, but for use in conjunction with effort ($\mathrm{f}_{0.1}$) is proposed in Chapter 12.

Table 8.3. Data for the computation of $\mathrm{F}_{0.1}$ for Nemipterus marginatus from the South China Sea (see Example 8.6).

F	$\mathbf{Y} / \mathbf{R}_{\mathbf{r}}$	Diff $/ 10^{\text {a }}$	F	$\mathbf{Y} / \mathbf{R}_{\mathbf{r}}$	Diff $/ 10^{\text {a }}$
0.00	0.000	300			
0.01	0.030	3.00	1.0	1.215	0.32
0.1	0.270	2.40 2.15	1.1	1.247	0.32 0.25
0.2	0.485	2.15 1.71	1.2	1.272	0.25
0.3	0.656	1.38	1.3	1.293	0.17
0.4	0.794	1.11	1.4	1.310	0.13
0.5	0.905	0.90	1.5	1.323	0.11
0.6	0.995	0.73	1.6	1.334	0.08
0.7	1.068	0.59	1.7	1.342	0.06
0.8	1.127	0.48	1.8	1.348	0.04
0.9 1.0	1.175 1.215	0.40	1.9	1.352 1.355	0.04 0.03
1.0	1.215		2.0	1.355	

[^21]

Fig. 8.5. Yield-per-recruit curve of the threadfin bream (Nemipterus marginatus) from the South China Sea, showing the position of $\mathrm{F}_{0.1}$ (based on data in Table 8.3 and Example 8.6).

AN ALTERNATIVE USE OF BEVERTON AND HOLT'S YIELD EQUATION

An interesting property of the yield equation of Beverton and Holt (1957) is that it can be used in a given stock to estimate the proportion of fish above or below a certain size. Thus, when the special VBGF is used, the total standing stock (biomass) of fish above the size at first capture ($\mathrm{t}_{\mathbf{c}}$) is given, assuming $t_{\text {max }}=\infty$, by

$$
B_{c}=R_{c} \cdot F \cdot W_{\infty}\left(\frac{1}{Z}-\frac{3 e^{-K r_{1}}}{Z+K}+\frac{3 e^{-2 K r_{1}}}{Z+2 K}-\frac{e^{-3 K r_{1}}}{Z+3 K}\right)
$$

where R_{c} is the number of recruits of age t_{c}, and $r_{1}=t_{c}-t_{o}$.
A factor (k) can be defined which relates the biomass of fish of and above a certain age (t_{k}) to the biomass of all fish of and above age t_{c} such that

$$
\mathrm{B}_{\mathbf{k}} / \mathrm{k}=\mathrm{B}_{\mathrm{c}}
$$

The value of k will depend on the value of Z, but not on W_{∞}, or R_{c} which are the same in both parts of the stock (B_{c} and B_{k}). Thus, the value of k, when $t_{\max }=\infty$ can be estimated by the equation

$$
\mathbf{k}=\frac{\exp \left(-\mathrm{Zr}_{3}\right) \cdot\left\{\frac{1}{Z}-\frac{3 \exp \left(-\mathrm{Kr}_{2}\right)}{\mathrm{Z}+\mathrm{K}}+\frac{3 \exp \left(-2 \mathrm{Kr}_{2}\right)}{\mathrm{Z}+2 \mathrm{~K}}-\frac{\exp \left(-3 \mathrm{~K}_{2}\right)}{\mathrm{Z}+3 \mathrm{~K}}\right\}}{\frac{1}{\mathrm{Z}}-\frac{3 \exp \left(-\mathrm{Kr}_{1}\right)}{\mathrm{Z}+\mathrm{K}}+\frac{3 \exp \left(-2 \mathrm{Kr}_{1}\right)}{\mathrm{Z}+2 \mathrm{~K}}-\frac{\exp \left(-3 \mathrm{Kr}_{1}\right)}{\mathrm{Z}+3 \mathrm{~K}}}
$$

with $r_{1}=t_{c}-t_{o} ; r_{2}=t_{k}-t_{o} ;$ and $r_{3}=t_{k}-t_{c}$.
This equation can be used to estimate, e.g., the proportion of the total stock which consists of fish at or above the age at first maturity $\left(t_{m}\right)$, by setting $t_{m}=t_{k}$, that is:

$$
r_{1}=t_{c}-t_{0} ; r_{2}=t_{m}-t_{o} ; \text { and } r_{3}=t_{m}-t_{c}
$$

This technique has been recently used to estimate the standing stock size of potentially mature fish in the Gulf of Thailand (Pauly 1980d) and can also be used to convert catch data obtained by a given mesh size to those that would have been obtained had another mesh size been used. This expression is based on an analogous equation presented by Hempel and Sarhage (1959) to estimate the expected proportion of undersized and discarded fish in a trawl fishery. Program FB 23 can be used to estimate values of k for any value of F given a value of M, and values of t_{o}, t_{c} and t_{k} (see Example 8.7).

Recommended reading: The book in which Beverton and Holt (1957) originally presented their model has been reprinted and still is a mine of good ideas-although it is often quite hard to follow. Ricker (1975) gives a review of the whole yield-per-recruit approach, including the earlier work of Baranov (1918) who was the pioneer in this field. Tropical applications of the yield-per-recruit approach are to be found, e.g., in Bayliff (1967), Le Guen (1971), Jones (1976b) and Sinoda et al. (1979).

Suggested research topics: Whenever growth data are available, reasonable estimates of M can be obtained (see Chapter 5); yield-per-recruit computations can then be performed. Attempts should be made to perform such assessments routinely and to suggest appropriate mesh sizes. In fisheries that have stabilized at a given level of effort and/or those consisting of short-lived fish, yield may be divided by Y / R_{c} to obtain estimates of recruitment, which may be compared with absolute recruitment estimates obtained from length cohort analysis.

Data: $\mathrm{W}_{\infty}=64 \mathrm{~g}, \mathrm{~K}=1.0, \mathrm{t}_{\mathrm{o}}=-0.2, \mathrm{t}_{\mathrm{c}}=0.2, \mathrm{t}_{\mathrm{r}}=0.2, \mathrm{M}=2, \mathrm{~b}=3, \mathrm{D}=1$ (adapted from Pauly 1980c).

Computation

1) Read sides 1 and 2 of Program FB 21
2) Enter parameters (except for b and D).

Keystrokes: 64 STO B1 STO1 2STO2.2 CHS STOO . 2 STO D. 2 STOI
3) Calculate Y / R_{c} and Y / R_{r} for $F=0.5$ to $F=5$ in steps of 0.5

Keystrokes	Results	
.5 B	2.247	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{c}}\right)$
	2.247	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{r}}\right)$
1 B	3.199	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{c}}\right)$
	3.199	$\left(\mathrm{Y} / \mathrm{R}_{\mathbf{r}}\right)$
etc.	$\ldots \ldots$	
5 B	3.566	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{c}}\right)$
	3.566	$\left(\mathrm{Y} / \mathrm{R}_{\mathbf{r}}\right)$

4) Plot the values of Y / R_{r} onto a graph, and repeat with $t_{c}=0.3$. A plot such as Fig. 8.1 will be obtained, which allows for the assessment that, for all values of fishing mortality considered, the mesh size which generates $t_{c}=0.3$ will produce a greater yield than that which generates $\mathrm{t}_{\mathrm{c}}=0.2$.

Estimating the yield per recruit obtainable from the snapper (Lutjanus sanguineus) in the South China Sea.

Data: $\mathrm{W}_{\infty}=12226 \mathrm{~g}, \mathrm{~K}=0.154, \mathrm{t}_{\mathrm{o}}=-0.67, \mathrm{D}=1$, $\mathrm{t}_{\max }=10$ years (assumed), $\mathrm{M}=0.33$, with $t_{r}=t_{o}$, and $t_{c}=2$ years, $b=3$ (adapted from Lai and Hsi 1974 and Pauly 1979b). Note that the age at recruitment is arbitrary.

Computation

1) Read sides 1 and 2 of Program FB 21
2) Enter parameters (b is assumed 3 and D is assumed 1 and need not be entered)

Keystrokes: 12226 STO B. 154 STO1 . 33 STO2 10 STO A .67 CHS STO0 2 STO D 67 CHS STO I
3) Calculate Y / R_{c} and Y / R_{r} for $F=1$

Keystrokes	Results	
1 A	660.924	$\left(\mathrm{Y}_{\mathrm{H}} / \mathrm{R}_{\mathrm{c}}\right)$
	273.839	$\left(\mathrm{Y} / \mathrm{R}_{\mathbf{r}}\right)$

4) Repeat with different value of F, e.g.

Keystrokes	Results	
.5 A	708.999	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{c}}\right)$
	293.757	$\left(\mathrm{Y} / \mathrm{R}_{\mathbf{r}}\right)$

5) Setting $t_{\max }=\infty$ (i.e., using a very large number) and the same set of other parameters allows one to reproduce the yield isopleth diagram in Fig. 8.2.

Yield-per-recruit assessment of Atlantic swordfish (Xiphias gladius).

Data: Berkeley and Houde (1980) give for swordfish caught off Florida: $\mathrm{L}_{\infty}=309$ (fork length, in cm ; δ and 9), $\mathrm{K}=0.0949, \mathrm{M}=0.18$ (hence $\mathrm{M} / \mathrm{K}=1.9$), $\mathrm{L}_{\mathrm{c}}=118$ (hence $\left.c=L_{c} / L_{\infty}=0.38\right)$.

Computation

1) Read sides 1 and 2 of Program FB 21
2) Enter parameters needed

Keystrokes: 1.9 STO 8.38 STOC
3) Compute the relative yield per recruit for different values of $E(=F / Z)$

Keystrokes	Results	
.1 C	0.009	$\left(\mathrm{Y}^{\prime} / \mathrm{R}_{\mathbf{r}}\right)$
.2 C	0.017	$\left(\mathrm{Y}^{\prime} / \mathrm{R}_{\mathbf{r}}\right)$
etc.	$\cdots .0$	$\left(\mathrm{Y}^{\prime} / \mathrm{R}_{\mathbf{r}}\right)$

4) Plot these values onto a graph, and repeat with a different value of c (e.g., 0.49). The result should look similar to Fig. 8.3 from which the assessment can be made that an increase of L_{c} from 118 to 150 cm would not result in a marked increase of yield per recruit under the present (late 1970s) exploitation rate, but would lead to an increased yield per recruit under higher exploitation rates.

Computation of yield per recruit in cases where weight growth is allometric (Jones' method).

Data: Growth and other parameters from Tables 8.1 and 8.2
Computation

1) Read sides 1 and 2 of Program FB 22
2) Enter parameters needed

Keystrokes: 162.25 STO B.15 STO A1STO D3.3 STO E. 3 STO0 795 CHS $\uparrow 2.35$ f a 2.35 fc
3) Calculate yield per recruit for $\mathbf{F}=0.1$ to $F=2.0$

Keystrokes	Results	
.1 A (and wait . .)	0.018	(β)
	6.773	$\left(Y / R_{c}\right)$
	6.773	$\left(Y / R_{r}\right)$
etc.		
2 A (and wait . .)	$2.648 \ldots-06$	(β)
	7.936	$\left(Y / R_{c}\right)$
	7.936	$\left(Y / R_{r}\right)$

4) Plot the Y / R_{r} values against the F-values. The graph that emerges should look as line 1 in Fig. 8.4 (but see text).

Computation of yield per recruit using the generalized VBGF.

Data: Growth and other parameters from Table 8.2
Computation

1) Read sides 1 and 2 of Program FB 22
2) Enter parameters needed

Keystrokes: 85.95 STOB .582STOA .47 STOD .3STO O 2.035 CHS $\uparrow 2.39$ fa 2.39 f c
3) Calculate yield per recruit for $F=0.1$ to $F=2$

Keystrokes	Results	
.1 B	0.027	(β)
	5.444	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{c}}\right)$
	5.444	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{r}}\right)$
etc.	$\ldots \ldots$	(β)
2 B	$3.490 \ldots-07$	$\left(\beta / \mathrm{R}_{\mathrm{c}}\right)$
	6.347	$\left(\mathrm{Y} / \mathrm{R}_{\mathrm{r}}\right)$

4) Plot the Y / R_{r} values against the F-values. The graph that emerges should look as line 3 in Fig. 8.4

Data: $\mathrm{W}_{\infty}=210 \mathrm{~g}, \mathrm{~K}=0.42, \mathrm{t}_{\mathrm{o}}=-0.41(\mathrm{D}=1, \mathrm{~b}=3), \mathrm{M}=1.73, \mathrm{t}_{\mathrm{c}}=0.26, \mathrm{t}_{\mathrm{r}}=-0.41$ (from Pauly and Martosubroto 1980).

Computation

1) Read sides 1 and 2 of Program FB 21
2) Enter parameters needed

Keystrokes: 210 STO B. 42 STO 11.73 STO2 . 41 CHSSTOO . $26 S T O$ D . 41 CHS STO I
3) Compute Y / R_{Y} at a very low value of F, e.g., $F=0.01$

Keystrokes	Results
.01 B	$0.096\left(\mathrm{Y} / \mathrm{R}_{\mathrm{c}}\right)$
	$0.030\left(\mathrm{Y} / \mathrm{R}_{\mathrm{r}}\right)$

Near the origin, $\mathrm{Y} / \mathrm{R}_{\mathrm{r}}$ increases from 0 to 0.03 when F increases from 0 to 0.01 , thus the slope of the yield curve at the origin is close to $0.030 / 0.01$ i.e.:

Keystrokes	Results
$.01 \div$	2.999
(slope near origin)	
DSP 2	3.00

4) Then compute Y / R_{r} for values of F ranging from 0.1 to 2 , in steps of 0.1 , record data and draw resulting graph (see Fig. 8.5 and Table 8.3).
5) Calculate increase in yield associated with each 0.1 increment of F, and divide this difference by 10 to obtain approximate slope (i.e., change in Y / R_{r} per unit change in F).
6) Locate slope value closest to $1 / 10$ of value of slope near the origin (corresponding to $F_{0.1}$). This value is 0.32 , corresponding to $F_{0.1}=1.1$ (see Table 8.3). The next closest value is 0.25 , corresponding to $F=1.1-1.2$. Thus, the best value, corresponding to 0.30 will be close to $\mathrm{F}=1.1$, which we may take as our estimate of $\mathrm{F}_{0.1}$ (see Fig. 8.5).

Estimating the proportion (k) of adult slipmouth (Leiognathus splendens) in the total stock, under two different exploitation regimes.

Data: $K=1.0, t_{o}=-0.2, t_{c}=0.2, M=1.8$ (see Fig. 8.1); to be estimated are values of k for $\mathrm{F}=0$ and $\mathrm{F}=1$, with $\mathrm{t}_{\mathrm{k}}=1$ year.

Computation

1) Read side 1 of Program FB 23
2) Enter needed parameter values

Keystrokes: 1 STO1 . 2 CHS STOO 1.8 STO2 . 2 STOC 1 STOA
3) Calculate values of k for $\mathrm{F}=0$ and $\mathrm{F}=1$

Keystrokes	Results	
OA	0.55	$\left(\mathbf{k}_{\mathbf{o}}\right)$
1A	$\mathbf{0 . 3 2}$	$\left(\mathbf{k}_{\mathbf{1}}\right)$

Thus, as expected, we find at $F=1$ a smaller biomass of adults (32% of total stock) than at $\mathrm{F}=0$, where the adults contribute 55% of the total stock.

9. Stock-Recruitment Relationships

INTRODUCTION

Clearly, there can be no production of young fish (recruits) if no adult fish are left (by a fishery) to mature, spawn, and produce eggs which hatch and grow to become recruits (see Fig. 9.1A).

The females of most fish species are extremely fecund, producing during their adult lives several thousand eggs, sometimes millions. This fecundity has led many fishery biologists to believe that even a very limited parental biomass should be sufficient to allow a complete "restocking" after each spawning season. It was assumed that features of the abiotic environment (e.g., oceanographic conditions) mainly determine how many of the spawned eggs survive to become recruits, the size of the spawning stock, except for stock sizes very close to zero, being virtually irrelevant in determining recruit numbers. The situation in which the number of recruits in a given stock is determined mainly by factors other than parental biomass is called "lack of a stock-recruitment relationship". Early proponents of this view include Beverton and Holt (1957) (see also Beverton 1963).

However, work conducted in the 1960s and 1970s suggests that many fish stocks do display stock-recruitment relationships, as demonstrated in Parrish (1978) and Saville (1980). Also, it was shown for most of the stocks which collapsed in the last three decades that "recruitment overfishing" was the cause (Murphy 1966, 1977, 1980; Saville 1980).

However, stock-recruitment relationships generally cannot be established directly by plotting an index of recruitment on parental biomass. Rather, it is necessary to account simultaneously for a stock-recruitment relationship and the biotic and/or abiotic factor(s) which may affect that relationship. In tropical stocks, this approach has allowed e.g., Csirke (1980) to demonstrate a strong effect of oceanographic conditions on the recruitment of the Peruvian anchovy. Ricker (1975, p. 275-280), Bakun and Parrish (1980) and Bakun et al. (1982) have discussed methods to identify various factors affecting recruitment using multiple regression analysis (for which Program FB 7, with slight modifications, can be used).

To date four types of stock-recruitment relationships are commonly recognized:

1) Recruitment increasing rather steeply toward an asymptote (this model, paradoxically is the model generally used for illustrating a lack of stock-recruitment relationships, see Figs. 9.1B and 9.2).
2) Recruitment increasing in proportion to a power of parental biomass or of the number of eggs shed (Fig. 9.1C).
3) Recruitment increasing more or less steeply toward a maximum at an intermediate size of parental stock (P), then decreasing with increasing values of P (Fig. 9.1D and 9.3).
4) None of the above, but stock-recruitment sensu stricto conforming to 1,2 or 3 after the simultaneous effects of environmental factors (biotic or abiotic) are removed, as in Csirke (1980).

Examples of relationships of types 1 and 3, the most commonly used, are illustrated here (Examples 9.1 and 9.2). These two examples must be taken with a grain of salt, however, because the first displays considerable scatter (as is typical of most such plots), while the second is based on points derived by a method which gives only approximate results.

At present, research in fish recruitment is in a state of flux, with a lot of new ideas and insufficient data to test them. Reviews covering what little is known of stock-recruitment relationships in tropical fish are given in Sharp (1980) for pelagics, by Sale (1980) for coral reef fish, Murphy (1982) for miscellaneous fish and Garcia (1983) for penaeid shrimps.

A. Little is known about the shape of the curve except that it has to go through the origin.
B. Recruitment related to parent stock by an asymptotic relationship (e.g., equation 9.1); when the left side of this curve ascends steeply to the maximum recruitment, fishery biologists generally consider this to reflect the absence of a stockrecruitment relationship, because R is independent of P for a wide range of P (Beverton and Holt 1957).

Fig. 9.1. Types of stock-recruitment relationships used in fishery research.

Fig. 9.2. Beverton and Holt type stock-recruitment relationship for the sea bream (Taius tumifrons) (East China Sea).

Fig. 9.3. Stock-recruitment data of false trevally (Lactarius lactarius) in the Gulf of Thailand, fitted with Ricker curves (GM and AM) (based on data in Table 9.2 and Example 9.3).

THE STOCK-RECRUITMENT RELATIONSHIP OF BEVERTON AND HOLT*

In this model, the relationship between the number of recruits (R) and the spawning stock size (P) is given by

$$
\mathrm{R}=\frac{1}{\alpha^{\prime}+\beta^{\prime}}
$$

Expression (9.1) can be expressed as a linear relationship of the form

$$
\frac{\mathbf{P}}{\mathrm{R}}=\beta^{\prime}+\alpha^{\prime} \mathbf{P}
$$

As this plot involves the use of inverses (e.g., $1 / \mathrm{R}$), the estimated values of α^{\prime} and β^{\prime} provide, for each value of P, estimated values of recruitment (\hat{R}) whose sum ($\Sigma \hat{R}$) is actually lower than the sum of the empirical values of $R(\Sigma R)$. This is due to the fact that the use of inverse values implies the use of a harmonic mean (HM) in fitting equation (9.1) and to the fact that the harmonic mean of a series of values is always less than the arithmetic mean (AM) of these values.

An approximate conversion of the estimated recruitment values $\hat{\mathrm{R}}_{\mathrm{HM}}$ to the corresponding $\hat{\mathrm{R}}_{\mathrm{AM}}$ values can be obtained, however, by performing

$$
C=\frac{\Sigma R(\text { empirical values })}{\Sigma R(\text { harmonic mean values })}
$$

and by multiplying the recruitment values of the HM line by the constant C (Ricker 1975).
An application of this model is given in Example 9.1, based on the data in Table 9.1.

Table 9.1. Data for the derivation of a Beverton and Holt type relationship for sea bream (Taius tumifrons) from the East China Sea. Figures derived from Murphy (1972, Fig. 3, based on Shindo 1960).

No.	Year	Eggs spawned No. $\times 10^{6}$	Recruits No. $\times 10^{3}$	P/R
1	1949	122	9.2	13.3
2	1950	84	7.2	11.7
3	1951	60	6.3	9.52
4	1952	40	9.4	4.26
5	1953	72	8.4	8.57
6	1954	42	11.0	5.06
7	1955	1956	(38)	(13.0)
not used $^{\text {a }}$			(2.92)	

[^22][^23]
RICKER'S STOCK-RECRUITMENT RELATIONSHIPS

First form of Ricker's curve
The stock-recruitment relationship proposed by Ricker $(1954,1975)$ can be written

$$
\mathrm{R}=\alpha \mathrm{Pe}^{-\beta \mathrm{P}}
$$

where R is the number of recruits
\mathbf{P} is the size of parental stock (in weight, in numbers, or as egg production)
α is an index of stock-independent mortality
and $\quad \beta$ is an index of stock-dependent mortality
Equation (9.4) can be rewritten

$$
\ln R-\ln P=\ln a-b P
$$

which has the form of a linear regression $y=a+b x$, where $y=\ln R-\ln P, x=P, a=\ln \alpha$ and $b=\beta$.
Once α and β are estimated, maximum recruitment (R_{m}) is obtained by

$$
\mathrm{R}_{\mathrm{m}}=\alpha / \beta \mathrm{e}
$$

where e (=2.1783) is the base of the natural logarithms. Also, the parental stock at maximum recruitment (P_{m}) can be estimated by the equation

$$
P_{m}=1 / \beta
$$

The relationships between the parameters α and β in the first form of Ricker's curve to α^{\prime} and β^{\prime} in Beverton and Holt's curve are discussed in Chapter 11 (p. 156). When P and R are expressed in the same units, a "level of replacement abundance" can be found where $\mathrm{P}=\mathrm{R}$. This replacement level $\left(\mathrm{P}_{\mathrm{r}}\right)$ can be estimated through

$$
P_{r}=\frac{\ln \alpha}{\beta}=R_{r}
$$

For most purposes, it is reasonable to assume that (the average size of) the virgin parental stock $\left(P_{v}\right)$ should be equal to P_{r}, which allows, when an estimate of P_{v} is available, for the original units of recruitment to be converted to units of P through multiplication with P_{v} / P_{r} (see Table 9.2).

Program FB 25 can be used to estimate the parameters of the first type of Ricker curve (see Example 9.2).

Table 9.2. Data for the derivation of Ricker type stock-recruitment relationships for the false trevally (Lactarius lactarius) from the Gulf of Thailand. ${ }^{\text {a }}$

Year	P (in thousand tonnes)	R (in millions)	$R(\text { in units of } P)^{\mathbf{b}}$
virgin stock	2,660	-	$(2,660)$
1963	2,087	239	$4,606.8$
1966	1,277	292	$5,628.4$
1967	422	138	$2,660.0$
1968	444	202	$3,893.6$
1969	191	90.8	$1,750.2$
1970	29.8	15.5	298.77
1971	37.8	55.5	$1,069.8$
1972	4.0	8.9	171.55

[^24]
Second form of Ricker's curve

When recruitment and parental stock are expressed in the same units, equation (9.4) can be rewritten in the form

$$
\mathrm{R}=\mathrm{Pe}^{\mathrm{a}\left(1-\mathrm{P} / \mathbf{P}_{\mathbf{r}}\right)}
$$

where P_{r} is the replacement abundance, and where a new parameter (a) is introduced, which is defined as

$$
\mathrm{a}=\mathrm{P}_{\mathrm{r}} \beta=\ln \alpha
$$

Thus, equation (9.9) can be rewritten

$$
\ln R-\ln P=a-\frac{a}{P_{r}} P
$$

which has the form of a linear regression where $y=\ln R-\ln P$ and $x=P$, with the intercept of this regression providing an estimate of a and its slope an estimate of a / P_{r}.

Equation (9.9), as well as equation (9.4), incidentally, provide estimates of the geometric mean (GM) value of R at a given P ; generally, GM values estimate the most probable values of recruitment for the observed P values, while the arithmetic mean (AM) curve estimates the long-term arithmetic average value of recruitment obtained at a given P (Ricker 1975, p. 283).

Thus, conversion of the GM curve to an AM curve is indicated especially when the R values are widely scattered about the stock-recruitment curve. Program FB 25 can be used for this conversion, which is performed according to the method given in Ricker (1975, p. 275 and 283-288) (see Example 9.2).

In temperate, single-species fisheries, the establishment of a stock-recruitment relationship of the type discussed here is sufficient for most purposes of fishery management, since the best strategy generally is to optimize the level of surplus recruitment ($=$ the number of recruits produced in excess of replacement level, see Fig. 9.3).

This strategy also may be indicated in the case of tropical single-species fisheries, such as sardines, anchovies, chub mackerels or scads. In the case of multispecies fisheries, the establishment of a stock-recruitment relationship in one species is not sufficient-obviously-for deriving an optimum fishing strategy for the whole multispecies stock (see Chapter 12).

Recommended reading: The classic paper of Ricker (1954) is an excellent introduction to the field, which is also reviewed in Ricker (1975). Parrish (1978) edited a volume of papers on the subject of stock-recruitment relationships which contains many important contributions. Sharp (1980) presents an even more up-to-date review of the subject. Several contributions included in Pauly and Murphy (1982) are also of relevance to the topic, particularly as far as the tropics are concerned. Garcia (1983) discussed in detail the stock-recruitment relationships of tropical and subtropical shrimp and the numerous pitfalls (potential and realized) in the interpretation of such relationships. Shepherd (1982) recently proposed a versatile stock-recruitment model which has the Cushing, Beverton and Holt and Ricker models as special cases.

Suggested research topics: Every attempt should be made to estimate recruitment from stocks that are suitably well-documented, especially by using VPA and related methods. Attempts should be made to identify the factors which most strongly affect recruitment in a fishery and to derive from the properties of these factors the best strategy for the exploitation of the resource.

Estimating the parameters of a Beverton and Holt type stock-recruitment relationship (Taius tumifrons, East China Sea).

Data from Table 9.1
Computation

1) Read side 1 of Program FB 24
2) Enter P and R data

Keystrokes: f a $122 \uparrow 9.2 \mathrm{~A} 84 \uparrow 7.2 \mathrm{~A} 60 \uparrow 6.3 \mathrm{~A} 40 \uparrow 9.4 \mathrm{~A} 72 \uparrow 8.4 \mathrm{~A} 42 \uparrow 8.3 \mathrm{~A}$ $45 \uparrow 11 \mathrm{~A}$
3) Estimate parameters of curve

Keystroke	Results	
E	0.857	$\left(\mathbf{r}^{2}\right)$
	0.116	$\left(\alpha^{\prime}\right)$
	0.371	$\left(\beta^{\prime}\right)$

4) To obtain estimate of $R_{H M}$ and $R_{A M}$, re-enter the P values

Keystrokes 122 D 84 D 60 D 40 D 72 D 42 D 45 D
5) Then estimate $R_{H M}$ and $R_{A M}$ for any given value of P

Keystroke	Results	
10 C	6.541	R_{HM}
	6.827	R_{AM}

The data can thus be plotted in the form of curves as in Fig. 9.2

Estimating the parameters of Ricker type recruitment curves (first and second forms).

Data from Table 9.2
Computation

1) Read sides 2 and 2 of Program FB 25
2) Enter P and R data (first form of curve)

Keystrokes: fa $2087 \uparrow 239$ A $1277 \uparrow 292$ A $422 \uparrow 138$ A $444 \uparrow 202$ A $191 \uparrow 90.8$ A $29.8 \uparrow 15.5$ A $37.8 \uparrow 55.5$ A $4 \uparrow 8.9 \mathrm{~A}$
3) Calculate parameters of stock recruitment curve (first form):

Keystrokes	Results	
E	0.694	$\left(\mathrm{r}^{2}\right)$
	0.886	(α)
	0.001	(β)
	937.348	$\left(\mathrm{P}_{\mathrm{m}}\right)$
	305.516	$\left(\mathrm{R}_{\mathrm{m}}\right)$

4) Since β is not precise enough, do:

RCL B DSP 50.00107 (β)
5) Assuming that the value of P in the virgin stock $\left(P_{v}\right)$ corresponds to P_{r}, estimate the ratio R_{r} / P_{r}

$$
2660 \mathrm{fd} \quad 0.05188 \quad\left(\mathrm{R}_{\mathbf{r}} / \mathrm{P}_{\mathbf{r}}\right)
$$

6) To convert the original values of R in units of P do:

Keystrokes	Results	
DSP 1		
$239 \uparrow$		$\left(R_{(1963)}\right)$
$.05188 \div$	4606.8	
$292 \uparrow$		$\left(R_{(1966)}\right)$
$.05188 \div$	5628.4	
etc.	\ldots	
	(see Table 9.2)	

7) To obtain parameters of stock-recruitment curve (second form), first enter P and new R data:

Keystrokes: f a $2087 \uparrow 4606.8$ A $1277 \uparrow 5628.4$ A $422 \uparrow 2660$ A $444 \uparrow 3893.6$ A $191 \uparrow 1750.2$ A $29.8 \uparrow 298.77$ A $37.8 \uparrow 1069.8$ A $4 \uparrow 171.55$ A
(continued from p. 136)
8) To calculate parameters of new curve do:

$$
\begin{array}{lrl}
\text { Keystrokes } & \text { Results } & \\
& & \\
\mathbf{f e} & 0.694 & \left(\mathbf{r}^{2}\right) \\
& 2.838 & \left(\mathbf{P}_{\mathbf{r}} / \mathbf{P}_{\mathbf{m}}\right) \\
& 2659.599 & \left(\mathbf{P}_{\mathbf{r}}\right)
\end{array}
$$

9) The parameter values obtained pertain to a GM curve; to obtain recruitment values corresponding to an AM curve, re-enter the P and R values:

Keystrokes: $2087 \uparrow 4606.8$ D $1277 \uparrow 5628.4$ D $422 \uparrow 2660$ D $444 \uparrow 3893.6$ D 191 $\uparrow 1750.2 \mathrm{D} 29.8 \uparrow 298.77 \mathrm{D} 37.8 \uparrow 1069.8 \mathrm{D} 4 \uparrow 171.55 \mathrm{D}$
10)When all P and new R values have been re-entered, the ratio between $R_{(A M)}$ and $R_{(G M)}$ values is obtained by:

Keystrokes	Results	
f.c	1.13	$\left(\mathrm{R}_{\mathrm{AM}} / \mathrm{R}_{\mathrm{GM}}\right)$

11)Which allows one to draw GM and RM curves by entering P values, and calculating the corresponding $R_{(G M)}$ and $R_{(A M)}$ values, i.e.,

10B	168.96	$\left(\mathrm{R}_{(\mathrm{GM})}\right)$
	190.84	$\left(\mathrm{R}_{(\mathrm{AM})}\right)$
100 B	1534.91	$\left(\mathrm{R}_{(\mathrm{GM})}\right)$
	1733.67	$\left(\mathrm{R}_{(\mathrm{AM})}\right)$
etc.	\ldots	

etc.
(see Fig. 9.4)

10. Surplus-Yield Models

INTRODUCTION

Based on earlier work by Baranov (1927), Graham (1935) and others, Schaefer $(1954,1957)$ presented a model which, in its recent formulation (e.g., Ricker 1975 or Schnute 1977) can be used for stock assessment when a minimum of data is available (only catch-and-effort data are required) and which has been applied, with varying success, to a number of fisheries throughout the world.

The assumptions made for the derivation of this model are as follows:

1) Any fish population newly colonizing a given, finite ecosystem grows in weight until it approaches the maximum carrying capacity (most often in terms of available food) of this ecosystem, after which its increase in total weight gradually ceases as the stock size comes closer (asymptotically) to the carrying capacity of the environment (B_{∞}),
2) B_{∞} more or less corresponds to the virgin stock (= unfished biomass, B_{v}),
3) the growth, in time, of the fish biomass toward B_{∞} may be described by a logistic curve, the first derivative of which, $\mathrm{dB} / \mathrm{dt}$, has a maximum at $\mathrm{B}_{\infty} / 2$ and zero values at B_{∞} and $\mathrm{B}=0$ (Fig. 10.1),

Fig. 10.1. The simple Schaefer model. A) the logistic curve and its first derivative. B) the yield-biomass and the yield-effort relationships.
4) the fishing effort which reduces B_{∞} to half its original value will produce the highest net growth of the stock, that is the maximum surplus yield available to a fishery (Fig. 10.1),
5) the maximum surplus yield in (4) can be sustained indefinitely (hence, the term maximum sustainable yield), as long as the biomass of the exploited stock is maintained at $\mathrm{B}_{\infty} / 2$.
There is biological evidence to make these assumptions appear reasonable (Odum 1971; Silliman and Gutsell 1958). Some reasons for the low surplus production at stock size $>\mathrm{B}_{\infty} / 2$ are given here (from Ricker 1975):
"1) Near maximum stock density, efficiency of reproduction, and often the actual number of recruits, is less than at smaller densities. In the latter event, reducing the stock will increase recruitment.
2) When food supply is limited, food is less efficiently converted to fish flesh by a large stock than by a smaller one. Each fish of the larger stock gets less food individually; hence, a larger fraction is used merely to maintain life, and a smaller fraction for growth.
3) An unfished stock tends to contain older individuals, relatively, than a fished stock. This makes for decreased production, in at least two ways. a) Larger fish tend to eat larger foods, so an extra step may be inserted in the food pyramid, with consequent loss of efficiency of utilization of the basic food production. b) Older fish convert a smaller fraction of the food they eat into new flesh-partly, at least because mature fish annually divert much substance to maturing eggs and milt."
The main reason larger fish convert a smaller fraction of their food into new flesh, however, is due to the fact that oxygen is needed for synthesis of body substance, and the relative gill size (= gill surface/body weight) decreases sharply as fish get larger, down to a point where the body is so badly supplied with O_{2} that most of it is used for maintenance, with very little left for synthesis of new body substance or surplus production (Pauly 1981).

From the assumptions listed above, two very important features of the Schaefer and related models follow, namely that the growth of a stock is a function of its size and of its size only-and that, therefore, a stock should respond by changes in its growth rate ($\mathrm{dB} / \mathrm{dt}$) instantaneously to any change of its size (e.g., by fishing). Thus, we have

$$
\frac{\mathrm{dB}}{\mathrm{dt}}=\frac{\mathbf{r}_{\mathrm{m}} \mathbf{B}\left(\mathrm{~B}_{\infty}-\mathbf{B}\right)}{\mathbf{B}_{\infty}}
$$

where B is the stock size, B_{∞} is the carrying capacity of the environment, r_{m} is the intrinsic rate of growth of the stock in question.

Quite clearly, the assumption that a stock reacts instantaneously to change of its size is not realistic. Therefore, the concept of "equilibrium" is used here, and this refers to the situation which exists when a given fishing mortality (F_{E}) has been exerted long enough for a stock to have adjusted its size and rate of net growth such that the relationship expressed in equation (10.1) is fulfilled. The following series of equations, adapted from Ricker (1975) assumes equilibrium conditions, as expressed by the subscript "E". We start from

$$
Y_{E}=\frac{d B}{d t}=F_{E} \cdot B_{E}
$$

where Y_{E}, the equilibrium yield (per unit of time) is equal to the net growth rate of the stock maintained by a fishing mortality F_{E} at the equilibrium level B_{E}.

Combining equations (10.2) and (10.1) and rearranging gives

$$
Y_{E}=r_{m} B_{E}-\left(\frac{r_{m}}{B_{\infty}}\right) B_{E}^{2}
$$

Expression (10.3) has the form of a parabola (Fig. 10.1B). The first derivative of (10.3) with respect to B_{E} can be equated to zero and solved for B_{E}, which gives the value of $B_{E}\left(=B_{\text {opt }}\right)$ for which yield is maximum or

$$
\mathrm{B}_{\mathrm{opt}}=\frac{\mathrm{B}_{\infty}}{2}
$$

The maximum value of Y_{E} is commonly named maximum sustainable yield (MSY). Thus, substituting (10.4) into (10.3) gives

$$
\text { MSY }=\frac{r_{m} \cdot B_{\infty}}{4}
$$

Also, substituting $F_{\text {opt }} \cdot B_{\text {opt }}$ for MSY in (10.5) and dividing both sides by expression (10.4) gives the fishing mortality at MSY ($\mathrm{F}_{\mathrm{opt}}$):

$$
F_{\mathrm{opt}}=\frac{r_{\mathrm{m}}}{2}
$$

and, since fishing mortality is proportional to effort, we also have

$$
f_{\mathrm{opt}}=\frac{r_{m}}{2 q}
$$

where $f_{\text {opt }}$ is the fishing effort which brings about MSY and q is the catchability coefficient.
Since we have

$$
B_{E}=B_{\infty}-\frac{F_{E} B_{\infty}}{r_{m}}
$$

equation (10.3) can be rewritten

$$
Y_{E}=B_{\infty} F_{E}-\left(\frac{B_{\infty}}{r_{m}}\right) F_{E}^{2}
$$

and, substituting qf_{E} for F_{E} gives

$$
\mathrm{Y}_{\mathrm{E}}=\mathrm{af} \mathrm{f}_{\mathrm{E}}-\mathrm{bf} \mathrm{f}_{\mathrm{E}}^{2}
$$

where

$$
\begin{align*}
& \mathrm{a}=\mathrm{qB}_{\infty} \\
& \mathrm{b}=\frac{\mathrm{q}^{2} \mathrm{~B}_{\infty}}{\mathrm{r}_{\mathrm{m}}}
\end{align*}
$$

and
Thus, when the stock is in equilibrium, surplus yield is a parabolic function of stock size (B), or of fishing mortality (F) or of effort (f). Therefore, catch and effort data can be fitted easily by the linear regression

$$
\frac{\mathrm{Y}_{\mathrm{E}}}{\mathrm{f}_{\mathrm{E}}}=\mathrm{a}-\mathrm{bf} \mathrm{f}_{\mathrm{E}}
$$

The definition of $f_{\text {opt }}$ in expression (10.7) and of a and b in (10.10) gives the following identities

$$
f_{o p t}=\frac{r_{m}}{2 q}=\frac{q B_{\infty} \cdot r_{m}}{2 q^{2} B_{\infty}}=\frac{a}{2 b}
$$

[$\left(\mathrm{f}_{\text {opt }}=\frac{\mathrm{a}}{2 \mathrm{~b}}\right)$, it will be noted, could also have been obtained by differentiating (10.10), equating to zero and solving for f_{E}.]

Thus, as Ricker (1975, p. 316) emphasizes "-maximum sustainable yield optimum rate of fishing [f_{opt}] can be estimated from the relation of equilibrium yield to equilibrium effort, without knowing the catchability (q) of the fish." This very important feature considerably simplifies the model originally proposed by Schaefer (1954, 1957), making it particularly well-suited to the investigation of tropical stocks.

THE "EQUILIBRIUM" PROBLEM

This leaves only one problem which remains associated with the model, namely the determination of what an "equilibrium situation" actually is.

Many authors, implicitly assuming that the stock reacts instantaneously to changes of its size simply plot the yield per effort of a given year against the effort of the corresponding year. This procedure is illustrated in Example 10.1 which is based on Table 10.1.

Fig. 10.2. Yield curve of Peruvian anchoveta (Engraulis ringens) off Peru, just prior to the collapse of the fishery (based on data in Table 10.1 and Example 10.1).

Table 10.1. Catch-and-effort data for anchoveta (Engraulis ringens) off Peru, prior to stock collapse (from Murphy 1972).

No.	Season	Total catch $\left(\mathrm{t} \times 10^{6}\right)$	Total effort $^{\mathrm{b}}$
1	$1960-61$	32.89	31.413
2	$1961-62$	37.78	32.999
3	$1962-63$	33.25	36.579
4	$1963-64$	28.86	40.367
5	$1964-65$	26.82	43.191
6	$1965-66$	22.26	42.716
7	$1966-67$	23.73	41.636
8	$1967-68$	25.04	44.634
9	$1968-69$	22.77	49.284
10	$1969-70$	22.64	52.048

${ }^{\text {a }}$ This "catch" accounts for the fish taken by the fishery, by guano birds and by fish predation.
bThis "effort" accounts for both the fishery and the predatory animals (fish and birds) but is expressed in thousand of boat-tonnes per day.

Gulland (1969), on the other hand, suggested plotting the yield per effort of a given year against the mean effort (f) of the present and preceding year(s), with the number of annual effort values to be included depending on the longevity and mortality of the fish under exploitation, i.e., on the number of year classes significantly contributing to the fishery. This technique, which is illustrated in Table 10.2 and Fig. 10.3, has been criticized by a number of authors (e.g., Roff and Fairbairn 1980; Walter 1975). The latter author also proposed an alternative, graphical method to simulate equilibrium condition.

Schnute (1977) presented a rigorous method for dealing with the problem caused by data drawn from a nonequilibrium situation. Only a simplified version of his model is presented here which has the form

$$
\ln \left(\frac{U_{i}}{U_{i-1}}\right)=r_{m}-q \cdot\left(\frac{f_{i}+f_{i-1}}{2}\right)-\frac{r_{m}}{q B_{\infty}} \cdot\left(\frac{U_{i}+U_{i-1}}{2}\right)
$$

where U_{i} is the mean c / f prevailing in a given year i. This model has the form of a multiple regression whose intercept $\left(a=r_{m}\right)$ and slopes $\left(b_{1}=-q ; b_{2}=-\frac{r_{m}}{q B_{m}}\right)$ lead to estimates of r_{m} and q and B_{∞}, respectively. This makes the model superior to the original formulation of Schaefer (1954) which, rather than providing estimates of q, required a knowledge of this parameter. Mohn (1980), however, suggests that the model is quite unstable when "noisy" catch-and-effort data are used (see also Example 10.2) and it would seem best to compare the results obtained by it with estimates e.g., of MSY obtained using another model (see Fig. 10.3).

Fig. 10.3. Yield curves for the red snapper (Lutjanus campecheanus) fishery on the Bank of Campeche, Mexico. Note strong difference between curves obtained through arithmetic mean (AM) and those obtained through geometric mean regressions (GM); yield curve $A_{A M}$ corresponds to that in Klima (1976, Fig. 3); the corresponding GM curve ($A_{G M}$), because of the scatter of the data points, suggests a lower value of $f_{\text {opt }}$. Similarly, the yield curves obtained by using only contemporary effort ($\mathbf{A}_{\mathbf{A M}}, \mathbf{A}_{\mathbf{G M}}$) differ from those obtained by also using the preceding years' effort ($\mathrm{B}_{\mathrm{AM}}, \mathrm{B}_{\mathbf{G M}}$). Curve S results from an application of Schute's model (but see Example 10.2).

Table 10.2. Catch-and-effort data for the red snapper fishery on Campeche Bank, Gulf of Mexico, illustrating Gulland's method to simulate equilibrium conditions. From Klima (1976, Table 8, Figs. 2 and 3).

No.	Year	Catch $\left(\mathrm{t} \times 10^{3}\right.$)	Contemporary effort (man-days at sea $\times 10^{3}$)	Average effort I (contemp. + previous year)	Average effort II (contemp. + 2 preceding years)
1	1937	4.91	227	-	-
2	1938	5.02	224	225.5	-
3	1939	4.25	220	222.0	223.7
4	1940	4.14	227	223.5	223.7
5	1941	4.79	201	214.0	216.0
6	1942	3.46	141	171.0	189.7
7	1943	3.57	125	133.0	155.7
8	1944	3.77	123	134.0	129.7
9	1945	3.98	145	147.0	131.0
10	1946	4.37	149	156.5	135.0
11	1947	4.24	182	173.0	152.7
12	1948	5.06	179	170.5	165.0
13	1949	4.79	166	161.0	175.0
14	1950	4.38			
15	1951	3.53			175.7

SOME MODIFICATIONS OF THE

PARABOLIC MODEL

There are various modifications of the basic model in which curves are fitted which differ from a parabola (e.g., Fox 1970; Pella and Tomlinson 1969). Of these variants, only the model of Fox (1970) is presented here.

Put simply, this model consists of plotting the natural logarithm of yield per effort on effort or

$$
\ln \frac{Y_{E}}{f_{E}}=a-b f_{E}
$$

instead of plotting yield per effort on effort, as in the case of expression (10.10). This provides the following set of relationships
and

$$
\begin{align*}
& f_{o p t}=1 / b \\
& M S Y=\left(e^{a}-1\right) / b \\
& Y_{E}=f e^{a} \cdot e^{-b f_{E}}
\end{align*}
$$

Other useful relationships may be found in Fox (1970) or Ricker (1975, p. 330-331). In this model, the value of $\mathrm{B}_{\text {opt }}$ is always 37% of B_{∞}, as opposed to 50% in the parabolic model [see expression (10.4)].

Program FB 26 can be used, given a set of yield (= catch in weight) and effort data, to assess the state of a fishery by using the Schaefer (parabolic) and the Fox (exponential) model, by one single entry of data. Values of MSY and $f_{\text {opt }}$ are estimated; also values of r^{2} for the regression equations (10.13) and (10.16) are given which allow comparison of the fit of each of the two models to a given set of data.

Here, the Schaefer and Fox models are fitted to data by means of a GM regression (see Chapter 4 for a definition), which has the effect of automatically accounting for uncertainty:

- when r^{2} is low (that is when both catch and effort are estimated with large errors, and/or when the catch is strongly affected by environmental perturbations), the GM regression will provide lower (more conservative) estimates of optimum effort than an AM regression,
- when r^{2} is high (that is when there is a tight relationship between the catch and effort data), the GM regression will have a slope and an intercept similar to those of an AM regression.
This feature, generally not considered when fitting surplus production models to data, seems particularly appropriate in light of the fact that costly investments are often based solely on the values of optimum effort generated by surplus production models.

An application of Fox's model is given in Example 10.3 (see also Fig. 10.4 and Table 10.3).
The models discussed above, although representing considerable simplifications or improvements of the model presented by Schaefer $(1954,1957)$, have a major drawback in that they require measures of effort, which are often unavailable and/or unreliable.

It is, however, not fishing effort itself which "generates" a surplus yield of an exploited stock, but fishing mortality. In an exploited fish stock, on the other hand, fishing mortality is often not directly measurable, because of the simultaneous effect of natural mortality.

To resolve this, Csirke and Caddy (1983) suggested to plot annual catch (Y) as a parabolic function of total mortality (Z), i.e.,

$$
\mathrm{Y}=\mathrm{a}+\mathrm{b}_{1} \mathrm{Z}+\mathrm{b}_{2} \mathrm{Z}^{2}
$$

Fig. 10.4. Yield curve for the north Java coast trawl fishery (based on data in Table 10.3 and Example 10.3).

Table 10.3. Catch-and-effort data from the north Java demersal trawl fishery (all species aggregated) (from Dwiponggo 1979).

No.	Year	Catch $\mathbf{t \times 1 0 ^ { 3 }}$	Effort No. of standard vessels
2	1969	50	623
3	1970	49	628
4	1971	47.5	520
5	1972	45	513
6	1973	51	661
7	1974	56	919
8	1976	66	1,158
9	1977	58	1,970

where $Z=F+M$, from which the following parameters can be estimated.

$$
\begin{align*}
& M=\frac{-b_{1}+\sqrt{b_{1}^{2}-4 a_{2}}}{2 b_{2}} \\
& Z_{o p t}=-\frac{b_{1}}{2 b_{2}} \\
& F_{o p t}=-\frac{b_{1}}{2 b_{2}}-M \\
& r_{m}=2 F_{o p t} \\
& M S Y=a-\left(b_{1}^{2} / 4 b_{2}\right) \\
& B_{\infty}=\frac{M S Y \cdot 4}{r_{m}}
\end{align*}
$$

and
An application of this method is given in Example 10.4 (see also Fig. 10.5 and Table 10.4).

Fig. 10.5. Yield curve of shorthead anchovy (Stolephorus heterolobus) at Ysabel Passage, near New Hanover, Papua New Guinea. M = natural mortality. Numbers refer to those in Example 10.4.

A further property of the model of Csirke and Caddy is that Z in equation (10.20) above can be replaced by Z / K, the latter being a parameter which can be estimated from the average length composition of the fish catch and without an exact knowledge of the growth parameters of the fish in question (see Chapter 5). The modified model thus becomes
with

$$
\begin{align*}
& \mathrm{Y}=\mathrm{a}^{\prime}+\mathrm{b}_{1}^{\prime}(\mathrm{Z} / \mathrm{K})+\mathrm{b}_{2}^{\prime}(\mathrm{Z} / \mathrm{K})^{2} \\
& \mathrm{M} / \mathrm{K}=\frac{-\mathrm{b}_{1}^{\prime}+\sqrt{\mathrm{b}_{1}^{\prime 2}-4 \mathrm{a}^{\prime} \mathrm{b}_{2}^{\prime}}}{2 \mathrm{~b}_{2}^{\prime}}
\end{align*}
$$

and

$$
\mathrm{Z}_{\mathrm{opt}} / \mathrm{K}=-\mathrm{b}_{1}^{\prime} / 2 \mathrm{a}^{\prime}
$$

The parameter $\mathrm{Z}_{\text {opt }} / \mathrm{K}$ corresponds to an optimum mean length in the catch ($\mathrm{L}_{\mathrm{opt}}$), the value of which may be estimated by trial and error, e.g., from

$$
\frac{\mathrm{Z}_{\mathrm{opt}}}{\mathrm{~K}}=\frac{\mathrm{L}_{\infty}-\overline{\mathrm{L}}_{\mathrm{opt}}}{\overline{\mathrm{~L}}_{\mathrm{opt}}-\mathrm{L}^{\prime}}
$$

Finally, $E=F / Z$ may be estimated for each value of Z / K from the equation

$$
E=1-(M / K) /(Z / K)
$$

which can be used, along with the estimate of M / K, e.g., to estimate the relative yield per recruit obtained at each level of Z / K (see Chapter 8). See Chapter 5 for definitions of \bar{L}, L^{\prime} and E.

All of these parameters, it should be mentioned are either solutions of, or are implicit in the Schaefer model. The point here is that they can all be derived from quantities (catch, total mortality) that can be estimated rather straightforwardly, e.g., using one of the various methods presented in Chapter 5.

When catch data are not available, catch-per-effort data $(\mathrm{c} / \mathrm{f}=\mathrm{U})$ can be used in a linear regression of the form
where

$$
\mathrm{U}=\mathrm{a}-\mathrm{bZ}
$$

$$
M=\left(a-U_{\infty}\right) / b
$$

and where U_{∞} is the catch per effort corresponding to B_{∞}, i.e., to the unexploited biomass or virgin stock (assuming that $B_{v} \approx B_{\infty}$). Generally, when catch-per-effort data are available, it will be possible to estimate U_{∞} by using the first two catch-per-effort values in a developing fishery $\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$ and defining

$$
\mathrm{U}_{\infty} \approx 2 \mathrm{U}_{1}-\mathrm{U}_{2}
$$

(Obviously, data from biomass survey in an unexploited stock can be used to estimate both U_{∞} and B_{∞} directly). Using U_{∞} and equation (10.32), it is then possible to estimate $F_{\text {opt }}$ as

$$
\mathrm{F}_{\mathrm{opt}}=\mathrm{U}_{\infty} /(2 \mathrm{~b})
$$

while a knowledge of B_{∞} can be used to estimate MSY from $\mathrm{F}_{\mathrm{opt}}$

$$
\mathrm{MSY}=0.5 \mathrm{~B}_{\infty} \cdot \mathrm{F}_{\mathrm{opt}}
$$

APPLYING SURPLUS-YIELD MODELS TO MULTISPECIES STOCKS

In demersal fisheries, especially in the tropics, the catch tends to consist of a multitude of species for which individual assessments are often impossible or inappropriate.

Table 10.4. Catch and total mortality estimates of shorthead anchovy (Stolephorus heterolobus) in Ysabel Passage, near New Hanover, Papua New Guinea. Data from Dalzell (1984); Z estimates based on mean lengths.

No.	Year	Catch (t)	Total mortality (Z)
1	1972	14	7.6
2	1973	138	8.8
3	1976	191	11.0
4	1977	138	10.2
not used	1978	(404)	(11.7)
5	1979	192	9.6
6	1980	72	14.0
7	1981	66	10.5

It has been a common practice to treat the various fish of tropical and other multispecies stocks as one single entity, applying the Schaefer or Fox model to the total multispecies catch of these fisheries (see Example 10.3 and FAO 1978). Pope (1979) recently provided a theoretical basis for this approach, while some of the problems associated with it were discussed in Pauly (1979b). See also Chapter 12.

Recommended reading: Ricker (1975) gives a good account of the historical development of surplus yield models, but it is best to read also some of the original papers on the topic, notably those by Graham (1943), Schaefer (1954, 1957), Silliman and Gutsell (1958), Schaefer and Beverton (1963), Gulland (1969) and Schnute (1977).

Suggested research topics: Crucial with surplus yield models is the availability of long timeseries of catch-andeffort data (or, in the case of Csirke and Caddy's model, of catch and total mortality data); it is worthwhile to estimate these parameters reliably in an ongoing fishery. Where possible, one should also attempt to reconstruct time-series of total mortality (e.g., from length-frequency data) for use with available time series of catch.

Estimating MSY and optimum effort for a single-species pelagic fishery by means of the Schaefer model.

Data from Table 10.1
Computation

1) Read sides 1 and 2 of Program FB 26
2) Enter catch and effort data

Keystrokes: fa $32.89 \uparrow 31.413$ A $37.78 \uparrow 32.999$ A $33.25 \uparrow 36.579$ A $28.86 \uparrow 40.367$
A $26.82 \uparrow 43.191$ A $22.26 \uparrow 42.716$ A $23.73 \uparrow 41.636$ A $25.04 \uparrow 44.634$
A $22.77 \uparrow 49.284$ A $22.64 \uparrow 52.048$ A
3) Estimate parameters of plot of c / f on f, MSY and $f_{\text {opt }}$

Keystrokes Results

E	0.874	$\left(\mathbf{r}^{2}\right)$
	2.285	(a)
	-0.038	$(\mathrm{~b})$
D	29.879	$\left(\mathbf{f}_{\text {opt }}\right)$
	34.133	(MSY)

4) Use Program FB 26 to draw yield curve

Keystrokes Results

enter f_{1}	10 C	19.024	$\left(\mathrm{Y}_{1}\right)$
enter f_{2}	20 C	30.402	$\left(\mathrm{Y}_{2}\right)$

The result should look similar to Fig. 10.2 from which it appears that the fishery in the early 70 s was in deep trouble. In fact, as Murphy (1972) pointed out "it shows that [. . .] a 20% increase in total effort [. . .] will drive the stock to extinction [and] it is not hard to imagine nature providing this increase or its equivalent, either through a negative perturbation of reproductive success, an increase in predation or some combination of these".

The negative perturbation came in the form of a strong "El Niño" and the stock collapsed.

EXAMPLE 10.2

Application of Schnute's model to the red snapper fishery on Campeche Bank,

 Mexico.
Data from Table 10.2

Computation

1) Read sides 1 and 2 of Program FB 27
2) Initialize and enter catch and effort data
```
Keystrokes: \(4.91 \uparrow 227 \mathrm{f}\) a \(5.02 \uparrow 224\) A \(4.25 \uparrow 220\) A \(4.14 \uparrow 227 \mathrm{~A} 4.79 \uparrow 201 \mathrm{~A}\)
\(3.46 \uparrow 141\) A \(3.57 \uparrow 125\) A \(3.77 \uparrow 123\) A \(3.98 \uparrow 145\) A \(4.37 \uparrow 149\) A
\(4.24 \uparrow 164\) A \(5.06 \uparrow 182\) A \(4.79 \uparrow 179\) A \(4.38 \uparrow 166\) A \(3.53 \uparrow 156\) A
```

3) Calculate parameters of regression
Keystrokes Results

E \quad| 0.006 | $\left(\mathrm{R}^{2}\right)$ | |
| ---: | :--- | :--- |
| | 0.268 | (a) |
| | -0.001 | $\left(\mathrm{~b}_{1}\right)$ |
| | -6.359 | $\left(\mathrm{~b}_{2}\right)$ |

4) Estimate fishery-related parameters
fe $\quad 0.268$ ($\left.\mathbf{r}_{\mathbf{m}}\right)$)

As might be seen in Fig. 10.3, the yield curve based on Schnute's model (S) resembles quite closely the curve obtained by fitting the catch figures to the average of contemporary and the preceding year's effort (curve B_{AM}). Intuitively, this result makes sense since Schnute's model in fact uses the same averaged effort and is fitted with an AM multiple regression. The abysmally low value of $R^{2}(=0.00635)$ sheds doubt on the reliability of the various parameter estimates, however.

Estimating MSY and optimum effort for a multispecies demersal trawl fishery by means of Fox's model.

Data from Table 10.3
Computation

1) Read sides 1 and 2 of Program FB 26
2) Enter catch and effort data

Keystrokes: fa $50 \uparrow 623$ A $49 \uparrow 628$ A $47.5 \uparrow 520$ A $45 \uparrow 513$ A $51 \uparrow 661$ A $56 \uparrow$ 919 A $66 \uparrow 1158 \uparrow 1970$ A $52 \uparrow 1317$ A
3) Estimate parameters of plot of in \mathbf{c} / f on $\mathrm{f}, \mathrm{f}_{\text {opt }}$ and MSY

Keystrokes	Results	
f e	0.966	$\left(\mathbf{r}^{2}\right)$
	-2.027	(a)
	-0.001	$(\mathrm{~b})$
DSP 6	-0.000799	$(\mathrm{~b})$
DSP 2 f d	1251.99	(fopt $)$
	60.66	(MSY)

4) Use Program FB 26 to plot draw yield curve

Keystrokes Results

100 fc	12.16	$\left(\mathrm{Y}_{1}\right)$
200 fc	22.45	$\left(\mathrm{Y}_{2}\right)$

This example and Fig. 10.4 suggest that the level of effort applied in 1975 and 1977 was near optimum. Furthermore, the plot shows very nicely the effect on a rapid increase of effort, as in 1975 and 1976 the points of which are above the curve, while the point for 1977 is below the curve, as would be expected following a rapid decrease of effort. When effort remains unchanged for several years the yield should, on the average come to lie on the curve. However, demersal trawling has been banned in Indonesia, so we may never know.

Estimation of MSY and $\mathrm{Z}_{\text {opt }}$ using Csirke and Caddy's model.

Data from Table 10.4

Computations

1) Read sides 1 and 2 of Program FB 28
2) Initialize and enter catch and mortality data

Keystrokes: fa $14 \uparrow 7.6$ A $138 \uparrow 8.8$ A $191 \uparrow 11$ A $138 \uparrow 10.2$ A $192 \uparrow 9.6$ A $72 \uparrow$ 14 A $66 \uparrow 10.5$ A
3) Calculate parameters of multiple regression

Keystroke	Results	
\mathbf{E}	0.495	$\left(\mathbf{R}^{2}\right)$
	-1085.334	(\mathbf{a})
	225.316	$\left(\mathbf{b}_{1}\right)$
	-10.211	$\left(\mathbf{b}_{\mathbf{2}}\right)$

4) Calculate parameters of yield curves

Keystroke	Results	
fe	7.104	(M)
	11.033	$\left(\mathrm{Z}_{\text {opt }}\right)$
	3.928	$\left(\mathrm{~F}_{\text {ott }}\right)$
	7.857	$\left(\mathrm{r}_{\mathrm{m}}\right)$
	157.583	(MSY)
	80.228	$\left(\mathrm{~B}_{\infty}\right)$

The results appear reasonable (particularly the value of M), but this was achieved by deleting one point (1978), which had a very high catch, such as might occur after an exceptionally good recruitment. Clearly, it would be appropriate here to assess the validity of the results, using another model.

11. The Intrinsic Rate of Population Increase

INTRODUCTION

In the preceding chapters, various models (= equations) were presented, each of which illustrated a different aspect of the dynamics of fish populations.

It is the purpose of this chapter to demonstrate the interrelationships between some of these models, to show that several of the equations presented here actually reflect different aspects of the same processes.

The concept most helpful to show interrelationships between different models used in fish population dynamics is, paradoxically, rarely used in this field. It is the intrinsic rate of increase (r_{m}) of a population, which may be defined as "the innate capacity of (a) species to increase when population growth is not slowed down by competition" (Pielou 1978).

The r_{m} concept is extremely important in quantitative ecology, and at least one chapter in every good ecology text is devoted to it (e.g., Odum 1971; Slobotkin 1980; Ricklefs 1979). In terms of Russel's Axiom (see Chapter 1), r_{m} can be defined as

$$
r_{\mathrm{m}}=\frac{\mathrm{R}^{*}+\mathrm{G}^{*}-\mathrm{M}^{*}}{\mathrm{~B}}
$$

(when B is low) but this cannot be used for quantitative stock assessment purposes because Russel's axiom itself expresses things only qualitatively.

MAXIMUM SUSTAINABLE YIELDS AND r_{m}

The intrinsic rate of increase (r_{m}) can be defined quantitatively in terms of the Schaefer model, where r_{m}, MSY and B_{∞}, the carrying capacity of the environment are related such that:

$$
\mathrm{MSY}=\frac{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{~B}_{\infty}}{4}
$$

As discussed in Chapter 10, the Schaefer model is based on the assumption that the growth of a fish population released into a new environment can be described by a logistic growth curve. This curve has the form

$$
B=\frac{B_{\infty}}{1+e^{-r_{m}\left(t-t_{i}\right)}}
$$

where B_{∞} is the carrying capacity of the environment in terms of weight, r_{m} the intrinsic rate of population increase, and $t_{i}(=t$ at inflexion point) is a constant which adjusts the time scale to an origin such that $t-t_{i}=0$ when $B_{t}=B_{\infty} / 2, B_{t}$ being the biomass at time $t . B_{\infty}$ and B_{t} may be replaced by N_{∞} and N_{t} when equation (11.3) refers to numbers. When equation (11.3) is used to fit data from a selection experiment, B_{t} is equivalent to the probability of capture, t to the length, and t_{i} to L_{c}. (Refer to Chapter 3.)

Aquarium experiments demonstrate the growth of fish populations can often be approximated by a logistic curve (Silliman and Gutsell 1958, Fig. 3). In nature, cases of fish populations "exploding" into a new environment are obviously difficult to document. Some data, however, are available for Red Sea lizardfish (Saurida undosquamis) which penetrated into the Mediterranean via the $\mathrm{Su} e z$ Canal, and after a lag phase (of genetic adjustment?) experienced a rapid increase of population size, as documented by catch-per-effort data off the Israel coast (Table 11.1).

As might be seen from Fig. 11.1 and Table 11.1, the course of the population increase reflected in the catch-per-effort data roughly corresponds to a logistic curve, the r_{m} and t_{i} values of which may

Table 11.1. Data on the growth of a newly established Mediterranean population of Saurida undosquamis, a Red Sea immigrant. Data from Ben-Yami and Glaser (1974, Fig. 5B).

Fig. 11.1. Logistic growth curve fitted to catch-per-effort data on a newly established Mediterranean population of lizardfish (Saurida undosquamis) (based on data in Table 11.1, and see Example 11.1 for selection of points used in curve fitting).
be estimated by means of Program FB 28 (Example 11.1). MacCall (1980) presented data on a temperate fish (Engraulis mordax) suggesting a similar logistic increase of biomass.

Equation (11.2) suggests that when an estimate is available of the virgin biomass of a given population (B_{v}, or B_{o} in Gulland 1971) and when it is legitimate to set $B_{\infty} \approx B_{v}$ (it is not always the case, see Pauly 1979b, or May et al. 1979), all that is needed to obtain a preliminary estimate of (future) MSY (also called Potential Yield, P_{y}) is an estimate of r_{m}.

Several, rather elaborate methods are used by ecologists to estimate r_{m}. One of them is the calculation of r_{m} from so-called "life tables" (see Pielou 1978, Ricklefs 1979). This method has data requirements which fishery biologists will find quite hard to meet and only two studies have come to my attention which estimates r_{m} using this approach in fish (Murphy 1967, Pitcher and Hart 1982). Two HP 67/97 programs are available to estimate r_{m} from life tables. Demography I and Demography II, both in the HP Users' Library Solutions booklet devoted to "Biology".

Blueweiss et al. (1978) have shown that r_{m} in animals and various small organisms is inversely related to body weight and presented a double logarithmic plot of r_{m} on "mean adult body weight" $(\overline{\mathrm{W}})$ spanning 22 orders of magnitude. I have added several values to the plot presented by Blueweiss et al. (1978) which pertain to fish and whales, the latter expanding the range covered by the plot to 24 orders of magnitude (Fig. 11.2).

Although the fit, particularly in organisms ranging from 10^{-6} to $10^{0} \mathrm{~g}$ is not particularly good, a clear relationship emerges which allows, when mean adult body weight is known, a rough estimate of r_{m} through the relationship

$$
r_{m} \approx 9.13 \cdot \bar{W}^{-0.26}
$$

where r_{m} is expressed on a yearly basis and \bar{W} is grams, and computed from $\bar{W}=\left(W_{\max }+W_{m}\right) / 2$; $\mathrm{W}_{\text {max }}$ is the maximum weight reached by the adults of a stock and W_{m} is their weight at first maturity (see Example 11.2).

Combining expression (11.4) with expression (11.2) gives

$$
P_{y} \approx 2.3 \cdot \bar{W}^{-0.26} B_{v}
$$

which can be used to obtain first estimates of MSY, i.e., potential yield, when only virgin stock size and mean adult body weight are known.

The results obtained by means of this equation may thus be compared with those obtained using Gulland's (1971) well-known relationship

$$
\mathbf{P}_{\mathrm{y}} \approx 1 / 2 \cdot \mathrm{M} \cdot \mathbf{B}_{\mathrm{v}}
$$

Fig. 11.2. Relationship between intrinsic rate of population increase (r_{m}) and adult body weight for various organimms. (The dots and the line are from Blueweiss et al. 1978; the open squares were added by Pauly 1982a.)

See also Example (11.3). Expressions (11.5) and (11.6) are rough approximations; with expression (11.5) the major problem is the fact that the built-in relationship between \bar{W} and r_{m} is based on a linear regression whose scatter of data is not negligible, while the major drawback of expression (11.6) is that the resulting P_{y} estimates are directly proportional to and thus highly sensitive to, the value of M used. Also, the validity of (11.6) rests on the assumption that $\mathrm{F}_{\text {opt }}=\mathrm{M}$ which probably does not apply in most stocks (see p. 77).

STOCK-RECRUITMENT RELATIONSHIPS AND r_{m}

Another integrative property of r_{m} is that it can also be shown to be an implicit parameter of both Beverton and Holt and Ricker-type stock-recruitment curves. This property, which was discussed by Murphy (1967) and Eberhardt (1977) will be here touched upon only briefly because its various ramifications have not yet been fully investigated. Starting with the second form of Ricker's stock-recruitment curve (see Chapter 9), one can define

$$
\mathrm{a}=\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\mathrm{m}}
$$

where P_{r} is the replacement abundance of parent stock and P_{m} is the parent stock producing maximum recruitment (see Chapter 9 for details on these definitions). Subsitution into Ricker's second stock-recruitment curve gives:

$$
R=P_{e}{ }^{P_{r} / P_{m}-P / P_{m}}
$$

Now, it is obvious that as P approaches zero, the second term of the exponent ($\mathrm{P} / \mathrm{P}_{\mathrm{m}}$) will also tend to approach zero.* Division of both sides of (11.8) with P, when P is very small, yields:

$$
\mathrm{R} / \mathrm{P}=\mathrm{e}^{\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\mathrm{m}}}
$$

Since the ratio R/P expresses the ratio between total births in two successive generations at very low population sizes there is an identity between (11.9) and the equation used in the ecological literature

$$
N_{T} / N_{o}=e^{r_{m} \cdot T}
$$

where, at very low population sizes
N_{o} is the total number of animals in the population at the beginning of a generation
N_{T} is the number of animals at the end of that generation
T is the generation time
and where
r_{m} is the ubiquitous intrinsic rate of increase.
In view of this identity:

$$
P_{r} / P_{m}=r_{m} \cdot T
$$

[^25]which may be called "Murphy's identity". An application of this identity is given in the following paragraphs.

The generation time, T, of an animal is generally quite difficult to estimate (but see Slobotkin 1980, Fig. 5.2). However, it appears that a great number of the small fish caught in tropical waters have growth parameters suggesting a rather short life span ($2-4$ years) and an age at first maturity $\left(\mathrm{t}_{\mathrm{m}}\right)$ of generally one year (Banerji and Krishnan 1973; Qasim 1973a, 1973b). High natural mortality and lack of substantial post-maturity growth will cause a mean generation time of about 1 year in such fish, or:

$$
\mathbf{r}_{\mathrm{m}} \approx \mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\mathrm{m}}
$$

Only one data set is readily available which can be used to test these conjectures. In Chapter 9, Example 9.4, a value of $\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\mathrm{m}}$ was estimated for Lactarius lactarius, a fish with the characteristics given in the above paragraph and this value was 2.84 .

The value of W_{∞} used in Pauly (1980d) was 193 g , which may roughly correspond to $W_{\text {max }}$, while the value of W_{m} is 57.3 g . Hence, $\overline{\mathrm{W}}$, as defined above, is $(193+57) / 2=125 \mathrm{~g}$, from which r_{m} is estimated, via equation 11.4, to be 2.60 . Conversely, T can be estimated from

$$
\mathrm{T}=2.84 / 2.60=1.09
$$

which is similar to the value assumed previously.
While Murphy (1967) investigated the second form of Ricker's curve, Eberhardt (1977) demonstrated a link between the first form of Ricker's curve and the logistic growth curve, which led to the identities

$$
\alpha=\mathrm{e}^{\mathrm{r}_{\mathrm{m}}}
$$

and

$$
\beta=\mathbf{r}_{\mathrm{m}} / \mathbf{N}_{\infty}
$$

while the link between Beverton and Holt's stock-recruitment curve and the logistic growth curve was established through the identities

$$
\alpha^{\prime}=\left(1-e^{-r} m\right) / N_{\infty}
$$

and

$$
\beta^{\prime}=\mathrm{e}^{-\mathrm{r} m}
$$

The parameters α^{\prime} in Ricker's curve and β^{\prime} in Beverton and Holt's curve are often called 'densityindependent terms"; given equations (11.15) and (11.17), their relationship is given by

$$
\alpha=1 / \beta^{\prime}
$$

The "density-dependent terms" (β in Ricker's curve, α ' in Beverton and Holt's curve) are also closely related, and are approximately the same when r_{m} is small, diverging up to 20% when r_{m} is large; this is expressed by the approximations

$$
\alpha^{\prime} \approx \beta \approx\left(1-e^{-r_{m}}\right) / N_{\infty}
$$

which applies when r_{m} is small (Eberhardt 1977; Pitcher and Hart 1982).

The presentation of these interrelationships between different models and the example for Lactarius lactarius given above are not meant to suggest that values of r_{m} obtained say from equation (11.4) and from stock-recruitment relationships should necessarily coincide. Rather, the suggestion made earlier by Murphy (1967) is reiterated that there might be here a type of interrelationship worth pursuing further which might lead to a further integration of the various concepts used in fishery biology.

Indeed, as the following, last chapter should demonstrate, there is a great need for attempts to integrate concepts derived from fish population dynamics with some of those derived by theoretical ecologists, and thus to cross-pollinate the two disciplines.

Recommended reading: Since a good background in ecological theory should help the fishery biologist put her or his field into perspective, it may be appropriate to list here some ecological texts, all of which discuss, among other things, the intrinsic rate of increase of populations and related concepts, e.g., Slobotkin (1980), Odum (1971), Ricklefs (1979) and Pielou (1978). These books also contain most of the references needed to plunge into the ecological literature.

Suggested research topics: Since r_{m} is so closely related to yields, it would seem that attempts to estimate this parameter from life tables of commercial fish populations should represent worthwhile research projects (see Pitcher and Hart 1982 for data requirements and method). Such a study also would allow one to identify factors (such as temperature or fecundity) other than body weight which may help to predict values of r_{m}, or to improve estimates obtained from plots such as Fig. 11.2.

Estimating the intrinsic rate of increase for an "exploding" population of

Data from Table 11.1 and Fig. 11.1. (Only the data points for the years $1952-53$ to 1956-57 are used for the computation. The earlier points were too low to be precisely read off the original figure in Ben-Yami and Glaser (1974). The later points, on the other hand, probably indicate a drop in biomass occurring after the initial build-up.)

Computation

1) Read side 1 of Program FB 29
2) Enter set value of B_{∞}, and B_{t} and t data

Keystrokes: 80 fa $1 \uparrow 1 \mathrm{~A} 2 \uparrow 2 \mathrm{~A} 3 \uparrow 75 \uparrow 4 \mathrm{~A} 78 \uparrow 5 \mathrm{~A}$
3) Calculate r^{2}, r_{m} and t_{i}
Keystrokes Results

E \quad| 0.854 | $\left(\mathbf{r}^{2}\right)$ | |
| :--- | :--- | :--- |
| | 2.244 | $\left(\mathbf{r}_{\mathrm{m}}\right)$ |
| | 3.437 | $\left(\mathrm{t}_{\mathrm{i}}\right)$ |

4) Confirm that t_{i} corresponds to $B_{\infty} / 2$
$\mathrm{C} \quad 40.000 \quad\left(\mathrm{~B}_{\infty} / 2\right)$
By entering other t values and pressing the C-Key, data points for a curve such as in Fig. 11.1 can be obtained. It must be realized, however, that the values of r_{m} and t_{i} obtained here depend critically on the choice of points included in the computation and of $80 \mathrm{~kg} / \mathrm{hr}$ as the c / f figure corresponding to B_{∞}; the estimate of r_{m} is thus tentative.

Estimating r_{m} from the mean weight $(\overline{\mathrm{W}})$ of the adults in a given stock.

1) Read side 1 of Program FB 29

Case I
2) Estimate \bar{W} : Thompson and Munro (1978) give data from which $W_{\max }$ in Jamaican Epinephelus guttatus can be estimated at $2,324 \mathrm{~g}$, while W_{m}, the mean weight at first maturity is about 243 g . Thus, to obtain $\overline{\mathrm{W}}$, we perform

Keystrokes Results

$$
\begin{array}{crc}
2,324 \uparrow & & (\overline{\mathrm{~W}}) \\
243+2 \div & 1,283.5\left(\mathrm{H}_{\mathrm{m}}\right) \\
\mathrm{fe} & 1.42\left(\mathrm{r}_{\mathrm{m}}\right)
\end{array}
$$

Case II
4) Estimate $\overline{\mathrm{W}}$: Pauly (1980d) gives a value of 193 g for W_{∞} in Lactarius lactarius from the Gulf of Thailand. Using this as an estimate of $W_{\max }$ and using $W_{m}=W_{\max } \cdot 0.3=57.9$, we obtain \bar{W} from:

Keystrokes Results
5) Estimate r_{m} from \bar{W}

$193 \uparrow$	
$57.9+2$	$125.45(\overline{\mathrm{~W}})$
fe	$2.60\left(\mathrm{r}_{\mathrm{m}}\right)$

It must be realized that these two estimates of r_{m} are rather crude and should not preclude attempts to estimate this important parameter independently.

Estimating potential yields when catch-and-effort data are not available.

1) Thompson and Munro (1978) give for the Caribbean grouper Epinephelus guttatus the following data: natural mortality $=0.68, \mathrm{TL}_{\max }$, in $\mathrm{cm}=53.7 \mathrm{~cm}$ (corresponding to $\mathrm{W}_{\text {max }}=2,324$), approximate weight at first maturity $=243$. From these data, adult body weight $(\overline{\mathrm{W}})$ is computed as $1,283.5 \mathrm{~g}$ (see Example 11.2).
2) Estimating potential yield (P_{y}) from Gulland's equation (11.6) assuming $B_{v}=1$:

Keystrokes	Results	
$.68 \uparrow(\mathrm{M})$		
.5 x	0.34	$\left(\mathrm{P}_{\mathrm{y}}\right)$

3) Estimating potential yield $\left(P_{y}\right)$ from equation (11.5), also assuming $B_{v}=1$:

Keystrokes Results

```
1,283.5 \uparrow(w)
    .26 CHS
    \mp@subsup{y}{}{*}2.3\textrm{x}
```

The estimates (0.34 and 0.36) are close enough to each other to feel confident that P_{y} is about $1 / 3$ of the virgin biomass per year. Obviously, this is so because this example is in a manual; real-life data do not always behave so nicely. In fact, Beddington and Cooke (1983) argue, quite cogently, that Gulland's equation (and consequently any other equation which gives similar results) has an extremely strong upward bias (see p. 77).

12. Multispecies Fisheries

INTRODUCTION

With few exceptions, the models discussed in the previous chapters were developed for use in conjunction with single-species stocks and fisheries.

When using such models, an implicit assumption is that the stock under investigation has only negligible interaction with other species, except for those interactions accounted for by the catch-all interaction term " M ", natural mortality (caused mainly by predation).

This approach may be justified in temperate waters, where some stocks (e.g., cod, pollock, herring, salmon) sustain "aimed" fisheries, in which the fish not belonging to the target species form only a minor part of the catch (the "bycatch").

In tropical fisheries, especially in demersal fisheries, no single species is aimed at, generally, and there is no "bycatch" when the definition above is used, except in shrimp fisheries where the fish caught (often 90% of the total catch by weight) are frequently thrown overboard. Table 12.1 reproduces the typical catch of a Southeast Asian trawler. The large number of species, none of which is dominant, will be noted.

Table 12.1. A typical trawler catch (45 min haul) from the Java Sea ($06^{\circ}{ }^{\circ} 12^{\prime} \mathrm{S}, 108^{\circ} 26^{\prime} \mathrm{E}, 34-35 \mathrm{~m}$ depth) made on 5 September 1976 by R / V Mutiara $I V$ showing the diversity of tropical demersal multispecies stocks. (Asterisks refer to weight and number raised from a sorted sample of 1 out of 5 boxes. Invertebrates not included.)

No.	Family	Species	$\mathrm{W}(\mathrm{kg})$	N
1	Ariidae	Osteogeniosus militaris	3.4	17
2	Balistidae	Abalistes stellaris	0.5	1
3	Carangidae	Seriolina nigrofasciata	0.32	1
4	Carangidae	Scomberoides sp.	0.15	5
5	Carangidae	Alepes kalla	5.0^{*}	90^{*}
6	Carangidae	Alepes djedaba	7.50^{*}	290^{*}
7	Carangidae	Megalaspis cordyla	8.5^{*}	170^{*}
8	Carangidae	Selaroides leptolepis	0.25^{*}	10^{*}
9	Carangidae	Carangoides spp.	6.10^{*}	145^{*}
10	Carangidae	Atropus atropus	1.75^{*}	30^{*}
11	Chirocentridae	Chirocentrus dorab	0.80^{*}	5^{*}
12	Clupeidae	Anadontostoma chacunda	0.15^{*}	5^{*}
13	Clupeidae	Opisthopterus valenciennensis	1.10^{*}	15^{*}
14	Clupeidae	Dussumieria acuta	1.70^{*}	50^{*}
15	Clupeidae	Ilisha sp.	5.60^{*}	65^{*}
16	Clupeidae	Sardinella gibbosa	0.30^{*}	10^{*}
17	Dasyatidae	not identified	2.65	1
18	Drepanidae	Drepane longimana	0.35^{*}	5^{*}
19	Engraulidae	Stolephorus spp.	21.0^{*}	$4,175^{*}$
20	Gerridae	Pentaprion longimanus	15.25^{*}	$1,165^{*}$
21	Fistulariidae	not identified	0.15^{*}	10^{*}
22	Formionidae	Formio niger	0.2	1
23	Lagocephalidae	not identified	4.0	95
24	Leiognathidae	Leiognathus splendens	10.0^{*}	720^{*}
25	Leiognathidae	Leiognathus leuciscus	4.20^{*}	780^{*}
26	Leiognathidae	Leiognathus bindus	1.20^{*}	340^{*}
27	Leiognathidae	Secutor ruconius	1.20^{*}	380^{*}

Table 12.1 continued

28	Leiognathidae	Secutor insidiator	2.80*	560*
29	Lutjanidae	Lutjanus sanguineus	4.0	1
30	Lutjanidae	Lutjanus johni	5.0*	10*
31	Lutjanidae	Lutjanus lineolatus	0.20*	10*
32	Lutjanidae	Caesio erythrogaster	0.10*	5*
33	Mullidae	Upeneus sulphureus	75.0*	6,075*
34	Nemipteridae	Nemipterus japonicus	3.0*	15*
35	Nemipteridae	Nemipterus bathybius	0.40*	15*
36	Pentapodidae	Pentapodus setosus (?)	0.25*	5*
37	Platycephalidae	not identified	0.25*	5*
38	Plectorhynchidae	Plectorhynchus pictus	0.40*	15*
39	Pomadasydae	Pomadasys maculatus	0.25*	5*
40	Pomadasydae	Pomadasys sp.	0.50*	35*
41	Priacanthidae	Priacanthus macracanthus	3.10*	80*
42	Scombridae	Scomberomorus guttatus	7.20*	65*
43	Scombridae	Scomberomorus commerson	2.6	14
44	Scombridae	Rastrelliger brachysoma	3.0*	50*
45	Stromateidae	Pampus chinensis	0.75	1
46	Stromateidae	Pampus argenteus	6.3*	30*
47	Synodontidae	Saurida tumbil	0.35	1
48	Synodontidae	Saurida elongata	3.75*	45*
49	Synodontidae	Saurida longimana	0.90*	105*
50	Sphyraenidae	Sphyraena obtusata	0.60*	10*
51	Scienidae	not identified	0.25*	5*
52	Theraponidae	Therapon sp .	3.75	100
53	Triacanthidae	not identified	1.0*	25*
54	Trichiuridae	Trichiurus lepturus	1.0*	55*
55	Trichiuridae	Lepturacanthus savala	2.0*	25*
Σ	29 families	43 genera and over 55 spp	231.02	15,939

The goal of fishery biologists studying a fishery is generally to obtain information upon which management measures (e.g., catch allocation, effort control) can be based. Most often, these management measures aim at one of the following items:

- to provide as high a sustained catch as possible
- to provide a reasonable income for as many people as possible
- to generate profits as high as possible for those who have invested in the fishery.

These items, it will be noted, are not necessarily compatible with each other and more often than not, they are mutually exclusive (Clark 1976).

When the policy is to maximize yields, three forms of overfishing must be prevented:

- growth overfishing, i.e., taking fish that are too small. (The methods used to detect and quantify growth overfishing are outlined in Chapter 8)
- recruitment overfishing, i.e., taking so many adult fish that recruitment of young fish to the fishery is affected. (The methods to detect and quantify recruitment overfishing are outlined in Chapter 9)
- ecosystem overfishing, i.e., inducing changes in stock composition through excessive fishing such that abundant species decline without the subsequent compensatory increase of another (group of) species.
Obviously, when exploiting with an unselective gear a community of widely different fish, some large and long-lived, others small and short-lived, it is not possible to prevent growth and recruitment overfishing of the most sensitive stocks. With increasing effort, some species will then gradually disappear resulting at high levels of exploitation in a complete alteration of the original food chains
and catch compositions and in ecosystem overfishing as well. This, and related problems are reviewed in FAO (1978), Pope (1979), Pauly (1979b), and in several papers included in Pauly and Murphy (1982).

In the following, a brief discussion is given of approaches to modelling and managing multispecies systems.

MODELLING MULTISPECIES SYSTEMS

Two-species systems

Attempts by biologists to model quantitatively interacting species started, logically enough, with studying the two species case. The pioneers in this field were Lotka (1925) and Volterra (1926), who suggested independently what are now known as the Lotka-Volterra equations,

$$
\begin{align*}
& \frac{d N_{1}}{d t}=\left[r_{m 1}-m_{1}\left(c_{1} N_{1}+c_{2} N_{2}\right)\right] N_{1} \\
& \frac{d N_{2}}{d t}=\left[r_{m 2}-m_{2}\left(c_{1} N_{1}+c_{2} N_{2}\right)\right] N_{2}
\end{align*}
$$

which describe the rate of change, in numbers, of two competing species, where $r_{m 1}$ and r_{m} are the intrinsic rates of increase of species 1 and species 2 respectively, m_{1} and m_{2} are positive proportionality constants, and C_{1} and C_{2} are interaction terms.

It can be shown (Gause 1934; von Bertalanffy 1951) that the systems represented by equations (12.1a and 12.1b) are stable only in the unlikely case that $\mathrm{r}_{\mathrm{m} 1} / \mathrm{m}_{1}=\mathrm{r}_{\mathrm{m} 2} / \mathrm{m}_{2}$. In all other cases, one species (that with the highest $\mathrm{r}_{\mathrm{m}} / \mathrm{m}$) will survive while the other will become extinct. This behavior, the "competitive exclusion principle" of Gause (1934) was demonstrated to occur in micro-habitats such as culture bottles and aquaria in a wide variety of animals, including tropical fish (Silliman 1975). A pair of Lotka-Volterra equations can also be formulated for a predatorprey system:

$$
\begin{align*}
& \frac{d N_{1}}{d t}=\left(r_{m}-c_{1} N_{2}\right) N_{1} \\
& \frac{d N_{2}}{d t}=\left(-g+c_{2} N_{1}\right) N_{2}
\end{align*}
$$

where g is a coefficient of negative growth (decline) of the predators $\left(\mathrm{N}_{2}\right)$ in the absence of prey $\left(N_{1}\right)$, while r_{m} is the intrinsic rate of increase of the prey population, c_{1} and c_{2} being interaction terms. An interesting property of these equations is that they generate oscillations over time, under certain circumstances, in the number of prey and predators that are independent of environmental fluctuations, and can be used to explain the oscillating behavior of at least some terrestrial predatorprey systems. Such oscillations have rarely been reported from tropical waters, one exception being possibly Munro (1967) who discussed the oscillatory behavior of a tilapia-tigerfish (Hydrocyon) system in Lake McIlwaine, Zimbabwe.

An HP 67/97 program incorporating the Lotka-Volterra equation ("fox and rabbit case") was submitted by J. van Thielen to the HP67/97 Users Library (\# 02752D); the "fox and rabbit case" can also be simulated on the HP67/97 with the help of the keystroke sequences in Green and Lewis (1979).

The Lotka-Volterra equations, while providing insight into various aspects of the interactions between species, have been often criticized because of their extreme simplicity and lack of realism, e.g., by Beverton and Holt (1957) who proposed a much more elaborate two-species model.

However, bringing some realism into the Lotka-Volterra system of equations is relatively straightforward. Larkin (1966), who briefly reviewed some earlier variants, suggested the following set for predator-prey interactions:

$$
\begin{align*}
& \frac{d N_{1}}{d t}=\left(r_{m 1}-a_{1} N_{1}-c_{1} N_{2}\right) N_{1} \\
& \frac{d N_{2}}{d t}=\left(r_{m 2}-a_{2} N_{2}-c_{2} N_{1}\right) N_{2}
\end{align*}
$$

where $r_{m 1}$ and r_{m} are the intrinsic rates of increase of the preys $\left(N_{1}\right)$ and the predators (N_{2}), a_{1} and a_{2} are coefficients of intraspecific competition, c_{1} and c_{2} are interaction terms, expressing decrease for the prey in the presence of predator and increase of the predator in the presence of prey. This system of equations, which is far more realistic than the original Lotka-Volterra formulation, has the following properties:

- the abundance of predator and prey are mutually dependent
- the abundance of prey has an upper limit in the absence of predators
- the abundance of predators has a lower limit in the absence of prey (i.e., they switch to another prey and don't become extinct)
Larkin (1966) presented a discussion of the behavior of the predator-prey system in expression (12.3) under exploitation by a fishery. As this behavior is similar to that of the model developed by Pope (1979), we shall now go directly to the latter model.

Pope (1979) presented an equation which is extremely helpful in making species interaction visible. The model has the form

$$
Y_{T}=a F_{P}-b F_{P}^{2}+c_{1} F_{P} F_{Q}+d F_{Q}-e F_{Q}^{2}+c_{2} F_{P} F_{Q}
$$

or

$$
\mathrm{Y}_{\mathrm{T}}=\quad \mathrm{Y}_{\mathrm{P}} \quad+\quad \mathrm{Y}_{\mathbf{Q}}
$$

where P and Q are interacting species, a, b, d and e are constants of parabolic yield curves, c_{1} and c_{2} interaction terms, Y_{P} and Y_{Q} yields from species P and Q, respectively, given the fishing mortalities F_{P} and F_{Q} and where Y_{t} is the total yield from the two-species system.

For example we could have

$$
\mathrm{Y}_{\mathrm{T}}=200 \mathrm{~F}_{\mathrm{P}}-100 \mathrm{~F}_{\mathrm{P}}^{2}-25 \mathrm{~F}_{\mathrm{P}} \mathrm{~F}_{\mathrm{Q}}+100 \mathrm{~F}_{\mathrm{Q}}-50 \mathrm{~F}_{\mathrm{Q}}^{2}+25 \mathrm{~F}_{\mathrm{P}} \mathrm{~F}_{\mathrm{Q}}
$$

where P is an abundant prey, Q a less abundant predator and -25 and +25 are the interaction terms, positive for the predator whose yield increases in the presence of prey. (This example is illustrated in Fig. 12.2). Table 12.2 presents some combinations of values of a, b, d, e and c_{1} and c_{2} and indicates the type of interaction that these values suggest. Based on the values in Table 12.2 a series of four figures have been drawn (Figs. 12.1 to 12.4) as in Pope (1979) which demonstrate the effects of biological interactions on the combined yields of two interacting species.

In addition to illustrating biological interactions, Pope's model equation (12.4) also allows for a precise definition of what he calls "technological interactions", i.e., the fact that in a multispecies fishery (and in fact in "single" species fisheries also) catching a certain quantity of a given species necessarily implies catch of a certain quantity of other species. When the ratio of the fishing mortalities (F_{P}, F_{Q}) applied on species P and Q, respectively, remains constant for any level of F_{P}, a straight line is generated which starts at the origin and cuts through the yield isopleths (see lines

Table 12.2. Constants used for drawing Figs. 12.1 to 12.4.

Fig.	Constants of yield curve and interaction terms				System optimum				
no.	\mathbf{a}	\mathbf{b}	\mathbf{d}	\mathbf{e}	$\mathbf{c}_{\mathbf{1}}$	$\mathbf{c}_{\mathbf{2}}$	$\mathbf{M S Y}$	$\mathbf{F}_{\mathbf{Q}}$	$\mathbf{F}_{\mathbf{P}}$
12.1	200	100	200	100	-25	25	200	1.00	1.00
12.2	200	100	100	50	-25	25	150	1.00	1.00
12.3	100	50	50	25	10	25	146	2.25	1.79
12.4	100	50	50	25	5	10	94	1.36	1.20

Fig. 12.2. Combined yield from a predator-prey system (see constants in Table 12.2). Lines A, B and C refer to three fixed F-ratios (see Fig. 12.5).

Fig. 12.1. Combined yield of two similar species, one preying to a small extent on the other (see constants of Table 12.2).

A, B, and C on Fig. 12.2). The interesting thing about such lines, however is that, while any F-ratio necessarily generates a parabolic yield curve (see Fig. 12.5 and Pope 1979 for a mathematical proof), this yield curve does not necessarily go through the maximum sustainable yield (MSY) of the whole system (see Figs. 12.1 and 12.5). As Pope (1979) demonstrated, the two-species system may be extended to any number of species with the overall conclusions remaining that

- For constant F-ratios, the total yield curve for any system composed of parabolic single species curves and linear interaction terms is itself a parabola.
- The F-ratio occurring in a given fishery does not necessarily generate the MSY, and the optimum F-ratios can be found only iteratively by changing F-ratios until MSY is reached.

Fig. 12.4. Combined yield from a system in which each species, to a small extent, benefits from the presence of the other (see constants in Table 12.2).

Fig. 12.3. Combined yield from a system in which each species strongly benefits from the presence of the othermutualism (see constants in Table 12.2).

Fig. 12.5. Graph showing how the choice of a given constant ratio of fishing mortalities affects the shape and height of a yield curve; note that one optimum F-ratio leads to the real MSY of the two-species system (see also Fig. 12.2).

Pope's model is very useful in that it enables the user, at least in the two-species case-to literally see the interactions affecting the yields of the system. However, the constants (a, b, c, d, e) of the model cannot be estimated, for which reason it generally cannot be used directly for stock assessment purposes.

Concerning equation (12.4) it may finally be mentioned that the intrinsic rates of population increase (r_{m}) are implied in it, i.e.,

$$
\mathrm{r}_{\mathrm{mP}}=2 \mathrm{~F}_{\mathrm{P}(\mathrm{opt})}
$$

and

$$
\mathrm{r}_{\mathrm{mQ}}=2 \mathrm{~F}_{\mathrm{Q}(\mathrm{opt})}
$$

where $\mathrm{F}_{\mathrm{P}(\mathrm{opt})}$ and $\mathrm{F}_{\mathrm{Q}(\mathrm{opt})}$ are the fishing mortalities which generate MSY in species P and Q , respectively.

Program FB 30 is provided here to help the reader quickly calculate values of Y_{T}, Y_{P} and Y_{Q} for any set of constants as well as for finding the MSY and $F_{\text {opt }}$ values of the two-species system. It is hoped that exercises using this program and combinations of constants such as exemplified in Table 12.2 will help visualize the nature and effects of both technological and biological interactions (see Example 12.1).

N -species systems

It is only since the advent of electronic computers that it has become possible to model systems containing more than two species realistically. Particularly, the availability of computers made it possible to depart from simplifying approaches such as represented by equations (12.1) to (12.4) and to incorporate into the models, as suggested earlier by Beverton and Holt (1957), more realistic representations of growth, mortality, predation and other processes. This approach is taken in the
large and complex "North Sea model" of Andersen and Ursin (1977), and in the various models of "multispecies VPA" presented by Pope (1979), Helgason and Gislason (1979) and Sparre (1980).

However, smaller simulation models, involving only a few trophic groups and the transfers between them can be used to test and validate hypotheses concerning the interactions within an exploited multispecies stock. This approach is best exemplified by Larkin and Gazey (1982) who designed a simulation model of the Gulf of Thailand stocks and fisheries and used it for testing mechanisms suggested by Pope (1979) and Pauly (1979b) to explain the observed changes in catch rates of different species groups. Such models, as well as the box model discussed below can also help in identifying gaps in our understanding of a system.

METHOD FOR CONSTRUCTING QUANTITATIVE "BOX MODELS"

While the mathematical simulation of multispecies systems is generally so complex as to discourage all but very mathematically-oriented biologists, constructing "box" models of an ecosystem is rather straightforward. "Box" models are here defined as a class of models where emphasis is on the graphical representation of an ecosystem and where the taxa having similar ecological roles are grouped together in "boxes" (see Fig. 12.6).

Fig. 12.6. Simplified trophic model of Bukit Merah Reservoir, Malaysia. The numbers in the boxes refer to annual mean standing stocks in tonnes, wet weight, while the numbers along the arrows express annual flows in tonnes (adapted from Yap 1983).

Box models can be either qualitative as in Pauly's (1975) model of a West-African lagoon, or quantitative as in Walsh's (1981) model of the Peruvian upwelling system.

Quantitative box models consist of four elements:
a) the taxa included in each box (see Table 12.3 for an example)
b) the biomass transfer between each box (i.e., the direction of the arrow linking the boxes with each other),

Table 12.3. Data for the construction of a quantitative box-model of Bukit Merah Reservoir, Malaysia. Adapted from Yap (1983).

| Trophic group
 of fish | Annual catch
 (tonnes) | Representative species ${ }^{\text {a }}$ | F | \mathbf{M} |
| :--- | :---: | :--- | :--- | :--- | :--- |
| | | | | |
| Detritivores | 59.8 | Labiobarbus festiva | 0.58 | 2.22 |
| Herbivores | 36.4 | Osteochilus hasselti | 1.18 | 2.12 |
| Piscivores | 31.5 | Oxyeleotris marmorata | 2.61 | 1.68 |
| Invertebrate feeders | 15.4 | - | $1.5^{\text {b }}$ | $2.0^{\text {b }}$ |

${ }^{\text {a }}$ Species representative of their trophic group.
${ }^{\mathbf{b}}$ Mean of 3 preceding values, taken in absence of other information.
c) the average biomass represented in each box, and
d) the average biomass transfer between boxes (i.e., the quantities represented by the arrows) (see Fig. 12.6).
Identifying the taxa to be included in the various boxes involves criteria relating to the size of the animals, to their distribution and to their feeding habits. Generally, it will be possible to identify groups separated by all three criteria, e.g.,

- large predators, e.g., sharks and groupers, which are large, tend to occur in deeper waters and feed on smaller fish,
- small, demersal, forage fish, e.g., slipmouths, which occur in relatively shallow waters and feed on zooplankton or zoobenthos, or
- small pelagics . . . etc.

Since food and feeding habits cannot be determined for all species concerned, exhaustive use should be made of the available extensive literature on food and feeding habits of fish and of generalizations relating the morphology of fishes to their feeding habits.

Fig. 12.7. A simple economic model of a fishery with fishing costs linearly proportional to effort. Note that MEY (maximum economic yield, i.e., the maximum difference between gross value of catch and cost of fishing) is achieved at a level of effort (f_{1}) lower than that needed (f_{2}) to obtain MSY (maximum sustainable yield). Under conditions of open access to fishing, fishing effort will increase until total costs equal the gross value of the catch (i.e., fishing reaches f_{3}, and the equilibrium point, EP) and at which profit for the average fishing unit is zero. Note also that lowering the cost line (e.g., by subsidizing the fishery) lowers the point at which equilibrium is reached, and thus lowers the catch (Smith 1981).

Examples of such generalizations are:

- large fish with strong, pointed teeth (sharks, conger eels, barracuda) are piscivorous (De Groot 1973)
- piscivorous fish tend to eat fish about one-quarter to one-fifth of their length (Ursin 1973; Cushing 1978)
- fish with long, coiled guts (longer than 3-4 times their body length) are generally detritivorous (Pauly 1975)
- fish with an extremely small mouth are generally zooplanktivorous
- generalist-type fish, such as snappers, are omnivorous
- the size of the spaces between the gill-rakers of pelagics gives a direct indication of the size of their favorite food, etc.
This list is not exhaustive but indicates some of the methods which can be used to group fish into feeding niches and hence into the various boxes of a model. Obviously, when detailed data are available on the food and feeding habits, ecological similarity (\approx niche overlap) indices can be computed to quantify objectively the similarity in the diet of different fish to assist grouping. One such index is:

$$
\mathrm{c}_{\mathrm{ab}}=1-1 / 2 \Sigma\left|\mathrm{p}_{\mathrm{aj}}-\mathrm{p}_{\mathrm{bj}}\right|
$$

where $p_{a j}$ and $p_{b j}$ are the percentages of a certain food item j in the food of fish species a and b, respectively, the index having a value of zero when the two fish species have no food item in common, and of unity when both fish species have the same food items in the same percentage composition (see Colwell and Futuyama 1971, and Pianka 1973 for another index).

Obviously, grouping fish and invertebrates into boxes on the basis of their food and feeding habits makes the drawing of the arrows which link the various boxes quite easy, such that task (b) above becomes part of task (a). Putting numbers into the boxes is a little more complicated.

The first step is to obtain the mean standing stock in each box (or at least in most of them). The most straightforward method to obtain standing stock estimates is to conduct a trawl survey in the case of demersal stocks, or an acoustic survey in the case of pelagic stocks. In both cases, taggingrecapture experiments can also be conducted from which biomass and a number of other important parameters can be estimated.

These methods, however, are rather expensive, and in the following a method to bypass the problem is shown-at least as a first approach.

First, estimate the annual yield, by species group that is extracted from the system. Then, using methods selected from Chapter 5, first estimate fishing and natural mortality for species representative of each (or most) of the boxes of the model. Then estimate mean standing stock from Equation (6.7) or by means of any of the other methods available to estimate standing stock in Chapters 6 and 7.

It will generally not be possible to obtain estimates of mean biomasses ($\overline{\mathrm{B}}$) for all fish included in each box. As a first approximation, however, all the fish in a given box may be assumed to have the same fishing mortality (they will have similar sizes and occur at similar places, so it is not a completely unreasonable assumption) (see Table 10.3). Putting numbers along the arrows linking boxes with each other is now relatively simple:

- for the arrow linking fish with the fishery, use the yield data themselves, i.e.,

$$
\mathrm{Y}=\mathrm{F} \cdot \overline{\mathrm{~B}}
$$

- for the arrows linking predators and their prey use, assuming that all natural mortality is due to predation

$$
\mathbf{Q}=\mathbf{M} \cdot \overline{\mathrm{B}}
$$

where M is the natural mortality and Q is the wet weight of prey consumed by the predators. When a predation arrow goes to two or more predators, the value of Q is divided up in proportion of the biomass of each predator box (see Fig. 12.6).

From a box model such as in Fig. 12.6, the following quantities may be estimated:
a) food consumption per day and unit of weight of the animals in each box. Divide the amount (ΣQ) going into a box by \bar{B}, and then by 365 , and
b) the food conversion rate within each box (or by trophic level if appropriate adjustments are made), calculated by dividing all matter leaving a box ($\Sigma[\mathrm{Y}+\mathrm{Q}]$) by all matter entering it.
The values of food consumption should generally fall between 3% and $6 \% /$ day, and those of food conversion rate, 5% to 25%. These ranges can also be used to complete empty boxes in the model, when values of Y and F are unobtainable, e.g., for zooplankton (see Fig. 12.6).

Quantitative box models, constructed along principles such as outlined here can serve the following purposes:

- summarizing the data available on a multispecies system
- allowing for an integration of a fishery with ecological data
- identifying those parts of the system where gaps in knowledge occur
- assessing the possible impact of exploiting one stock or the other.

Useful references that may be consulted when dealing with aquatic food chains and box models of exploited systems are Winberg (1971), Steele (1973), Boje and Tomczak (1978), Pauly (1979b), Jones (1982) and Polovina and Ow (1983).

MANAGING MULTISPECIES FISHERIES

Fortunately, finding out what is necessary to manage a multispecies fishery rationally is most often less complicated than trying to understand how the system works in biological terms.

Throughout much of the world, as a rule, once exploitation of a stock has begun, the fishery rapidly moves toward overfishing because, in the absence of effective regulations, the point of equilibrium of a fishery occurs when the costs of fishing becomes as high as the gross returns from the fishery as shown in Fig. 12.7 and in Clark (1976).

Thus, managing a fishery (as opposed to developing one) is for most purposes synonymous with attempting to reduce or redirect fishing effort, in order either to increase the catch and/or to reduce losses due to overcapitalization, i.e., increase the income of those remaining in the fishery (see Fig. 12.7 and Smith 1981).

Pope (1979) suggested that fitting a parabolic yield curve to time series of catch-and-effort data from a multispecies fishery, although it may underestimate MSY, may be an appropriate method to identify an optimum level of aggregate effort, and this is, in fact, what is generally done in practice when time series of catch-and-effort data are available. However, Larkin (1982) pointed out that, contrary to expectations, "there is little evidence that total catches have fallen in tropical fisheries due to overfishing. Though catches of individual species have dropped, these often have been made up by increases of other species."

For example, the catch-and-effort data of the Gulf of Thailand demersal trawl fishery (Table 12.4) have been fitted with a total biomass Schaefer model (SCSP 1978) and a Fox model (FAO 1978) although the data do not really suggest a downward trend of total catch at high levels of effort (although the catch-per-effort rate decreased dramatically). For this reason, a more or less flat-topped model would fit the data (see Fig. 12.8).

Such a model is, for example

$$
\mathrm{Y}=\mathrm{Y}_{\infty}\left(1-\mathrm{e}^{-\alpha \mathrm{f}}\right)
$$

where Y_{∞} is the "asymptotic yield" while α is an empirical constant.
Obviously, when this model is used to reduce a set of catch-and-effort data, the need arises to somehow define an optimal level of effort (since infinite effort, giving Y_{∞}, would clearly be an unreasonable proposition), especially when economic data are not available from which the equilibrium point and maximum economic yield can be defined.

In analogy to the $\mathrm{F}_{0.1}$ concept discussed in Chapter 8, a level of catch and effort may be defined at which the slope of the yield curve is one-tenth of the slope at the origin ($\mathrm{Y}_{0.1}, \mathrm{f}_{0.1}$) by
first defining the slope of equation (12.10)

$$
\frac{d Y}{d f}=Y_{\infty} \cdot \alpha \cdot e^{-\alpha f}
$$

which, when $f=0$, reduces to $Y_{\infty} * \alpha$.
Thus, $\mathrm{f}_{0.1}$ can be obtained from

$$
Y_{\infty} \cdot \alpha / 10=Y_{\infty} \cdot \alpha \cdot e^{-\alpha f_{0.1}}
$$

Fig. 12.8. Comparison of two yield models fitted to catch-and-effort data from a tropical multispecies fishery (the Gulf of Thailand trawl fishery). Upper: Fox model; lower: asymptotic yield model. Note that both models suggest that effort should be reduced, and yields stabilized in the neighborhood of $\mathbf{7 0 0 , 0 0 0}$ tonnes. (Based on Table 12.4 and Example 12.2).
or

$$
\frac{\ln 10}{\alpha}=\mathrm{f}_{0.1}
$$

while $\mathrm{Y}_{0.1}$ is obtained from

$$
Y_{0.1}=Y_{\infty} \cdot 0.9
$$

Thus, paraphrasing Gulland and Boerema (1973) who introduced the $\mathrm{F}_{0.1}$ concept, I wish to suggest that "the selection of 10% is arbitrary, but once the 10% figure is accepted, the corresponding catch can be calculated objectively. Thus it can be used to provide a commission or other management body objective guidance based on scientific grounds". An application of this model to a set of catch-and-effort data is given in Example 12.2 (see also Table 12.4) and Fig. 12.8.

To avoid misunderstandings, it is stressed here that equation (12.10) is not meant to describe the whole range of yield/effort relationships, which must exhibit a decline at very high levels of effort, but to help cope with a situation where the yield/effort relationship shows no maximum and where, therefore, a management goal different from MSY must be used.

Techniques on how to exploit a multispecies stock to obtain a desired species mix or avoid an undesired one are not available (Daan 1980). At least some of the following changes may be expected, however, given a steadily increasing level of effort on a demersal multispecies stock:

- a decline of the catch per effort (although not necessarily of the total catch as noted above)
- a rapid decrease and virtual extinction of very large fish (assuming that they are caught in the first place)
- a decrease in the average size of the fish caught
- an increase of the relative contributions of low-value, small-sized fish
- the unexpected increase of previously insignificant components of the system (e.g., squids or jellyfish).
I leave it to the reader to sort out these things in more detail.

Table 12.4. Nominal catch-and-effort data from the Gulf of Thailand Trawl Fishery. Data derived from Fig. 7 in Buzeta (1978).

$\#$	Year	Catch $\mathbf{t} \times 10^{3}$	Effort trawl-hours $\times 10^{6}$
1	1963	190	0.57
2	1964	310	0.98
3	1965	340	1.35
4	1966	360	1.8
5	1967	430	2.4
6	1968	510	3.2
7	1969	510	3.6
8	1970	520	3.7
9	1971	600	5.05
10	1972	680	6.75
11	1973	800	8.6
12	1974	550	8.05
13	1975	700	7.65

Recommended reading: The literature on tropical multispecies fisheries and on the modelling of such systems is rapidly growing. Useful contributions are FAO (1978), Pope (1979), Pauly (1979b), Saila and Roedel (1980), Munro (1983), Simpson (1982), Marten and Polovina (1982) and Larkin and Gazey (1982).

Suggested research topics: Evidently, it is difficult to define a research program that applies to all multispecies stocks. However, the following elements should be included in any basic fishery research program:

- monitoring total catch and catch per effort of the fishery
- monitoring catch per effort of various "indicator" species representing various groups of fish (e.g., large, medium- and small-sized)
- thorough study of the biology and population dynamics of the most abundant and of the most valuable species
- an attempt to construct a "box model" of the system in question
- an attempt to identify gear that would selectively remove certain groups of species (e.g., attempt to identify the best F-ratios in the system in question).
The various reviews included in Pauly and Murphy (1982) should be helpful in defining such a research program.

Yields from a two-species (predator-prey) system.

The yield-isopleths in Fig. 12.2 are meant to represent a predator-prey system and are based on the following set of assumed constants:

$$
\begin{array}{cll}
\text { Prey (P) } & \text { Predator (Q) } \\
\mathrm{a}=200 & \mathrm{~d}=100 \\
\mathrm{~b}=100 & \mathrm{e}=50 \\
\mathrm{c}_{1}=-25 & \mathrm{c}_{2}=25
\end{array}
$$

Case I: Estimate Y_{P} and Y_{Q} for $F_{P}=0.8$ and $F_{Q}=0.8$ (i.e., using an F-ratio of 1:1):

1) Read sides 1 and 2 of Program FB 30
2) Enter constants:

Keystrokes: 200 STO A 100 STO B 25 CHS STO 2100 STO D 50 STO E 25 STO 3.8 STO 0
3) Estimate Y_{P}, Y_{Q} and Y_{T} for $F_{P}=1$

Keystrokes	Results	
.8 A	80	$\left(\mathrm{Y}_{\mathrm{P}}\right)$
	64	$\left(\mathrm{Y}_{\mathrm{Q}}\right)$
	144	$\left(\mathrm{Y}_{\mathrm{T}}\right)$

Case II: Estimate "real" MSY, $\mathrm{F}_{\mathrm{Q} \text { (opt) }}$ and $\mathrm{F}_{\mathrm{P} \text { (opt) }}$ of the two-species system:

1) Read sides 1 and 2 of Program FB 3C
2) Enter constants, including initial values $\mathrm{F}_{\mathbf{P}}^{\prime}$ and $\mathrm{F}_{\mathbf{Q}}^{\prime}\left(\mathrm{say}, \mathrm{F}_{\mathbf{Q}}^{\prime}=0.8\right.$ and $\mathrm{F}_{\mathbf{P}}^{\prime}=1.2$).

Keystrokes: 200 STO A 100 STO B 25 CHS STO 2100 STO D 50 STO E 25 STO 3.8 STO 0 1.2 STO 1
3) Enter $\triangle F$, TOL and estimate $F_{Q(o p t)}, F_{P(o p t)}$ and MSY:

Keystrokes	Results	
$.05 \uparrow$		
0.001 ffa	1.002	$\left(\mathrm{~F}_{\mathrm{Q} \text { (opt) }}\right)$
	0.998	$\left(\mathrm{~F}_{\mathrm{P}}\right.$ (opt) $)$
	150.000	(MSY)

Entering a smaller value of TOL (e.g., 0.0001) produces the exact values: $\mathrm{F}_{\mathrm{Q} \text { (opt) }}=1.000$, $\mathrm{F}_{\mathrm{P} \text { (opt) }}=1.000$ also with $\mathrm{MSY}=150.000$.

Fitting an asymptotic yield model to bulk catch-and-effort data from a multispecies fishery.

Data from Table 12.4

Computations

We take advantage of the fact that equation (12.10) has the same form as the special VBGF [see Chapter 4] (with $\mathrm{t}_{\mathrm{o}}=0$) and use Program FB 3 (von Bertalanffy plot) to fit the data. Fitting the data is here viewed as finding the values of α and Y_{∞} for equation 12.10 which generate a curve that goes through the intercept (i.e., for which $\mathrm{t}_{\mathrm{o}}=0$); α and Y_{∞} correspond to K and L_{∞} of the VBGF, respectively.

1) Read sides 1 and 2 of Program FB 3.
2) Select an initial value of Y_{∞} (Y_{∞} must always be higher than the highest reported catch). Upon visual inspection of Table 12.4, we select 850 ($\times 10^{3}$ tonnes) as an appropriate seed value. Thus

Keystrokes: $850 \uparrow 1$ f a $190 \uparrow .57$ A $310 \uparrow .98 \mathrm{~A} 340 \uparrow 1.35$ A $360 \uparrow 1.8$ A $430 \uparrow 2.4$ A $510 \uparrow 3.2$ A $510 \uparrow 3.6$ A $520 \uparrow 3.7$ A $600 \uparrow 5.05$ A $680 \uparrow 5.75$ A $800 \uparrow$ 8.6 A $550 \uparrow 8.05$ A $700 \uparrow 7.65$ A
3) Obtain value of r^{2}, α and " t_{o} " corresponding to $Y_{\infty}=850$

Keystrokes	Results	
E	0.750	$\left(\mathrm{r}^{2}\right)$
	0.211	(α)
	-0.854	$\left(" \mathrm{t}_{\mathrm{o}}\right.$ ")

4) Since equation (12.10) implies that " t_{0} " $=0$, the seed value of $Y_{\infty}=850$ is too high, it is reduced to 825 , which provides, upon repeating step 3 a value of " t_{0} " $=-0.470$. Thus, Y_{∞} must be lower, i.e., 810. This provides, upon repeating step 3 a value of " t_{o} " $=$ -0.073 . Clearly, we are on the right track. Further trials with 809 and 808 reveal that 808 gives a value of " t_{0} " very close to zero. Thus, for $Y_{\infty}=808$ we have

Keystrokes	Results	
E	0.607	$\left(\mathrm{r}^{2}\right)$
	0.311	(α)
	0.008	("t $\left.{ }_{0} "\right)$

5) Using Program FB 9, and replacing age by effort and length by yield, we obtain values for drawing the yield curve, by first entering the values of α in STO1 and Y_{∞} in store A (see Table 4.8) then entering the f values and pressing A.
6) Finally, $f_{0.1}$ and $Y_{0.1}$ are estimated from equations (12.13) and (12.14) by performing

	Keystrokes	Results	
	10 LN		
and			
	$.311 \div$	7.404	$\left(\mathrm{f}_{0.1}\right)$
$808 \uparrow$			
	$.9 \times$	727.200	$\left(\mathrm{Y}_{0.1}\right)$

As might be seen in Fig. 12.8, $f_{0.1}$ and $Y_{0.1}$ are higher than $f_{\text {opt }}$ and MSY as obtained by using the Fox model (Fig. 12.8, upper). This example was meant to illustrate the asymptotic yield model, and not to perform an assessment of the Gulf of Thailand trawl fishery. For such an assessment, the data of Table 12.4 are inadequate, since they probably include fish caught outside the Gulf (Simpson 1982).

Appendix I. Testing Models and Their Results: An Introduction to Sensitivity Analysis and the Jackknife

INTRODUCTION

Throughout the twelve chapters of this book, various models have been presented through equations all of which provide, given appropriate inputs (e.g., data points), some useful output (a "statistic"). As the astute reader will have noted, neither the accuracy, nor the precision of the estimated statistics is discussed at length for any of the models presented in these twelve chapters and in fact, equations for estimating standard errors of estimates are given in a few cases only.

The reasons for this are two-fold:

- for a number of models, equations for the estimation of standard errors are either lacking, or inordinately complex, and
- a simple method exists, called the "jackknife", which can be used to estimate standard errors for the output of any model, thus making specific equations for each model superfluous.
While the jackknife method, presented in detail below, can be used to assess for any model the precision associated with estimates of a given statistic (i.e., the width of the confidence interval about that statistic), another method must be used to assess the "sensitivity" of a model to its input parameters.

Only "ordinary sensitivity analysis" will be discussed here; it has as its main objective "the identification of input parameters which, when changed by a fixed percentage, produce either a strong or a weak effect on the model output" (Majkowski 1982).

SENSITIVITY ANALYSIS

In ordinary sensitivity analysis, only one parameter is changed at a time, usually by a fixed percentage ($\mathrm{U} \%$). The effect of the changes is expressed by a "D-measure"* which is used to express the changes in output caused by changes in the inputs. The D-measure relates the output values in the "perturbed" state (i.e., when the parameter values have been changed) to those in the "unperturbed" state (i.e., as occurs when the best available parameter estimates are used).

An example of a D -measure which can be used for a variety of purposes is

$$
D=\frac{X-X^{0}}{X^{0}} \cdot 100
$$

where X and X^{o} are perturbed and unperturbed outputs, respectively. Majkowski (1982), from whose paper this account is adapted, gave an application of ordinary sensitivity analysis to an equation commonly used in tropical fish stock assessment (equation 5.9). A summary of his analysis, based on the special VBGF and the parameter values $\mathrm{L}_{\infty}=28.9 \mathrm{~cm}, \mathrm{~K}=0.46, \overrightarrow{\mathrm{~L}}=16.4 \mathrm{~cm}$ and $\mathrm{L}^{\prime}=$ 12 cm , (for Nemipterus peronii from the Gulf of Thailand) is reproduced here (Appendix Table I.1).

The analysis led to the conclusion that equation (5.9) is extremely sensitive to changes in the value of $\overline{\mathrm{L}}$ and that, therefore, every effort must be made, when using this equation, to ensure that $\overline{\mathrm{L}}$ is estimated as reliably as possible.

Similarly, Moreau (1980), who applied ordinary sensitivity analysis to Beverton and Holt's yield-per-recruit model (see Chapter 8), found that the parameter which most influences the results is natural mortality. He concluded that, when using the yield-per-recruit model, attention must be devoted to increasing the accuracy and precision of estimates of M (rather than, e.g., spend resources on better estimates of growth parameters).

[^26]Appendix Table I.1. Values of the D-measure (formula 1) for various perturbations in the input parameters. The perturbed parameter is indicated in the first column of the table and magnitude of the perturbation (U\%) in the first row of the table (from Majkowski 1982).

$\mathrm{U} \%$	-40	-20	-10	-5	-1	1	5	10	20	40
K	-40.00	-20.00	-10.00	-5.00	-1.00	1.00	5.00	10.00	20.00	40.00
$\mathrm{~L}_{\infty}$	-92.48	-46.24	-23.12	-11.56	-2.31	2.31	11.56	23.12	46.24	92.48
$\mathrm{~L}^{\prime}$	-410.61	395.94	80.34	30.97	5.23	-4.86	-21.24	-36.71	-57.74	-80.92
$\mathrm{~L}^{\prime}$	-52.17	-35.29	-21.43	-12.00	-2.65	2.80	15.79	37.50	120.00	$-1,200.00$

Two other forms of sensitivity analysis exist in addition to ordinary sensitivity analysisextended deterministic sensitivity analysis and extended stochastic sensitivity analysis. They allow assessment of the impact of simultaneous changes of input parameters, for considering the effects of various types of error distributions in the input parameters, etc. (see Majkowski 1982). Ordinary sensitivity analysis as presented here, should suffice, however, for most models presented in this book.

THE JACKKNIFE METHOD

The underlying principle of Tukey's "jackknife" method is (1) that a given statistic A, computed via a given model from a certain number (n) of data points will take different values $\left(A_{-i}\right)$, depending upon which subset of the available data points are used for computation, and (2) that the distribution of the A_{-i} values is related to the distribution of the statistic A itself (Miller 1974; Tukey 1977; Mosteller and Tukey 1977; Sokal and Rohlf 1981).

Computationally, the jackknife involves the following steps:
a) compute the value of the statistic A, using all available data points (n). This results in estimate \hat{A}_{1} of the statistic in question,
b) then compute n new values of the statistic A, but omitting each time another of the n available data points. This results in n estimates of " A_{i-1} ", each estimated by omitting a single data point (see Appendix Table I.2),
c) use the A_{i-1} values to compute "pseudovalues" of $A,\left(\phi_{i}\right)$, through the equation

$$
\phi_{\mathrm{i}}=\left(\mathrm{n} \cdot \hat{\mathrm{~A}}_{1}\right)-\left[(\mathrm{n}-1) \cdot \mathrm{A}_{\mathrm{i}}\right]
$$

d) obtain a new estimate of A through

$$
\hat{\mathbf{A}}_{2}=\frac{\Sigma \phi_{\mathrm{i}}}{\mathrm{n}}=\bar{\phi}
$$

[In a perfect world, the two estimates of $\mathrm{A}\left(\hat{\mathrm{A}}_{1}, \hat{\mathrm{~A}}_{2}\right)$ would be equal; in reality, they often are not. The standard error of A that is estimated by the jackknife (see below) pertains to $\hat{\mathrm{A}}_{2}$, for which reason it may be more appropriate to stick to \hat{A}_{2} as most useful estimator of A.]
e) the standard error of $\widehat{\mathrm{A}}_{2}$ is then computed from

$$
\text { s.e. }(\mathrm{A})=\sqrt{\left(\operatorname{sd}_{\phi}^{2}\right) / \mathrm{n}}
$$

where $\mathrm{sd}_{(\phi)}$ is the standard deviation of the ϕ_{i} values.
The authors cited above give more detailed accounts of the jackknife, which is illustrated here-following a suggestion by S. Saila (pers. comm.)-by the computation of standard error for the output of a surplus production model (MSY and $f_{\text {opt }}$ as defined in Chapter 10).

Appendix Table I.2, which is an extension of Table 10.3, gives the catch-and-effort values used and/or omitted for the computation of the A $_{i-1}$ values (i.e., estimates of MSY ${ }_{i}-1$ and $f_{\text {opt } i-1}$) computed by omitting the data points (i) pertaining to the years 1969 to 1977.

As might be seen, the results suggest rather small standard errors for the MSY and $f_{\text {opt }}$ values, which, multiplied with the appropriate \hat{t} value (see Chapter 1), would yield a narrow confidence interval.

This application of the jackknife should have made the versatility of this method obvious. In principle, the method can be applied to all models presented in this book-except when the results are obtained through accumulation, where values cannot be omitted without distorting the final result entirely.

Table I.2. Application of the jackknife method to the surplus model (see also Chapter 10).

\#	Year	Catch ${ }^{\text {a }}$	Effort ${ }^{\text {b }}$	$\mathrm{A}_{\mathrm{i}-1}$ values		Pseudovalues ($\phi_{\mathbf{i}}$)	
1	1969	50	623	60.6	1,253	63.3	1,442
2	1970	49	628	60.8	1,246	62.4	1,496
3	1971	47.5	520	60.5	1,275	64.1	1,264
4	1972	45	513	60.6	1,253	63.3	1,436
5	1973	51	661	60.7	1,250	62.9	1,461
6	1974	56	919	60.9	1,253	60.9	1,442
7	1975	66	1,158	59.8	1,237	70.1	1,567
8	1976	58	1,970	57.4	1,087	89.0	2,767
9	1977	52	1,317	63.2	1,337	43.2	767
X	=	52	923	60.5	1,244	64.2	1,509
s.d.	=	6.39	485	1.47	65.8	11.1	496
s.e.	=	2.13	162	0.491	21.9	3.70	165

${ }^{\mathrm{a}} 10^{3}$ tonnes (see Table 10.3).
${ }^{\mathrm{b}}$ No. of standard vessels (see Table 10.3).

Appendix II. List of Programs and Program Listings

FB 1 Length-Weight Relationships 181
FB 2 Gear Selection 185
FB 3 Von-Bertalanffy Plot 189
FB 4 Ford-Walford Plot (GM) 193
FB 5 Gulland and Holt Plot 197
FB 6 Munro Plot. 201
FB 7a Fitting Seasonally Oscillating Growth Data I. 205
FB 7b Fitting Seasonally Oscillating Growth Data II 209
FB 8 Seasonal Growth from Tagging Data 213
FB 9 Generalized VBGF and Derivatives: Solutions 217
FB 10 Total Mortality from Mean Weight 221
FB 11 Z Using Jones' or Sparre's Method 225
FB 12 Length-Converted Catch Curves 229
FB 13 Z and K from Mean Lengths 233
FB $14 \quad$ F and M from Tagging-Recapture Data 237
FB 15 Independent Estimates of M 241
FB 16 Population Size (Petersen's Method) 245
FB 17 Leslie's Equation. 249
FB 18 VPA and Cohort Analysis 253
FB 19 Jones' Length Cohort Analysis. 257
FB 20 Length-Structured VPA 261
FB 21 Yield Per Recruit (Special VBGF). 265
FB 22 Yield Per Recruit Via Incomplete β-Function 269
FB 23 Conversion Factor " k " 273
FB 24 Stock-Recruitment Curve of Beverton and Holt. 277
FB 25 Ricker's Stock-Recruitment Curves. 281
FB 26 Schaefer and Fox's Models 285
FB 27 Schnute's Yield Model 289
FB 28 Csirke and Caddy's Model 293
FB 29 Logistic Growth Curve 297
FB 30 Yields from Two Interacting Species 300

User Instructions

Program Listing

Program Listing

Program Description

User Instructions

STEP	instructions	INPUT DATAUUNITS	KEYs		$\begin{gathered} \text { OUTPUT } \\ \text { DATANUWTS } \end{gathered}$
	TRAWL SELECTION				
1	Enter lower class limit of smallest				
	length class ($L_{\text {min }}$)	L (min)	f	a	0.00
2	Enter, for each length class, the number	N cover	1		
	of fish in cover and in cod end	N codend	-		i
3	Remove erroneous data pair	N cover	4		
		N sodend	B		i-1
4	Colculote $L_{\text {c }}$		f	$\underline{\square}$	4.
	GILLNET SELECTION				
5	Set flog 1 for asymmetric selection		STF	1	
	curves (oo elear it porsymmetrical curves!)				
6	Enter smoller and lorger mesh sizes and	A	\pm		
	initiolize	B	1	e	0.000
7	Enter (for eoah length eloss represented ${ }^{\text {a }}$	c_{A}	-		
	in cotah of both nets) the catches and class	C_{8}	\uparrow		
	midlength, i.e.	L_{i}	c		counter
	sel FLAG \varnothing to view dota				
8	To remove erroneous entries, perform	c_{1}			
		$c_{\text {c }}$	-		
		Ai	\checkmark	C	counter-1
9	To estimate porameters of regression line				
	and mesh selection parameters, press		E		r^{2}
					a
					6
					L_{A}
					Le
10	To obtain probobilities of copture, by length,				s.d.
	do for mesh size 1	Length			frac. retined
	and similarly for B	Length	\pm	\square	prec.astineed

Program Listing

STEP	KEY Entry		KEY COOE	comments	STEP		Y Entry	KEY CODE	commients	
001	007	* $\angle B L$ a	251611			657	7 RT	16-31		
	002	CLRG	16-53			-058	F F0?	162300		
	. 903	1	01 -			- 05	9 PRTX	-14		
	, 004	-	-45		060	060	($\quad x \pm Y$	-41		
	. 005	STO2	3502			- 061	F0?	162300		
	-006	CLX	-51			-062	22 PRTX	-14		
	-007	RTN	24			063	63 $\mathrm{K}_{5}+\mathrm{Y}$	-41		
	-008	*LBLA	2111			064	8 +	56		
	-009	5700	3500			065	55 RTN	24		
010	$\rightarrow 010$	+	-55			- 066	*LBLC	211613 -		
	011	RCLO	3600			067	F1?	162301 -		
	-012	XiY	-41			- 068	LH	32		
	-013	\div	-24			-069	69 Rt	-31		
	-014	ST+1	35-55 01		070	- 070	70 X $\mathrm{X} \boldsymbol{Y}$	-41		
	015	1	01 -			071	1 \div	-24 -		
	016	ST+2	35-55 02			072	2 LN	32		
	-017	RCL2	3602 -			-073	3 RT	16-31-		
	-018	RTN	24			- 074	4 F0?	162300		
	-019	4LBLB	2112			C 075	5 PRTX	-14		
020	-020	5700	3500			-076	36 XEYY	-41-		
	-021	+	-55 -			- 077	7 FO?	162300		
	-022	RCLO	$3600-$			-078	78 PRTX	-14		
	-023	$X \underset{H}{ }$	-41			-079	79 K	-41		
	-024	\div	-24		080	080	E-	1656		
	-025	ST-1	35-45 01 -			C081	1 RTN	24 -		
	-026	1	$01-$			-082	2 *LBLE	2115		
	-027	ST-2	35-45 02			-083	3 P ¢ 5	16-51		
	-028	RCL2	3602			$\rightarrow 084$	4 SPC	16-11		
	$\longrightarrow 029$	RTN	24 -			-085	5 RCL8	3608 -		
030	-030	*LBLb	$211612=$			-086	6 RCL4	3604 -		
	-031	RCL2	3602			-087	7 RCL6	3606		
	-032	1	01			-088	8 x	-35		
	-033	+	-55-			-089	9 RCL9	3609 -		
	$\longrightarrow 034$	RCL1	3601		090	C 090	O	-24		
	-035	-	-45-			C091	1	-45		
	-036	RTH	24			-092	2 ENTT	-21-		
	-037	*LbLe	211615			-093	3 ENTT	-21		
	- 038	CLRG	16-53			-094	4 RCL4	3604 -		
	- 039	$p \pm$ +	16-51 $=$			[095	5. x^{2}	53 -		
040	- 040	CLRG	16-53 -			-096	6 RCL9	3609 -		
	- 041	FJ?	162301 -			-097	$7 \div$	-24		
	- 042	LN	$32-$			-090	8 RCL5	3605		
	- 043	STOI	3501			- 099	$9 \quad X \pm Y$	-41-		
	- 044	Rt	-31-		100	- 100	0	-45-		
	- 045	FI?	162301			- 101	1 \#	-24		
	- 046	LN	32			C 102	2 STOB	$3512=$		
	- 047	5700	$3500-$			C 103	3 x	-35		
	-048	CLX	-51-			C 104	4 RCL6	3606		
	-049	RTN	24			[105	$5{ }^{1} \times 2$	53 -		
050	- 050	*LBLC	2113 -			- 106	6 RCL9	3609 -		
	-051	F1?	362301			[107	7 ¢	-24-		
	- 052	LH	32			- 100	8 CH5	-22-		
	-053	R \downarrow	-31			[109	(RCL7	3607		
	-054	$X \div Y$	-41		110	[110	0 +	-55		
	$\rightarrow 055$	\div	-24			[111	$1 \div$	-24		
	. 056	LH	32.			112	2 PRTK	-14		
	REGISTERS									
0 E			L_{A}	$L_{B} \int^{4} S$	5			7		${ }^{9}$
		B		S3 \quad used	55 used		used	${ }^{57}$ used	S8 used	${ }^{59}$ i
A	a		b	$C^{C} 2 a / A+B$	D	${ }^{\text {E }}$			1	

Program Listing

STEP	KEY ENTRY		KEY CODE		comments	STEP	KEY EN	NTPY	Key code		comments
001	001	* LOLa	211611				057	RCL3	3603		
	002	CLRG	16-53				[058	\div	-24 7		
	003	5700	3514				059	PRTX	-14		
	004	$R \downarrow$	-31			060	060	RTH	24		
	005	STOA	3511				061	*lblc	211613 -		
	- 006	CLX	-51 -				062	SPC	16-11.		
	- 007	RTH	24				063	RCL4	$3604+$		
	-008	* \angle BLC	2113 -				[064	RCL6	3606		
	009	Stoc	$35.13-$				[065	x	-35		
010	010	ST+9	35-55 09				- 066	RCL9	36097		
	011.	R \downarrow	-31				-067	\div	-24		
	-012	STOI	$3501{ }^{-}$				- 068	CHS	-22		
	013	R \downarrow	-31 -				- 069	RCL8	36087		
	014	RCLD	3614 -			070	070	+	-55-1		
	015	γ^{*}	31 -				- 071	5700	3500 -		
	-016	RCLA	3611 -				-072	RCL 6	3606 -		
	[017	RCLD	3614				-073	y^{2}	53 -		
	018	γ^{x}	31 -				[074	RCL9	3609 -		
	019	-	-45				-075.	\div	-24-		
020	- 020	CHS	-22				[076	CHS	-22 -		
	-021	LH	32				[077	RCL7	3607 -		
	-022	STO2	3502 -				[078	+	-55-		
	023	RCLI	3601 -				-079	$\mathrm{P} \geqslant 5$	16-51 -		
	024	x	-35			080	[080	STO1	35017		
	025	RCLC	$3613-$				[081	$P \ddagger 5$	16-51 -		
	-026	\times	-35				[082	RCL4	3604 -		
	-027	ST+8	35-5508				- 083	x^{2}	53 -		
	028	RCL2	$3602-$				-084	RCL. 9	36097		
	029	x^{2}	53 -				- 085	\div	-24 -		
030	-030	RCLI	$3613-$				[086	CHS	-22 -		
	- 031	\times	-35-				- 087	RCLS	3605 -		
	-032	ST+7	35-55 07				+ 088	+	-55 -		
	033	RCL2	3602 -				[089	$P \pm S$	16-51 -		
	034	RCLC	3613 -			090	[090	STOO	3500		
	035	\times	-35				- 091	RCLI	3601 -		
	036	ST+6	35-5506				- 092	$P \pm 5$	16-51-		
	037	RCLI	3605 -				- 093	\times	-35-1		
	-038	x^{2}	53 -				-094	5703	3503 -		
	039	RCLC	3613 -				-095	RCLO	3600 -		
040	040	x	-35-				-096	x^{2}	53 -		
	041	ST+5	35-55 05				-097	RCL3	$3603-$		
	042	RCLI	$3601=$				[098	$\stackrel{\square}{\square}$	-24 -		
	043	RCLC	$3613-$				-099	PRTX	-14		
	044	\times	-35			100	[100	RCLO	$3600-$		
	045	ST+4	35-55 04 -				-101	$P \pm$ S	16-51 7		
	046	IS2I	162646				-102	RCLO	3600 -		
	047	RCLI	$3646=$				[103	$P \pm 5$	16-51		
	048	RTH	24				- 104	\div	$-24-$		
	049	*LBLE	2115 -				-105	5703	3503 -		
050	050	6SBC	231613 -				- 106	CHS	-22-		
	051	RCLA	3611 =				-107	RCLO	3614 -		
	052	RCLD	3614 -				- 108	\div	-24 -		
\square	053	y^{*}	317				-109	PRTX	-14 -		
	054	LH	32 -			710	[110	RCLL	3604 -		
	055	$x \geq y$	-41 -				[111	RCLI	3609 -		
	056	-	-45-				112	\div	-24-1		
			REGISTERS								
used		${ }^{1}$ used	${ }^{2}$ used	$3^{3} \text { used }$	$1 \int^{4} \Sigma x$	${ }^{5} \Sigma x^{2}$	${ }^{6} \Sigma$		${ }^{7} \Sigma y^{2}$	${ }^{8} \boldsymbol{Z} x y$	${ }^{9} \mathrm{\Sigma m}$
$\begin{gathered} \text { so } \\ \text { usec } \end{gathered}$		used	S2	S3	54	55	S6		57	S8	59
$A \quad L(\infty)$		$]^{B}$	$W(\infty)$	${ }^{c} \text { used }$		D D E			6	1	6°

Program Description

Program This
Won Bertalanfly Plot
Name Daniel Pauly
Address - ICLARM MCC P. O. Box 1601 Mokoti, Metro Monila, Philippines

Progrmin Description, Equations, variables, the. The generalized vo Bertalanffy Growth Formula has for length the form

$$
\begin{equation*}
L_{t}=L(\infty)\left(1-e^{\left.-k \Delta\left(t-t_{0}\right)^{\prime}\right)^{\prime}}\right. \tag{..1}
\end{equation*}
$$

and for weight the form

$$
W_{t}=W(\infty)\left(1-e^{-x^{\frac{3}{6}}\left(t-t_{0}\right)}\right)_{0}
$$

where b is the exponent of the kngth-weight relationship. Equation (2) can be rewritten os

$$
\ln \left(1-\left(\frac{L_{2}}{L_{\infty}}\right)^{D}\right)=K D t_{0}-K D t
$$

which has the form of a linear regression, where $\ln \left(1-\left(\frac{L_{t}}{2 \infty}\right)^{0}\right)=y, t=x$ and $K D t_{0}=a$. Thus, given a preliminary estimate of $\operatorname{lom}^{\circ}$ f which is here coded (∞)) and a value of D the values of A and to san be easily estimated and the preliminary value of $\langle(\infty)$ improved ifenetively, until a maximum value of r^{2} is reached. The method is similar for weight growth, except that values of $w^{1 / b}$ are used instead of the weights themselves.

Weighting factors other than n may be used; the inverse $(1 / x)$ of the standard error of the mean size in each age group ir for example, a very appropriate weighting factor.
\qquad
\qquad
\qquad
\qquad
\qquad

Operating Limits and werninge i) The values of $\langle(\infty)$ and $W(\infty)$ must always be higher than the size - ot - age data. i) A value of D must always be entered (e.q. $D=1$ in the base of the normal, or "special" vol Bertalanffy Growth formula). 3) the value of to can be used only when the ages entered are absolute ages.

User Instructions

Program Listing 10010112$)$

Program Description

Program Tut Ford - Walford plot (GM)
Name Daniel Pauly
Address \quad LCLARM, MCC P. O. Box 1501 Makoti, Metro Manila, Philippines

Date Angus 1980
Address Makoti Metro Manila Philippines \qquad
Program Description, Equations, Variables, etc. When size - of -age data at equal time interval (year, month, week) are available, z parameters of the VBGF can be astimated from

L_{t+1}^{0}	$=a+b L_{c}^{0}$
L_{∞}	$=\left(\frac{a}{(1-b)}\right)^{1 / 0}$
where	$=\ln b / 0$

However, since both L_{c} and L_{t+1} are measured with the same error, a geometric mean, or type II regression is wed. Tor this purpare the parametens $a \& b$ of an arithmetic mean or type I regression are fins calculated, then used in conjunction with the correlation coefficient (r) estimated along with a \& b to obtain the slope and intercept of the GM regression minough the relationships

$$
b^{\prime}=b / r
$$

and

$$
a^{\prime}=\bar{y}-\left(b^{\prime} \bar{x}\right)
$$

5)

where \bar{y} and \bar{x} are the means of the L_{t+1} and L_{c} values. a ', b ' are parameters of the 64 regression, respectively (Richer, 1975).

Operating Limits and Warnings size-at-age dato must be equidistant, and there must be of least 1 pairs of $L_{t+1,} L_{e}$ values. When weight-at-age data are used, the exponent (b) of the length / weight relationship must be entered (egg. be).
A value of D must be entered; when using the normal, or "specie"
$V B G F$, enter $D=1$.

User Instructions

Program Deseription

User Instructions

STEP	Instructions	$\begin{gathered} \text { INPUT } \\ \text { DATANUNITS } \end{gathered}$	KEYS	OUTPUT DATAUNITS
			[
	GROWTH IN LENGTH			
1	Enter L (ee), D and initialize	$L(\infty)$	7	$L(\infty)$
		D	\square	0.000
2	Enter data triplets \quad -	4	1	L
		L_{2}	1	L_{2}
	4	Δt	A	i
			-	
3	Remove erroneous data triplet	L	4	4
		L_{2}	4	4
		Δt	0	$i-1$
4	Calculate mean value of K and its C.V.		E	\bar{k}
				C. V.
	GROWTH IN WEIGHT			
5	Enter $W(\infty), D, b$ and initialize	$W(\infty)$	7	W(o)
		0	7	0
		b	$f 6$	0.000
6	Enter data triplets	W_{1}	4	W_{1}
		W_{2}	4	W_{2}
	L	Δt	B	i
7	Remove erroneous data triplet	W	9	N_{2}
		H_{8}	4	W_{2}
		Δt	f d	$i-1$
8	Calculate mean value of K and its C.V.		E	\bar{K}
				C. V.
	NOTES : The Δt should be expressed			
	in days. The K values are annua/values.			
	For print oplion, press		STF 0	
	To elear print option, perform		CLF 0	
	\longrightarrow			

Program Listing

Program Deseription

User Instructions

STEP	mstructions	DATAUMNTS	KEvs		
1	Read sides 1 and 2 of card I and initialize	10	10	4	10.00
		5	5	y^{x}	$100000 \cdot 00$
			f	\square	100000.00
2	Enter dota	t	4		t
		$L_{2}^{\text {O }}$	4		$4{ }^{0}$
	L	$L_{\text {(e) }}^{0}$	A		i
3	Read sides 1 and 2 of card II, and 90				
	to Users Instructions, Port II.				
	-				
	NOTES :				
	1) Inpat routine fakes about				
	15 seconds per dota triplet.				
	2) $L_{\text {cos }}^{0}$ is entered with each				
	net of length-at-age values.				
	-				

Program Deseription I

User Instructions

STEP	instructions	INPUT DATAMUMTS	KEYS		$\begin{aligned} & \text { OUTPUT } \\ & \text { DATAUWTS } \end{aligned}$
3	You have olready read in sides 1 and 2 of this				
	program card, if not, do it now.				0.000
4	Calculate R^{2}		A		R^{2}
5	Calculate KB, t_{0}, t_{s} and C		E		$K D$
					to
					ts
					C
6	To estimate the length corresponding to a given				
	t value, perform	$L(0)$	STO	A	L (0)
$7 a$	Then calculate value of L_{t}	t	C		L_{t}^{0}
76	Step 7 may be repeated of will, e.9. in order to	D	$1 / x$	y^{x}	Le
	draw a seasonally oscillating growth curve.				
8	If L_{t} values are to be calculated without the				
	parameters having been estimated internally,				
	perform RAD , then	L (a)	STO	A	Les)
		KD	ST0	4	$K D$
		t_{0}	570	5	t
		t_{s}	TTO	6	$t s$
		C	570	7	C
	and 90 to step 7 .				
	NOTES :				
	1) When C output is negative,				
	transform C and ts accerding to				
	instructions in Program Description \mathbb{I}.				
	2) Setting $C=0$ in step 8 estimates				
	values of to for the unseasomalized				
	VBGF.				
	\square				

Program Description II

Program Description, Equations, Variables, we. (See also Program Description I)
5) The routine for the estimation of R^{2} is taken from "Statistics for Multiple Regression Analysis" No. 50585 , HP 67197 Users' Library (Europe) by Tapio Westerlund.
6) Due to size limitation, the program may not always produce positive values of C. If a negative value of C is encountered, the following transformations should be applied

> a) change $-c$ to $+c$
> and b) odd 0.5 to the value of t_{s}.

Although the two vets of Sand ts values (original and transformed) are equivalent in their effects on eqrowth curve, the use of the transformed values agrees better with the definition of C given in the text.
7) Program No. 50585 (see 5) above) may be used subsequently to this - program to obtain additional statistics for the multiple linear regression (e.9., to obtain standard errors and F-values for the regression apefficients).

Operating Limits and warnings i) The values of time. (age) must always be expressed in years or fractions thereof.
2) Do not forget, when applicable, the transformations recommended in 6).
5) Steps 6,7 and 8 must follow step 5.

User Instructions

STEP	Instructions	$\begin{gathered} \text { INPUT } \\ \text { DATAUNITS } \end{gathered}$	KEYs	$\begin{gathered} \text { OUTPUT } \\ \text { DATAUMUTS } \end{gathered}$
			-	
1	Enter D and initialize	D	$\square a$	0.000
2		$L 1$	7	4.
		L_{2}	7	L
		Δt	1	Δt
	\square	$T\left({ }^{\circ} \mathrm{C}\right)$	A	i
3	Estimate $a, b_{2} b_{3}$ and R^{2}		\underline{L}	R^{2}
				a
				b_{8}
				b_{2}
	-		$\square \square$	
4	To estimate value of L_{∞} and K, enter \bar{T} *	\bar{T}	c	Le
	N.B. K will be expressed in the units			K
	of time selected for Δt.			
5	To estimate value of C, enter T_{s}, T_{w} and $\bar{T}{ }^{*}$	T_{s}	1	
		Tw	1	
		$\stackrel{\rightharpoonup}{T}$	$f] c$	C
			$[\square][\square]$	
6	To estimate value of K based on a forcing		$\square][\square]$	
	value of $L(\infty)$, do	Los)	4	
		\bar{T}	$f][e]$	K
			\square	
	NOTES:)	
	* T_{3} : highest mean monthly temperature		$\square \square$	
	in a year		I	
	I_{w} : lowest mean monthiy temperature			
	* in a year			
	\bar{T} : mean annual temperature			
	\longrightarrow -			
			-	
			\square	

Program Description

User Instructions

Program Description

Program Tito
Generalized VBGF and Derivatives: Solutions
Name Donlel Pouly
Address TCLARM, MCC P.O. Box 1501 ICLARM, MCC P.O. Box 1501
Mokoti, Metro Manila, Philippines \qquad Date Dee. , 1981

Address
Program Dosertption, Equations, Variables, we. The generalized van Berfolanffy Growth formuk (VBGF) has for length the form

$$
L_{t}=L_{\infty}\left(1-e^{-K D\left(t-t_{0}\right)}\right)^{1 / D}
$$

and ifs derivative is

$$
\left.=\frac{t_{\infty}}{D}\left(1-e^{-K D\left(t-t_{0}\right)}\right)^{1 / D-1} \cdot K D \cdot e^{K D\left(t-t_{0}\right)} \cdot \ldots 2\right)
$$

when $D<1$, there is an inflexion point ot time

$$
t_{i}=t_{0}-\frac{\ln D}{K D}
$$

and at length

$$
L_{i}=L_{\infty}\left(1-e^{(\ln D)}\right)^{1 / 0}
$$

the generalized VBGF for weight is

$$
W_{t}=W_{\infty}\left(1-e^{-k 0 \frac{3}{6}\left(t-t_{\infty}\right)}\right)^{3 / 0}
$$

the first derivative of which is

$$
d_{W} / d_{t}=W_{\infty} 3 K\left(1-e^{-K D \frac{5}{b}\left(t-t_{0}\right)}\right)^{\frac{b}{b}-1} \cdot e^{-K D \frac{3}{b}\left(t-t_{0}\right)}
$$

the weight at the inflexion point being given by

$$
W_{i}=W_{\infty}\left(\frac{b-D}{b}\right)^{b / b}
$$

Equations 1) and 5) correspond to the normal, or "special" VBGF when $D=1$ and $b=3 . D$ and d are estimated from equations 26) and 22) in Pouly \qquad (1981). \qquad

Operating Lumina and warnings 1) Equations 3) and 4) have no solutions when $D=1$.
2) L_{t} and W_{t} must always be lamer than $厶_{\infty}$ and ψ_{s}, respectively.

User Instructions

strer	metructows	Dataunts	KEvs		- Oimpurs
1	Enter K, , $K_{1} t_{\text {c }}$ and t_{0}	${ }_{6}$	\square	\square	
		K	1		
		t_{c}	7	\square	
		t_{0}		\square	0.000
2	Enter $\overline{\text { W }}$	$\overline{\text { w }}$		\square	W
				\square	
3	Enter TOL (tokrated error, e.9. 0.008)	TOL	1	e	702
4	Colculate $f(a)$ and $f(b)$:			\square	
	- enter a high Z-value	$z(a)$	4	7	$f(a)$
	enter a low 2 -volue	$z(b)$	B	\square	$f(6)$
				\square	
	Note: $f(a)$ must be negative, $f(b)$ pasi-			\square	
	-tive; if this is not the case,			\square	
				\square	
	or $Z(b)$.			\square	
	Iterate for 2		E	\square	z
5	Lterale for 2				
				\square	
				$1 \square$	
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	

Program Description

Program Tube Total Mortality from Mean Weight
Name
Daniel Pauly
Address
IC $A R M$ M M M P. O. Box 1501

Program Description, Equations, Variables, eec. Total mortality (z) can be estimated iteratively from the equation

$$
\left.\bar{W}=W_{\infty}\left\{1-\frac{3 z \exp (-a)}{z+K}+\frac{3 z \exp (-z a)}{z+z K}-\frac{z \exp (-3 a)}{z+3 K}\right\} \cdot 1\right)
$$

where $a=K\left(t_{c}-t_{0}\right), w_{0}, K$ and t_{0} being parameters of the special von Bertalanffy Growth Formula. Where t_{c} is the mean age at first capture attained by a given gean and where \bar{W} is the mean weight of the fishes in the catch (6ulland, 1969). "Knite-edge" selection (at t_{c}) is assumed.

The method of iteration used here is the "regula falsi" as incorporated in HP 67/97 program "volution to $f(x)=0$ " (H P67/97 MA 1084, Math Ac).

Operating Units and warnings The iteration time in (1) can be quite lang ($\because 1$ min.) and depends on the values $f(a)$ and $f(b)$, which should be both elapse to zero, and on TOL, with low TOL valuer increasing iteration time.

User Instructions

Program Listing

STEP	KEY ENTAY		KEY CODE
001	001	*LBLa	21.1611
	002	CLRG	16-53
	-003	$P \div 5$	16-51
	-004	CLRG	16-53
	005	5102	3502
	006	$R \downarrow$	-31
	007	5TOJ	3546
	008	R \downarrow	-31
	009	STOD	3514
010	-010	R \downarrow	-31
	011	STOO	35007
	012	CLX	-51
	013	RTH	24
	014	* 1 BLA	2111
	015	SPC	16-11
	016	$5 \mathrm{~T}+3$	35-55 03]
	017	RCLO	3600
	018	RCLD	3614
	019	$\gamma^{\mathbf{x}}$	31
020	-020	RCL2	3602
	-021	RCLD	3614
	-022	y^{x}	31
	-023	-	-45
	024	LH	32
	-025	PRTX	-14
	026	RCL3	3603
	027	LN	32
	028	PRTK	-14
	029	RCL. 2	3602
030	030	RCLI	3646
	031	-	-45
	032	ST02	3502
	033	Rl	-31
	034	R/S	51
	-035	XTY	-41
	036	$\Sigma+$	56
	037	RIN	24

STEP	KEY ENTAY		KEY CODE
	038	* $28 L$ B	2112
	039	SPC	16-11
040	- 040	ST+3	35-55 03
	-041	RCLO	3600
	- 042	RCLD	3614
	- 043	y^{*}	31
	- 044	RCL2	3602
	- 045	RCLO	3614
	- 046	y^{*}	31
	- 047	-	-45
	- 048	RCLD	3600
	- 049	RCLO	3614
050	- 050	y^{x}	31
	- 051	\div	-24
	- 052	LN	32
	- 053	CHS	-22
	- 054	RCLI	3601
	- 055	\doteqdot	-24
	056	PRTK	-14
	-057	RCL3	3603
	-058	LN	32
	059	PRTX	-14
060	-060	RCL2	3602
	- 061	RCLI	3646
	- 062	-	-45
	-063	STO2	3502
	-064	R \downarrow	-31
	- 065	R/S	51
	-066	$x \geq y$	-41
	- 067	Et	56
	D68	RTN	24
	-069	*LBLE	2115
070	070	$\mathrm{P} \pm 5$	16-51
	-071	RCL 8	3608
	- 072	RCL 4	3604
	073	RCL 6	3606
	074	x	-35

STEP	KEY ENTRY		KEY CODE
	075	RCL9	3609
	-076	\div	-24
	-087	-	-45
	-078	ENT \uparrow	-21
	- 079	ENTT	-21
080	-080	RCL 4	3604
	-081	x^{2}	53
	-082	RCL9	3609
	083	\div	-24
	-084	RCLS	3605
	-085	$X \pm Y$	-41
	-086	-	-45
	087	\div	-24
	088	STOB	3512
	089	x	-35
090	090	RCL6	3606
	091	X^{2}	53
	092	RCL9	3609
	093	\div	-24
	-094	CHS	-22
	095	RCLT	3607
	096	+	-55
	097	\div	-24
	098	SPC	16-11
	099	PRTX	-14
100	100	RCL6	3606
	101	RCL4	3604
	102	RCLB	3612
	103	\times	-35
	104	-	-45
	105	RCL9	3609
	106	\div	-24
	107	STOA	3511
	108	PRTX	-14
	109	RCLB	3612
110	110	PRTX	-14
	111	$P \pm S$	16-51
	112	RTN	24

LABELS					FLAGS	SET STATUS		
A	8	C	O	E	0	FLAGS	TRIG	DISP
a	b	c	d	e	1	$\begin{aligned} & \text { ON OFF } \\ & 0 \quad \square \square \end{aligned}$	DEG	FIX \square
0	1	2	3	4	2	1 口	GRAD	SCl \square
5	6	7	8	9	3	$\begin{array}{lll} 2 & \square & \square \\ 3 & \square & \square \end{array}$	RAD	$\begin{aligned} & \text { ENG } \\ & \mathrm{n}= \end{aligned}$

Program Description

Program Title Z Using Jones' or Spare's Method
Name Daniel Paula Date Sept. 1983
Address ICLARM, MCC D. O. Box 1501, Makat; Metro Manila, Philippines

Program Description, Equations, Variables, etc.
Jones (1981) showed that Z / K is equal to the slope of the
straight part of a plot $\ln C$ on $\ln \left(L_{\infty}-\angle s\right)$, where c is the
Cumulative catch (starting from the highest length class) corresponding
to a given length class of which L_{1} is the lower class limit.
The method has been modified by spare (MS) who showed that K
can be estimated from the slope of the straight part of a plot
of In C on the age corresponding to L_{1}, when e both in C and L_{1} are defined as above. When K is not known, using 1 instead of K
for the transformation of length to age makes the slope of the
plot equal to $2 / K$.
Both methods were here modified for use with the generalized
VBGF, by addition of the parameter D where appropriate. Also, the
ages in spare's method are replaced by relative ages.

Operating Limits and warning a (1) Proper seleation of the x and y values to be included in the computation of Z or Z / K requires that a graph be made from which the point belonging to the straight section are selected.
(2) Do not use the method with data obtained from
a gear that selects for or against larger sizes.

User Instructions

STEP	mstructions	Dataulurs	mers		OATAUNTS
	Preliminary estimation of Z or Z / K				
1	Enter $L_{00}, \Delta L, K, O$ and initialize	L00	\pm		
	(if K is unknown, enter 1 instead)	ΔL	$+$		
		K	4		
		D	f	a	0.000
2	Enter class midpoint and frequency	L	1		
	$\square L$	N	A		$\ln (N / \Delta t)$
					t_{2}^{\prime}
3	If data pair is to be included in linear				
	regression, do		- $\mathrm{x}+$		i
	(do $\mathrm{\Sigma}$ - instead of I + to remove erroneakembies)				
4	When all values to be included have been				
	entered, press		E		r^{2}
					a
	Iteration for improving astimate of 2 or $2 / \mathrm{k}$				2or $2 / k$
5.	Enter preliminary value of z (or $z / k)$ and				
	ne-initialize			6	2 or 2/x
6	Enter class midpoint and frequency	L	\pm		
	\square	N	\cdots		$\ln \left(N / 1-e^{-2 \Delta t}\right)$
					t_{1}^{\prime}
7	If data pair is to be inc/uded in negreassion, do		I $5+$		i
	(do $\Sigma-$ instead of $Z+$ foremove erroneous entries)				
8	When all valves to be included have been entred,				
	press		E		r^{2}
					a
9	stop if new value of 2 or $2 / k$ is chas to initiol				zor 2/k
	value. F not repeat steps 6-9 using last				
	value of 2 or $2 / k$ as input in stp 6 . Repeat				
	until convergence is achieved.				

STEP	KEY ENTRY	KEY CODE				113 to end) KEY CODE	COMMENTS		
	-113 -	-45							
	[114 \div	-24		170					
	- 115 ST0B	3512							
	[$116 \times$	-35							
	-117 RCL6	3686							
	- 118 x2	53							
	-119 RCL9	3609							
120	f $120 \div$	-24							
	121 CHS	-22		,					
	122 RCL 7	3607							
	$123+$	-55							
	-124	-24		180					
	- 125 PRTX	-14							
	- 126 RCL6	3606							
	- 127 RCL4	3604							
	- 128 RCLB	3612							
	$129 x$	-35							
130	- 130 -	-45							
	- 131 RCL9	3609							
	$132 \div$	-24							
	133 STOA	3511							
	134 PRTX	-14		190					
	[135 RCLB	3612							
	-136 CHS	-22							
	- 137 PRTX	-14							
	-138 P +5	16-51							
	- 139 RTN	24							
140									
				200					
150									
				210					
160									
				220					
		LABELS			FLAGS	SET STATUS			
${ }^{\text {A }} 4, N$	$\rightarrow]^{B} L, N$	$\rightarrow{ }^{c}$	D	a, z	0	FLAGS	TRIG	DISP	
${ }^{\text {a }}$ L $4, K, N, L L$	b	c	d		1	- ON OFF	DEG 因		
${ }^{0} L \rightarrow$	$\Delta t \quad{ }^{1} L \rightarrow C$	$\begin{aligned} & 2 \text { enter } \\ & \text { ckear } \end{aligned}$	3		2		GRAD RAD	SCl ENG	
5	6	7	8		3	$\begin{array}{lll} 2 & \square & \square \\ 3 & \square & \square \end{array}$		$n=3$	

Program Description

User Instructions

(1 Z and K FROM MEAN LENGTHS FB13 \Rightarrow

Program Description

Program Description, Equations, Variables, etc. As demonstrated by Ebert (1973), estimates of K and Z can be obtained from 2 mean lengths, o value of $L(0)$, o length of recruitment (L_{H}) and times t_{1} and t_{2} (corresponding to the mean lengths) by solving two equations, which become, in terms of the generalized VBGF

where $b=L_{(\infty)}^{0}-L_{r}^{0} 7 L_{(\infty)}^{0}$, while wis the integer portion of Y, when $Y=1+\left(-\log _{e} 0.0001 / 2\right)$. As shown by saila and hough (1981), these equations have an explicit solution for K, ie.

$$
K=\ln \frac{L_{(\infty)}^{0}-L_{R}^{0}}{L_{(\infty)}^{0}-L_{i}^{0}} /\left(t_{1}-t_{2}\right) \cdot D
$$

- Once K has been calculated, the value of z is obtained using o very - -simplified version of the algorithm given in Ebert (1973, p. 286).

Operating Limits and Warnings Iterating time can be quite long when dealing with low values of Z; it valves time therefore, to enter initial guesses that are assumed higher than the true values (rather than the reverse).
Z is estimated with an error of less than 0.001 .

User Instructions

STEP	instructions	$\mathrm{Datan}_{\text {INPUT }}$	KEvs		$\begin{aligned} & \hline \text { OUTPUT } \\ & \hline \text { Dataunits } \end{aligned}$
1	Initiolize		f	\square	0.000
2	Enter the N_{r} volues	Nr	A	\square	coded time
3	Colculate r^{2}, a and b		F		r^{2}
					a
				\square	6
4	Enter N_{0} and colculate fand M	No	1	E	F
					M
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	
				-	
				\square	
				\square	
				\square	
				\square	
				\square	

Program Listing

STEP	key entay		KEY CODE	comments	STEP	KEY	Entry	KEY CODE
001	001	＊LBLa	$2116 \mathrm{d1}$			049	RCL4	3604
	002	CLRG	16－53 7		050	050	RCLB	3612
	003	$p * S$	16－51］			051	x	－35
	004	CLRG	16－53 -			052	－	－45
	005	CLX	－51－			053	RCL 9	3609
	006	RTN	24 ］			054	\div	－24
	007	＊LBLA	2111 万－			055	STOA	3511 －
	008	LN	327			056	PRTK	－14－
	009	RCLO	3600 －			0.57	RCLB	3612
010	010	Σ	56			058	PRTK	-14 －
	011	1	017			059	$\mathrm{P} \pm 5$	16－51
	012	ST＋0	35－55 00		060	060	RTN	24
	013	RCLO	3600			061	＊LBLe	211615
	014	1	017			062	RCLB	3612 －
	015	－	－45			063	e^{x}	33
	016	RTN	$24-1$			064	CHS	－22
	017	＊LBLE	21151			065	1	01 －
	018	$P \pm S$	16－51－			066	＋	－55－
	019	SPC	16－11 $]$			067	\times	－35 -
020	020	RCL 8	36087			068	RCLB	3612 －
	021	RCL4	36047			069	CHS	－22
	022	RCL6	3606		070	070	RCLA	3611 ］
	023	x	－35－			071	e^{x}	33
	024	RCL． 9	$3609]$			072	x	－35
	025	\div	－24－			073	$X \pm Y$	－41
	026	－	－45－			074	\div	－24
	027	ENTA	－21－			075	SPC	16－11 -
	028	ENT ${ }^{\text {d }}$	$-21-$			076	PRTX	－14
	029	RCL4	3604 －			077	STOO	3500
030	030	${ }^{2}$	53 －			078	RCLB	3612 －
	031	RCL． 9	36097			079	CHS	－22－
	032	\vdots	－24		080	080	RCLO	3600 －
	033	RCLS	3605 －			081	－	－45
	034	$X=Y$	－41－			082	PRTX	－14
	035	－	－45－			083	RTN，	24
	036	\div	－24－					
	037	STOB	$3512-1$					
	038	x	－35－1					
	039	RCL6	3606					
040	040	x^{2}	53 －					
	041	RCLS	36097					
	042	\div	－24－		090			
	043	CHS	-22 －					
	044	RCL 7	3607					
	045	＋	－55					
	046	\div	－24					
	047	PRTX	-14.					
	048	RCL6	3606.					

LABELS								FLAGS	SET STATUS		
${ }^{\text {A }} \mathrm{NH}_{\mathbf{r}} \rightarrow$	B		c		10		$\underset{\rightarrow}{ } r^{2}, a, b$	0	FLAGS	TRIG	DISP
a initialize	b		c		d		e	1	$\bigcirc{ }^{\circ} \mathrm{ON}$ OFF	DEG 区	
0	1		2		3		4	2	1 －区	GRAD ${ }^{\text {m }}$	SCl
5	6		7		8		9	3	$\begin{array}{ll} 2 \\ 3 & \square \\ \square \end{array}$		$\begin{aligned} & \text { ENG } \square \square \\ & n=3 \end{aligned}$
REGISTERS											
${ }^{0}$ used	1	${ }^{2}$		3			5	${ }^{6}$	7	8	9
So	S1	S2		53		${ }^{\text {S4 }} \mathrm{\Sigma} \times$	${ }^{55} \sum x^{2}$	${ }^{56} \Sigma_{y}$	${ }^{57} \Sigma y^{2}$	${ }^{\text {S8 }} \times x y$	${ }^{59}$
A 0		b			c		0		1		

Program Description

User Instructions

STEP	wstructions	OATAUNITS	KEvs		OATAUTTS
1	Enter Lo, K, \bar{T} and obtoin M (special VB6F)	Lo	7		
		K	7		
		$\overline{\bar{T}}$	A		M
2		W_{∞}	4		
		K	5		
		\bar{T}	B		M
3	If The estimate of M pertain to clupeidae, o				
	polar fishes ($\bar{T}<3.5^{\circ} \mathrm{C}$) see "operating				
	limits and wornings."				
				\square	
				-	
				\square	
				\square	

User Instructions

(1 POPULATION SIZE (PETERSEN'S METHOD) FBI6 ct

Program Listing

Program Description

where F_{t} is the (assumed) terminal fishing mortality and G the terminal catch.
Equation (1) is solved iteratively, using the Newton method, and Pope's equation (1972) for cohort analysis to attain approximations of the slope of 11).

An alternative to VPA is to estimate N_{i} using Pope's approximation ("cohort analysis")
——N $\left.\approx C_{i} \cdot e^{N / 2}+N_{i t 1} \cdot e^{N} \quad \cdots 3\right)$
with F_{i} being estimated from N_{i}, N_{i+1} and M (Pope 1972).

Operating Limbs and Warning Estimation of the N_{i} and Fi-values must proceed backward, ie. starting with N_{E} as first estimate of Nits. The values of N_{i} and fir will rapidity converge toward their true valuer, even when F_{t} was a wild guess. The values of Ni and $^{\prime} F_{i}$ immediately preceeding N_{6} and F_{t} are to be treated with suspicion, however. They may be improved by using ac Ft one of the F - values obtained from a preliminary VPA.
When using cohort analysis, M-values gould not be higher than 0.3 per time unit.

User Instructions

STEP	instauctions	INPUT DATAUUNITS	KEYS		OUTPUT DATAUUNITS
1	Store parameters	Lo	570	A	
	S	D	1		
	C either $\{$	M	1	\square	
	do $\{$,	K	f	\square	
		$M / K D$	1		
		D	f	6	
				-	
2	Initialize			-]	
	0) enter upper limit of largest length	Lear	7		
	class and length class interval	ΔL	f	c	
	6) enter terminal exploitation rote (a	E_{t}	1		
	quess) ${ }^{*}$ and terminal catch	c_{t}	f	d	N_{c}
3	Run cohort analysis : enter C_{1-2}	C_{5-2}	A	\square	N_{1}
	and compute N_{1} and E			\square	E_{1-2}
				\square	
4	To compule values of Z and F, enter M	M	910	2	
	(if not done previously) and perform	E_{1-2}	8	\square	z_{1-2}
				\square	$F_{\text {d-z }}$
5	Repeat step (s) 3 (and 4) until smallest				
	length is reached			\square	
				\square	
	-			--]	
	NOTE :				
	${ }^{*}$ A value of $E=0.5$, corresponding			\square	
	to $F_{t}=M$ will do for masi		-	\square	
	purposes.			\square	
				$]$	
]	
				$]$	
				,	
				\square	

Program Listing

STEP	KEY Entay		Key code	comments	STEP	KEY EI	ntay	KEY CODE	COMMENTS
001	001	*LBLa'	211611			049	PRTX	-14	
	002	\div	-24		050	- 050	RCL. 9	36097	
	- 003		-41-			051	-	-45-1	
	- 004	STOD	3514			- 052	RCLC	3613	
	- 005	\div	-24			- 053	XiY	-41 -	
	006	sroo	3500			054	\div	-24 -	
	- 007	CLX	-51			055	PRTK	-14 -	
	-008	RTN	24			056	RTH	24.	
	- 009	*LBLE	211615			057	*LBLC	2116137	
010	- 010	RCLA	3611			058	STOB	35127	
	-011	RCLD	3614			059	X=Y	-4] $]$	
	012	y^{*}	31.		060	060	ST08	35087	
	013	RCL7	3607.			061	$X: Y$	-41-	
	014	RCLO	3614			062	-	-45 7	
	- 015	${ }^{\text {x}}$	31.			- 063	ST07	3507.	
	- 016	-	-45 7			064	CLX	-51	
	-017	RCLA	3611.			065	RTN	24 -	
	018	RCLD	3614			066	*LBLB	2112	
	- 019	Y ${ }^{\text {\% }}$	31			- 067	CHS	-22	
020	- 020	RCLP	3608			- 068	1	011	
	- 021	RCLD	36147			069	+	-55 -	
	- 022	$\mathrm{Y}^{\text {x }}$	31		070	070	RCL2	36027	
	-023	-	-45			- 071	$x=Y$	-41-1	
	-024	$\stackrel{\square}{*}$	-24			072	$\stackrel{\square}{\square}$	-24 -	
	-025	RCLO	36001			073	SPC	16-11	
	- 026	2	02			074	PRTX	-14	
	- 027	\div	-24			075	RCL2	36021	
	-028	γ^{x}	31.			076	-	-45 -	
	- 029	ST06	3506			- 077	PRTX	-14 -	
030	- 030	RTN	24 -			- 078	RTN	24 -	
	- 031	*LBLA	2111			- 079	*LBLb	2116127	
	-032	stac	3513 -		080	- 080	5100	3514 -	
	-033	GSBe	231615			- 081	Rt	-31-1	
	- 034	RCL5	36051			082	ST00	3500	
	- 035	ST09	35097			- 083	CLX	-51 -	
	-036	x	$-35]$			- 084	RTN	24 万	
	-037	RCLC	3613			- 085	*LBLd	211614 -	
	- 038	+	-55 -			- 086	XiY	-41-	
	- 039	$R C L 6$	3606			-087	$\stackrel{\square}{\square}$	-24 -	
040	- 040	x	-35			-088	ST05	3505 -	
	-041	stos	3505			089	RTN	247	
	- 042	RCLT	3607		000				
	-043	5708	3508 -						
	- 044	RCLB	3612 -						
	- 045	$\stackrel{-}{7}$	-45 -						
	-046	5707	3507 -						
	- 047	RCLL	3605 -						
	048	SPC	16-11						

Program Description

| Program Tue | Vones'Length Cohort Analysis |
| :--- | :--- | :--- |
| Mane | Doniel Pouly |
| Address | ICLARM, MCC P. O. Box 150, |
| | Mokali, Metro Manila, Philippines |

Program Description, Equations, variables, etc. Pope's (1972) cohort analysis, generalised for any time interval Δt is

$$
N_{1}=N_{1}+\Delta t \cdot e^{m \Delta t}+C_{1-2}^{M \Delta t / 2}
$$

substituting length for age (using the generalized VBGF) and rearranging gives

$$
\begin{align*}
& N_{1}=\left[\left(N_{2} \cdot X_{L}\right)+C_{1-2}\right] \cdot X_{L} \\
& x_{L}=\left\{\frac{L_{\infty}^{D}-L_{1}^{D}}{L_{0}^{D}-L_{2}^{D}}\right\}^{M / 2 K D}
\end{align*}
$$

where
where N_{1} is the number of fishes at king th 1 , white C_{1-2} is the catan of fish of length L_{1} to L_{2}. Haring estimated o value of N for the largest fish, suecessive applications of equation (1) lead to estimates of N for the smaller fish. The rate of exploitation $(E=F / z)$ can be computed from

$$
E=F / Z=\text { number caught / number dying }
$$

Z is then estimated from F wa

$$
Z=M /(1-E) \quad \ldots 4)
$$

and F via $F=Z-M$

The method is based on Jones (1974, 1981).

Operating Lime and warnings The limitations of length cohort analysis one discussed in detail in papers by Jones $(1974,1981)$ and must be considered. whenever this method is opplied to o set of catch data. The results of length cohort analysis are sensitive to wide class intervals used for orructuring the catch data; for this reason, it may be more appropriate to use langth-structured. VPA (program FB20) whenever separate values of M and K ore available.

Program Description

Propran Twie - Length-structured VPA	
Neme Daniel Pouly	Date April, , 1981
Addrew - ICLARM, MCC P. O. Box 1501	
Makati, Metro Monila, Philippines	

Program Dewertption, Equations, Variabtes, wte. In analogy to Vones' (1974) conversion of Pope's (1972) cohory anolysis to a method suitable for the analysis of cotch-at length data, Gulland's (1965) Virtual Apulation Analysis (VPA) can be used... to estimate fishing mortality and population sizes from catch-ot-length dall. Qullands' YPA has the form

$$
\frac{N_{i 11}}{C_{i}}=\frac{\left(F_{i}+M\right) \exp \left\{-\left(F_{i}+M\right)\right\}}{F_{i}\left\{1-\exp -\left(F_{i}+M\right)\right.}
$$

Gemeralied for any fime interral Δt, this becomes

$$
\left.\frac{N_{1+\Delta t}}{C_{1-2}}=\frac{\left(F_{1-2}+M\right) \Delta t \cdot \exp \left\{-\left(F_{1-2}+M\right) \Delta t\right\}}{\left(F_{1-2} \cdot \Delta t\right) \cdot\left\{1-\exp \left(-\left(F_{1-2}+M\right) \Delta t\right)\right\}} \cdots 2\right)
$$

Where N_{1} is the number of fish of age 1 and C_{1-2} and $f_{1} \cdot 2$ are the caton and
fishing mortalify, respectively, pertaining to fishes ranging from age 1 to age?.
Converting length to age, in tems of the generalized VBGF gires for $4 t$
$\Delta t=\frac{\ln \left\{\frac{L_{\infty}^{D}-L_{1}^{0}}{L_{0}^{D}-L_{z}^{D}}\right\}}{K D}$

Where L_{1} and L_{2} are the lengths pertaining t ages 1 and 2 , respectire $l 4$. \qquad

Operving Lumbe and warmings the properties of the method are assentially the rame as for YPA as for as conrergence towands true fishing mortality is concemed, and the rame as for tones' length cohort analyuis os far as sensitivity to $\langle\Delta$ and x is concorned. The method, howarer, is insensitive to the effects of length class intorvals that are very large, something which is not the case with Jones lenqth cohout analysis.

User Instructions

Program Listing "niman

Program Description

proposed by Beverton and Holt (1957), Sones (1957), Beverton and Holt (1964).

Operating Lumber and Warnings. These equations must be used only in conjunction with the special VBGF (when $D=1$) and when weight growth is isometric.

User Instructions

step	mstructions	DATAUNTTS	KEvs		- output
1	Enter parometers	$W_{\text {as }}$	570	B	
		K	590	A	
		D	[sT0]	D	
		6	Sro	E	
		M	[570]	0	
		t_{a}	4		
			\square	a	
		t_{c}	7	c	
	SPECJAL VBGF ($D=1$):				
2	Calculate yield per recruit	F			β
					y / R_{C}
			$\square \square$	\square	y / R_{r}
	GENERALIIED VBGF $(0 \neq 1)$		-		
				\square	
3	Colculate yield per recruit	F	B	\square	β
				\square	y / R_{C}
			\square	\square	Y / R_{c}
			\square	\square	
			\square	\square	
			-	\square	
			\square	\square	
			-	\square	
	-		$] 1$	\square	
	NOTES:				
	$V / R_{C}=$ yield per recruit of				
	oge t_{c}		$[\square]$	\square	
	$y / R_{r}=$ yleld per recruit of		\square		
	age tr				
	When t_{r} is not available,			\square	
	set $t_{r}=t_{0}$				
			\square	\square	
			\square	\square	
			\square	\square	
			\square		

Program Description

| Program Tut
 Name
 Address
 Daniel per Recruit via Incomplete B-Function
 ICLARM, MCC P.O. Box 1501
 Makati, Metro Manila, Philippines |
| :--- | :--- |

Program Description, Equations, variables, atc. Yield per recruit, as shown by Jones (1957) can be computed, when growth conforms to the special VBGF, by using

$$
y / R_{r}=F / K \cdot e^{-Z r_{1}} \cdot e^{-M_{2}} \cdot W_{\infty}\{B(X, P, Q)\}
$$

where $x=e^{-x_{2}}, P=Z / K, Q=b+1$ (b being the exponent of the lengthweight relationship) and β being the symbol of the incomplete beta function, and where $r_{1}=t_{c}-t_{0}$ and $r_{2}=t_{c}-t_{r}$. Note here that b may be $\neq 3$ (vanes (1957), wilimowky and wicklund (1963), Picker (1975)).

When the generalized VBGF is used to describe growth, yield per recruit can be computed from

$$
Y / R_{C}=\frac{F \cdot b}{3 K D} \cdot e^{Z r_{1}} \cdot e^{-M r_{2}} w_{\infty}\{B(X, P, Q)\}
$$

where $x=e^{-3 K D r_{i} / b}, P=Z b / 3 K D, Q=(b / D)+1$ and I and z are defined as above.

The routine which estimates the values of the incomplete beta function is Taken from program 004250 , submitted by R.H. Shade to the U.S. User's Library.

Operating Limits and Warnings Execution time is about 40 seconds.

User Instructions

STEP	instauctions /	DATAUUNTITS	KEYS		OUTPUTS DATAUNITS
1	Enter parameters needed	K	STO	1	
		M^{*}	570	$\underline{2}$	
		t_{0}	000	0	
		t_{c}	570	C	
		$t k$	¢ 5 do	A	
2	Colculate volue of factor " k "	F^{*}	A		"k"
				-	
				\square	
	-				
	NOTES:				
	* If no veparate estimates of M				
	and F are available, enter Z				
	instead of M_{1} and compute K				
	for $F=0$.			\square	
				\square	
				\square	
				\square	

Program Listing

STEP	KEY ENTRY		KEY CODE
009	001	* LBLA	2111
	002	RCL2	36027
	003	+	-55
	004	ST03	3503
	005	1/X	52
	006	ST09	3509
	007	ST05	3505
	008	RCLC	3613
	009	RCLO	3600
010	010	-	-45
	011	STOT	3507
	012	RCLI	36 0s
	013	x	-35
	014	CHS	-22
	015	e^{x}	33
	016	3	03
	017	\times	-35
	018	RCL3	3603
	019	RCLI	3601
020	020	+	-55
	022	\div	-24
	022	ST-9	35-4509
	023	RCL 7	3607
	024	RCLI	3601
	025	x	-35
	026	2	02
	027	x	-35
	028	CHS	-22
	029	e^{x}	33
030	030	3	03
	031	\times	-35
	032	RCLI	3601
	033	2	02
	034	x	-35
	035	RCL3	3603
	036	+	-55
	037	\pm	-24.

STEP	KEY ENTRY		KEY CODE
	038	ST+9	35-55 09
	039	RCL7	3607
040	040	RCLJ	3601
	041	x	-35
	042	3	03
	043	x	-35
	044	CHS	-22
	045	e^{x}	33
	046	RCLI	3601
	047	3	03
	048	x	-35
	049	RCL3	3603
050	050	+	-55
	051	\div	-24
	052	ST-9	35-45 Q9
	053	RCL5	3605
	054	ST04	3504
	055	RCLA	3611
	056	RCLO	3600
	057	-	-45
	058	STO8	3508
	059	RCLI	3601
060	060	\times	-35
	061	CHS	-22
	062	e^{x}	33
	063	3	03
	064	\times	-35
	065	RCLI	3601
	066	RCL3	3603
	067	+	-55
	068	三	-24
	069	ST-4	35-45 04
070	070	RCL8	3608
	071	RCLI	3601
	072	x	-35
	073	2	02
	074	x	-35

STEP	KEY ENTRY		KEY CODE
	075	CHS	-22
	076	e^{x}	33
	077	3	03
	078	x	-35
	079	RCLI	3601
080	080	2	02
	081	\times	-35
	082	RCL 3	3603
	083	$+$	-55
	084	\div	-24
	085	ST+4	35-55 04
	086	RCL8	3608
	087	RCLI	3601
	088	x	-35
	089	3	03
090	090	\times	-35
	091	CHS	-22
	092	e^{x}	33
	093	RCLI	36 DJ
	094	3	03
	095	\times	-35
	096	RCL3	36.03
	097	+	-55
	098	\div	-24
	099	ST-4	35-45 04
100	100	RCL4	3604
	101	RCLA	3611
	102	RCLC	3613
	103	-	-45
	104	RCL3	3603
	105	\times	-35
	106	CHS	-22
	107	e^{x}	33
	108	\times	-35
	109	RCLI	3609
110	110	\div	-24
	111	RTN	24

LABELS						FLAGS	SET STATUS			
${ }^{A} \rightarrow K$	B	C	D	E	0		FLAGS	TRIG		DISP
a	b	c	d	e	1		ON OFF	DEG		FIX
0	1	2	3	4	2		1 ¢ ${ }^{\text {® }}$	GRAD	\square	
5	6	7	8	9	3		$3 \square$			

Program Description
Program Tue Conversion Factor " k "
name Daniel/ Paula
Address -ICLARM, MCC P.O.BOX 1501
Makati, Metro Manila, Philippines
Date March 1981

Program Description, Equations, Variables, eec. Under equilibrium conditions, the proportion in the total stock (ie. of the fish of age te and above) of the fish of age t_{k} and above is given by

$$
\left.k=\frac{\exp \left(-Z r_{3}\right) \cdot\left\{\frac{1}{2}-\frac{3 \exp \left(-K r_{2}\right)}{z+K}+\frac{3 \exp \left(-2 K r_{2}\right)}{Z+2 K}-\frac{\exp \left(-3 K r_{2}\right)}{z+3 K}\right.}{\frac{1}{2}-\frac{3 \exp \left(-K r_{1}\right)}{2+K}+\frac{3 \exp \left(-2 K r_{1}\right)}{z+2 K}-\frac{\exp \left(-3 K r_{1}\right)}{z+3 K}} \cdots 1\right)
$$

where $r_{I} \equiv t_{c}-t_{0}$

$$
r_{2}=t_{k}-t_{0}
$$

and $r_{z}=t_{k}-t_{c}$
with the parameters K and t_{0} pertaining to the special VBGF (Hempel and Sarhage (1959), Pauly (1980d)).

Operating Lumber and wamnge Use only in conjunction with the special VBGF (i.e. with $D=1$).

User Instructions

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATAUUNTS } \\ \hline \end{gathered}$	KEYS	$\begin{gathered} \text { OUTPUT } \\ \text { DATAUMNTS } \end{gathered}$
			-	
1	Initialize		10	0.000
2	Enter P and R values	p	$4 \square$	
	L	R	A	i
3	Remove erroneous dato pair	P	7	
		R	B	i-1
4	Colculate $r^{2}, \alpha^{\prime}, B^{\prime}$		E	r^{2}
				α^{\prime}
				β^{\prime}
5	Enter P-values*	P	D	i
6	Estimate R (HM \& AM) for o given P-value	p	$\underline{\mathcal{C}}]$	$\hat{R}(H M)$
				$\widehat{R}(A M)$
7	If P and R are expressed in the same units,			
	colculate parameterr of and form of curre		f e	A
			$\square \square \square$	$\operatorname{Pr}(H M)$
	NOTES:			
	* If an erroneous value of P is			
	entered, perform: 05701,0]	
	sro 3 , and start entering the			
	P-values all over again.]	
	Puralues all oven again.		\cdots	
			$]$	
			,	
			1	
			-	
			-	

Program Listing

STEP	KEY EMTRY		KEY COOE
	038	RCL9	3609
	039	\div	-24
040	040	RCLS	3605
	041	$X \in Y$	-41
	042	-	-45
	043	\pm	-24
	044	5708	3512
	045	\times	-35
	046	RCL6	3606
	047	x^{2}	53
	048	RCL9	3609
	049	\div	-24
050	050	CHS	-22
	051	RCL7	3607
	052	+	-55
	053	\div	-24
	054	PRTX	-14
	055	RCL6	3606
	056	RCL4	3604
	057	RCLB	3612
	058	\times	-35
	059	-	-45
060	060	RCLS	3609
	061	\div	-24
	062	STOA	3511
	063	RCLB	3612
	064	PRTX	-14
	065	$K=Y$	-41
	066	PRTX	-14
	867	$P \pm 5$	16-51
	068	RTN	24
	069	*LBLD	2114
070	070	RCLA	3611
	071	$X \neq Y$	-4!
	072	\div	-24
	073	RCLB	3612
	074	\pm	-55

STEP	KEY ENTRY		KEY CODE
	075	1/X	52
	076	$5 \mathrm{~T}+2$	35-53 02
	077	1	03
	078	ST+3	35-55 03
	079	RCL3	3603
080	080	RTN	24
	081	* LBLC	2113
	082	SPC	16-11
	083	RCLA	3611
	084	$X+Y$	-41
	085	\doteqdot	-24
	086	RCLE	3612
	087	+	-55
	088	1/x	52
	089	PRTK	-14
090	090	RCLI	3601
	091	RCL2	3602
	092	\doteqdot	-24
	093	x	-35
	094	PRTX	-14
	095	RTN	24
	096	*L8Le	211615
	097	RCLA	3615
	096	CHS	-22
	099	1	01
100	100	+	-55
	101	PRTX	-14
	102	RCL 8	3612
	103	$X \pm Y$	-41
	104	\div	-24
	105	1/X	52
	106	PRTX	-14
	107	RTN	24
110			

LABELS					flacs	SET STATUS		
${ }^{\text {A data input }}$	${ }^{\text {B }}$ correation	${ }^{C}$ est. R	Pads Reat.	$\stackrel{E}{\rightarrow} r^{2}, \alpha, \beta$	0	flags	trig	DISP
a initialize	b	c	d	A, P_{r}	1	$\bigcirc \mathrm{ONOFF}$	DEG $\begin{aligned} & \text { d }\end{aligned}$	
0	1	2	3	4	${ }^{2}$ correation	$1 \square^{1}$	GRAD RAD	SCI ENG \square
5	6	7.	8	9	3	2 3 0		

Program Description

Program tue	Stock-recruitment curve of Beverton 4 Holt
Mme	Daniel Poult
Andros	Inctitut fur Meereskunde
	Kiel, FRG

Program Description, Equations, Variables, we. The stock -recruitment relationship proposed by Beverton and Holt (1957) has the form

$$
R=\frac{1}{\alpha^{1}+B^{6} / p} \text {, where } P \text { is the size of the parental stock and }
$$

R is the number of recruits. When Pard R are expressed in the same units, the formula can be rewritten as

$$
R=\frac{1}{1-A\left(1-P / P_{r}\right)} \text {, where } A=1-\beta^{\prime} \text { and } \alpha^{\prime}=A / \operatorname{Pr} \text {, Pr being }
$$

the replacement abundance. The curve is fitted by means of:

$$
\frac{P}{R}=\beta^{\prime}+\alpha^{\prime} P \text {, that is by regressing } P / R \text { on } P \text {. The } R \text {-line, }
$$

obtained by inverting the values of R represents the harmonic means. (HM) of the expected recruitment for the various P-values. The conversion of HM-ralues to the corresponding arithmetic mean values (AM) follows the --- procedure outlined by Ricker (1975).

Operating umber and warnings the AM-values obtained through conversion from the HM-values are approximative (see Richer 1975, p.292). When a negative value of β^{\prime} is obtained, delete the values of R and P associated with the highest P / R ratio and recalculate α 'and β '.

User Instruetions

STEP	mstructions	$\begin{gathered} \text { INPUT } \\ \text { DATAUBATS } \\ \hline \end{gathered}$	Kevs	OUTPUT DATAUWTS
1	Initialize		$\square \square$	0.000
	1sf FORM (R and P in different units)			
2	Enter Pand R values	p	1	
	L	R	A	i
3	Remove erroneous dato pair	P	7	
		R	$f 6$	$i-1$
4	Calculate parameters of stock-recruitment curve		E	r^{2}
				α
				β
				P_{m}
				R_{m}
5	Estimate $R_{\text {(cm) }}$ for o giren $P_{\text {- }}$ ralue	p	$c \square$	$\hat{R}_{(6)}$
6	If an estimate of P_{r} is available, do:	Pr	$f d$	R/R
			1	
	2 nf $F O R M$ (R and P in the Some Units)			
7-8	As 2 and 3 in 1 st form			
			\square	
9	Calculate porameters of stack-reouitment			
	curre		$f] e$	r^{2}
				$a\left(=m / m_{m}\right)$
			\square	R
			$\square \square$	
10	Reenter Pand R values*	P	7	
	L	R	D	i
	When all values have been entred, do:		f c	$R_{\text {cams }} / R_{\text {cma }}$
			\square	
11	Estimate $R_{(G M)}$ \& $R_{(0 w)}$ from a given P-ralue	P	5	R(OM)
				$R_{\text {(am) }}$
	* If an erroneons value of Pand/ar R mas emered,			
	perform: 05r06 105077 and otary entering P \& R			
	values all orer again.			

Program Description

Program THE Kicker's Stock Recruitment Curves
Name Daniel Paula
Address \quad ICLARM, MC POO. BOX 1501
Makati, Metro Manila, Philippines \qquad
Date March 1981
\qquad
Program Description, Equations, Variables, etc. The first of the stoct-recruitment curves discussed in Ricker (1975) has the form

$$
\begin{equation*}
R=\alpha P e^{-\beta P} \tag{1}
\end{equation*}
$$

where P is the parental stock size, R the corresponding number of recruits, α is an index of density - independent mortality and β on index of densify dependent mortality.

The second form of the curve is

$$
\begin{equation*}
R=P e^{a(1-P / P)} \tag{.2}
\end{equation*}
$$

When P_{r} is the replacement abundance (i.e. the point ar which the replacemem line outs the stock -recruitment curve) and $a=\operatorname{Pm} / \mathrm{Pm}$, Pm_{m} being the parent stock size at maximum recruitment.

The fitting of the curves and the estimation of the ratio $R(A M) / R_{\text {(GM }}$) follows the method outlined in Richer (1975, P. 282-289) which should be consulted for details and further considerations.

Operating Limits and warnings The geometric mean values $\left(R_{(G H)}\right)$ are the most probable R for the observed P-values, not the long-term (arithmetic mean) average R obtained at a given P.

User Instructions

1 SCHAEFER AND FOX'S MODELS FE 26 il Catch, Effort correct. Fox curve Fox if opt, MSY Fax of line

STEP		KEY ENTAY	KEV CODE	Prificil		KEY	$\underbrace{8}_{\text {ENTRY }}$	(001 to 112) KEY CODE		
001	001	*L8La	211611			057	SPC	16-11	COMMENTS	
	002	CLRG	16-53			-058	RCL8	36.08		
	003	P*S	16-51 ${ }^{\text {- }}$			-059	RCL4	3604		
	004	CLRG	16-53		000	[060	RCL6	3606		
	005	CLX	-51			- 061	\times			
	006	RTH	24			- 062	RCL9	3609		
	007	*LBLA	2111 -			[063	\cdots			
	008	STOO	$3500-$			[064	-	-45		
	009	\div	-24 -			- 065	ENTt	-21		
010 	010	Stol	$3501-$			T 066	ERTt	-21		
	011	LN	$32-$			- 067	RCL 4	3604		
	012	5702	$3502-$			068	x^{2}	53		
	0.3	RCLO	$3600-$			069	RCLI	3609		
	014	ST+4	35-55 04 -		070	- 070	\div	-24		
	015	${ }_{\text {x }}$	$53-$			071	RCLL	3605		
	016	ST+5	35-55 05 -			- 072	XiY			
	017	RCL2	$3602-$			-073	-	-45		
	018	ST+6	35-55 06			074	$\stackrel{\square}{*}$	-24		
	019	y^{2} STP	55-55 $53-$			-075	STOB	3512		
	020	STP7	35-55 $07-$			-076	\pm	-35		
	021	RCL2	$3602-$			-077	RCL6	3606		
	022	RCLO	$3600-$			[078	X^{2}	53 -		
	023	${ }^{\mathrm{x}}$	-35-			- 079	RCL9	3609 -		
	024	ST+8	35-55 08 -		000	-080	\div	-24		
	025	1	$01-$			081	CHS	-22		
	026	ST+9	35-55 09			082	RCL7	3607 -		
	027	RCLI	3601 -			083	+	-55		
	028	RCLO	$3600-$			084	\div	-24		
	029	St	56			085	PRTK			
030	030	RTH	$2{ }^{24}$ -			086	5K		delete to obtain AM regression	
	031	*LBLB	$2112-$			087	RCLB	3612		
	032	5100	$3500-$			088	XiY	-41		
			3501.			089	\div	-24		
	035	LA	3532		090	090	STOB	3512		
	036	S102	$3502-$			092	RCL4	3604		
	037	RCLO	$3600-$			093	RCLB	3612		
	038	ST-4	35-45 04 -			094	\times	-35		
	039	${ }^{2}$	$53-$			095	-	-45		
000	040	ST-5	35-45 05 -			096	RCL9	3609		
		RCL2	$3602-$			097	\div	-24		
	042	ST-6	35-4506-			098	STOA	3511		
-		${ }^{2}$	$53-$			099	PRTX	-14		
	044	ST-7	35-45 07 -		100	100	RCLB	3612		
\square	046	RCLO	$3600-$			101	$\underset{\substack{\text { PRTX } \\ P \\ \text { P }}}{ }$	${ }_{16-514}^{-12}$		
\square	047048	x	-35-			103	RTN	24		
		ST-8	35-45 08 -			104	*LBLe	211615		
-			35-45 01 -			105	SPC	16-11		
	051052	ST-9 RCLO	$35-4509$ 3600			106	RCL8	3608 -		
050		$\begin{aligned} & \text { RCLO } \\ & \text { RCLL } \end{aligned}$	3600 $3601-$			107	RCL4	3604 -		
\square	053	${ }_{\text {R }}$	1656			108	RCL6	3606		
	054055	RTN				109	\times	-35		
		*LBLE	2115		170	110	RCL9	3609 -24		
	$\begin{aligned} & 055 \\ & 056 \end{aligned}$	PIS	16-51			112	-	-45		
RECISTERS										
${ }^{0}$ used	${ }^{1}$ used		$\frac{2}{2} \text { used }$	$]^{3}$ FOX $\left.\rightarrow\right]^{4} \Sigma x$	${ }^{5} \sum x^{2}$	${ }^{6} \Sigma y$		${ }^{7} \Sigma y^{2}$	${ }^{8}$ Exy $]^{9} n$	
So	S1			$\text { SOHAEFER }+{ }^{3} \sum x$	Σx^{55}		$z y$	${ }^{57} 2 y^{2}$	$\int^{58} \Sigma^{2} x y$	${ }^{59}$
A intercept (a)			${ }^{3}$ slope (b) ${ }^{\text {c }}$		D^{E}				1	

Program Deseription

Program Tute	Schoefer ond Fox's Models
Mame	Danial Pouly
Addross	IC LARM, MCC P. O. Box 1501
	Mokoti, Metro Monilo, Philippines

Program Doseription, Equationa, varrabtes, otc. When o fishery is in equilibrium, surplus yield can be described by a parabolic function of effort, i.e.

$$
Y=o f-b f^{2}
$$

where 0 and b are constants and f is fishing effort; Moximum sustainable Field (MSY) and optimum effort (f opt.) con be estimated from the relationships

$$
M S Y=a^{2} / 4 b
$$

and

$$
f \text { opt }=a / 2 b
$$

The volues of the constants osb are generally obtained by plotting c / f on effort, $a\{b$ being the intercept and the slope, respectively of the resulting linear regression (the model used here is a GM regression; ree Richen 1975).

When $\ln c / f$ is plotted on f, a yield curve is obtained which has the form
$Y=f e^{a} \cdot e^{-b_{f}}$
with $M S Y=e^{a-1} / b$ and fopt $\left.=1 / b \quad \ldots 5\right)$, 6)
ond where a and b are the intercept and slope, respectively of a GM regression of in $0 / f$ on f (Schaefer 1967, Fox 1970, Ricker 1975).

Operating Lumts and wamning The models are based on the assumptions that equilibrium effort and yield fiqures are used. When this is not the case, o bias will occur, whose magnitude is a function of both the life-span of the fish in question and of the extent of the changes in effont (see Gulliand (1969), for a method to simulate equilibrium conditions). The results obtained here will differ slightly from those obtained using the more common AM regression.

User Instructions

STEP	KEY ENTRY		KEY CODE	DrDBrall COIMENTS	LS STEP	KEY E	NTPY	1001 to 112 KEY CODE		
001	001	$\begin{gathered} * L B L a \\ \text { CLRG } \end{gathered}$	$\begin{array}{lll} \hline 21 & 16 & 11 \\ & 16-53 \end{array}$			057	${ }^{2}$	$\begin{array}{r} \text { KEY CODE } \\ 53 \end{array}$	Comments	
	002					058	ST +6	35-55 06		
	003	Stoa	3511			059	RCLE	3615		
	004	R \downarrow	-31		080	060	RCLD	3614		
	005	STOC	3513			061	\times	-35		
	006	RCLA	3611			062	ST+1	35-55 01		
	007	$\stackrel{\square}{\square}$	-24			063	RCLO	3614		
	008	STOB	3512			064	RCLI	3646		
	009	CLX	-51			065	x	-35		
010	010	RTN	24			066	$5 \mathrm{~T}+2$	35-55 02		
		* LBLA	2111			067	RCLE	3615		
		STOE	3515			068	RCLJ	3646		
		$R \downarrow$	-3!			069	x	-35		
	014	5700	3514		070	070	ST+3	35-55 03		
	015	RCLE	3615			071	1	01		
	016	$\stackrel{\square}{\square}$	-24			072	ST+0	35-55 00		
	017	STOI	3546			073	RCLO	3600		
	018	RCLB	3612			074	RTH	24		
	019	+	-55			075	*LBLE	2115		
00	020	2	02			076	SPC	16-11		
		\because	-24			077	RCLO	3600		
		P $\ddagger 5$	16-51			078	RCL4	3604		
		5700	3500			079	${ }^{\times}$	-35		
	024	RCLE	3615		080	080	RCL7	3607		
		RCLA	3611			081	x^{2}	53		
		+	-55			082		-45		
	027	2	02			083	ST00	3514		
	${ }^{028}$	$\stackrel{+}{+}$	-24			084	RCLO	3600		
	029	STOI	3501			085	RCL3	3603		
030	030	RCLI	3646			086	\times	-35		
	031032	RCLB	3612			087	RCLB	3608		
		\cdots	-24			088	RCLS	3609		
	033	LN	32			089	x	-35		
	034	5702	3502		090	090	-	-45		
	035036	RCLE	3615			091	x	-35		
		STOA	3511			092	STOC	3513		
	037	RCLD	3614			093	RCLO	3600		
	038	STOC	3513			094	RCLI	3601		
	039	RCLI	3646			095	x	-35		
040		STOB	3512			096	RCL7	3607		
	040	RCL2	3602			097	RCL8	3608		
	041	5 SOl	3546			098	x	-35		
	043	RCL]	3601			098	-	-45		
	044	STOD	3514		100	100	STOA	3511		
	045	RCLO	3600			101	RCLO	3600		
		STOE	3515			102	RCL2	3602		
		$\mathrm{P} \ddagger \mathrm{S}$	16-51			103	x	-35		
	048	ST+8	35-55 08			104	RCL7	3607		
		- H^{2}	53			105	RCL9	3609		
050	050	ST+5	35-55 05			106	x	-35		
	051052	RCLD	3614			107	-	-45		
		ST+7	35-55 07			108	STOB	3512		
		X^{2}	53			109	\times	-35		
	054	ST+4	35-55 04		110	110	RCLC	3613		
		RCLl	3646			111	$\mathrm{K}=\mathrm{Y}$	-41		
		056 ST+9 35-55 09				112	-	-45		
RECISTERS										
n		$\Sigma X Y$	$]^{2} \quad \Sigma x z$	$\Sigma y z \int^{4} \Sigma x^{2}$	${ }^{5} \mathrm{EY}$	6	$\sum z^{2}$	${ }^{7} \Sigma x$	${ }^{8} Z r$	${ }^{9} \mathrm{\Sigma z}$
useo	S1 used		used	53	55	56		57	58	S9
	a	$]^{B}$	b_{1}	$c \quad b_{2}$	or used		used		used	

User Instruetions

(1) YIELDS FROM TWO INTERACTING SPECIES FB 30 c

STEP	instauctions	$\begin{aligned} & \text { INPUT } \\ & \text { DATANUNITS } \end{aligned}$	KEvs		OUTPUT DATNUWTS
1	Enter constonts	0	STO	A	
		b	[sro	B	
		d	570	0	
		e	STO	E	
		c_{1}	6 CO	2	
		C_{8}	570	3	
		$F_{\text {g }}$	010	0	
2	Colculote field from two interacting species	F_{0}	Sro	0	
		F_{P}	A		y_{p}
					y_{p}
					y_{r}
3	Colculate F_{p} (opt), and F_{Q} (opt) and MSY:				
	Enter starting volue of t_{p}	F_{p}^{\prime}	570	1	
	Enter starting value of F_{0}	F_{0}^{\prime}		\bigcirc	
	Enter $\triangle F$ and $T O L$	ΔF	1		
		TOL	f	0	F_{0} (ept)
					F_{p} (opf)
					MsY
	\longrightarrow				
	Nore :				
	* $\Delta F=$ initial step size				
	ToL = toleroted ermor of estimata				
	(e.g. 0.01)			\square	
	$\square \longrightarrow$				

Program Listing

Program Listing

Program Description

Where $a \& b$, ond $d \& e$ are constants of the qield curves of the two digferent species (e.q. predator and prey) and where c_{1} and a_{2} express the intensity of the interactions occurring between these speaies (G_{1} and G_{2} hare opposite signs in coses of predater - prey interactions). Pope (1979) also gemeralized equalion (1) to on n-speoies system and showed thot the anerall yield curre of such systems are parabolic, as long as the F-ratios remain constant and no spocies dropsout of she system.

This program estimotes values of Y_{P}, Y_{Q} and Y_{T} for any combination of $0, b, c_{1}$, C_{2}, a, e, F_{0} and F_{p} values as well as the MSY and optinal values of F_{0} and Fo of the 2 species system.

The itenative subroutines inc/uded in this program are adapted fhom program \# 02851 D submitted by B.W. Clare to the HP 67197 (U.S.) User's Librarg.

Operating Limite and warninge There might be combinations of constants and of F_{p}^{\prime} and $F_{\text {' }}$ for which the MSY cannot be located by the olporithm prorided here. Vteration time is quite long; don't be impatient.

When compating Y_{p}, Y_{p} and Y_{r}, the combination of the interaction terms is omitled if one of the species drop out of the ustom; "dropping out "occurs when a partial yield (including the interaction term is umallor than vero).

Appendix III. Use of Calculators Other Than HP 67/97

In this Appendix, a brief discussion is presented of the suitability of the models included in Chapters 1 to 12, and of the Programs FB 1 to FB 30 for implementation with calculators other than the HP 67/97, specifically the HP 65, HP 41C and HP 41CV of the Hewlett-Packard Company, TI-58 and TI-59 of Texas Instruments, Inc. and miscellaneous other scientific calculators.

HP 65

Wholesale conversion of the programs in Appendix II for use on a HP 65 is possible only in the case of rather short programs (e.g., FB 14), using about half or less of the memory available on the HP 67/97. In some other cases, the sequential approach discussed under "miscellaneous calculators" may be applied (see below).

HP 41C AND HP 41CV

Programs FB 1 to FB 30 have been found to run on an HP 41C without modifications in most cases; all tests were performed using pre-programmed HP 67/97 program cards and an HP 82104A Card Reader. When such a card reader and/or pre-programmed cards are not available, conversion of the programs in Appendix II can be performed using the selection of translated keystrokes in Appendix Table III.1.

Experienced users of HP 41C/41CV may also wish to use the large amount of memory available in these calculators to improve on the programs presented here, some of which had to be condensed (and thus rendered less user friendly) to fit into the limited memory space of the HP 67/97.

TI-58

This model uses an "Algebraic Operating System" (AOS) as does the more advanced TI-59, which is radically different from the "Reverse Polish Notation" (RPN) implemented on HP calculators. The difference between AOS and RPN renders direct translation of HP programs into TI "language" particularly difficult. For this reason, a short program is presented in Appendix Fig. III.1, which, according to its author (Hoyer 1983) allows the running of programs written in RPN on TI-58 (and TI-59). The following paragraphs are a translation (from German) of the comments published along with this program.
"This program simulates on TI-58/59 the RPN as used on HP calculators. The necessary functions which operate the stack are defined by the keys A to E, as follows:
$\mathrm{A}=$ Enter
$\mathrm{B}=$ Clear stack
C $=$ Roll up (\uparrow)
D $=$ Roll down (\downarrow)
$\mathrm{E}=$ Last X
Addition, subtraction, multiplication and division are performed via SBR + , SBR-, SBRX and SBR - , respectively. The use of the TI's T-register to simulate the HP's Y-register makes it possible to use tests such as $\mathrm{X}=\mathrm{Y}$?, $\mathrm{X}>\mathrm{Y}$?, etc. This allows for even large RPN programs to be used with TI calculators after only small modifications".

TI-59
Users of the more sophisticated TI- 59 have, in addition to the possibility of using the program in Appendix Fig. III. 1 the option of using a "RPN-simulator", available as a "Solid State Module" from Texas Instruments, Inc., which, when plugged in a TI-59, translates RPN programs (from HP 65 and HP 67/97) into AOS-compatible keystroke sequences. The very comprehensive manual which comes with the "RPN Simulator", gives all necessary details on the conversion. The memory avail-
cm - centimeter
c_{1}, c_{2} - multiplyers for estimating Z and its standard error (p. 53, Table 5.2)

- interaction terms in Lotka-Volterra's equations and variants thereof (Chapter 12)
$\mathrm{C} \quad$ - catch, in numbers (p. 13)
- parameter of the seasonally oscillating version of the VBGF (p. 37, Fig. 4.12)
- multiplicative factor for debiasing recruitment estimates in Beverton and Hoit's S / R relationship (p. 132)
$\mathrm{C}_{\mathrm{t}} \quad$ - terminal catch, as used in VPA and cohort analysis (p. 100)
\mathbf{C}^{2} - parameter in Powell's equation for estimation of $\mathrm{Z} / \mathrm{K}(\mathrm{p} .70)$
$C\left(L_{1}, \infty\right)$ - catch in number, from the lower limit (L_{1}) of a given length class upward (equation 5.12)
C.V. - coefficient of variation, i.e., C.V. $=\bar{X} /$ s.d. $_{\left(\mathbf{x}_{1}\right)}(\mathbf{p} .33,36)$
d - power of weight to which anaboism is proportional (p.23, 24)
d.f. - degree of freedom, i.e., "real" number of cases available for testing a statistical hypothesis (p. 3)
$\mathrm{dl} / \mathrm{dt}$ - growth rate, in length, of an average fish in a stock (p. 37)
$\mathrm{dw} / \mathrm{dt}$ - growth rate, in weight, of an average fish in a stock (p. 23)
$\mathrm{dB} / \mathrm{dt}$ - growth rate of a fish population, in weight ($\mathbf{p} .138$)
$\mathrm{dN} / \mathrm{dt}$ - growth rate of a fish population, in numbers (p .163)
$\mathrm{dY} / \mathrm{df}$ - increase of catch per unit of effort (p. 122)
D - gill "surface factor", a parameter of the generalized VBGF (p. 23, 24)
-- a measure of the "sensitivity" of the output to changes in the inputs of a given model $(\mathbf{p} .23,24)$
$\Delta \quad$ - any difference; examples are:
$\Delta \mathrm{L} \quad$ - length increment, width of length class in grouped data (p. 79)
$\Delta t \quad$ - time difference, e.g., the time needed by an average fish to grow from the lower to the upper limit of a length class (p.62)
$\Delta \mathrm{L} / \Delta \mathrm{t}$ - a growth rate expressed as difference equation (p.45)
ΔT - a temperature difference, e.g., the difference between warmest (T_{s}) and coldest (T_{w}) mean monthly temperature (p. 40)
$\Delta S \quad$ - size increment, when referring either to length or weight (p. 233)
e -- base of the natural (or Naperian) logarithms; $e=2.71828$ (p. 12)
E - exploitation rate; $E=F / Z(p .76)$
- subscript to express equilibrium, steady state conditions, or stable age population. Used explicitly in Chapter 10 only, however, equilibrium assumption implicit in many models presented in this book (see p. 69-70)
$\mathrm{E}_{\text {opt }} \quad$ - exploitation rate producing MSY (p. 76)
$\mathbf{E}_{\mathrm{t}} \quad$ - terminal exploitation rate, as used in Jones' length cohort analysis (Table 7.7)
f - fishing effort
$\mathrm{f}_{\mathrm{opt}} \quad-$ level of effort generating MSY (p. 140)
$f_{0.1} \quad-$ level of effort at which $d Y / d f$ is $1 / 10$ of its value when f is close to zero (p. 172-173)
F - instantaneous rate of fishing mortality (p.52)
- symbol of the F-distribution (p. 212)

FL - Fork length; length of a fish when measured up to the central rays of the caudal fin (p.31)
$\mathrm{F}_{\text {opt }} \quad$ - fishing mortality generating MSY (p. 76)
$\mathrm{F}_{t}{ }^{\mathrm{opt}} \quad$ - terminal fishing mortality, as used in VPA and cohort analysis (p. 100)
$\mathrm{F}_{0.1}$ - level of fishing mortality at which the marginal increase in yield per recruit reaches $1 / 10$ of the marginal increase computed at a very low value of F ($\mathbf{p} .120,121$)
$\phi \quad$ - 'pseudovalue" of an statistic; used with the jackknife (p. 178)
g $\quad-\operatorname{gram}(\mathbf{p} .6)$

- a coefficient of population decline; the opposite of r_{m} (p. 163)

G* - biomass increase resulting from the growth of individual fishes; used in Russel's axiom (p. 1)
GM - geometric mean; used to characterize "type II", or "functional" regression (p. 31)

H - coefficient of anabolism, used in the derivation of the VBGF (p. 23)
HM - harmonic mean (p. 132)
i - symbol or subscript used for counting items; used here only in a few equations (particularly in Chapter 7) where the need for unambiguous definitions made its use necessary

I - Roman numeral, equal to 1 ; used to express age (year) groups (Table 4.3)
$\mathrm{k} \quad$ - coefficient of catabolism (equation 4.1)

- proportion of fish above age t_{k} in a stock of fish (p.121, 122)
$\mathrm{kn} \quad$ - knots $=1.852 \mathrm{~km} / \mathrm{h}(\mathrm{p} .97)$
K - "stress factor", a parameter of the VBGF (p. 23)
In $\quad-\log _{e}$, logarithm of base e (p. 13)
$\log \quad-\log _{10}$, logarithm of base 10 (p. 5)
L - "length" of a fish, shrimp, etc. (length itself is defined differently, depending on what is measured, see TL, SL, FL, etc.) (p. 5)
$L^{\prime} \quad$ - a length not smaller than the smallest length of fish fully represented in catch samples; used to compute $\overline{\mathrm{L}}$ (p.55)
L. - mean length of fish, computed from L' upward (p. 55)
$=\quad-$ mean of two lengths, e.g., mean of length at tagging (L_{1}) and at recapture (L_{2}) (p. 33, Table 4.6)
$\overline{\bar{L}} \quad$ - overall mean length of fish in catch samples (equation 5.10)
$L_{c} \quad$ - mean length of fish at first capture; equivalent to L_{50} of other authors (Fig. 3.1)
$L_{i} \quad-$ length at the inflexion point of the generalized VBGF, when $D \neq 1$ (Table 4.8)
$\mathrm{L}_{\text {max }} \quad$ - maximum length reached by the fish of a given stock (p .29)
$\mathrm{I}_{\text {max. ever }}$ - largest size ever recorded from a given fish species (p. 29)
$L_{\text {min }}$ - smallest length represented in one, or several samples (p.10)
$L_{n} \quad$ - lower limit of highest length class considered in computing L_{c} from trawl selection experiment data (equation 3.1)
$\mathrm{L}_{\text {opt }}$ - mean length above L^{\prime} in a stock maintained at MSY (p. 146)
$L_{r} \quad$ - mean length at first recruitment ($p .68,114$)
$\mathrm{L}_{\mathrm{t}} \quad$ - mean length at age t (p.23)
$\mathrm{L}_{\infty} \quad$ - asymptotic length, i.e., the mean length the fish of a given stock would reach if they were to grow forever (p. 23)
$L_{(\infty)} \quad$ - preliminary estimate of L_{∞}, obtained, e.g., through equation (4.16) (see p. 29)
m - number of fish marked (or tagged) for a Petersen population estimate (p. 91)
$\mathrm{m}_{1}, \mathrm{~m}_{2}$ - proportionality constants in the Lotka-Volterra equation (p. 163)
$M^{2} \quad$ - instantaneous rate of natural mortality, i.e., of mortality due to all causes except fishing (p. 52)
M* - biomass of fish dying of all causes other than fishing in Russel's axiom (p. 1)
MSY - Maximum Sustainable Yield (p. 139)
n - number of items in a sample, number of cases investigated, etc. (p. 6)
- counter for items; similar in use to "i" (equation 3.1)
- number of marked fish recovered in a Petersen population estimate (p. 91)
$\mathrm{N} \quad$ - size, in numbers, of a population (p. 91)
- number of fish in a given size class of a catch sample ($\mathbf{p} .60$)

No - abbreviation for number (p. 10)
$\mathrm{N}_{\mathrm{o}} \quad$ - initial number of fish in a cohort (p.52) or a population (p. 94)
$\mathrm{N}_{\mathrm{r}} \quad$ - total number of fish tagged and released in an experiment (p. 74)
$\mathrm{N}_{\mathrm{T}} \quad$ - number of fish at the end of a generation started with an initial number N_{o} (p. 155)
$\mathrm{N}_{\infty} \quad$ - environmental carrying capacity for a given stock, in numbers; corresponds to B_{∞} (see under this symbol) and to the parameter " K " in the ecological literature (p .152)
p - multiplicative factor in equation (4.2a)
$p_{i j} \quad$ - percentage in gut of species i of food item $j(p .170)$
$P \quad-$ constant in equations (8.10) and (8.11)

- probability of capture (p. 12)
- production (p. 53)
- parents, or parental egg production in S / R relationships (p. 129)
$\mathbf{P}_{\mathrm{m}} \quad$ - parental stock producing maximum recruitment in a Ricker curve (p. 133)
$\mathbf{P}_{\mathbf{r}}^{\mathbf{m}} \quad$ - replacement abundance of parental stock in a Ricker curve (p.133)

References

Agger, P., I. Boëtius and H. Lassen. 1971. On errors in the Virtual Population Analysis. I.C.E.S. C.M. 1971/H:16. 10 p. (Mimeo).*
Agger, P., I. Boëtius and H. Lassen. 1973. Error in the virtual population analysis: the effects of uncertainties in the natural mortality coefficient. J. Cons., Cons. Int. Explor. Mer 35(1): 93.
Allen, K.R. 1966. Determination of age distribution from age-length keys and length distributions, IBM 7090, 7094, FORTRAN IV. Trans. Am. Fish. Soc. 95: 230-231.
Allen, K.R. 1971. Relation between production and biomass. J. Fish. Res. Board Can. 28: 1573-1581.
Alt, H. 1979. Angewandte Mathematik, Finanzmathematik, Statistik, Informatik fuer UPN Rechner, Vieweg \& Sohn. Braunschweig/Wiesbaden, Fed. Rep. of Germany.
Andersen, K.P. and E. Ursin. 1977. A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Medd. Danm. Fisk. Havunders. (N.S.) 7: 319-435.
Anon. 1978a. Report of the ad hoc working group on sardine (Sardina pilchardus Waldb.). CECAF/ECAF Ser./78/7. 35 p. FAO, Rome.
Anon. 1978b. Report of the ad hoc working group on hake (Merluccius merluccius, M. senegalensis, M. cadenati) in the Northern zone of CECAF. CECAF/ECAF Ser./78/9. 93 p. FAO, Rome.
Anon. 1979a. HP 82104A card reader owner's handbook. Hewlett-Packard Company, Corvallis, Oregon.
Anon. 1979b. Report of the ad hoc working group on West African coastal pelagic fish from Mauritania to Liberia $\left(26^{\circ} \mathrm{N}\right.$ to $\left.5^{\circ} \mathrm{N}\right)$. CECAF/ECAF Ser./78/10. 161 p. FAO, Rome.
Anon. 1982. Comparative study of three methods for total mortality estimation, p. 91-125. In Report of the second technical consultation on stock assessment in the Balearic and Gulf of Lions statistical divisions, Casablanca, Morocco, 7-11 December 1981. FAO Fish. Tech. Rep. 263. 165 p.
Bagenal, T.B., editor. 1974. Ageing of fish. Unwin Bros. Ltd., Old Woking, Surrey, England.
Bailey, N.T.J. 1951. On estimating the size of mobile populations from recapture data. Biometrika 38: 293-306.
Bailey, N.T.J. 1952. Improvements in the interpretation of recapture data. J. Anim. Ecol. 21(1): 120-127.
Bakun, A. and R.H. Parrish. 1980. Environmental inputs to fishery population models for eastern boundary current regions, p. 67-104. In G. Sharp (Rapporteur) Workshop on the effects of environmental variation on the survival of larval pelagic fishes. Intergovernmental Oceanographic Commission Workshop Report No. 28, 323 p.
Bakun, A., J. Beyer, D. Pauly, J.G. Pope and G.D. Sharp. 1982. Ocean science in relation to living resources. Can. J. Fish. Aquat. Sci. 39: 1059-1070.
Ball, J.A. 1978. Algorithms for RPN calculators. John Wiley and Sons, New York.
Balon, E.K. 1974. Fishes of Lake Kariba, Africa. TFH Publications, Neptune City, New Jersey.
Banerji, S.K. and T.S. Krishnan. 1973. Acceleration of assessment of fish populations and comparative studies of similar tax onomic groups, p. 158-175. In Proceedings of the Symposium on Living Resources of the Seas Around India, Spec. Publ., Cent. Mar. Fish. Res. Inst., Cochin, India.
Baranov, F.I. 1914. The capture of fish by gillnets. Mater. Poznaniyu Russ. Rybolovsta. 3(6): 56-99. (In Russian).
Baranov, F.I. 1918. On the question of the biological basis of fisheries. Nauchn. Issled. Ikhtiologicheskii Inst. Izv. 1: 81-128. (In Russian).
Baranov, F.I. 1927. More about the poor catch of vobla. Byull. Rybn. Khoz. 7(7). (In Russian).
Baranov, F.I. 1976. Selected works on fishing gear. Vol. I: Commercial fishing techniques. Israel Program for Scientific Translations, Jerusalem.
Bayliff, W.H. 1967. Growth, mortality, and exploitation of the Engraulidae, with special reference to the anchoveta, Cetengraulis mysticetus, and the colorado, Anchoa naso, in the eastern Pacific Ocean. Inter-Am. Trop. Tuna Comm., Bull. 12(5): 365-432.
Beamish, R.J. and McFarlane. 1983. The forgotten requirement for age validation in fisheries biology. Trans. Am. Fish. Soc. 112: 735-743.
Beddington, J.R. and J.G. Cooke. 1983. The potential vield of fish stocks. FAO Fish. Tech. Pap. (242), 47 p.
Ben-Yami, M. and T. Glaser. 1974. The invasion of Saurida undosquamis (Richardson) into the Levant Basin-an example of biological effects of inter-oceanic canals. Fish. Bull. (U.S.) 72(2): 359-373.
Berkeley, S.A. and E.D. Houde. 1978. Biology of two exploited species of halfbeaks, Hemirhamphus brasiliensis and H. balao from Southeast Florida. Bull. Mar. Sci. 28: 624-644.

Berkeley, S.A. and E.D. Houde. 1980. Swordfish, Xiphias gladius, dynamics in the straits of Florida. I.C.E.S. C.M. 1980/H:59. 11 p. (Mimeo).
Berry, R.J. 1970. Shrimp mortality rates derived from fishery statistics. Proc. Gulf Caribb. Fish. Inst. 22: 66-78.

[^27]Bertalanffy, L. von. 1934. Untersuchungen über die Gesetzlichkeiten des Wachstums I. Roux'. Arch. Entwicklungsmech. 131: 613-652.
Bertalanffy, L. von. 1938. A quantitative theory of organic growth (Inquiries on growth laws. II) Hum. Biol. 10(2): 181-213.
Bertalanffy, L. von. 1951. Theoretische Biologie. Zweiter Band: Stoffwechsel, Wachstum. A. Franke A.G. Verlag, Bern.
Beverton, R.J.H. 1962. Long-term dynamics of certain North Sea fish populations, p. 242-259. In E.D. Le Cren and M.W. Holdgate (eds.) The exploitation of natural animal populations. Blackwell Scientific Publications, Oxford.

Beverton, R.J.H. 1963. Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 154: 44-67.

Beverton, R.J.H. and S.J. Holt. 1956. A review of methods for estimating mortality rates in fish populations, with special references to sources of bias in catch sampling. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 140: 67-83.
-Beverton, R.J.H. and S.J. Holt. 1957. On the dynamics of exploited fish populations. Fish. Invest. Ser. II Vol. 19, 533 p.
Beverton, R.J.H. and S.J. Holt. 1959. A review of the life-spans and mortality rates of fish in nature and their relation to growth and other physiological characteristics. Ciba Found. Colloq. on Ageing 5: 142-180.
Beverton, R.J.H. and S.J. Holt. 1964. Table of yield functions for fishery management. FAO Fish. Tech. Pap. 38. 49 p.
Beverton, R.J.H. and S.J. Holt. 1966. Manual of methods for fish stock assessment. Part 2. Tables of yield functions. FAO Fish. Tech. Pap. 38. Rev. 1: 67.
Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters and S. Sams. 1978. Relationships between body size and some life-history parameters. Oecologia (Berlin) 37: 257-272.
Boje, R. and M. Tomczak, editors. 1978. Upwelling ecosystems. Springer Verlag, Berlin.
Boonyubol, M. and V. Hongskul. 1978. Demersal resources and exploitation in the Gulf of Thailand, 1960-1975, p. 56-70. In Report of the Workshop on the Demersal Resources of the Sunda Shelf, 31 October- 6 November 1977, Penang, Malaysia. Part II. SCS/GEN/77/13. 120 p. South China Sea Fisheries Development and Coordinating Programme, Manila.
Brandt, A. von. 1972. Fish catching methods of the world. Fishing News Books, Ltd., Surrey, England.
Brothers, E.B. 1980. Age and growth studies on tropical fishes, p. 119-136. In S.B. Saila and P. Roedel (eds.) Stock assessment for tropical small-scale fisheries. Proceedings of an international workshop held 19-21 September 1979 at the University of Rhode Island. Int. Cent. Mar. Resource Dev., University of Rhode Island, Kingston.
Buzeta, R.B., editor. 1978. Report of the Workshop on the Demersal Resources of the Sunda Shelf, 31 October- 6 November 1977, Penang, Malaysia. Part I. SCS/GEN/77/12. 51 p. South China Sea Fisheries Development and Coordinating Programme, Manila.
Caddy, J;F. and J. Csirke. 1983. Approximations to sustainable yields for exploited and unexploited stocks. Océanogr. Trop. 18(1): 3-15.
Carlander, K. 1969. Handbook of freshwater fishery biology. Vol. I. Iowa State University Press, Ames.
Carlander, K. 1977. Handbook of freshwater fishery biology. Vol. II. Iowa State University Press, Ames.
Chapman, D.G. 1951. Some properties of the hypergeometric distribution with applications to zoological sample census. Univ.Calif. Publ. Stat. 1: 131-160.
Chapman, D.W. 1968. Production, p. 182-196. In W.E. Ricker (ed.) Methods for assessment of fish production in fresh water. IBP Handbook No. 3. Blackwell Scientific Publications, Oxford.
Chatterjee, S. and B. Price. 1977. Regression analysis by example. John Wiley and Sons, New York.
Clark, C.W. 1976. Mathematical bioeconomics: the optimal management of renewable resources. Wiley Interscience, New York.
Colwell, R.K. and D.G. Futuyama. 1971. On the measurement of niche breadth and overlap. Ecology 52: 567-576.
Csirke, J. 1980. Recruitment in the Peruvian anchovy and its dependence on the adult population, p. 307-313. In A. Saville (ed.) The assessment and management of pelagic fish stocks. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 177.
Csirke, J. and J.F. Caddy. 1983. Production modelling using mortality estimates. Can. J. Fish. Aquat. Sci. 40: 43-51. (With errata in Can. J. Fish. Aquat. Sci. 40: 255-256).
Cushing, D.H. 1971. The dependence of recruitment on parent stock in different groups of fishes. J. Cons., Cons. Int. Explor. Mer 33: 340-362.
Cushing, D.H. 1978. Upper trophic levels in upwelling areas, p. 101-110. In R. Boje and M. Tomczak (eds.) Upwelling ecosystems. Springer Verlag, Berlin.
Cushing, D.H. 1981. Fisheries biology: a study in population dynamics. 2nd ed. University of Wisconsin Press, Madison, Wisconsin.
Cushing, D.H., editor. 1983. Key papers on fish populations. IRL Press, Oxford, England.
Daan, N. 1980. A review of replacement of depleted stocks by other species and the mechanisms underlying such replacements, p. 405-421. In A. Saville (ed.) The assessment and management of pelagic fish stocks. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 177.

Dalzell, P. 1984. The population biology and management of bait-fish in Papua New Guinea waters. Dept. Primary Industry, Fish. Res. Surv. Branch Report 84-05, Port Moresby, Papua New Guinea. 59 p.
De Groot, S.J. 1973. Gaps in the studies on behaviour of Indian Ocean flatfishes belonging to the Psettodidae and Cynoglossidae. J. Mar. Biol. Assoc., India 15(1): 251-261.

Dickson, W. 1974. A review of the efficiency of bottom trawls. Institute of Fishery Technology Research, Bergen. 30 p . (Mimeo).
Draper, N. and H. Smith. 1966. Applied regression analysis. John Wiley and Sons, New York.
Dwiponggo, A. 1979. Review of the demersal resources and fisheries in the Java Sea. Marine Fisheries Research Institute, Agency for Agricultural Research and Development, Ministry of Agriculture, Jakarta, Indonesia. 36 p. (Mimeo).
Ebert, T.A. 1973. Estimating growth and mortality rates from size data. Oecologia (Berlin) 11: 281-298.
Eggers, D.M., N.A. Rickard, D.G. Chapman and R.R. Whitney. 1982. A methodology for estimating area fished for baited hooks and traps along a ground line. Can. J. Fish. Aquat. Sci. 39: 448-453.
Eberhardt, L.L. 1977. Relationship between two stock-recruitment curves. J. Fish. Res. Board Can. 34: 425-428.
FAO. 1978. Some scientific problems of multi-species fisheries. Report of the Expert Consultation on Management of Multi-species Fisheries. FAO Fish Tech. Pap. 181. 42 p.
Forbes, S.T. and O. Nakken. 1972. Manual of methods for fisheries resource survey and appraisal. Part 2. The use of acoustic instruments for fish detection and abundance estimation. FAO Man. Fish. Sci. 5. 138 p.
Ford, E. 1933. An account of the herring investigations conducted at Plymouth during the years from 1924-1933. J. Mar. Biol. Assoc. U.K. 19: 305-384.

Fox, W.W. 1970. An exponential yield model for optimizing exploited fish populations. Trans. Am. Fish. Soc. 99: 80-88.
Francis, C.R. 1974. Relationship of fishing mortality to natural mortality at the level of maximum sustainable yield under the logistic stock production model. J. Fish. Res. Board Can. 31: 1539-1542.
Fridrikson, A. 1934. On the calculation of age-distribution within a stock of cod by means of relatively few age determinations as a key to measurements on a large scale. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 86: 1-14.
Fryer, G. and T.D. Hes. 1972. The cichlid fishes of Africa. Their biology and evolution. TFH Publications, Neptune City, New Jersey.
Garcia, S. 1983. The stock-recruitment relationships in shrimps: reality or artifacts and misinterpretations? Océanogr. Trop. 18(1): 25-48.
Garcia, S. and L. Le Reste. 1981. Life cycles, dynamics, exploitation and management of coastal penaeid shrimp stocks, FAO Fish. Tech. Pap. 203. 215 p.
Garrod, D.J. 1961. The selection characteristics of nylon gillnets for Tilapia esculenta Graham. J. Cons., Cons. Int. Explor. Mer 26(2): 191-203.
Gaschütz, G., D. Pauly and N. David. 1980. A versatile BASIC program for fitting weight and seasonally oscillating length growth data. I.C.E.S. C.M. 1980/D:6 Statistics Cttee. 23 p. (Mimeo)
Gause, G.F. 1934. The struggle for existence. Williams and Wilkins, Baltimore.
Godoy, M.P. 1959. Age, growth, sexual maturity, behavior, migration, tagging and transplantation of the curimbat (Prochilodus scrofa Steindachner, 1881) of the Magi Guassu River, Sao Paulo State, Brazil. An. Acad. Bras. Cienc. 31(3): 447-477.
Gomez, K.A. and A.A. Gomez. 1976. Statistical procedures for agricultural research. The International Rice Research Institute, Los Baños, Laguna, Philippines.
Graham, M. 1929. Studies of age determination in fish. Part II. A survey of the literature. U.K. Min. Agric. Fish. Invest. (Ser. 2) 11(3): 50 p .
Graham, M. 1935. Modern theory of exploiting a fishery and application to North Sea trawling. J. Cons., Cons. Int. Explor. Mer 10: 264-274.
Graham, M. 1943. The fish gate. Faber and Faber Ltd., London.
Green, D.R. and J. Lewis. 1979. Science with pocket calculators. Wykeram Publications Ltd., London.
Guilford, J.P. and B. Fruchter. 1978. Fundamental statistics in psychology and education. McGraw Hill, New York.
Gulland, J.A., editor. 1964. On the measurement of abundance of fish stocks. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 155.
Gulland, J.A. 1965. Estimation of mortality rates. Annex to Rep. Arctic. Fish. Working Group, I.C.E.S. C.M. 1965 (3). 9 p .

Gulland, J.A. 1966. Manual of sampling and statistical methods for fisheries biology. Part I. Sampling methods. FAO Man. Fish. Sci. 3. pag. var.
Gulland, J.A. 1969. Manual of methods for fish stock assessment. Part I. Fish population analysis. FAO Man. Fish. Sci. 4. 154 p.
Gulland, J.A. 1971. The fish resources of the oceans. FAO/Fishịng News Books, Ltd., Surrey, England.
Gulland, J.A. 1979. Report of the FAO/IOP workshop on the fishery resources of the Western Indian Ocean south of the equator, p. 1-37. In IOFC/DEV/79/45. FAO, Rome.
Gulland, J.A. 1983. Fish stock assessment. A manual of basic methods. John Wiley and Sons, New York.
Gulland, J.A. and L.K. Boerema. 1973. Scientific advice on catch levels. Fish. Bull. (U.S.) 71: 325-335.
Gulland, J.A. and D. Harding. 1961. The selection of Clarias mossambicus (Peters) by nylon gillnets. J. Cons., Cons. Int. Explor. Mer 26(2): 215-222.
Gulland, J.A. and S.J. Holt. 1959. Estimation of growth parameters for data at unequal time intervals. J. Cons. Cons. Int. Explor. Mer 25(1): 47-49,
Hamley, J.M. 1975. Review of gillnet selectivity. J. Fish. Res. Board Can. 32(11): 1943-1969.
Hashem, M.T. 1972. The age, growth and maturity of Labeo niloticus Forsk. from the Nozha Hydrodome in 19681970. Bull. Inst. Oceanogr. Fish. (Egypt) 2: 84-102.

Helgason, T. and H. Gislason. 1979. VPA-analysis with species interactions due to predation. I.C.E.S. C.M. 1979/ G: 52. (Mimeo).
Hempel, G. and D. Sarhage. 1959. Zur Berechnung des Anteils nicht angelandeter und untermassigen Fische im Gesamtfang. Arch. Fischereiwiss. 10: 58-67.
Henderson, F. 1982. The dynamics of mean-size statistic in a changing fishery. FAO Fish. Tech. Pap. 116. 16 p.
Hoenig, J.M. 1984. Empirical use of longevity data to estimate mortality rates. Fish. Bull. (US) 81(4). (In press).
Hoenig, J.M. and W.D. Lawing. 1982. Estimating the total mortality rate using the maximum-order statistic for age. I.C.E.S. C.M. 1982/D: 7. Statistics Cttee. 13 p. (Mimeo).

Hoenig, N.A. and R.H. Choudary. 1983. Statistical considerations in fitting seasonal growth model for fishes. I.C.E.S. C.M. 1983/D: 25. Statistics Cttee. 22 p. (Mimeo)

Hohendorf, K. 1966. Eine Diskussion der Bertalanffy Funktionen und ihre Anwendung zur Charakterisierung des Wachstums von Fischen. Kiel. Meeresforsch. 22: 70-97.
Holt, S.J. 1960. Multilingual vocabulary and notation for fishery dynamics. FAO, Rome.
Holt, S.J. 1963. A method for determining gear selectivity and its application. Spec. Publ. Int. Comm. Northwest Atl. Fish. Spec. Publ. 5: 106-115.
Holt, S.J., J.A. Gulland and C. Taylor. 1959. A standard teminology and notation for fishery dynamics. J. Cons., Cons. Int. Explor. Mer 24: 239-242.
Hongskul, V. 1974. Population dynamics of Pla-tu, Rastrelliger neglectus (van Kampen) in the Gulf of Thailand. Proc. Indo-Pac. Fish. Counc. 15(111): 297-342.
Hoyer, H.J. 1983. UPN fuer TI-58/59. Chip (Wuerzburg, Fed. Rep. of Germany) No. 3. p. 128.
International Game Fish Association. 1978. World record marine fishes. Fort Lauderdale, Florida.
Isarankura, A.P. 1971. Assessment of stocks of demersal fish off the west coast of Thailand and Malaysia. IOC/DEV/ 71/20. Indian Ocean Fish. Comm, FAO, Rome, 20 p.
Ita, E.O. 1980. Contribution to the dynamics of mean-size statistics in a changing fishery. I. Family Citharinidae in Kainji Lake, Nigeria. Hydrobiologia 68: 269-277.
Jarett, K. 1982. HP41 : Synthetic programming made easy. Synthetix, Manhattan Beach, California.
Johnson, L. 1981. The thermodynamic origin of ecosystems. Can. J. Fish. Aquat. Sci. 38: 571-590.
Jolly, G.M. 1965. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52: 225-247.
Jones, R. 1957. A much simplified version of the fish yield equation. Doc. No. P. 21. Paper presented at the Lisbon joint meeting of International Commission Northwest Atlantic Fisheries, International Council for the Exploration of the Sea, and Food and Agriculture Organization of the United Nations. 8 p. (Mimeo).
Jones, R. 1961. The assessment of long-term effects of changes in gear selectivity and fishing effort. Mar. Res. (Scot.) 2: 1-19.
Jones, R. 1974. Assessing the long-term effects of changes in fishing effort and mesh size from length composition data. I.C.E.S. C.M. 1974/F: 33.13 p. (Mimeo).
Jones, R. 1976a. Growth of fishes, p. 251-279. In D.H. Cushing and J.J. Walsh (eds.) The ecology of the seas. Blackwell Scientific Publications, Oxford.
Jones, R. 1976b. Mesh regulation in the demersal fisheries of the South China Sea area. SCS/76/WP/35. 75 p. South China Sea Fisheries and Development Coordinating Programme, Manila.
Jones, R. 1977. Tagging: theoretical methods and practical difficulties, p. 46-66. In J.A. Gulland (ed.) Fish population dynamics. Wiley Interscience, New York.
Jones, R. 1979. An analysis of a Nephrops stock using length composition data. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 175: 259-269.
Jones, R. 1981. The use of length composition data in fish stock assessment (with notes on VPA and Cohort Analysis) FAO Fish. Circ. 734. 55 p.
Jones, R. 1982. Ecosystems, food chains and fish yields, p. 195-239. In D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings $9,360 \mathrm{p}$. International Center for Living Aquatic Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
Jones, R. and N.P. van Zalinge. 1981. Estimates of mortality rate and population size for shrimps in Kuwait waters. Kuwait Bull. Mar. Sci. 2: 273-288.
Kato, F. and Y. Yamada. 1975. Estimation of abundance and related parameters of the age I red sea bream, Pagrus major, in Iida Bay, by the multiple tag-recapture census. Bull. Jap. Reg. Fish. Res. Lab. 26: 1-16.
Kesteven, G.L. 1947. On the ponderal index, or condition factor, as employed in fishery biology. Ecology 28(1): 78-80.
Kimura, D.L. 1977. Statistical assessment of the age-length key. J. Fish. Res. Board Can. 34(3): 317-324.
Klima, E.F. 1976. An assessment of the fish stocks and fisheries of the Campeche Bank. WECAF Studies No. 5. 24 p. FAO, Rome.
Lai, H-L. and C-L. Hsi. 1974. Age determination and growth of Lutjanus sanguineus (C \& V) in the South China Sea. J. Fish. Soc. Taiwan 3(1): 39-57.

Langerman, J.D. 1980. An evaluation of mark and recapture techniques for estimating tigerfish biomass in Lake Kariba. Lake Kariba Fish. Res. Inst. Proj. Rep. 38. Department of National Parks and Wildlife Management, Zimbabwe. 12 p. (Mimeo).

Lara, F.J.S. 1951. A study of the life history of Macrodon ancylodon (Bloch \& Schneider), a sciaenid fish occurring on the coast of Southern Brazil. An. Acad. Bras. Cienc. 23(3): 291-322.
Larkin, P.A. 1966. Exploitation in a type of predator-prey relationship. J. Fish. Res. Board Can. 23(3): 349-356.
Larkin, P.A. 1982. Directions for future research in tropical multispecies fisheries, p. 309-328. In D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9, 360 p . International Center for Living Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
Larkin, P.A. and W. Gazey. 1982. Application of ecological simulation models to management of tropical multispecies fisheries, p. 123-140. In D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9, 360 p . International Center for Living Aquatic Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
Laws, E.A. and J.W. Archie. 1981. Appropriate use of regression analysis in marine biology. Mar. Biol. 65(16): 13-16.
Le Cren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20: 201-219.
Le Guen, J.C. 1971. Dynamique des populations de Pseudotolithus (Fonticulus) elongatus (Bowd. 1825) Poissons, Sciaenidae. Cah. O.R.S.T.O.M. Sr. Océanogr. 9(1): 3-84.
Lelek, A. and A.A. Wuddah. 1969. A note on the occurrence and length frequency distribution of Tilapia species caught in gillnets in Volta Lake, p. 186-189. In L.E. Obeng (ed.) Man-made lakes. The symposium. Ghana Universities Press.
Lotka, A.J. 1925. Elements of mathematical biology. Dover Publications, New York.
Loubens, G. 1980. Biologie de quelques espèces de poisson du lagon Néo-Calédonien III croissance. Cah. Ind. Pac. 2(2): 101-153.
Lowe-McConnell, R.H. 1975. Fish communities in tropical freshwaters. Longman, New York.
MacCall, A.D. 1980. Population models for the northern anchovy (Engraulis mordax), p. 292-306. In A. Saville (ed.) The assessment and management of pelagic fish stocks. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 177.
Majkowski, J. 1982. Usefulness and applicability of sensitivity analysis in a multispecies approach to fisheries management, p. 149-165. In D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9, 360 p. International Center for Living Aquatic Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
Manooch, C.S. and G.R. Huntsman. 1977. Age, growth and mortality of the red porgy Pagrus pagrus. Trans. Am. Fish. Soc. 106(1): 26-33.
Marquez, J.R.S. 1960. Age and size at sexual maturity of white goby (Glosogobius giurus), a common species of fish in Laguna de Bay, with notes on its food habits. Philipp. J. Fish. 8(1): 71-99.
Marr, J.C. 1978. Book review: Fish population dynamics. J.A. Gulland (ed.) John Wiley and Sons. Aquaculture 15: 179.
Marshall, N. 1980. Fishery yields of coral reefs and adjacent shallow-water environments, p. 103-109. In S.B. Saila and P. Roedel (eds.) Stock assessment for tropical small-scale fisheries. Proceedings of an international workshop held 19-21 September 1979 at the University of Rhode Island. Int. Cent. Mar. Res. Dev., University of Rhode Island, Kingston.
Marten, G.G. and J.J. Polovina. 1982. A comparative study of fish yields from various tropical ecosystems, p. 255289. In D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9, 360 p. International Center for Living Aquatic Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
May, R.M., J.R. Beddington, C.W. Clark, S.J. Holt and R.M. Laws. 1979. Management of multispecies fisheries. Science 205 (4403): 267-277.
McCarthy, G. 1976. Calculator calculus. Rev. ed. Educalc Publications, Laguna Beach, California.
McCombie, A.M. and F.E.J. Fry. 1960. Selectivity of gillnets for lake whitefish Coregonus clupeaformis. Trans. Am. Fish. Soc. 89(2): 176-184.
Menon, M.D. 1950. The use of bones, other than otoliths, in determining the age and growth-rate of fishes. J. Cons., Cons. Int. Explor. Mer 16: 311-335.
Mesnil, B. 1980. Théorie et pratique de l'analyse des cohortes. Rev. Trav. Inst. Pêches Marit. 44(2): 119-155.
Miller, R.G. 1974. The jackknife-a review. Biometrika 61: 1-15.
Mohn, R.K. 1980. Bias and error propagation in logistic production models. Can. J. Fish. Aquat. Sci. 37(8): 12761283.

Mohr, E. 1927. Bibliographie der Alters-und Wachstums-Bestimmung bei Fischen. J. Cons., Cons. Int. Explor. Mer 2(2): 236-258.
Mohr, E. 1930. Bibliographie der Alters-und Wachstums-Bestimmung bei Fischen. II Nachträge und Fortsetzung. J. Cons., Cons. Int. Explor. Mer 5(1): 88-100.

Mohr, E. 1934. Bibliographie der Alters-und Wachstums-Bestimmung bei Fischen. III Nachträge und Fortsetzung. J. Cons., Cons. Int. Explor. Mer 9(2): 377-391.

Moreau, J. 1980. Influence des divers parametres sur l'estimation du rendement par recrue: application aux pêches continentales. Cybium, 3e série 8: 67-75.
Mosteller, F. and J.W. Tukey. 1977. Data analysis and regression: a second course in statistics. Addison-Wesley, Massachusetts.
Muir, B.S. 1969. Gill size as a function of fish size. J. Fish. Res. Board Can. 26: 165-170.
Munro, J.L. 1967. The food of a community of East African freshwater fishes. J. Zool. 151: 389-415.
Munro, J.L. 1974. The mode of operation of Antillean fish traps and the relationships between ingress, escapement and catch. J. Cons., Cons. Int. Explor. Mer 35: 337-350.
Munro, J.L. 1982. Estimation of the parameters of the von Bertalanffy growth equation from recapture data at variable time intervals. J. Cons., Cons. Int. Explor. Mer 40(2): 199-200.
Munro, J.L., editor. 1983. Caribbean coral reef fishery resources. ICLARM Studies and Reviews 7, 276 p. International Center for Living Aquatic Resources Management, Manila, Philippines.
Munro, J.L. 1984. Estimation of natural mortality rates from selectivity and catch length-frequency data. Fishbyte 2(1): 11-14.
Munro, J.L. and R. Thompson. 1973. The biology, ecology, exploitation and management of Caribbean reef fishes. Part II. The Jamaican fishing industry, the area investigated and the objectives and methodology of the ODA/ UWI Fisheries Ecology Research Project. Res. Rep. Zool. Dept., Univ. West Indies 3(II): 44 p.
Murphy, G.I. 1965. A solution of the catch equation. J. Fish. Res. Board Can. 22(1): 191-202.
Murphy, G.I. 1966. Population biology of the Pacific sardine (Sardinops caerulea). Proc. Calif. Acad. Sci. 34: 1-84.
Murphy, G.I. 1967. Vital statistics of the Pacific sardine (Sardinops caerulea) and the population consequences. Ecology 48: 731-736.
Murphy, G.I. 1972. Fisheries in upwelling regions, with special reference to Peruvian waters. Geoforum 11: 63-71.
Murphy, G.I. 1977. Clupeoids, p. 282-308. In J.A. Gulland (ed.) Fish population dynamics. Wiley Interscience, New York.
Murphy, G.I. 1982. Recruitment of tropical fishes, p. 141-148. In D. Pauly and G.I. Murphy (eds.) Theory and management of tropical fisheries. ICLARM Conference Proceedings 9,360 p. International Center for Living Aquatic Resources Management, Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research Organisation, Cronulla, Australia.
Nomura, H. and J. de Oliveira Chacon. 1976. Idade e crescimento da pescada-do-piani, Plagoscion squamosissimus (Heckel) (Osteichthyes, Sciaenidae), do agude Amanari (Maranguape, Caera). Rev. Ceres 23(127): 191-197.
Nomura, H., J. de Oliveira Chacon, L. Nemoto and I.M. de Mattos. 1976. Idade e crescimento do cangati, Trachycorystes galeatus (Linnaeus, 1776) (Osteichthyes, Nematognathi, Auchenipteridae) do agude Banabuiu (Quixada, Caera, Brasil). Rev. Bras. Biol. 36(2):521-525.
Nzioka, R.M. 1983. Biology of the small-spotted grunt Pomadasys opercularis (Playfair 1866) (Pisces: Pomadasydae) around Malindi in Kenya. Kenya J. Sci. Techn. 15(3): 69-81.
Odum, E.P. 1971. Fundamentals of ecology. 3rd ed. Saunder's International Student Edition, Philadelphia, Pennsylvania.
Pannella, G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science 137 (4002): 1124-1127.
Parrish, B.B., editor. 1978. Fish stocks and recruitment. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 164.
Paulik, G.J. and L.E. Gales. 1964. Allometric growth and Beverton and Holt yield equation. Trans. Am. Fish. Soc. 93: 369-381.
Pauly, D. 1975. On the ecology of a small West African lagoon. Ber. dt. Komm. Meeresforsch. 24(1): 46-62.
Pauly, D. 1976. The biology, fishery and potential for aquaculture of Tilapia melanotheron in a small West African lagoon. Aquaculture 7(1): 33-49.
Pauly, D. 1977. The Leiognathidae (Teleostei): their species, stocks and fisheries in Indonesia, with notes on the biology of Leiognathus splendens (Cuvier) Mar. Res. Indonesia 19: 73-93.
Pauly, D. 1978. A preliminary compilation of fish length growth parameters. Ber. Inst. f. Meereskunde Univ. Kiel No. 55, 200 p .
Pauly, D. 1979a. Gill size and temperature as governing factors in fish growth: a generalization of Von Bertalanffy's growth formula. Ber. Inst. f. Meereskunde Univ. Kiel. No. 63, xv + 156 p.
Pauly, D. 1979b. Theory and management of tropical multispecies stocks: a review with emphasis on the Southeast Asian demersal fisheries. ICLARM Studies and Reviews 1, 35 p. International Center for Living Aquatic Resources Management, Manila, Philippines.
Pauly, D. 1980a. A selection of simple methods for the assessment of tropical fish stocks. FAO Fish. Circ. No. 729 (FIRM/C729), 54 p .
Pauly, D. 1980b. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J. Cons., Cons. Int. Explor. Mer 39(3): 175-192.
Pauly, D. 1980c. The use of a pseudo catch curve for the estimation of mortality rates in Leiognathus splendens (Pisces: Leiognathidae) in Western Indonesian Waters. Meeresforsch. 28(1): 56-60.
Pauly, D. 1980d. A new methodology for rapidly acquiring basic information on tropical fish stocks: growth, mortality and stock-recruitment relationships, p. 154-172. In S. Saila and P. Roedel (eds.) Stock assessment for tropical small-scale fisheries. Proceedings of an international workshop held 19-21 September 1979 at the University of Rhode Island. Int. Cent. Mar. Res. Dev., University of Rhode Island, Kingston.
Pauly, D. 1981. The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy's theory of growth. Meeresforsch. 28(4): 251-282.

Sinoda, M., S.M. Tan, Y. Watanabe and Y. Meemeskul. 1979. A method for estimating the best cod-end mesh size in the South China Sea area. Bull. Choshi Marine Lab., Chiba University 11: 65-80.
Slobotkin, L.B. 1980. Growth and regulation of animal populations. 2nd ed. Dover Publications, New York.
Smith, C.L. 1973. Small rotenone stations: a tool for studying coral reef communities. Amer. Mus. Novit. (2512). 21 p.
Smith, I.R. 1981. Improving fishing incomes when resources are overfished. Mar. Pol. 5: 17-22.
Smith, J.M. 1977. Scientific analysis on the pocket calculator. 2nd ed. John Wiley and Sons, New York.
Snedecor, G.W. and W.C. Cochran. 1967. Statistical methods. Iowa State University Press, Ames, Iowa.
Sokal, R.R. and F.J. Rohlf. 1981. Biometry. 2nd ed. Freeman and Company, San Francisco, California.
Sparre, P. 1979. Some necessary adjustments for using the common methods in eel assessments. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 174: 41-44.
Sparre, P. 1980. A goal function of fisheries (Legion analysis) I.C.E.S. C.M. 1980/G: 40. (Mimeo).
Sparre, P. Methods for estimating natural mortality. FAO/DANIDA project: training in fish stock assessment. Mombasa, June 1983. Lecture notes. (MS).
Sprugel, D.G. 1983. Correcting for bias in log-transformed allometric equations. Ecology 64(1): 209-210.
Steele, J.H., editor. 1973. Marine food chains. Oliver and Boyd, Edinburgh.
Stephenson, D. 1981. Assessment of fishery resources-Gulf of Nicoya, Costa Rica, p. 187-203. In Small-scale fisheries in Central America: acquiring information for decision-making. Int. Cent. Mar. Res. Dev., University of Rhode Island, Kingston.
Suvorov, J.K. 1959. General ichthyology. VEB Deutscher Verlag der Wissenschaften, Berlin. (In German).
Taylor, C.C. 1958. Cod growth and temperature. J. Cons., Cons. Int. Explor. Mer 23: 366-370.
Taylor, C.C. 1962. Growth equations with metabolic parameters. J. Cons., Cons. Int. Explor. Mer 27(3): 270-286.
Thompson, R. and J.L. Munro. 1974. The biology, ecology and bionomics of Caribbean reef fishes: Serranidae (hinds and groupers). Res. Rep. Zool. Dept. Univ. West Indies 3 (Part Vb) Kingston, 82 p.
Thompson, R. and J.L. Munro. 1978. Aspects of the biology and ecology of Caribbean reef fishes: Serranidae (hinds and groupers). J. Fish Biol. 12: 115-146.
Tinker, S.W. 1978. Fishes of Hawaii. Hawaiian Services Inc., Honolulu.
Tomlinson, P.K. 1970. A generalization of the Murphy catch equation. J. Fish. Res. Board Can. 27: 821-825.
Tukey, J.W. 1977. Exploratory data analysis. Addison-Wesley, Reading, Massachusetts.
Ulltang, φ. 1977. Sources of errors in and limitations of Virtual Population Analysis (Cohort Analysis). J. Cons., Cons. Int. Explor. Mer 37(3): 249-260.
Ursin, E. 1973. On the prey size preference of cod and dab. Medd. Dan. Fisk. Havunders. N.S. 7: 85-98.
van Sickle, J. 1977. Mortality rates from size distributions: the application of a conservation law. Oecologia (Berlin) 27: 311-318.
Vakily, J.M. 1982. Catch and effort in the trawl fishery, p. 65-94. In D. Pauly and A.N. Mines (eds.) Small-scale fisheries of San Miguel Bay, Philippines: biology and stock assessment. ICLARM Technical Reports 7, 143 p. Institute of Fisheries Development and Research, College of Fisheries, University of the Philippines in the Visayas, Quezon City, Philippines; International Center for Living Aquatic Resources Management, Manila, Philippines; and the United Nations University, Tokyo, Japan.
Volterra, V. 1926. Variations and fluctuations of individuals of animals living together, p. 409-448. In R.N. Chapman (ed.) Animal ecology. MacGraw-Hill, New York.
Walford, L.A. 1946. A new graphic method of describing the growth of animals. Biol. Bull. 90: 141-147.
Walsh, J.J. 1981. A carbon budget for overfishing off Peru. Nature (London) 290(5304): 300-304.
Walter, G.G. 1975. Graphical methods for estimating parameters in simple models of fisheries. J. Fish. Res. Board Can. 32: 2163-2168.
Weatherley, A.H. 1972. Growth and ecology of fish populations. Academic Press, London and New York.
Weber, E. 1980. Grundriss der biologischen Statistik. Gustav Fischer Verlag, Stuttgart and New York.
Wheeler, J. and F.D. Ommanney. 1953. Report on the Mauritius-Seychelles Fisheries Survey, 1948-1949. Col. Off. Fish. Publ. (London) 1(3). 148 p.
White, G.C., D.R. Anderson, K.P. Burnham and D.L. Otis. 1982. Capture-recapture and removal methods for sampling closed populations. LA-8787 NERP. Los Alamos National Laboratory, Los Alamos, New Mexico. 235 p.
Willimovsky, N.J. and E.C. Wicklund. 1963. Tables of the incomplete beta functions for the calculation of fish population yield. University of British Columbia, Vancouver, Canada.
Winberg, G.G. 1960. Rate of metabolism and food requirements of fishes. Minsk, USSR. Fish. Res. Board Can. Transl. Ser. No. 194. 239 p.
Winberg, G.G. 1961. New information on metabolic rate in fishes. Vopr. Ikhtiol. 1(1): 157-165. Fish. Res. Board Can. Transl. Ser. No. 362.11 p.
Winberg, G.G., editor. 1971. Methods for the estimation of production of aquatic animals. Academic Press, London and New York.
Yap, S-Y. 1983, A holistic, ecosystem approach to investigating tropical multispecies reservoir fisheries. ICLARM Newsletter 6(2): 10-11.
Yap, S-Y. and J.I. Furtado. 1980. Evaluation of two tagging/marking techniques and their practical application in Osteochilus hasselti C. \& V. (Cyprinidae) population estimates and movement at Subang Reservoir. Malaysia. Hydrobiologia 68(1): 35-48.

Author Index

Included here exclusively are the names of persons, i.e., of authors, or other persons mentioned in acknowledgements. The names of persons that are parts of eponyms (e.g., Schaefer model, Lotka-Volterra equations) are not included. Self-references are omitted.

Agger, P. 101
Akyüz, E.F. 18
Allen, K.R. 53, 59
Alt, H. 307
Andersen, K.P. 168
Anderson, D.R. 73
Anderson, G.R.V. 93
Archie, J.W. 3, 31
Aye Pyo xvi
Bagenal, T. 28, 41
Bailey, N.T.J. 92, 248
Bakun, A. 129
Ball, J.A. 2, 307
Balon, E.K. 7
Banerji, S.K. 156
Baranov, F.I. 14, 18, 60, 101, 122, 138
Bayliff, W.H. 122
Beamish, R.J. 28
Beddington, J.R. 77, 153
Ben-Yami, M. 153, 158
Berkeley, S.A. 39, 125
Berry, R.J. 62
Bertalanffy, L. von 23, 24, 29, 41, 163
Beverton, R.J.H. 18, 28, 41, 53, 55, 58, 74, 76, 77, 93 , $100,101,102,115,116,117,121,122,129$, 130, 147, 164, 167, 268, 279
Beyer, J. 129
Blueweiss, L. 154, 299
Boerema, L.K. 120, 173
Boëtius, I. 101
Boje, R. 171
Boonyubol, M. 72
Brandt, A. von 18
Brothers, E.B. 28, 41
Burnham, K.P. 73
Buzeta, R.B. 173
Caddy, J.F. 77, 144, 296
Carlander, K. 5, 7
Chapman, D.G. 18, 58, 92, 248
Chapman, D.W. 53
Chatterjee, S. 3
Choudary, R.H. 38
Clare, B.W. 303

Clark, C.W. 153, 162, 171
Cochran, W.C. 2
Colwell, R.K. 170
Cooke, J.G. 77
Csirke, J. 77, 129, 144, 296, xvi
Cushing, D.H. 41, 108, 130, 170

Daan, N. 173
Dalzell, P. 147
David, N. 26, 37, 41
De Groot, S.J. 170
Dickson, W. 92
Draper, N. 2
Dwiponggo, A. 145

Eberhardt, L.L. 155
Ebert, T.A. 67, 236
Eggers, D.M. 18

Fairbairn, D.J. 142
Forbes, S.T. 91
Ford, E. 31
Fox, H. 154, 299
Fox, W.W. 143, 288
Francis, R.C. 77
Fridrikson, A. 59
Fruchter, B. 64
Fry, F.E.J. 18
Fryer, G. 41
Furtado, J.L. 95
Futuyama, D.G. 170
Gales, L.E. 118,120
Garcia, S. 29, 120, 129, 134
Gaschütz, G. 26, 37, 208, 212
Gause, G.F. 163
Gazey, W. 168, 173
Gislason, H. 168
Glaser, T. 153, 158
Godoy, M.P. 55
Goldman, B. 93
Gomez, A.A. 2
Gomez, K.A. 2
Graham, M. 28, 138, 147

Green, D.R. 2, 163, 307
Guilford, J.P. 64
Gulland, J.A. 14, 18, 33, 34, 55, 59, 62, 64, 66, 73, 74, $76,77,88,92,93,95,100,101,108,120,142$, $154,155,173,188,200,224,239,264,288$, xiii, xiv
Gutsell, J.S. 139, 147, 152
Hamley, J.M. 14, 18
Harding, D. 14, 18
Hart, P.J.B. 153, 156, 157
Hashem, M.T. 28
Helgason, T. 168
Hempel, G. 122, 275
Henderson, F. 56
Hoenig, J.M. 53, 54, xiv
Hoenig, N.A. 38
Hohendorf, K. 33
Holt, S.J. $14,33,34,41,53,55,58,74,76,77,93,100$ $101,102,115,116,117,121,122,129,130,153$, $164,167,200,268,279,309$
Hongskul, V. 72, 74
Houde, E.D. 39, 125
Hoyer, H.J. 305, 307
Hsi, C.-L. 124
Huntsman, G.R. 59
Iles, T.D. 41
Ingles, J. 39, 40, 60, 62, 65
Isarankura, A.P. 92
Ita, E.O. 56
Jarett, K. 307
Johnson, L. 71
Jolly, G.M. 91
Jones, R. 41, 56, 73, 76, 77, 95, 101, 102, 105, 108, $118,119,122,171,227,248,259,264,268,272$

Kato, F. 95
Kesteven, G.L. 7
Kimura, D.L. 59
Klima, E.F. 93, 142, 143
Krishnan, T.S. 156
Kudzma, V. 154, 299
Lai, H.-L. 124
Langerman, J.D. 96
Lara, F.J.S. 55
Larkin, P.A. 164, 168, 171, 173
Lassen, H. 101
Lawing, W.D. 53, 54
Laws, E.A. 3, 31
Laws, R.M. 153
Le Cren, E.D. 7
Le Guen, J.C. 122
Lelek, A. 17
Le Reste, L. 120
Lewis, J. 2, 163, 307
Lotka, A.J. 163

Louben, G. 54
Lough, R.G. 67, 86, 236
Lowe-McConnell, R.H. 41
MacCall, A.D. 153
Majkowski, J. 177, 178
Manooch, C.S. 59
Margetts, J.M. 18
Marquez, J.R.S. 69
Marr, J.C. 1
Marshall, N. 93
Marten, G.G. 173
Martosubroto, P. 92, 120, 127
Mattos, L.M. de 55
May, R.M. 153
McCarthy, G. 307
McCombie, A.M. 18
McFarlane, G.A. 28
Meemeskul, Y. 18, 122
Menon, M.D. 28
Mesnil, B. 101, 108
Miller, R.G. 178
Mohn, R.K. 142
Mohr, E. 28
Mosteller, F. 178
Moreau, J. 177
Muir, B.S. 24
Munro, J.L. 18, 35, 60, 64, 79, 87, 90, 159, 160, 163, 173,203 , xiii, xiv
Murphy, G.I. 101, 129, 132, 134, 141, 147, 148, 153, $155,156,157,163,174$

Nakashima, D. 154, 299
Nakken, O. 91
Navaluna, N.A. 59
Neal, R. 40, 65
Nemoto, L. 55
Nomura, H. 55
Nzioka, R.M. 62
Odum, E.P. 139, 152, 157
Oliviera-Chacon, J. de 55
Ommanney, F.D. 93
Otis, D.L. 73
Ow, M.D. 171
Palomares, L. xvi
Pannella, G. 28, 41
Parrish, B.B. 129, 134
Parrish, R.H. 129
Paulik, G.J. 118, 120
Pella, J.J. 143
Peters, R. 154, 299
Pianka, E.R. 170
Pielou, E.C. 152, 153, 157
Pitcher, T.J. 153, 156, 157
Polovina, J.J. 171, 173
Pope, J.A. 18
Pope, J.G. 101, 102, 108, 129, 147, 163, 164, 166, 168, 171, 256, 259, 264, 304

Postel, E. 31, 44
Powell, D.G. 70, 71
Prabhu, M.S. 9
Price, B. 3

Qasim, S.Z. 156
Ralston, S. 27
Randall, 33, 34, 46
Richards, F.J. 120
Rickard, N.A. 18
Ricker, W.E. 2, 3, 7, 31, 41, 58, 73, 77, 95, 107, 115, $119,120,122,129,130,132,134,138,139,140$, $143,147,196,248,251,272,279,284,288,309$, xv
Ricklefs, R.E. 152, 153, 157
Robson, D.S. 58
Rodrigues, M.S. de Sousa 55, 78
Roedel, P. 173
Roff, D.A. 142
Rohlf, F.J. 2, 3, 8, 178
Rothschild, B.J. 73
Russel, B.C. 93
Russel, E.S. 1
Sachs, L. 184
Saeger, J. 92
Saila, S. 67, 86, 173, 178, 236, xvi
Sale, P.F. 129
Sams, S. 154, 299
Sarhage, D. 122, 275
Saville, A. 91, 129
Schaefer, M.B. 92, 138, 140, 142, 144, 147, 248, 288
Schnute, J. 138, 142, 147, 292
Sekharan, K.V. 93, 98
Sharp, G.D. 129, 134
Shepherd, J.G. 134
Shindo, S. 93, 132
Shudde, R.H. 272
Shul'man, G.E. 39, 41
Silliman, R.P. 139, 147, 152, 163
Simpson, A.C. 173, 176
Sims, S.E. 101
Sinoda, M. 18, 122
Slobotkin, L.B. 152, 156, 157

Smith, C.L. 94
Smith, H. 2
Smith, I.R. 169, 171
Smith, J.M. 2, 307
Snedecor, G.W. 2
Sokal, R.R. 2, 3, 8, 178
Sparre, P. 56, 64, 101, 227, 232, xvi
Sprugel, D.G. 3
Steele, J.H. 171
Stevenson, D. 74
Suvorov, J.K. 28
Talbot, F.H. 93
Tan, S.M. 18, 122
Taylor, C.C. 23, 28, 41, 74
Thompson, R. 60, 79, 87, 90, 159, 160
Tinker, S.W. 42
Tomczak, M. 171
Tomlinson, P.K. 101, 143
Tukey, J.W. 3, 178
Ulitang, φ. 101
Ursin, E. 94, 168, 170, xiv
Vakily, J.M. 97
van Sickle, J. 60
van Zalinge, N.P. 105, 108
Volterra, V. 163
Walford, L.A. 31
Walsh, J.J. 168
Walters, G.G. 142
Watanabe, Y. 122
Weatherley, A.H. 7, 41
Weber, E. 2
Westerlund, T. 208, 212
Wheeler, J. 93
White, G.C. 73
Whitney, R.R. 18
Wicklund, E.C. 119, 272
Wilimovsky, N.J. 119, 272
Winberg, G.G. 24, 53, 171
Wuddah, A.A. 17
Yamada, Y. 95
Yap S.-Y. 95, 168, 169

OTHER ICLARM PUBLICATIONS ON STOCK ASSESSMENT

- Theory and management of tropical multispecies stocks: a review with emphasis on the Southeast Asian demersal fisheries. D. Pauly. 1979. Reprinted 1983; ICLARM Studies and Reviews T, 35 p. S2.00 surface; S6.50 airmai.

This is a critical review of the demersal fisheries of Southeast Asta and the models used tor managing thern. Many are overcapiralized; they arealways extremely cilficult to monitor, and they are besel with problems refated to effective enforcement of any selected management scheme.

- Fish behavior and its use in the capture and culture of fishes. J.E. Bardach, J.J. Magnuson. R.C. May and J.M. Rainhart, Editors. 1980. ICLARM Conference Proceedings 5,512 p. \$15.00 surface:\$25.00 airmail.

Papers and discussions of the Conference on Physiological and Behavioral Manipulation of Food Fishias Production and Management Tools, keld in Bellagio, Italy. 3.8 November 1977. The papers are grouped into three categories. (1) manipulation of fish behavior essentially through the animals: semses. (2) controlling or predicting the reproduction or recruitment of fishies and (3) predicing the distribution of fishes and therr-responses to fishing gear:

- Philippine municipal fisheries: a review of resources, technology and socioeconamics I.R.Smith. M.Y. Puzon and C.N. Vidal-Libunao. 1980. Reprinted 1981, 1983. ICLARM Studies and Reviews $4,87 \mathrm{p}, \mathbf{S 5 . 0 0}$ surface, $\$ 12.00$ airmail.

Synthesizes publiciv available resparch studies and secondary data; provides evidence of a trend towardis overfishing of Philippine coastat waters, and of a willingness among fishermen 10 consider alternative activities to capture fishing, the shift in government programs from rasource "development" to "management" fconcludes with a discussion of the implications of these research findings to ficheries mansgement and tesearch

- Theory and management of tropical fisheries. D. Pauly and G.I. Murphy, Editors. 1982 ICLARM Conference Proceedings 9,360 p. $\$ 17.50$ surface, $\$ 28.50$ airmail (paper); $\$ 21.50$ surface, $\$ 32.50$ (cloth).

Proceedings of à workshop in Svdney, January 1981: reviews current research and methodology used in tropical stock assessment: formulates an action plan to overcome present restraints to stock assessment and management of tropical fisheries: includes reviews of the Southeast Asian darabase on tropical multispecies stocks:

- Small-scale fisheries of San Miguel Bay, Philippines biology and stock assessment. D. Pauly and A.N. Mines, Editors. 1982. ICLARM Technical Reports 7, 124 p. \$9.00 surface: \$ 16.00 airmail.

The first of aseries of five raports on the first truly musficisciplimary study of any fishery in Asia. Gontans eight separate papers dealing with brology and ecology, catch and effort, stock assessment and status of the various sectars of the fisharies in a heavily exploited $840 \cdot \mathrm{~km}^{2}$ boy in the philippines. The study has relevance to all inshore tropical fistreries.

- Small-scale fisheries of San Miguet Bay, Philippines: economics of production and marketing. I.R. Smith and A.N. Mines, Editors: 1982. ICLARM Technical Reports 8, 143 p. \$12.00 surface, $\$ 25.00$ airmail.

The second of a series of live reports on the first truly multidisciplinary study of any fistery in Asia

- Small.scale fisheries of San Miguel Bay, Philippines. 1983. I. R. Smith, D. Pauly and A.N. Mines, ICLARM Technical Reports 11. $\$ 6.30$ surface: $\$ 9.50$ airmail.

The last of aseries of five reports on the lifst srulv mulnisiscipinary study of any fishery in Asia which synthesizes the findings of the San Miguel Bay Project. Management policy optians are ousilined, The discussions are relevant to many other tropical fisheries.

- Caribbean coral reef fishery resources. J.L. Munto. Editor. 1983. ICLARM Studies and Reviews 7, 276 p. \$16.00 surface, \$33.00 airmail (paper): $\$ 19.50$ surface, $\$ 37.00$ airmail (cloth).

The edited formal publication of a series of 18 mimeoed renorts of the 1969.1973 phase of the Fisheries Ecology Research Project at the University of West Indies, Jamaica; with a conchuding chapter detailing advances in knowledge of reet fish biology and stock assessment to the present time, some data have been reanalyzed using new techniques:

- Note on observations of daily rings on otoliths of deepwater snappers. F. Brouard, R. Grandperrin; M. Kulbicki and J. Rivaton. 1984. ICLARM Transiations 3 ; 8 p. S1.35 surface; $\$ 2.00$ airmail.

A study of fish growth by examinatton of otoliths by the Office de la Recherche Scientifique et Technigued Outre Mer (ORSTOM), New Caledonia, in some of the major species: Etelis carbunculas, E. coruscans, Pristimordes multidens and P. flavipinnis. Transtated from French.

[^0]: ${ }^{\text {a }}$ Based on samples from Mombasa Harbour, obtained during the FAO/DANIDA Training Course on the Methodology of Fisheries Sciences (Biology), held in Mombasa, Kenya, 19 May-14 June 1980.

[^1]: ${ }^{\text {a }}$ Data read off Fig. 1 in Lelek and Wuddah (1969), including only those lengths for which both mesh sizes had non-zero catches.
 ${ }^{6}$ Data regrouped in 2-cm classes to reduce number of classes with zero catches.

[^2]: ${ }^{a}$ From Hashem (1972).

[^3]: ${ }^{a}$ From Postel (1955), who also gives $L_{\max }=146.5$, corresponding to a value of $W_{\max } \approx 60 \mathrm{~kg}$.

[^4]: ${ }^{2}$ Adapted from Table 3 of Randall (1962). Data included pertain to fishes which grew at least 2 mm while at large, which accounts for small measurement errors and cases of no-growth due to tagging wounds.
 ${ }^{\text {b }}$ As calculated from a Munro plot (see Example 4.6) with $L_{(\infty)}=19.25 \mathrm{~cm}$ and $D=1$ (Fig. 4.9).
 ${ }^{c}$ As computed from the mean monthly temperatures and the dates at tagging and recapture in Randall (1962), who also gives $29.4^{\circ} \mathrm{C}$ as highest mean monthly temperature (T_{s}), $27.2^{\circ} \mathrm{C}$ as lowest mean monthly temperature (T_{w}) and $28.5^{\circ} \mathrm{C}$ as annual mean ($\overline{\mathrm{T}}$).

[^5]: ${ }^{\text {a }}$ Adapted from Table 17 in Randall (1962). Randall (1968) gives for this stock a value of $L_{\max }=$ " 20 inches", hence $L_{(\infty)}=20 \cdot 2.54 / 0.95=53.5 \mathrm{~cm}$.

[^6]: ${ }^{\mathbf{a}}$ Interpolate for intermediate values of \mathbf{n}.

[^7]: ${ }^{\mathbf{a}}$ Total mortality and its standard error estimated from equations (5.6) and (5.7), with t_{c} set at zero because very small fish were included in the catch samples.

[^8]: ${ }^{a}$ It is here assumed (1) that the samples cover a wide range of lengths, (2) that gear selection is accounted for and (3) that the sizes of the monthly samples are more or less equal if the total sample is accumulated over more than one month.

[^9]: ${ }^{\mathbf{a}}$ To use this table, select appropriate column (= month of recruitment, and read from that column values of t_{1} and t_{2}, given the month at which sampling for L_{1} and L_{2} took place (t_{1} can be, but is not necessarily, the month of recruitment). Values may be interpolated linearly for dates of the month; in this case, recruitment and table values should be viewed as pertaining to the 15 th of the corresponding month. Interpolation must not be done between 1 and 0 .

[^10]: ${ }^{\text {a }}$ Area II, Gulf of Thailand, 1961 experiment. Total number released was $\mathrm{N}_{\mathrm{o}}=\mathbf{5 , 2 3 0}$. From Table XXI in Hongskul (1974).
 ${ }^{\mathbf{b}}$ The first time period at large is coded 0 , the following periods $1,2,3$, etc.

[^11]: ${ }^{\text {a }}$ Based on data in Smith (1973, Table 5, Station I).
 Whe unit of effort is " 22 fluid ounces of emulsified rotenone applied from a plastic squeeze bottle".

[^12]: ${ }^{\text {a }}$ Based on data in Smith (1973, Table 6, Station X).
 ${ }^{\mathrm{b}}$ The unit of effort is " 22 fluid ounces of emulsified rotenone applied from a plastic squeeze bottle".

[^13]: ${ }^{\text {a }}$ This feature of the model was pointed out by E. Ursin (pers. comm.).

[^14]: *A cohort is a group of fish born at the same time, and exposed throughout their lives to the same mortalities.

[^15]: ${ }^{a}$ From Table 6 in Anon. (1978b) who also provided (for $D=1$): $L_{\infty}=130 \mathrm{~cm}, \mathrm{~K}=0.1$ and $\mathrm{M}=0.28$.

 A = Jones' length cohort analysis.
 $B=$ New method (VPA with length-at-age data).
 $C=(B / A-1) \cdot 100=C$ (\% diff.).

[^16]: ${ }^{\text {a }}$ Data adapted from Table 8.6 of Ricker (1975). Note that both F and M refer to a 2 -month period and should be multiplied by 6 to obtain annual rates (e.g., $\mathrm{M}=0.2=1.2 / 6$).
 ${ }^{\mathrm{b}}$ Rounded figures. Actual computation (based on $\mathrm{F}_{\mathrm{t}}=0.20$) used 10 significant digits.
 ${ }^{c}$ Assuming $F_{t}=0.20$ and $M=0.20$, which provide, with equation (7.2) the estimate of $N_{t}=667$.
 ${ }^{\mathrm{d}}$ Assuming $\mathrm{F}_{\mathrm{t}}=0.10$ and $\mathrm{M}=0.20$, population estimates omitted. Note convergence toward the F-values obtained by using $F_{t}=0.20$.
 ${ }^{\mathrm{e}}$ Assuming $\mathrm{F}_{\mathbf{t}}=0.40$ and $\mathrm{M}=0.20$, population estimates omitted. Note convergence toward the F-values obtained by using $F_{t}=0.20$ or $F_{t}=0.10$.

[^17]: ${ }^{\text {a }}$ The catch-at-length data are from Anon. (1978b, Table 6, p. 78) from which (p. 17) the parameter values $L_{\infty}=130, K=0.10, M=0.28, M / K D=2.8$ and $D=1$ also stem. The results (population estimates and E-values) presented here differ from those in Anon. (1978b) both because of the different E_{t} used, and because of various inconsistencies in the original analysis.

[^18]: *Gulland (1965) and Pope (1972) have been reprinted and included in the reader recently edited by Cushing (1983).

[^19]: ${ }^{\text {a }}$ Adapted from the data in Table 4.4, using the length-weight relationship $\mathrm{W}=0.0052 \mathrm{~L}^{3.3}$. Note that $W_{\max }=60,000 \mathrm{~g}$ corresponds to a value of $\mathrm{D}=0.47$. The mean c.f. obtained from the length-weight data is $1.887 . M$ is set at 0.3 and $t_{\max }=\infty$.

[^20]: ${ }^{\text {a }}$ Obtained by solving the VBGF with the empirical size and age values in Table 8.1 and the corresponding set of asymptotic size, K, b and D values and Program FB 9, then by taking the mean of the resulting 6 estimates of t_{0}.
 ${ }^{b}$ Based on a mean weight at first capture $W_{c}=5 \mathrm{~kg}$.

[^21]: ${ }^{\mathbf{a}}$ The difference between two succeeding Y / R_{r} values, divided by ten is here used as approximation of the slope of the yield-per-recruit curve between the two values in question.

[^22]: ${ }^{a}$ Use of the 1956 value generates a negative intercept in equation (9.2), and hence a negative value of β^{\prime} in equation (9.1). See Users' Instruction for FB 24.

[^23]: *Beverton and Holt (1957) actually presented two stock-recruitment models. Their second model, however, is in its form-if not in its derivation-similar to Ricker's model discussed further below.

[^24]: ${ }^{\text {a }}$ From Pauly (1980d); the values presented here should be considered tentative due to several approximations made for the estimation of the number of recruits.
 ${ }^{\mathrm{b}}$ See Example 9.3.

[^25]: *In Murphy (1967) the word "zero" has been erroneously replaced by "unity."

[^26]: *Not to be mistaken for the parameter D in the generalized VBGF (see Chapter 4).

[^27]: *Photocopies of this and of the other I.C.E.S. Councll Meetings papers cited here can be obtained by writing to the I.C.E.S. Secretarlat, Palaegade 2, DK-1261 Copenhagen, Denmark.

